Recycling of End of Life Concrete to New Concrete (PPT)

Di Maio, Francesco; Rem, Peter; Lotfi, Somayeh; Bakker, Maarten; Xia, Han; Hu, Mingming

Publication date
2016

Document Version
Final published version

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.
Recycling of End of Life Concrete to New Concrete

Francesco Di Maio¹, Peter Rem¹ Somayeh Lotfi¹,
Maarten Bakker¹, Han Xia¹, Mingming Hu²,

2016 International Concrete Sustainability Conference,
Washington, May 15-18, 2016
Key Factors affecting the industry:

- **Political influence**
 - Growing demand to improve resource efficiency
 - Growing demand of high quality secondary raw materials

- **Environmental**
 - Growing demand for green waste management technologies
 - Policy and regulations concerning pollution and land use

- **Social**
 - Growing demand of high quality secondary raw materials

- **Economic**
 - Wastes are increasingly seen as resources to be exploited rather than a burden
 - Capital demand
Recycling potential in EU

- 2.3 bn tons of concrete is annually produced in EU
- 380 M tons of end-of-life concrete in generated in EU
- 47% average recycling rate of C&DW in EU
- Only 2.2 % of the concrete produced in NL contains RCA
- Decreasing demand for road foundation materials

Construction and Demolition Waste = C&DW
Recycled Concrete Aggregates = RCA
Data of 2014
Challenge the future.
Overall view of C2CA Technology
Smart demolition, Crushing, High-quality products

EOL Building
EOL Concrete

Smart demolition
→
“Clean” concrete

Crushing

Crushed mineral
Contaminants
Steel rebar

C2CA recycling technology

0-4 sand
4-16 aggregate
>16 aggregate
Cement paste

Existing building materials & construction industries
Economy

Essential to minimize process cost

Recession, dredging project, ...

Price levels/ton

Range of buying price

crushed concrete

Aggregate prices

max. recycling process cost:
5 €/t NL, 2015

Large road construction projects

Time
Is concrete–to–concrete possible?

Economy pushes innovations on technology and business models

Business model:

- Avoid/minimize transfer of ownership/trading fees
- Avoid transport (both number and distance)
- Create transparency about quality
Is concrete-to-concrete possible?

Avoid transport: primary raw materials base case

Natural aggregate

"CaCO₃"

Cement

Cement kiln

CO₂

Mortar facility

Ready mix concrete

Demolition site

Challenge the future
Is concrete–to–concrete possible?

Avoid transport: Recycling at mortar facility

Mortar facility + recycling

Ready mix concrete

Short distance

Cement kiln

Cement

Crushed concrete

Cement paste

Long distance

CO₂

Demolition site
Is concrete–to–concrete possible?
Recycling at mortar facility, high-Ca cement paste

- Recycling at the mortar facility has favorable economy of scale wrt demolition sites and leads to minimal transport and material transfer

- Minimal trading fee based on trust relation demolition company – mortar facility or based on on-line quality control

- High-Ca cement paste product needed to minimize transport over long distances
Is concrete–to–concrete possible?

Constraints on technology and business model

Technology:

- Only cheap unit processes (0.5 – 2 €/ton)
- No residues (land fill costs are prohibitive in NL)
- High-quality products: better than natural wherever possible
C2CA recycling process
Process flow sheet: only cheap unit processes

Material processed in moist condition
C2CA process costs
Why use NIR sorter on >16 mm?
Wood, metal and plastic contaminants

+16 mm has varying levels of wood, plastics and metal contaminants
Tests NIR (near infrared) sensor

Principle of TITECH autosort

1. Feeding of unsorted material
2. Spectrometer scanner
3. Separation chamber
Tests NIR (near infrared) sensor
Ejected contaminants after NIR sorting
Why ADR treatment?

ADR Input
0 - 16 mm

ADR rotor product
Fine fraction
0 - 1 mm

Big heavier parts

ADR airknife
Fine fraction
Wood and foam contaminants
1 - 4 mm

Small lighter parts

ADR Coarse
Recycled Aggregate Concrete
4 - 16 mm

Air
Why ADR treatment?

Products from crushed concrete by ADR: coarse (left) and fine (right)
Why ADR treatment?
Separation and thermal-mechanical treatment of contaminated 0-4 mm fraction
Challenge the future
Mobile ADR technology of Inashco R&D
Industrial demonstration (120 t/h)
When: on June 10, 2016
Where: Hoorn, The Netherlands
Challenge the future

Location C2CA (HOORN)
Thermal-mechanical treatment of 0-4 mm fraction

- Heating of the 0-4 mm and milling to concentrate more cement into the 0-0,250mm fraction

Lab scale ball-mill
Product quality
Can we achieve equal or better results than with natural raw materials?

Options that would add value:
• Recycled aggregate: higher strength; faster strength; more durable
• Cement: Calcium Silicates (old cement paste) can be used in the cement kiln to reduce CO₂ emissions; Calcium Silicates can be used in low-temperature cements
Product quality: C2CA aggregate

Compressive strength after 2 and 28 days, reference sample with 100% natural aggregates in comparison with concrete samples with 20%, 50% and 100% substitution of recycled aggregates: trials by Holcim
Product quality: C2CA aggregate

Compressive strength after 2 and 28 days, reference sample with 100% natural aggregates in comparison with concrete samples with 20%, 50% and 100% substitution of recycled aggregates: trials by Heidelberg
Product quality: C2CA aggregate

Strength development much faster for recycled agg.

Comparison between compressive strength of concrete with 100% of natural aggregate (—) with concrete with 100% of recycled aggregates (—) at different ages: trials by AGH University
Product quality: C2CA aggregate
Concrete quality depends strongly on production process, not just on raw materials

Conclusions:
• Recycled aggregate can provide strength development essentially beyond that reached with natural aggregate, using the same amount of cement

• Procedure for making concrete from recycled aggregate is different, akin to procedures used with light aggregate

• Key is in high-level understanding of concrete production process
Cement paste produced from 0-4mm
Compressive strength test 0-4 mm sand

Results of the compressive strength test of mortar samples
Comparison with natural confirms the quality of the recycled sand
Product quality

Can we achieve equal or better results than with natural raw materials?

Conclusions:

• Recycled aggregate: faster strength; not stronger, not more durable

• Cement: Calcium Silicates (C2CA: 50% of old cement paste) can be used in the cement kiln to reduce CO₂ emissions;

• Calcium Silicates can be used in low-temperature cements (indication from the market)
LIBS Quality Assessment

laser power supply & controller

Nd:YAG laser

delay generator

An acquired LIBS spectrum

spectrometer

laser pulse

reflecting mirror

focusing lens

plasma light collection optics

plasma

conveyor belt

Challenge the future
HISER Project

Holistic Innovative Solutions for an Efficient Recycling and Recovery of Valuable Raw Materials from Complex Construction and Demolition Waste (HISER) project is co-financed in the framework of the biggest EU Research and Innovation Programme - Horizon 2020.

HISER project is an answer to European challenges that have been identified in the construction and demolition sector such as:

- the need to move towards highly efficient paradigms of recovery of valuable raw materials in priority waste streams within the EU28,
- the need for progress in novel recycling technologies for complex Construction and Demolition Waste,
- the need for novel solutions stimulating selective sorting at source of materials arising from demolition and refurbishment works.
HISER objectives

The **main objective of HISER** is to develop and demonstrate novel cost-effective holistic solutions (technological and non-technological) to increase the recovery rates from increasingly complex Construction and Demolition Wastes (C&DW), according to the principles of circular economy approach throughout the whole value chain in the construction sector.

The following **solutions are proposed** within the project:

- harmonized procedures, supplemented by an intelligent tool and systems for traceability of the supply chain, for highly-efficient sorting at source in demolition and refurbishment works,

- advanced sorting and recycling technologies with automated quality control for the production of high purity raw materials from complex C&DW,

- development of optimized construction products (such as low embodied energy cements, green concretes, bricks, gypsum plasters and gypsum plasterboards or extruded composites) with higher rates of recycled materials.
Thank you

Francesco Di Maio

Email address: f.dimaio@tudelft.nl
www.C2CA.eu
www.hiserproject.eu

Acknowledgements
The project is realized with the financial support of the European Commission in the framework of the FP7 Collaborative project. Grant Agreement No. 265189.

The project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 642085.