Light-Induced Effects on the a-Si H/c-Si Heterointerface

Vasudevan, Ravi; Poli, Isabella; Deligiannis, Dimitris; Zeman, Miro; Smets, Arno

DOI
10.1109/JPHOTOV.2016.2633800

Publication date
2016

Document Version
Accepted author manuscript

Published in
IEEE Journal of Photovoltaics

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.
Light-Induced Effects on the a-Si: H/c-Si Heterointerface

Ravi Vasudevan, Isabella Poli, Dimitrios Deligiannis, Miro Zeman, Arno HM Smets

Abstract—Light-induced effects on the minority carrier lifetime of silicon heterojunction structures are studied through multiple exposure photoconductance decay (MEPCD). MEPCD monitors the effect of the measurement flash from a PCD setup on a sample over thousands of measurements. Varying the microstructure of the intrinsic hydrogenated amorphous silicon (a-Si: H) used for passivation of n-type crystalline silicon (c-Si) showed that passivating films rich in voids produce light induced improvement, while denser films result in samples that are susceptible to light induced degradation. Light-induced degradation linked to an increase in dangling bond density at the a-Si: H/c-Si interface while light-induced improvements are linked to charging at the a-Si: H/c-Si interface. Furthermore doped a-Si: H is added to make samples with an emitter and back surface field (BSF). These doped layers have a significant effect on the light-induced kinetics on minority carrier lifetime. Emitter samples exhibit consistent light-induced improvement while BSF samples exhibit light-induced degradation. This is explained through negative charging at the BSF and positive charging at the emitter. Full precursors with a BSF and emitter exhibit different kinetics based on which side is being illuminated. This suggests that the light-induced charging at the a-Si: H/c-Si interface can only occur when a-Si: H has sufficient generation.

Index Terms—Silicon Heterojunction, a-Si: H, Light-Induced Degradation.
I. INTRODUCTION

Silicon heterojunction (SHJ) solar cell technology currently holds the world record for silicon based photovoltaic energy conversion. Panasonic has achieved a record efficiency of 25.6% with their Heterojunction with Intrinsic Thin film (HT) solar cell using an interdigitated back contacted design. [1] The fundamental structure of SHJ technology is a crystalline silicon (c-Si) wafer that is passivated on both sides with intrinsic hydrogenated amorphous silicon (a-Si:H). Doped a-Si:H films are deposited on either side of the a-Si:H/c-Si/a-Si:H stack to form the emitter and back surface field. Though this structure produces high quality solar cells, physical understanding of the a-Si:H/c-Si interface still presents challenges. This is shown by the complex models that are used to attempt to describe the current transport methods through the c-Si/a-Si:H interface. [2], [3] One area of this physical understanding is in the defects at the c-Si/a-Si:H interface.

The bulk absorber of SHJ solar cells is a c-Si wafer that is grown through the float-zone (FZ) or Czochralski (Cz) method. C-Si defects have been very well studied and described in the past. [4] Light induced degradation (LID) does occur in crystalline silicon absorbers, but this is typically only with n-type wafers with boron-oxygen interstitial defects. [5] While the bulk of c-Si has a well defined crystalline lattice, dangling bonds (DBs) at the surface increase the surface recombination velocity and need to be passivated prior to adding the doped layers necessary to form the p-n junction and back surface field for solar cell operation. [6] In SHJ solar cells, the surface of the c-Si is passivated with intrinsic a-Si:H as it has fewer defects than doped a-Si:H. Adding a thin layer of a-Si:H, therefore, results in a lower surface recombination velocity and thus, a higher open-circuit voltage (V_{OC}) for a working SHJ device. [7]

The a-Si:H, used for passivation, is a disordered material with defect densities of 10^{16}-10^{19} cm$^{-3}$. [8] The defects can consist of contamination defects, DBs and vacancy defects among others. [9] Some defects in a-Si:H are metastable, meaning that defect densities in a-Si:H are increased through LID, but can decrease again through annealing. This significantly alters the quality of a-Si:H as a photovoltaic material and this change is known as the Staebler-Wronski effect (SWE). [10] Various models have been applied to explain the SWE, however there is still no consensus on the fundamental mechanisms at hand. [11], [9], [12] One theory is that DBs become passivated during light soaking, though more recent research has shown that the nanostructure of the a-Si:H, such void surfaces, plays a role in SWE as well. [12], [13] The a-Si:H/c-Si interface is affected by the surface properties of the c-Si as well as the quality of the passivating a-Si:H layer. [14]

One established way to monitor the quality of a-Si:H passivation of c-Si wafers is to use photocurrent decay (PCD) lifetime measurements. This method probes the interface by measuring the effective minority carrier lifetime (τ_{eff}) in a c-Si wafer or full device. [7] Since the recombination is dominated by the surface, the measurement can be directly related to the quality of the a-Si:H/c-Si interface. [15] In general, higher lifetimes measured in this way suggest a better quality interface and a device with a higher open circuit voltage (V_{OC}). [16]

Utilizing this method, work De Wolf et al. has shown that the τ_{eff} of silicon heterojunction structures change through light soaking. [17], [18] This change in τ_{eff} has been linked strictly to DB generation using a model on the amphoteric nature of dangling bonds in SHJs. [19] The process has been shown to be partially reversible through annealing. [20] Mahtani et al. has shown that there can also be light-induced improvement in τ_{eff}. [21] In this paper the light-induced improvement of τ_{eff} was linked solely to the initial τ_{eff} (τ_{eff}^{0}) where samples with a low τ_{eff}^{0} exhibit light-induced improvement and samples with a high τ_{eff}^{0} exhibit LID. The measurement procedure used in these studies is described in this manuscript as multiple exposure photoconductance decay (MEPCD). In these measurements, hundreds to thousands of PCD measurements are taken in order to study the change in τ_{eff}, and thus the change in a-Si:H/c-Si interface passivation quality upon light exposure.

The study of the light-induced effects on the a-Si:H/c-Si interface passivation quality is studied further here by expanding the deposition parameters of the a-Si:H and the preparation steps of the c-Si wafers. Though changes in passivation quality have been previously attributed solely to c-Si surface DB density increase (N_S), results in this manuscript show that this is not always the case. By changing a-Si:H deposition conditions, further insight is gained regarding the mechanisms of these light-induced effects. Results here show that generation of DBs at the interface is not sufficient to explain the changes that are observed and that other factors such as fixed charge can play a significant role depending on which set of sample preparation parameters are used. Furthermore, the results presented here provide further insight into the mechanisms of light-induced improvement in τ_{eff}.

To expand further on these light-induced effects on the τ_{eff} of SHJ structures, doped layers to make both an emitter and a back surface field (BSF) are added. A similar investigation has been done by Mahtani et al. [21] Here, only the emitter was explored and increases in τ_{eff} were observed. Furthermore, only long time scales were explored in the work of Mahtani, while previous work has shown that there are a lot of light induced changes on very short timescales. [18] This work uses c-Si wafers passivated with a-Si:H using thicknesses close to what are used in SHJ devices and uses doped layers and investigates the short time scales immediately after annealing.

II. EXPERIMENTAL DETAILS

A. Sample deposition

The samples in this work were deposited on $\sim 280\mu$m thick, ~ 4.0 cm, double polished, FZ c-Si wafers. Phosphorus-doped (n-type) wafers with $\{111\}$ orientation were used. The cleaning procedure consisted of 10 min of 99% HNO$_3$ at room temperature followed by 10 min of 69% HNO$_3$ at 105°C to encapsulate organic contaminants in an oxide layer. After this, the oxide was stripped away by a dip in a solution of 0.55% HF for 75 s. The a-Si:H layers were deposited by radio
frequency (RF) plasma enhanced chemical vapor deposition (PECVD) at 13.56 MHz. The depositions were carried out at a substrate temperature of 180°C unless otherwise specified. Thicknesses were verified using spectroscopic ellipsometry (SE).

The intrinsic a-Si:H films were deposited using two sets of deposition conditions. The first set of conditions, referred to here as undiluted, was deposited at 0.7 mbar, 40 sccm SiH\textsubscript{4} and at a power density of 0.015 W cm-2. The second set of conditions, referred to here as diluted, was deposited at 8 mbar, 4 sccm SiH\textsubscript{4}, 200 sccm H\textsubscript{2} and at a power density of 0.056 W cm-2. This second set of high-diluted material has been known to produce thin film solar cells with a high Voc and provides good passivation for SHJ solar cells. [22], [23], [24]

The doped a-Si:H layers were deposited using the optimized conditions of Zhang. [25] The p-layer used was deposited at 0.7 mbar, 20 sccm SiH\textsubscript{4} and 3 sccm of B\textsubscript{2}H\textsubscript{6} at a power density of 0.021 W cm-2. The n-layer used was deposited at 0.6 mbar, 40 sccm SiH\textsubscript{4} and 11 sccm of PH\textsubscript{3} at a power density of 0.021 W cm-2.

B. Lifetime measurements

\(\tau\text{eff}\) measurements were carried out using a Sinton WTC-120 photoconductance decay setup. This setup uses a light flash that is filtered to only allow red/infrared light to pass through. The spectrum for the measurement flash is given in Figure 1a. This spectrum was measured using an AVANTES Dual AvaSpec 2048. The lifetime measurements at an excess charge carrier density of 1015 cm-3 is used here.

Figure 1b shows the generation profile of the top a-Si:H layer and the c-Si bulk layer under illumination of the measurement flash. There is also a rear layer of a-Si:H, which is not represented in the figure because the vast majority of the light, in either case, is absorbed before it reaches the rear a-Si:H layer and thus the absorption there is negligible. This generation profile were calculated using the Advanced Semiconductor Analysis (ASA) software developed by the Delft University of Technology’s Photovoltaic Materials and Devices (PVMD) group. [26] The optical properties of both a-Si:H and c-Si were obtained using SE.

In order to ascertain the light-induced changes in \(\tau\text{eff}\), so-called MPECD measurements were carried out. This means that post-deposition, samples were annealed for two hours at 130°C. Following this annealing step, the samples were measured over 1000 times consecutively by the PCD measurement tester. The flashes used in the measurement are the light-soaking source.

C. Fourier transform infrared spectroscopy

Fourier Transform Infrared Spectroscopy (FTIR) was used to characterize a-Si:H films. In these cases, the same deposition conditions that were used to make a sample for MPECD measurements were used to deposit a 100 nm thick a-Si:H layer on top of a Cz single side polished wafer. FTIR measurements were carried out using a Thermo Fisher Nicolet 5700 FTIR spectrometer in transmittance mode.

Prior to fitting the FTIR measurements, the background is corrected by removing a third order polynomial. The fitting used is a deconvolution of the FTIR response into two Gaussian curves. The curve in the range of 1995-2005 cm-1 is known as the low-stretching mode (LSM) while the curve with a peak in the range of 2080-2090 cm-1 is known as the high stretching mode (HSM). [27] Responses in the LSM correspond to hydrogen which is incorporated into small volume deficiencies such as divacancies and is therefore assigned to monohydrides. [28]. The HSM, on the other hand can be attributed both to monohydrides and higher dihydrides on inner surface voids in a clustered form. [20], [29]

Information about the microstructure of the a-Si:H films used for passivation can be extracted from FTIR measurements using the assumed contributions to the LSM and HSM given above. This can be done using the microstructure parameter \(R^*\) as:

\[
R^* = \frac{I_{\text{HSM}}}{I_{\text{HSM}} + I_{\text{LSM}}} \tag{1}
\]

where \(I_{\text{HSM}}\) and \(I_{\text{LSM}}\) are the peak integrals of the HSM and LSM respectively. [22], [24] In general, a higher \(R^*\) parameter corresponds to a film with a higher void density, or a more porous film.

In addition to this the atomic percentage of hydrogen (\(C_{\text{H}}\)) was calculated by using the wagging mode at 640 cm-1. The peak at 640 cm-1 was integrated and multiplied by the conversion factor of 1.6 x 1019. [9]

III. RESULTS AND DISCUSSION

The experiments in this section are split into two sections. The first section gives results on MPECD studies on c-Si passivated with a-Si:H. In this case, undiluted a-Si:H is used and the a-Si:H thickness is 30 nm. Different deposition temperatures are used to modify the microstructure of the a-Si:H to determine the effect of microstructure on the light-induced changes in \(\tau\text{eff}\).

This is followed by a section on the addition of doped a-Si:H layers. Here the total a-Si:H thickness, including both the passivating intrinsic layer and the doped a-Si:H layers is 14 nm. In this case diluted a-Si:H is used for the intrinsic layer as it has better passivation qualities. [23]

A. Intrinsic Only Study

Figure 2 shows an MPECD measurement done on an n-type c-Si wafer passivated with undiluted a-Si:H. Though one measurement is presented here, this shape of \(\tau\text{eff}\) evolution upon measurement flashes was exhibited by many different samples. Due to the light flashes of the PCD setup the \(\tau\text{eff}\) of the passivated wafer decreases for the first 100 flashes and then starts to recover and even exceed the initial, post-annealed \(\tau\text{eff}\). Experiments were also run using an external, white LED as a light source while varying the light soaking time. Here, significant generation was present in the a-Si:H layers as there were more photons in the range above the bandgap of a-Si:H. However, the changes in \(\tau\text{eff}\) were relatively similar with a degradation to around the same relative amount
with an increase at longer light soaking times. Results without
the white LED are shown here as they were more controlled
and allowed for a more straightforward analysis to explain the
results. It should also be noted here that this measurement,
and all MEPCD measurements shown here, can be repeated
by annealing. That is to say that if the sample is annealed
again at 150 °C for a half hour and the MEPCD measurement
is repeated, very similar kinetics will be exhibited again.

This measurement presents two important findings. Firstly
that, contrary to what was observed by De Wolf et al. samples
prepared here on n(111) wafers can, indeed, exhibit significant
kinetics upon light soaking. [18] Furthermore, this result
shows that light induced improvement of τ_{eff} occurs at longer
light exposures. In order to investigate the cause of light
-induced improvement of τ_{eff}, variations on the deposition
temperature of the a-Si:H film was carried out.

Changes in the deposition temperature of the passivating
a-Si:H film are investigated here. Deposition temperature was
chosen as a varying parameter because it is known to affect the
microstructure of a-Si:H. [9] The microstructure of the a-Si:H
films are measured using FTIR as shown in Figure 3a.
The R* parameter, as determined by Equation 1 along with
the peak position of the high and low stretching modes (ω_{HSM}
and ω_{LSM}) are calculated from the FTIR measurements in
Figure 3a and given in Table I for the a-Si:H films deposited
at different deposition temperatures.

Passivation using these deposition conditions were carried
out on n(111) wafers. Before looking at the kinetics and how
the lifetime evolves due to measurement flashing, the initial
lifetimes are observed. Figure 3b shows how the as deposited
lifetime varies with deposition temperature as well as how R*
varies with deposition temperature. A clear trend is shown here
that more porous materials provided poorer passivation. This
is in agreement with other studies who have shown that voids
in a-Si:H films show them to be poor passivation materials. [14]

These samples were annealed at 150 °C for 2 h and then
flushed 1000 times in the dark. The results of this experiment
are shown in Figure 3c. These results can be split into three
regimes where the samples prepared at 100 °C and 140 °C
exhibit lifetime kinetics that are dominated by light induced

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
T_{dep} & ω_{LSM} & ω_{HSM} & R* & C_H \\
[°C] & [cm^{-1}] & [cm^{-1}] & & [at. %] \\
\hline
100 & 93.63 & 53.33 & 0.38 & 13.1 \\
140 & 60.14 & 19.78 & 0.28 & 9.0 \\
160 & 2005 & 19.05 & 0.11 & 11.5 \\
180 & 1999 & 6.11 & 0.08 & 6.6 \\
220 & 1994 & - & 0.00 & 7.2 \\
\hline
\end{tabular}
\caption{Peak position (ω) and peak integral (I) of low stretching mode
(LSM) and high stretching mode (HSM) of FTIR curves from
Figure 3a at different deposition temperatures (T_{dep}). \textit{R*} is the
microstructure parameter from Equation 1. \textit{C_H} is the atomic
percentage of hydrogen calculated from the wagging mode.}
\end{table}
increases in τ_{eff}, the sample prepared at 220 °C exhibits lifetime kinetics that are dominated by light induced decreases in τ_{eff} and the samples prepared at 160 °C and 180 °C exhibit lifetime kinetics with a light induced decrease followed by a light induced increase in τ_{eff}.

These kinetic regimes can be linked to the R^* parameter of the a-Si:H films as shown in Figure 3b. The C_{H} of the films is also provided in Table I. The values here change between 7.2 % and 13.1 % but do not correlate with kinetics. As nothing else was varied in the deposition parameters, this suggests that the microstructure of the passivating a-Si:H film plays a role in the measurement flash kinetics of the τ_{eff}. The results show that wafers passivated with a-Si:H films with an R^* of more than 0.25, light flashes tend to increase the lifetime. These films are more porous than ones with a lower R^*. In wafers passivated by a-Si:H films with an R^* of 0, which are dominated by smaller volume deficiency defects such as vacancy defects, the τ_{eff} primarily degrades. Finally when wafers are passivated with medium dense films with an R^* above 0 but less than 0.25, the kinetics the τ_{eff} decreases followed by an increase after around 100 flashes. In these films there are a detectable amount of voids in the films but significantly less than those
in the more porous regime.

This suggests that a possible explanation for the light induced increase in τ_{eff} observed on samples using n-type wafers comes from voids in the passivating a-Si:H films, while the degradation is linked to vacancies in the films. The decay in τ_{eff} can be explained, as has been in literature, by DB formation at the a-Si:H/c-Si interface. This would imply that the quality of chemical passivation is decreased. [18] Though the exact mechanism of the increase in τ_{eff} cannot be fully explained by the results here, one possible explanation is that there is a positive charge build up at the interface. As charge carriers enter the a-Si:H film, defects at the void surface may charge positively and this build up of charge would repel the minority charge carriers of the n-type c-Si wafer (holes) from the interface back into the high lifetime bulk of the n-type c-Si wafer. This would, in essence, increase the lifetime of generated holes in the interface. This effect implies that the light induced changes affect the field-effect passivation of the samples. To investigate this further, MEPCD measurements were carried out using samples with additional doped layers.

B. Doped Layer Studies

To further explore the light induced effects on the a-Si:H/c-Si interface, doped layers were added to monitor their effect on the light-induced kinetics on τ_{eff} observed above. Four distinct samples were deposited. These are given in Table II. Schematics shown in Figure 4. The intrinsic a-Si:H used in this work was the diluted a-Si:H as at this point in the experiments it was found that this material achieved higher τ_{eff} values and became the standard for the research group. [23] The substrate temperature during a-Si:H deposition in these experiments was 180°C.

Figure 5 shows the MEPCD measurements performed on the control, emitter and BSF samples. The τ_{eff} of the BSF sample decreases with measurement flashes while the τ_{eff} of the emitter sample increases with measurement flashes. The result of this experiment suggest that doped a-Si:H layers do, indeed, affect the lifetime kinetics upon light soaking. This suggests that the BSF sample is dominated by an N_S increase upon light soaking while screening out void charging effects while the emitter sample is dominated by void charging effects while screening out N_S effects. Further analysis about the causes of these screening effects by doped layers is given in Section IV.

Finally, they explain the results claiming that the change in electric field due to the doped layer may have an effect.

TABLE II

<table>
<thead>
<tr>
<th>Stack</th>
<th>Name</th>
<th>As Deposited τ_{eff} [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>i/c-Si/i</td>
<td>Control</td>
<td>2.3</td>
</tr>
<tr>
<td>p/i/c-Si/i</td>
<td>Emitter</td>
<td>2.2</td>
</tr>
<tr>
<td>p/i/c-Si/i/n</td>
<td>BSF</td>
<td>2.6</td>
</tr>
<tr>
<td>p/i/c-Si/i/n</td>
<td>Precursor</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Fig. 5. MEPCD measurement on i/c-Si/i stack, emitter stack and BSF stack.
This may change the rate of movement of defects during formation. This last example is the only one that is valid for the results shown from these experiments. Therefore our results, in conjunction with the analysis of Mahtani et al., suggest that the electric field induced by the emitter layer is the primary cause of light induced improvement of \(\tau_{\text{eff}} \) upon light soaking.

The next step, after adding a single doped layer to the sample, was to produce a complete SHJ precursor. A p-type, a-Si:H layer is on one side of the sample to form the emitter and an n-type, a-Si:H layer is on the other side forming the BSF. When these samples are first exposed to MEPCD measurements, the lifetime tends to increase with measurement flashes. In this case, the side exposed to light was on the emitter (p-type) side of the sample. This sample was annealed again and exposed to the measurement flashes flipped over with the back surface field (n-type) side exposed. In this second run the kinetics were dominated by a decrease in lifetime. This is shown in Figure 6a. In Figure 6b the experimental order was reversed. Here, the back surface field side was flashed on the first anneal after deposition and then after the second anneal the emitter side was flashed. The kinetics were consistent with the first experiment showing that the flashing side, not the number of annealing cycles, determined whether \(\tau_{\text{eff}} \) would increase or decrease upon light exposure.

IV. Analysis

To explain how void charging can have an influence on the minority carrier lifetime, a band diagram of the a-Si:H/n-type c-Si interface is given in Figure 7. The band diagrams were calculated using the modeling software, AFORS-HET. [30] The diagram shows the inversion layer where the band bending in the n-type c-Si will cause holes to drift towards that interface. This is combined with a barrier caused by the valence band offset between the a-Si:H and the c-Si. This could result in a build up of holes at the interface which would cause a positive charging effect at that interface.

Understanding what causes the different light-induced effects in the samples with doped layers starts with the potential effects of light exposure on samples. Firstly there is the generation of charge carriers in the different materials involved in the sample. A calculation of the generation profile is given in Figure 1b. There is significantly higher cumulative generation in the c-Si wafer than in any either of the a-Si:H passivation layers here. There is also generation in the top a-Si:H with very little generation in the rear a-Si:H layer as most of the light has already been absorbed by the c-Si wafer. The second impact of this effect is recombination. In literature, recombination of light-excited carriers is widely given as the cause of the defect density increase in a-Si:H which happens during the Staebler-Wronski Effect. [31], [32] As cumulative generation is orders of magnitude higher in the c-Si wafer, and the diffusion length of minority and majority charge carriers are orders of magnitude higher than wafer thicknesses used here, recombination should occur in relatively equal amounts at both the front and rear side of the sample. Therefore the a-Si:H layers at the front side have more generation than the a-Si:H at the rear of the sample but with roughly the same rates of recombination.

Table III shows which samples exhibit which effects. Samples that exhibit light induced decreases in \(\tau_{\text{eff}} \) have ticks in the “\(N_{S} \) Increase” column and samples that exhibit light induced increases in \(\tau_{\text{eff}} \) have ticks in the “Void Charging” column. This table shows that light-induced \(N_{S} \) increases heavily affect samples except those with a p-layer and when the p-layer is illuminated. This suggests that the field effect caused by the p-layer either screens away the N	extsubscript{S} increase, or amplifies the effect of the charging in the a-Si:H. To explore this further, the band diagram of the emitter side of the sample is given in Figure 8. Photogenerated holes in c-Si drift towards the a-Si:H/c-Si interface while being blocked by the heterojunction at the inversion layer just as in the sample with only intrinsic material shown in Figure 7. This could explain the build up of positive charge at the interface that increases the \(\tau_{\text{eff}} \). That build up positive charge changes the band structure as shown in Figure 8 and thusly increases \(\tau_{\text{eff}} \).

The addition of a BSF has the opposite effect of the emitter. With the BSF sample, \(\tau_{\text{eff}} \) degrades without any corresponding increase in \(\tau_{\text{eff}} \) caused by positive void charging. This fits with the explanation that photogenerated holes may cause the positive charging in voids in a-Si:H as the BSF would screen away photogenerated holes in the a-Si:H and block photogenerated holes from the c-Si wafer. The band diagram of the BSF of a SHJ solar cell is given in Figure 9. Photogenerated electrons

![Fig. 7. Band diagram of the c-Si/a-Si:H interface using n-type c-Si and intrinsic a-Si:H. Bands were calculated using the modeling software, AFORS-HET. Hole pictured at the left of the c-Si to show the capability of trapping at the interface.](image-url)
in the c-Si will drift towards the a-Si:H/c-Si junction while encountering a barrier from the heterojunction in this case. This may cause a build up of negative charge at the interface which would reduce τ_{eff} in the same way that positive charging increases τ_{eff}.

One potential issue with this explanation is that both the emitter sample and the BSF sample have a single intrinsic a-Si:H layer on the rear side of the wafer. The screening effects of the fields generated by the doped layers should not play any role for the rear side. However, this can be explained by recalling what the τ_{eff} measurements actually represent. In this manuscript they represent the effective lifetime at an injection level of 1×10^{15} cm$^{-3}$. Therefore, τ_{eff} is dependent mainly on the surface lifetimes, τ_{front} and τ_{rear}. Similarly, if $\tau_{\text{front}} \ll \tau_{\text{rear}}$ then the measured τ_{eff} will primarily be based on τ_{front}. In the case of the BSF and emitter samples, the lifetime of the side with the doped layers will likely be lower than the lifetime of the side with the thicker intrinsic layer on the back as the doped a-Si:H adds extra dangling bonds thus increasing the N_S value. Though the field effect of adding doped layers also has an influence on τ_{eff}, an assumption is used here that N_S is a larger factor than additional field effects of doped layers on the surface lifetime. If this assumption holds, τ_{eff} is primarily determined by the lifetime of the side with the doped layer. This explains why the screening of the doped layers have such a significant effect on the τ_{eff} during light soaking even though both void charging and N_S are likely occurring at the rear side.

$$\tau_{\text{eff}} = \left(\frac{1}{\tau_{\text{bulk}}} + \frac{1}{\tau_{\text{front}}} + \frac{1}{\tau_{\text{rear}}} \right)^{-1} \quad (2)$$

Where τ_{bulk} is the bulk lifetime, τ_{front} is the front surface lifetime and τ_{rear} is the rear surface lifetime. Because of the nature of this reciprocal addition, if the three lifetimes are of very different values, the lowest value dominates. Here $\tau_{\text{bulk}} \gg \tau_{\text{front}}$ and $\tau_{\text{bulk}} \gg \tau_{\text{rear}}$ at the injection level of 1×10^{15} cm$^{-3}$. Therefore, τ_{eff} is dependent mainly on the surface lifetimes, τ_{front} and τ_{rear}. Similarly, if $\tau_{\text{front}} \ll \tau_{\text{rear}}$ then the measured τ_{eff} will primarily be based on τ_{front}. In the case of the BSF and emitter samples, the lifetime of the side with the doped layers will likely be lower than the lifetime of the side with the thicker intrinsic layer on the back as the doped a-Si:H adds extra dangling bonds thus increasing the N_S value. Though the field effect of adding doped layers also has an influence on τ_{eff}, an assumption is used here that N_S is a larger factor than additional field effects of doped layers on the surface lifetime. If this assumption holds, τ_{eff} is primarily determined by the lifetime of the side with the doped layer. This explains why the screening of the doped layers have such a significant effect on the τ_{eff} during light soaking even though both void charging and N_S are likely occurring at the rear side.
of the wafer.

Explaining the results of light soaking on precursors begins with isolating the two sides of the sample. Each of these sides have a unique surface lifetime referred to here as τ_{emitter} and τ_{BSF}. If τ_{emitter} and τ_{BSF} are on the same order of magnitude in the annealed state prior to light soaking, then changes to either surface would have a significant effect on τ_{eff}. This assumption is made by the very similar τ_{eff} values measured of the emitter and BSF sample and shown in Table II.

If τ_{eff} is determined by the lifetime at either side equally, and the effects on surface lifetime are primarily caused by recombination at the interface, then there should not be a difference in light soaking kinetics depending on which side is illuminated. This is because due to the high diffusion lengths of high quality c-Si, and the fact that there are orders of magnitude more charge carriers generated in the c-Si, both sides of the sample should have relatively equivalent levels of recombination. The analysis above showed that τ_{emitter} increases upon illumination while τ_{BSF} decreases upon illumination. Assuming the surfaces of the precursors have similar properties as those used in the singledoped layer experiment, both surfaces change at equal but opposite rates when illuminated (the emitter sample reaches a final lifetime of 1.4x the initial lifetime and the BSF sample reaches a final lifetime of 0.6x the initial lifetime). If this were the case in the precursor, one would expect that the τ_{eff} would decrease based on light soaking since the degradation of lifetime would have a greater effect as is shown in Figure 10. In this Figure, τ_{emitter} and τ_{BSF} are reciprocally added together while one decreases and the other increases at the same rate. As can be seen, the resultant sum decreases overall. Since the precursor material does not decrease uniformly, this shows that surface recombination is not the only relevant factor in changing τ_{eff} due to light illumination. The fact that the kinetics are reversed depending on the light soaking side (Figure 6) implies that generation in the a-Si:H must also be playing a role in these kinetics.

This finding is fundamental to understanding the nature of light soaking kinetics of the silicon heterointerface. Prior work has suggested that recombination of light-excited carriers causes the increase in defects in a-Si:H that lead to the SWE. [31], [32] Therefore, since recombination at both sides is relatively equal regardless of the flashing side, the N_S increase should be similar regardless of the flashing side. The only difference between the two sides it that the illuminated side has significant charge carrier generation in the a-Si:H while the a-Si:H at rear side of the sample undergoes almost no light induced generation. Though this would not significantly affect the changes in N_S it could affect the light induced change in surface charging. This would imply that the negative charging at the BSF and the positive charging at the emitter may only occur when their respective side is flashed. This is because there is significant generation in the a-Si:H. As explained above, the charging can be explained by the accumulation of charge due to drift of charge carriers towards the interface that then experience a barrier at that interface. These barriers are shown in Figures 8 and 9. These results suggest that this charging that has long term effects on τ_{eff} may only occur when there is saturated carrier generation in the a-Si:H layers. Therefore the side being flashed has a dominant effect when charging of one side would cause an increase in τ_{eff} and charging of the other side would have a decrease in τ_{eff}. This explanation of charging on illuminated sides of the sample explains why there is not the expected behavior in Figure 10 and why the flashed side dominates the τ_{eff} kinetics.

V. Conclusions

This manuscript has shown an investigation of the light induced degradation and increase of the τ_{eff} of c-Si wafers passivated with a-Si:H. It has been shown that in the case of n-type wafers, light soaking tends to decrease the τ_{eff} when the passivating film is dense and tends to increase the τ_{eff} when the passivating film is porous. The light-induced increases in τ_{eff} suggest that DB formation at the c-Si/a-Si:H interface is not the only factor at play and a build up of positive charge, in the case of porous films passivating n-type wafers, may also play a role in these kinetics.

Furthermore, this work investigated the effect of doped a-Si:H layers on the metastable kinetics of the light induced changes to passivation quality. When a p-type layer is added, the sample exhibits only light induced increases in τ_{eff}, while an n-type layer shows kinetics dominated by a decrease τ_{eff} upon light exposure. This has shown that doped layers do, in fact, have an influence on the light-induced effects of the silicon heterostructure. Though similar work had been carried out in the past, this, more extensive study, has ruled out possible explanations for the increase in lifetime caused by the p-type layer leaving only the explanation that the electric field generated at the a-Si:H interface may be influencing the lifetime kinetics. These results help to isolate the two effects of light soaking on a SHJ sample, which are an increase of N_S that decreases lifetime and a positive charging of voids in the material that increases lifetime.

Finally, full SHJ precursors that had both a p-type emitter and an n-type back surface field were exposed to MEPCD measurements. The experiments showed that the sample followed similar kinetics to those of the single doped layers and
this depends on which side the sample is flashed on. Whereas previously the
effects were isolated with only a BSF or only an emitter, these samples had both. The fact that the kinetics of the lifetime changes due to light soaking depend on the flashing side suggest that charging only occurs when a-Si:H has sufficient generation.
ACKNOWLEDGMENT

The authors of this paper would like to acknowledge Martin Tijssen, Stefan Hierman, Remko Koornneef and Kees Zweeloot for their invaluable technical assistance on all aspects of this project. Furthermore the authors would like to acknowledge Jimmy Melskens for insightful comments and suggestions during the course of this study. This project was done through the funding of STW in the Fundamentals of Silicon Heterojunctions (FLASH) consortium in the Netherlands under the grant number 12166.

REFERENCES

