Comparative study of RANS-EDC, LES-CSE and LES-FGM simulations of Delft jet-in-hot-coflow (DJHC) natural gas flames

Roekaerts, Dirk; Bao, H.; Huang, X.; Vasavan, A.; van Oijen, J.A.; Labahn, J.; Devaud, C.

Publication date
2016

Document Version
Final published version

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.
Comparative study of RANS-EDC, LES-CSE and LES-FGM simulations of Delft jet-in-hot-coflow (DJHC) natural gas flames

D.J.E.M. Roekaerts1,2,*, H. Bao1, X. Huang1, A. Vasavan2, J.A. van Oijen2, J. Labahn3, C. Devaud3

1. Department of Process and Energy, Delft University of Technology, The Netherlands
2. Multiphase and Reacting Flows, Eindhoven University of Technology, The Netherlands
3. Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada

*D.J.E.M.Roekaerts@tudelft.nl

We report on a comparative study of model predictions of jet-in-hot-coflow flames. The Delft Jet-in-Hot-Coflow (DJHC) burner was built to mimic the important characteristics of flameless combustion without the complications of a real furnace [1,2]. The DJHC burner has been used to create a turbulent diffusion flame of Dutch Natural Gas in a coflowing oxidizer stream of high temperature with low oxygen concentration. The experimental database contains the results of high speed chemiluminescence imaging, velocity statistics from LDA measurements and temperature statistics from CARS measurements. In recent years several computational studies have been made using the DJHC burner as validation database [3-9]. It has been shown before that predictions are sensitive to the coflow radial profiles of temperature and oxygen concentration, to the representation of effects of entrained air, and to turbulence-chemistry interaction and this is also the focus of the present study. Table 1 gives a summary of the models used.

<table>
<thead>
<tr>
<th>Table 1: Overview of submodels and boundary conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Axial-radial</td>
</tr>
<tr>
<td>Grid size (#)</td>
</tr>
<tr>
<td>Platform</td>
</tr>
<tr>
<td>Turbulence</td>
</tr>
<tr>
<td>Closure model</td>
</tr>
<tr>
<td>Kinetic scheme</td>
</tr>
<tr>
<td>Reduction</td>
</tr>
<tr>
<td>Turb-chem-</td>
</tr>
<tr>
<td>interaction</td>
</tr>
<tr>
<td>Scalar equations</td>
</tr>
<tr>
<td>Radiation</td>
</tr>
<tr>
<td>Scalar BC</td>
</tr>
</tbody>
</table>

Surrounding ‘Air’

Coflow mean T
Coflow Trms
Coflow O₂ mass %

From expt.
Set to 0
Mean 7.6%
Profile from expt.
Air 300K
From expt.
Set to 0
Mean 7.6%
Coupled to mean T Air 300K
From expt.
Set to 0
Mean 7.6%
Coupled to mean T Air 300K
From expt.
Set to 0
Mean 9.5%
Flat profile Coflow comp. at 300K
In the EDC model a model constant was changed from its default value to obtain the correct lift-off height. The CSE model [8,9] uses a double conditioned conditional source term estimation (CSE) formulation of turbulence chemistry interaction including two mixture fractions. The FGM model is based on flamelets computed using one-dimensional igniting mixing layers with constant unity le. The progress variable is based on CO$_2$, H$_2$O and H$_2$. In the FGM model, the SGS-variance of mixture fraction and progress variable are obtained from algebraic equations, but this information has not been used in calculation of subgrid scale influences on resolved properties (density, resolved temperature).

Representation of the non-uniform radial profile of scalar properties at the inflow boundary is an issue for the mixture fraction based approaches. In the LES-CSE a second mixture fraction is used to represent temperature variation and oxygen variation is coupled to the same mixture fraction. In the LES-FGM temperature variation is included via the enthalpy equation and considering flamelets with heat loss at the oxidizer side. The oxygen variation is not taken into account. This simplification is based on a separate study showing that ignition delay is much more sensitive to temperature variation than to oxygen concentration variation. Figure 1 shows snapshots of scalar fields from LES-FGM. The poster presents comparisons of predicted velocity and scalar statistics, also compared to experiments, at the heights 15, 30, 60 and 90 mm above the burner exit. Figure 2 shows the good agreement obtained for mean temperature at 30 mm but for large axial distances significant differences are observed. Overall best results are obtained with the LES-CSE model of [9]. Additional results on the case studied here are presented at this meeting in the presentation by A. Vasavan and J.A. van Oijen and the poster by H. Bao et al..

References