Optimizing traffic flow efficiency by controlling lane changes: collective, group and user optima
Submission Date: 2016.7.31

Corresponding Author:
Shengyue Yao
Delft University of Technology
Transport & Planning
Stevinweg 1
Delft, The Netherlands
+31 0684025635
S.Yao@tudelft.nl

Victor L. Knoop PhD
Delft University of Technology
Transport & Planning
Stevinweg 1
Delft, The Netherlands
+31 15 278 8413
V.L.Knoop@tudelft.nl

Bart van Arem PhD
Delft University of Technology
Transport & Planning
Stevinweg 1
Delft, The Netherlands
+31 15 27 86342
B.vanArem@tudelft.nl

Word count:

nr of words in abstract 226
nr of words (including abstract) 5873
nr of figures & tables 6*250=1500
total 7373
ABSTRACT

Lane changes can lead to disturbances in traffic flow, whilst the uneven distribution of traffic over different lanes as a result of lane changes can also lead to instabilities and congestion on one specific lane. Therefore, giving advice on lane change can be beneficial for both individual drivers and traffic state in the network. However, there are many variations in advice content and objective, all of which may impact the performance of advice. This paper focuses on the optimization of traffic flow through the performance of specific lane changes. We model traffic flow on a two-lane stretch and consider lane-change time instants of a subset of vehicles as decision variables. Optimizations with three objectives are constructed: reaching a collective optimum, a group optimum and a user optimum. These optima are found by total travel delay minimization of different vehicle groups. To solve the problems, a genetic algorithm as a heuristic method is implemented. Each optimum leads to different lane changes. Specifically, by the proposed algorithm, vehicles will be suggested to change lanes in bigger gaps to improve collective or group efficiency; while they are supposed to overtake as many vehicles as they can by changing lanes for their own benefit. The algorithm can be further extended to a more effective in-car advice system, which can improve traffic efficiency for future situations through communicating partly automated vehicles.
1. INTRODUCTION

Lane changes on highways are essential to traffic operations. Systematic lane changes can lead to a significant capacity drop (1), and are proved to be the primary reason of density oscillations and traffic instabilities (2, 3). Besides, a considerable amount of collisions are also generated by lane changes (4). On the contrary, controlling lane changes of equipped vehicles can absorb congestions (5) and mitigate traffic oscillations (6).

Moreover, intelligent transport systems (ITSs) have been widely investigated and used to improve drivers’ safety and comfort, as well as to improve the traffic efficiency and emission. In addition, ITSs in vehicles are constantly being developed and usually referred to as advanced driver assistance systems (ADASs). Benefiting from the development of accurate positioning (e.g., via point precise positioning (7)), as well as vehicle-to-vehicle and vehicle-to-infrastructure communication technologies (8), a more advanced in-car system is envisioned, which can give instructions to drivers down to the lane level.

As a first step towards in-car algorithms for lane-change advice, a fundamental approach on controlling lane changes is proposed in this paper. The proposed algorithm cannot be implemented in-car, but shows what the effect of lane changes could be on traffic flow, and how optimization of lane change can improve the traffic flow. In addition, three different objectives are targeted respectively, they are: collective optimum, group optimum, and user optimum. By comparing the optimization results produced by following these objectives, general rules on good lane-change moments are extracted.

The remainder of this paper is organized as follows: section 2 presents a literature overview of lane-change impacts and vehicle controls on lane change. In section 3, a problem formulation is presented, in which those three control objectives are elaborated. The next section describes the optimization algorithm implemented in this paper; a design of optimization process for reaching the user optimum is also elaborated in this section. Next, the settings in simulation and the development of a case study is introduced in section 5. In section 6, optimization results of the developed case under three objectives are presented and analyzed. The final section summarizes the findings and conclusions of this paper, it furthermore discusses a potential implementation of the results, and further research directions.

2. LITERATURE OVERVIEW

This section consists of two parts: the first part gives an overview of how lane changes can influence traffic efficiency; while the second part of this section presents studies on lane-change control approaches.

So far the impacts of lane changes have been investigated both empirically and theoretically. For empirical analyses, Jin collected vehicle trajectories on a highway during 75 minutes, and found that lane changes can generate significant capacity drops (1). He also proposed a new interpretation of lane change intensity to capture this impact. Observations from Cassidy et al. also provide empirical evidences for this impact (9). In addition, Zheng et al. pointed out that lane changes are predominately responsible for oscillation propagations and stop-and-go waves (3). Moreover, by modelling energy propagation in traffic flow, this argument is theoretically supported by him.

The lane-change Impacts are theoretically analyzed in other studies as well. For instance, by modelling the density of each lane, Gazis et al. found that the traffic state of each lane on
highways can be disturbed by lane changes; in addition, the oscillation is unstable and easily amplified in time (2). Besides, Daganzo describes lane flows by constructing a model of slugs and rabbits (10). In the model, the rabbits indicate aggressive drivers with higher speeds and the slugs indicate less aggressive drivers with lower speeds. Hereby, uneven lane distribution and congestion created by lane changes can be explained by their behavioral patterns.

The studies above show that mitigating the negative lane-change impacts on traffic efficiency are crucial to highway traffic operations; moreover, finding a feasible control approach on lane change is necessary. Below, we list studies which present vehicle control approaches on lane change.

Some control approaches target to improve the overall traffic state. For example, Schakel et al introduced a rule-based control strategy for in-car advice (6). This strategy gives advice on speed, headway and lane use to equipped vehicles based on detected or predicted unstable traffic situations, which is referred to as “triggers” in the paper. In addition, a heuristic rule is described to mitigate and resolve the traffic pressure on these situations. Being evaluated by the case study in simulation, this strategy showed substantial improvement on traffic state. However, the objective of individual drivers are not considered in the approach, nor is there an indication that the results are optimal.

Moreover, an integrated traffic optimal control algorithm is presented by Roncoli et al. (5) This algorithm takes traditional control actions into account, including ramp-metering, mainstream traffic flow control, and lane-change control. Additionally, macroscopic characteristics are considered to form cost functions (objective functions) of each lane-segment, which is formed by a first-order multi-lane model of highway (11). An optimal problem with linear constraints is formulated hereby to alleviate congestions. The optimization results achieved through simulations also showed that this algorithm can improve traffic efficiency significantly with a reasonable computational time. However, the implementation of this algorithm requires a large penetration rate of equipped vehicles, so real-world testing of the algorithm remains unpractical. Besides, the algorithm is not able to give advices on lane-change maneuvers to individual drivers. There are other studies also attempting to give macroscopic suggestions on lane change, such as facilitating lane distribution by variable speed limit near on-ramps of highways (12), and optimizing the lane assignment by dynamic linear program (13).

Apart from facilitating the overall traffic state, there are works focusing on increasing benefits for the controlled vehicle group. Interestingly, a game theoretical approach on controlling predictive lane changes is proposed by Wang et al. (14). In this paper, two controlled vehicles are considered, and both non-cooperative and cooperative control systems are formulated. Particularly, controlled vehicles in the non-cooperative system only optimize their own cost, while they jointly consider the group benefit in the cooperative system. A differential game is formulated under the assumption that the controlled vehicles make their decisions based on their expectations of other vehicles’ behaviors. The framework of this algorithm is referential and can be further extended to cases with a higher penetration rate.

Additionally, approaches like improving vehicles’ safety and smoothing lane-change trajectories by the game theoretical method (15, 16, 17), generating a feasible and safe lane-change trajectory by controlling longitudinal and latitudinal accelerations in a dynamic model (18), and accomplishing a smooth lane change by an integrated lane-change optimization algorithm (19) present how users’ benefit can be increased by controlling lane changes.
As the overview shows, the problem of controlling lane changes optimally, while considering both cooperative and non-cooperative objectives, needs to be investigated further. This paper aims to fill this gap by formulating an optimal control approach on lane change under different objectives. Finally, this paper gives a general rule of selecting proper lane-change moments by comparing optimization results.

3. PROBLEM FORMULATION

A two-lane straight road stretch is focused in this paper. Figure 1 depicts the scheme of the research situation. In Figure 1, the solid arrows are driving directions, while the dashed arrow is the changing direction. In this stretch, a fast lane (FL) and a slow lane (SL) are presented. This paper considers the situation that the leader on the fast lane (vehicle [1]) has to reduce his speed for a while, and thus forms a moving bottleneck. Consequently, vehicles downstream of vehicle [1], such as vehicle [2] may want to change his lane to avoid delay. After overtaking vehicle [1], they can go back to the fast lane. In this paper, the lane-change time instants are controlled variables. Therefore, the actions of a controlled vehicle are defined to be a subset of moments that he changes to the adjacent lane and back again. Newell’s car-following model is assumed for all the longitudinal movements in this paper. In addition, vehicles will not change their lane, unless they are under control, and are suggested to do so.

In this section, controlled variables are optimized by forming various objectives, and they are all formulated as the minimization of the total travel delay. Three objectives are formed, the first two objectives are under the assumption that cooperation will exist in the control process, while in the third objective, vehicles will not cooperate. These objectives are:

- **Cooperative objective**:
 1. Collective optimum
 2. Group optimum

- **Non-cooperative objective**:
 1. User optimum

The cooperative objectives are found by the collective and the group optimization, while the user optimum is found within the framework of game theory. Table 1 provides an overview of the symbols used in this paper.

3.1. Cooperation objective

For the cooperative objective, we assume that controlled vehicles will cooperate and compromise in order to increase the collective or the group benefit. Accordingly, we form two objectives: one is the collective optimum and the other is the group optimum.
TABLE 1. Symbols and Description

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>The index of vehicles</td>
</tr>
<tr>
<td>a_i</td>
<td>The set of actions taken by vehicle i, including two elements: the lane-change time instant from the fast lane to the slow lane, and the lane-change time instant from the slow lane to the fast lane of vehicle i</td>
</tr>
<tr>
<td>ar_i</td>
<td>The lane-change time instant of vehicle i from the fast lane to the slow lane</td>
</tr>
<tr>
<td>al_i</td>
<td>The lane-change time instant of vehicle i from the slow lane to the fast lane</td>
</tr>
<tr>
<td>A_i</td>
<td>The set of actions taken by all the vehicles within set I, which includes all the lane-change time instants</td>
</tr>
<tr>
<td>NC</td>
<td>The vehicle set including all the controlled vehicles</td>
</tr>
<tr>
<td>NT</td>
<td>The vehicle set including all the vehicles on road stretch</td>
</tr>
<tr>
<td>TTD_i</td>
<td>The total travel delay of vehicle i</td>
</tr>
<tr>
<td>$TTDist_i$</td>
<td>The total travel distance of vehicle i</td>
</tr>
<tr>
<td>T_{sim}</td>
<td>The total simulated time</td>
</tr>
<tr>
<td>Ve_i</td>
<td>The free flow speed of vehicle i</td>
</tr>
</tbody>
</table>

3.1.1. Collective optimum

For the first objective, the overall traffic state is supposed to be facilitated by lane changes of controlled vehicles. The total travel delay of all vehicles is used to evaluate the traffic state in this paper. Therefore, the optimized lane-change time instants of all the controlled vehicles are formulated as:

$$A_{NC} = \arg\min_{A_{NC}} \left(\sum_{i \in NT} TTD_i (A_{NC}) \right)$$ (1)

To be clarified, A_{NC} is the action set of controlled vehicles, which contains their lane-change time instants, namely $a_i \in A_{NC}, \forall i \in NC$. Note that in this definition, the action of each vehicle consists of two elements, which are the moment of changing lane and the moment of changing back, for instance: $a_i = \{ar_i, al_i\}$.

By equation (1), all vehicles driving on the road stretch will benefit from their lane changes, and the controlled vehicles will cooperate to each other to achieve the objective.

3.1.2. Group optimum

For the group optimum, the controlled vehicles will cooperate in order to optimize the total travel delay among this controlled group. Analogously, the optimized lane-change time instants of controlled vehicles are formulated as:

$$A_{NC} = \arg\min_{A_{NC}} \left(\sum_{i \in NC} TTD_i (A_{NC}) \right)$$ (2)
3.2. Non-cooperative objective

Alternatively, we can assume that drivers will not cooperate, but compete to each other for the best travel time. It is conceivable that the optimal solution for these competitions will be an action equilibrium among controlled vehicles, in which “nobody can benefit from changing his action individually”, similar to a Nash equilibrium (20). As the controlled vehicles are supposed to anticipate in each other’s lane changes, we formulate the optimization under the framework of game theory.

3.2.1. Game definition

In this case, the process of finding the optimal lane changes is considered as a game. Accordingly, a multi-player, completed information and static game is formed, meaning that all the players are aware of the complete information set and make their decision simultaneously. Hereby, the game between controlled vehicles is defined as: (20)

\[G = (NC, A, u) \]

Symbols will also be rephrased in game theoretical framework:

- \(NC \) denotes the players, which are controlled vehicles in this case, it is a finite set of \(n \) and indexed by \(i \), \(NC = \{1, 2, ..., n\} \).

- \(A \) is an action profile, \(a = \{a_1, ..., a_n\} \in A = A_1 \times ... \times A_n \). Where \(a_i \) denotes the action of player \(i \), which is the lane-change time instant pair of vehicle \(i \) (\(ar_1 \) and \(al_2 \)).

- \(u \) is a profile of pay off functions, \(u = \{u_1, ..., u_n\} \), and \(u_i \) denotes the utility function of player \(i \). Analogously, the utility functions are represented by the total travel delay of each vehicle (TTD).

3.2.2. Optimization formulation

A game in the normal form is described in this objective, based on the nature of game that we designed previously, all players will decide their actions simultaneously and optimize their individual total travel delays. The action profile of this multi-player game is formulated as:

\[
\begin{align*}
 a_1 &= \text{argmin}_{a_1} (TTD_1(a_1 | A_{NC/\{a_1\}})) \\
 &\quad \vdots \\
 a_n &= \text{argmin}_{a_n} (TTD_n(a_n | A_{NC/\{a_n\}}))
\end{align*}
\]

(4)

This optimization process will find an action set \(a_i^* \), and lead to an equilibrium, in which:

\[
\forall a_i \in A, TTD_i(a_i^*, a_{-i}) \leq TTD_i(a_i, a_{-i})
\]

(5)
Where \(a_{ij} \) denotes the action sets taken by other players. The inequality (5) indicates that in the equilibrium, “nobody can profitably deviate from their actions” \((20)\), so that their actions depend on each other. Therefore, one of the approximate pure Nash equilibrium is reached in this situation, and it is considered as the individual optimum in this paper.

4. OPTIMIZATION

This section describes the optimization algorithm. First, section 4.1 describes the genetic algorithm used for optimizing the group and collective optimum, and section 4.2 describes how the optimum is found for the individual optimum. Readers interested in the result, can move on to section 5.

4.1. Heuristic algorithm

Three non-linear integer optimization problems are formed in section 3, we choose a genetic algorithm (GA) to solve them due to the complexity of problems. In the algorithm, individuals are evolved towards a better performance of one certain optimization, and iterations of the evolution are denoted as generations. The evolution follows the process of encoding, initialization, crossover, selection and mutation; hereby, the last three steps are iterated until reaching the stop criteria. These steps are elaborated as follows:

1. **(1) Encoding**: In this algorithm, each action set \(A_{ne} \) is considered as one individual. Note that one individual contains actions of all controlled vehicles. Each lane-change moment is coded in a string of 11 binary numbers. This string is called a chromosome. We choose 11 as the fixed length of chromosome to cover sufficient time instants, and the property of fixed size makes those chromosome pairs are easily aligned \((21)\).

2. **(2) Initialization**: 30 individuals are generated initially, elements within individuals are restricted by constraints:

\[
\begin{align*}
 a_i &= \{ar_i, al_i\} \\
 LB < a_i < RB \\
 ar_i &\leq al_i
\end{align*}
\]

Where \(LB \) and \(RB \) indicate the pre-defined lowest and highest boundaries. By the constraints, the controlled vehicles will change back to the fast lane only after changing to the slow lane.

3. **(3) Crossover**: Two chromosomes in an individual are randomly chosen as parental chromosomes, then a crossover point is randomly selected. These two chromosomes will break from the crossover point into four sub-chromosomes, two children chromosomes will generate eventually by exchanging and recombining those four sub-chromosomes. This procedure is depicted by FIGURE 2(a).

4. **(4) Selection**: The probability of selecting one individual for the next generation is based on the value of its fitness function. Objective values of all the individuals in \(g^{th} \) generation...
are calculated initially ($TTD(g)$), and the fitness function of individual $indi$ is calculated by:

$$fit(indi) = \max TTD(g) + 1 - TTD(indi, g)$$ (7)

Where $TTD(indi, g)$ indicates the total travel delay derived from individual $indi$ in generation g, and $\max TTD(g)$ indicates the maximum value of all total travel delays derived from individuals in generation g. From equation (7), the individual which can derive a shorter total travel delay will have a higher value of fitness function; in addition, the lowest value of fitness function is 1. Hence, the selected probability of individual $indi$ is formulated as:

$$p(indi) = \frac{fit(indi)}{\sum_{indiPop} fit(indi)}$$ (8)

Where Pop indicates the population that includes all the individuals in a generation. By equation (8), the selection probability of each individual is proportional to its fitness function. By implementing this method, the child with a better fitness value has a higher probability to be selected, meanwhile the child with a lower fitness value will not be eliminated completely.

(5) Mutation: firstly, a mutation position will be randomly chosen. After this position for a possible mutation has been selected, it is chosen whether the values at this position will change (probability 0.1) or not (probability 0.9). A demonstration of mutation is shown in FIGURE 2(b).
(6) Stop criteria: the iteration will stop if: (1) the maximum iteration threshold is reached, or (2) both the average objective value and the best objective value stop improving.

The first criterion guarantees this optimization algorithm will operate within a reasonable computational time; while the second criterion indicates a relatively optimal individual is selected and this optimal individual is within an optimal generation.

4.2. Optimization process for individual optimum

Except for the optimization algorithm, an optimization process is designed to find the approximate Nash equilibrium in the individual optimum, by the equation:

$$a_i^k = \arg \min_{a_i^k} (TTD_i^k (a_i^k, a_{i-1}^k, a_{i+1}^k, \ldots, a_n^k))$$ \hspace{1cm} (9)

Where a_i^k denotes the action set of vehicle i in iteration k and TTD_i^k denotes the total travel delay of vehicle i in iteration k. In the process, k is iterated from 1 to the final iteration K, in which all the optimized action sets stop changing significantly; while in each iteration, i is iterated from 1 to the total number of controlled vehicles n. As an initialized value, a_i^0 is generated randomly in section 4.1. The equation means that in the kth iteration, we find the optimum for vehicle i by assuming the actions from kth iteration for vehicle 1 to vehicle $i-1$, and the actions from the $k-1$th iteration for vehicles with an index higher than i.

By the process, the actions of all the controlled vehicles will converge to a preferred profile, from which nobody will profit by deviating; as a result, the optimized results can be considered as a pure Nash equilibrium.

5. SIMULATION SETTINGS

In this paper, lane change is considered at a conceptual level, namely they are simplified in several aspects:

- Vehicles are point particles, so they cannot collide when changing lanes.
- Vehicles do not change lanes, unless they are instructed to do so by the algorithm in section 3.
- Lane-change actions are considered as an instantaneous movement.

The optimization algorithm is tested in a microsimulation. In the simulation, the two-lane straight road stretch, without any on-ramp and off-ramp, is developed, which has a pre-defined critical density of 25veh/km/lane. 120 vehicles are generated and evenly distributed on each lane, the free flow speed of each vehicle is assigned randomly under the restriction of speed limit in each lane (80-100 km/h in the slow lane and 100-130 km/h in the fast lane). The headways are manually initialized, several platoons are formed by introducing some large gaps. Vehicles behave according to Newell’s simplified car following model, in which the longitudinal movement is limited by leaders’ trajectories transposed in time (0.1 second in this paper) and in space (inverse of jam density, varying per vehicle) (22). The simulation is sliced in time steps of 0.1 second, and the simulated time (T_{sim}) will be 120 seconds. Additionally, these two lanes are coupled in the simulation, which means when a vehicle changes his lane, he will appear on his target lane one time step after disappearing on his current lane.
Subsequently, a case study is formed in the simulation, which describes a typical traffic situation of triggering lane changes. In this case, vehicles are driving on the two-lane road stretch by lane specific speed restrictions, while one vehicle on the fast lane is disturbed by some external factors and reduces his speed for a time period. Consequently, this vehicle forms a moving bottleneck that can influence the traffic state downstream of him. Note that that the leading vehicle’s deceleration on the fast lane is the only disruption considered in this paper. Besides, the drivers’ preferences will not be considered. Examples of simulated trajectories without lane change is presented in FIGURE 3, in which trajectories are depicted for each fifth vehicles:

![FIGURE 3. Simulated trajectories without lane change](image)

In the case study, the controlled vehicles can change their lane, overtake the bottleneck and change back to the fast lane to avoid travel delay. All the controlled vehicles must change to the slow lane first, and change back to the fast lane afterwards. The time instances at which they do are determined by the controller.

Both objectives of the collective optimum, the group optimum and the user optimum are found in the case study. In this paper, a group of five vehicles (with vehicle indices of 12, 17, 22, 32 and 37) are controlled vehicles, belonging to different platoons. Optimizations are deduced from minimizing the total travel delay of different vehicle groups, where the TTD of vehicle group I can be formulated by:

$$\sum_{i \in I} TTD_i = \sum_{i \in I} T_{sim} \cdot \frac{TTDist_i(A_{NC})}{Ve_i}$$ (10)

Mentioned by Papageorgiou et al., the total delay can be derived from the travel times (23).

Since the end time of the simulation is fixed, while the end location of each vehicle is influenced by the controller, we will work with the distance covered. In this case, the total delay and the travel times can convert to each other, since the speed is constant. From the equation, the total travel delay of vehicle group I can be considered as the difference between their expected travel time (travelled by their free flow speed) and their actual travel time (identical to simulated time, 1200 second). Specifically, in the collective optimum, $I = NT$ and in the group optimum, $I = NC$; while in the individual optimum, I indicates each single controlled vehicle.
In this paper, simulations and optimizations are operated in MATLAB. A single optimization costs 660 seconds on average (single-core performance on an Intel Core i7-5600U 2.60GHz CPU). The optimization results are elaborated in the next section.

6. RESULTS

In this section, we will analyze the effects of lane changes, especially the effects on traffic operations. To this end, we use the following quantitative criteria:

- The average delay of vehicles which originally drive on the slow lane. It shows to what extent lane changes disturb the slow lane.
- The average travel duration on the slow lane of controlled vehicles. It shows to what extent the controlled vehicles are comfortable with adapting to a slower speed.
- The average accepted merging gaps for controlled vehicles. It shows how much the controlled vehicles are willing to disturb the traffic state.
- The average number of vehicles that have been overtaken by controlled vehicles. It shows how much users’ benefit the controlled vehicles are able to achieve.

Optimization results of three objectives are presented in FIGURE 5. Besides, TABLE 2 lists the values of the criteria and objective functions (TTD) under the three different objectives. In addition, FIGURE 5 shows the convergence of action set in the process of solving the individual optimum.

In FIGURE 5, red lines indicate trajectories on the fast lane, blue lines indicate trajectories on the slow lane, they are depicted for each fifth vehicles. The vehicles are numbered from downstream to upstream, i.e., from top to bottom. Thicker lines represent controlled vehicles and thinner line are trajectories of other vehicles. The lane-change time instants of all the controlled vehicles are marked by yellow dots.

In the collective optimum, the total travel delay of all vehicles is optimized and the trajectories are shown in FIGURE 5(a). It can be observed that vehicle 12, 17 and 37 change to the slow lane before the bottleneck, and change back to the fast lane after the bottleneck; additionally, vehicle 12 overtakes the moving bottleneck and becomes the new leader on the fast lane. Vehicle 22 performs his all actions after the bottleneck and vehicle 32 performs two lane changes before the bottleneck.

By this optimum, all the controlled vehicles were trying to perform their actions in a proper gap, for the purpose of minimizing the negative effects on the overall traffic state. This argument is strengthened by some action characteristics of controlled vehicles. For instance, vehicle 12 and 17 did not change back to the fast lane immediately after passing the slow-moving section, they travelled on the slow lane until there was a bigger gap to merge. In addition, vehicle 22 and 32 did not avoid delay by their lane-change actions, they travelled through the congested section instead.

Additionally, the collective optimum has the longest average travel duration on the slow lane (33 seconds) and the largest average merging gap (114 meters). Hence, compared to the other two optima, the controlled vehicles by this optimum can overtake the least number of vehicles (3.8 in average) and the vehicles on the slow lane have the lowest average delay (148 seconds).
For the group optimum, the trajectories are shown in FIGURE 5(b). Analogously, it can be observed that when the controlled vehicles perform their lane changes, finding proper gaps is also prior to overtaking the bottleneck by this optimum.

However, compared to the collective optimum, more controlled vehicles are able to overtake the congested section by changing lanes in the group optimum. Moreover, the average travel duration on the slow lane is shorter (21 seconds) and the average merging gap is smaller (110 meters) in this optimum. These results can be predicted from the different considerations on proper gaps in the collective and the group optimum: in the group optimum, the controlled vehicles compromise to each other rather than compromising to uncontrolled vehicles to maximize their group benefit; however, other vehicles may suffer from their actions. In addition, this argument is strengthened by a larger average delay of vehicles on the slow lane (151 seconds) and a bigger number of overtaken vehicles (7.4 in average) in this optimum.

The trajectories in the user optimum are depicted in FIGURE 5(c), in which the controlled vehicles fight for their own benefits, by knowing the actions of other controlled vehicles. It can be observed from FIGURE 5(c) that the trajectories of controlled vehicles are smoother than their trajectories in the collective optimum and the group optimum.

Compared to the other two optima, the user optimum has the lowest average travel duration on the slow lane (16 seconds) and the smallest average merging gap (54 meters). By this optimum, more vehicles will be overtaken by controlled vehicles (11 in average) and vehicles on the slow lane have the largest average delay (165 seconds). The results reveal that all the controlled vehicles try to overtake the bottleneck, rather than finding a proper gap in this optimum. In addition, they try to shorten their travel durations on the slow lane. This optimum could describe the most common situation in reality, in which drivers try to increase their own benefit based on their expectations, regardless of the fact that the traffic state could deteriorate by their actions.

Generally speaking, the more the controlled vehicles consider only their own benefit, the less they will cooperate with others. Hence, they will merge in a smaller gap and drive on the slow lane for a shorter duration. Consequently, the traffic state of the slow lane will be disturbed more and controlled vehicles will be able to overtake more vehicles.

In short, values of objective functions in the collective optimum, the group optimum and the user optimum are included in TABLE 2. Compared to the collective optimum, the collective travel delay is less in the group optimum, while the controlled vehicle group benefit from it and the user’s TTD of all controlled vehicles is reduced. In the user optimum, it is observed that the values of collective TTD and group TTD are between the corresponding values in the collective optimum and the group optimum, the users’ TTD also deviates from the values in the other two optima. However, as the Nash equilibrium is reached by this optimum, each controlled vehicle is supposed to have a higher TTD if he changes his action, given the action profile of other four controlled vehicles.

In general, both the overall traffic state, the controlled group and each controlled vehicle can benefit from optimized lane changes compare to the original situation (no lane change).
FIGURE 5. Simulated trajectories in three optima

(a) Collective optimum

(b) Group optimum

(c) User optimum
TABLE 2. Lane Change Criteria

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Collective optimum</th>
<th>Group optimum</th>
<th>User optimum</th>
<th>No lane change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average delay on lane 2 (second)</td>
<td>148</td>
<td>151</td>
<td>165</td>
<td>-</td>
</tr>
<tr>
<td>Average duration on lane 2 (second)</td>
<td>33</td>
<td>21</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>Average merging gap (meter)</td>
<td>114</td>
<td>110</td>
<td>54</td>
<td>-</td>
</tr>
<tr>
<td>Average overtake vehicles</td>
<td>3.8</td>
<td>7.4</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>Collective TTD (second)</td>
<td>1616</td>
<td>1654</td>
<td>1642</td>
<td>1777</td>
</tr>
<tr>
<td>Group TTD (second)</td>
<td>100</td>
<td>59</td>
<td>75</td>
<td>146</td>
</tr>
<tr>
<td>TTD of vehicle 12 (second)</td>
<td>11</td>
<td>7</td>
<td>4</td>
<td>35</td>
</tr>
<tr>
<td>TTD of vehicle 17 (second)</td>
<td>11</td>
<td>7</td>
<td>11</td>
<td>33</td>
</tr>
<tr>
<td>TTD of vehicle 22 (second)</td>
<td>31</td>
<td>18</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>TTD of vehicle 32 (second)</td>
<td>25</td>
<td>13</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>TTD of vehicle 37 (second)</td>
<td>22</td>
<td>14</td>
<td>22</td>
<td>23</td>
</tr>
</tbody>
</table>

7. DISCUSSION AND CONCLUSION

This paper investigates the influence of objectives on lane-change optimization. Three optimization problems are formulated based on three objectives, which are: the collective optimum, the group optimum and the individual optimum. These optimizations are solved by employing a genetic algorithm (using game theory for the individual optimum).

The different results indicate that the controlled lane-change actions can differ for objectives of different groups. In addition, optima with less cooperation will introduce more disturbance in the traffic state, have a lower requirement in merging gaps, travel a shorter distance on the slow lane and have more overtaken vehicles.

Generally speaking, equipped vehicles controlled by the objective of collective and group optima will be suggested to launch the lane change when a larger gap is available, as well as to drive on the slow lane for a longer time. On the contrary, by the individual optimum, vehicles will be suggested to change to the slow lane when the congestion is encountered, and to change back when it has overtaken the bottleneck.

One limiting factor in this work is the simple simulated network, with a simplified car following model; additionally, the global optimum cannot be guaranteed by employing genetic algorithm (GA). Furthermore, in the user optimum, the action equilibrium can only be approximately found by implementing the optimization process, and the optimization sequence in the process can influence the final results. Besides, the benefits of the overall traffic state and each controlled vehicle could be influenced by the initial location of the controlled vehicles. In addition, the sequence of controlled vehicles could also influence their individual benefits in each optimum. These relationships should be further investigated.

Nonetheless, a structure of formulating lane-change control problems is developed, and this structure can be consistently implemented in a more effective control system. Without calculations in optimization algorithm, this system will instruct vehicles to change lane during a bigger gap and drive on the slow lane as long as possible to improve the collective or the group traffic efficiency. On the contrary, controlled vehicles will be instructed to overtake as many vehicles as they can to maximize their own benefit.

As a theoretical overview of the lane-change optimal control is given, the proposed algorithm can be further extended and implemented in intelligent driving systems, such as in-car
advice system, more precise and advanced navigation systems and traffic control systems. The next step is to convert the results found by the full optimization in this paper into simple algorithms implementable in vehicles, by which the computational consumption will be drastically reduced, and the algorithm will have a wide prospect in the development of real time advice or intelligent driving systems.

For researches in the future, the estimation on lane specific traffic state will be embedded into the optimization, and effort will be put on reducing computational consumption. Moreover, to be more practical, predictive models on lane-change behavior and lane specific traffic state will also be embedded.
1 REFERENCES

