Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms

Jesus Lagoa,b,*, Fjo De Ridderb, Bart De Schuttera

a Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, Delft, The Netherlands
b Algorithms, Modeling, and Optimization, VITO, Energyville, ThorPark, Genk, Belgium

HIGHLIGHTS

- A novel deep learning framework to forecast electricity prices is proposed.
- The framework leads to accuracy improvements that are statistically significant.
- The largest benchmark to date in electricity price forecasting is presented.
- 27 state-of-the-art methods for predicting electricity prices are compared.
- Machine learning models are shown to, in general, outperform statistical methods.

ARTICLE INFO

Keywords:
Electricity price forecasting
Deep learning
Benchmark study

ABSTRACT

In this paper, a novel modeling framework for forecasting electricity prices is proposed. While many predictive models have been already proposed to perform this task, the area of deep learning algorithms remains yet unexplored. To fill this scientific gap, we propose four different deep learning models for predicting electricity prices and we show how they lead to improvements in predictive accuracy. In addition, we also consider that, despite the large number of proposed methods for predicting electricity prices, an extensive benchmark is still missing. To tackle that, we compare and analyze the accuracy of 27 common approaches for electricity price forecasting. Based on the benchmark results, we show how the proposed deep learning models outperform the state-of-the-art methods and obtain results that are statistically significant. Finally, using the same results, we also show that: (i) machine learning methods yield, in general, a better accuracy than statistical models; (ii) moving average terms do not improve the predictive accuracy; (iii) hybrid models do not outperform their simpler counterparts.

1. Introduction

Because of the liberalization of the electricity markets in the past decades, the dynamics of electricity prices have become a complex phenomenon with rare characteristics and important consequences. In particular, when compared with other commodities, electricity trade displays a set of attributes that are quite uncommon: constant balance between production and consumption [1]; dependence of the consumption on the time, e.g. hour of the day, day of the week, and time of the year; load and generation that are influenced by external weather conditions [2]; and influence of neighboring markets [3]. Due to these characteristics, the dynamics of electricity prices have become very complex, e.g. highly volatile prices with sudden and unexpected price peaks [2].

In recent years, with the increasing penetration of renewable energy sources (RES), the described behavior has aggravated. In particular, while there are no questions regarding the contribution of RES to build a more sustainable world, several concerns have been raised regarding their influence on electricity prices and grid stability. More specifically, as the penetration of RES increases, so does the dependence of electricity production w.r.t. to weather conditions and, in turn, the volatility in electricity prices. This relation has been largely identified in the literature: [4] studied the effect of wind power penetration on the New England electricity market and concluded that price volatility increases with increasing wind penetration. Similarly, [5] carried out a similar study for the Texas market and also concluded that price volatility increased with increasing wind penetration. Looking at the penetration of solar power, [6] indicated that price spikes are expected to occur more
frequently as the share of PV increases in the California system. Likewise, looking at the effect of increasing wind penetration in UK for the year 2020, [7] reported that prices are expected to be more volatile than at present.

Due to this effect, as the increasing integration of RES increases the volatility of prices, the behavior of market agents becomes naturally more unpredictable, sudden drops in generation and consumption are more likely to occur, the imbalances between production and consumption increase, and the electrical grid becomes more unstable.

In order to tackle the problems mentioned above, electricity markets together with electricity price forecasting have become a central point of research in the energy sector. In particular, by improving the forecasting accuracy, the negative effects of price uncertainty can be mitigated, the grid can be stabilized, and economic profits can be made.

1.1. Electricity price forecasting

The electricity price forecasting literature is typically divided into five areas: (i) game theory models, (ii) fundamental methods, (iii) reduced-form models, (iv) statistical models, and (v) machine learning methods [2]. Since statistical and machine learning methods have showed to yield the best results [2], they are the focus of this review, and in turn, of the benchmarking experiment that will be performed in this paper.

Common statistical methods are: autoregressive (AR) and autoregressive with exogenous inputs (ARX) models [8], double seasonal Holt-Winter (DSHW) models [9], threshold ARX (TARX) models [10], autoregressive integrated moving average (ARIMA) models [11,12], semi/non-parametric models [8,13], generalized autoregressive conditional heteroscedasticity (GARCH) based models [14–16], or dynamic regression (DR) and transfer function (TF) models [17]. In addition, hybrid versions of the previous models are also common, e.g. wavelet-based models [12,18,19].

A pitfall of statistical models is that they are usually linear forecasters, and as such, they might not perform good in data where the frequency is high, e.g. hourly data with rapid variations. In particular, while they show a good performance if the data frequency is low, e.g. weekly patterns, the nonlinear behavior of hourly prices might become too complicated to predict [20]. To address this issue and predict the nonlinear behavior of hourly prices, different machine learning methods have been proposed. Among them, multilayer perceptrons (MLPs) [21–24], support vector regressors (SVRs) [25,26] and radial basis function (RBF) networks [27] are the most commonly used.

While the academic literature comprises a much larger collection of approaches, e.g. see [2,28], a complete review falls outside of the scope of this paper.

1.2. Deep Learning

In the last decade, the field of neural networks has experienced several innovations that have lead to what is known as deep learning (DL). In particular, one of the traditional issues of neural networks had always been the large computational cost of training large models. However, that changed completely when [29] showed that a deep belief network could be trained efficiently using an algorithm called greedy layer-wise pretraining. As related developments followed, researchers started to be able to efficiently train complex neural networks whose depth was not just limited to a single hidden layer (as in the traditional MLP). As these new structures systemically showed better results and generalization capabilities, the field was renamed as deep learning to stress the importance of the depth in the achieved improvements [30, Section 1.2.1].

While this success of DL models initiated in computer science applications, e.g. image recognition [31], speech recognition [32], or machine translation [33], the benefits of DL have also spread in the last years to several energy-related applications [34–39]. Among these areas, wind power forecasting is arguably the field that has benefited the most: [34] shows how, using a deep belief network and quantile regression, probabilistic forecasting of wind speed can be improved. Similar to [34], [39] proposes a deep feature selection algorithm that, in combination with a multi-model framework, improves the wind speed forecasting accuracy by 30%. In the same area of research, [37] proposes an ensemble of convolutional neural networks (CNNs) to obtain more accurate probability forecasts of wind power.

In addition to wind power applications, DL has also shown success in other energy-related fields. In the context of load forecasting, [36] proposes a deep autoencoder in combination with an extreme gradient boosting (XGB) model and shows how they forecast building cooling load more accurately than alternative techniques; within the same research paper, a deep neural network (DNN) to accurately forecast building cooling load is also proposed. For a different application, [38] proposes a DL model to detect islanding and to distinguish this effect from grid disturbances; based on the obtained simulation results, [38] indicates that the DL model can detect islanding with a very high accuracy. In addition, [35] proposes a DL strategy for time series forecasting and shows how it can be used successfully to forecast electricity.
consumption in households.

1.3. Motivation and contributions

Despite the success of DL in all these energy-related areas and time series forecasting applications, there has not yet been, to the best of our knowledge, an attempt to bring its ideas and models to the field of electricity price forecasting. In particular, while neural networks have been proposed, they have been traditionally limited to one-hidden-layer networks, e.g. MLPs [21,22,40,41] and RBF networks [27,42], or to simple versions of recurrent neural networks (RNNs), e.g. Elman networks [43,44]. While these simpler models are sometimes suitable, there are at least three arguments suggesting that using deeper structures could potentially benefit predictive accuracy:

1. Advanced RNN structures, e.g. long-short term memory (LSTM) [45] or gated recurrent unit (GRU) [46] networks, have shown to be a much better alternative to accurately model complex nonlinear time sequences [47–49], e.g. electricity prices.
2. While a single layer network can in theory model any nonlinear continuous function, a network with more than one hidden layer might be able to model the same function with a reduced number of neurons. Therefore, deep networks might actually be less complex and still generalize better than a simple MLP.
3. Considering the excellent results obtained in forecasting time series in other energy-related applications [34–39], it is possible that forecasting electricity prices might also benefit from using DL architectures.

Based on these arguments, the focus and main contribution of this paper is to propose a collection of different DL models that can be successfully used for forecasting day-ahead electricity prices. In particular, the paper develops a DL modeling framework comprising four models:

1. A DNN as an extension to the traditional MLP.
2. A hybrid LSTM-DNN structure.
3. A hybrid GRU-DNN structure.
4. A CNN model.

Then, considering a large benchmark comparison and a case study, it shows that the proposed DL modeling framework leads to improvements in predictive accuracy that are statistically significant.

In addition, as a second contribution, the paper also tries to establish an extensive benchmark of commonly used forecasters for predicting electricity prices. In particular, since even the largest benchmarks in the literature [8,9,50,51] have been limited to 4–10 different forecasters, the paper considers that a conclusion on the relatively accuracy of the different forecasters cannot be drawn. With that motivation, we aim at providing a large empirical evaluation of 27 common forecasters for day-ahead electricity prices to bring new insights on the capabilities of the various models.

The paper is organized as follows: Section 2 introduces the theoretical concepts and state-of-the-art methods that are used in the research. Next, Section 3 presents the proposed DL framework. Section 4 defines the base forecasters that are collected from the literature and considered in the benchmark. Next, Section 5 evaluates the base and DL models in a case study, compares the obtained predictive accuracy by means of hypothesis testing, and discusses the results. Finally, Section 6 concludes the paper and outlines the main results.

2. Preliminaries

In this section, the theoretical concepts and algorithms that are used in the research are introduced.

2.1. Day-ahead forecasting

A type of power exchange that is widely used in many parts of the world is the day-ahead electricity market. In its most general format, bids are submitted for the 24 hours of day d before some deadline on day $d–1$. These bids are usually defined per hour, i.e. every market player has to submit 24 bids. After the deadline has passed, the market operator uses the submitted bids to compute the market clearing price for each of the 24 hours. Then, all the market agents get an energy allocation that depends on the market clearing price and the bids submitted by the market agent.

Considering this market format, a useful forecaster should predict the 24 market clearing prices of day d based on the information available before the deadline on day $d–1$.

2.2. Deep learning

In this section, we give a brief description of the DL structures considered in the modeling framework. For the sake of conciseness, we provide a large explanation of the DL models in Appendix A [94,95].

The basic DL model is the DNN [30], the natural extension of the traditional MLP that uses multiple hidden layers. When compared with a standard MLP, a DNN requires specific model changes to be efficiently trained, e.g. activation functions different from the standard sigmoid.

Slightly more complex than DNNs are RNNs [30], a type of network that builds additional mappings to hold relevant information from past inputs and that are suitable for modeling time series data, e.g. electricity prices. The two state-of-the-art recurrent networks are LSTM [45] and GRU networks [48]; unlike standard RNNs, they are able to model a selective forget-remember behavior. While both structures are very similar, GRUs have a simpler structure and they are faster to train.

A different type of DL structure are CNNs, a type of network that are modeled using three building blocks: a convolution operation, a pooling operation, and a fully connected layer. Given an array of data, the convolution operation slides a filter across the data array and computes local element-wise cross product between the filter and the data. As different filters capture different properties, CNNs typically use various filters to obtain different data arrays known as feature maps. In a subsequent step, the pooling operation reduces the size of these feature maps by reducing large areas into single values. Finally, after several convolutions and pooling operations are done, the values of the last feature maps are used as inputs for a fully connected layer.

2.3. Hyperparameter Optimization

Hyperparameters are model parameters that have to be selected before the estimation process, e.g. the number of neurons in a neural network or the lag order in an ARIMA model. In the case of our benchmark study, to objectively analyze and compare the accuracy of each benchmark model, we optimize this selection following the same automated procedure for each individual model. In particular, we employ the tree-structured Parzen estimator [52], a sequential model-based optimization algorithm [53] within the family of Bayesian optimization [54] methods.

2.4. Performance metrics

A performance metric is needed to evaluate and compare the accuracy of the forecasters. In this paper, we consider the symmetric mean absolute percentage error (sMAPE) [55] metric:

$$sMAPE = \frac{100}{N} \sum_{k=1}^{N} \frac{|y_k - \hat{y}_k|}{(|y_k| + |\hat{y}_k|)/2},$$

(1)

where $y_1, ..., y_N$ are the real outputs to be predicted and $\hat{y}_1, ..., \hat{y}_N$ the predicted values.
As in [3], sMAPE is selected instead of the more traditional mean absolute percentage error (MAPE) metric because of the issues that affect MAPE [55].

2.5. Diebold-Mariano test

The sMAPE is a metric that can be used to compare which model has a better accuracy. However, the fact that the accuracy of a model is higher, is not enough to guarantee that the model is better. In particular, to have a minimum assurance that a model is better, the difference in accuracy should be statistically significant. To evaluate this, the Diebold-Mariano (DM) test [56] is the statistical test that is typically used.

Given a time series vector \([y_1, ..., y_n]^T\) to be forecast, two prediction models \(M_1\) and \(M_2\), and the associated forecasting errors \([e_1^{M_1}, ..., e_n^{M_1}]^T\) and \([e_1^{M_2}, ..., e_n^{M_2}]^T\), the DM test builds a covariance stationary loss function \(L(e_i^{M_k})\) and the associated loss differential:

\[
d_k^{M_1,M_2} = L(e_i^{M_1}) - L(e_i^{M_2}).
\]

Then, in its one-sided version, the DM test evaluates the null hypothesis \(H_0\) of \(M_1\) having an accuracy equal to or worse than \(M_2\), i.e. equal or larger expected loss, against the alternative hypothesis \(H_1\) of \(M_1\) having a better accuracy, i.e.:

\[
\begin{align*}
\text{One-sided DM test} & : \quad H_0: \mathbb{E}[d_k^{M_1,M_2}] \geq 0, \\
& \quad H_1: \mathbb{E}[d_k^{M_1,M_2}] < 0.
\end{align*}
\]

If \(H_0\) is rejected, the test concludes that the accuracy of the forecast of \(M_1\) is statistically significantly better.

3. DL modeling framework

As indicated in the introduction, the main goal of this paper is to propose a DL modeling framework as a forecasting tool for day-ahead electricity prices. As a first step to achieve that, this section develops the four DL models comprising the framework.

3.1. Market integration

Before describing each model separately, it is important to note that a common feature to all DL models is market integration. In particular, to improve the predictivity accuracy, all the DL models simultaneously predict electricity prices of various day-ahead markets. The idea behind is that, as shown in [3], due to market integration and by multitasking, i.e. predicting prices in different markets, the models can learn more general features and integrate relations across neighboring markets.

In detail, regarding a local market \(L\) that is subject to study and a set of \(c\) neighboring markets \(N_1, ..., N_c\), each DL model predicts the following output:

\[
p = [p_{i_1}, ..., p_{i_c}, q_{N_1}, ..., q_{N_c}]^T.
\]

where \(p_L = [p_{i_1}, ..., p_{i_c}]^T\) is the vector of day-ahead prices in the local market, and \(p_{N_i} = [q_{N_1}, ..., q_{N_c}]^T\) is the vector of day-ahead prices in the neighboring market \(i\).

3.2. DNN model

As a simple extension of the traditional MLP, the first DL model for predicting day-ahead prices is a deep neural network with two hidden layers. In particular, defining as \(X = [x_1, ..., x_n]\) the input of the model, as \(n_1\) and \(n_2\) the respective number of neurons of the first and the second hidden layer, and by \(p = [p_{i_1}, ..., p_{i_c}, q_{N_1}, ..., q_{N_c}]^T\) the vector of day-ahead prices that we intend to forecast, the corresponding model is represented in Fig. 1.

3.3. LSTM-DNN model

The second DL model for predicting day-ahead prices is a hybrid forecaster combining an LSTM and a DNN network. The motivation behind this hybrid structure is to include a recurrent layer that can learn and model the sequential relations in the time series data as well as a regular layer that can learn relations that depend on non-sequential data.

In detail, for this new model, the inputs are divided between those that model sequential time data, e.g. past electricity prices, and those that model regular data, e.g. day of the week or day-ahead forecasting of the grid load. This division is necessary because the LSTM network requires a sequence of time series values as an input. However, considering all the possible regressors for electricity price forecasting, it is clear that some of them do not have that property.

In general, for the case of electricity prices, the distinction between these two types of data can be done by considering the time information represented in the data. Specifically, if the data represents a collection of past values, it can normally be modeled as time sequential data and used as an LSTM regressor. By contrast, if the data represents some specific property associated with the day ahead, i.e. it represents direct information of a future event, it cannot be modeled as a time sequence. Examples of the first could be past day-ahead prices or the measured grid load; examples of the second could be the day-ahead forecast of the weather or whether tomorrow (day-ahead) is a holiday. Using this distinction, the inputs of the model are divided between two groups:

- Input vector \(X_t = [x_{t-1}, ..., x_{t-9}]^T \in \mathbb{R}^{9}\) representing future information.
- A collection \([X_{i_1}^{\text{FF}}, ..., X_{i_q}^{\text{FF}}]\) of \(q\) input sequences, where \(X_{i} = [x_{i_1}, ..., x_{i_9}]^T \in \mathbb{R}^{9}\) is a vector representing past information.

Using this separation, the model uses a DNN to process the inputs \(X_t\) and an LSTM to process the time sequences \([X_{i_1}^{\text{FF}}, ..., X_{i_q}^{\text{FF}}]\). Then, the outputs of these two networks are concatenated into one vector and this vector is fed into a regular output layer.

Defining the number of neurons of the DNN and LSTM layers respectively by \(n_1\) and \(n_2\), and by \(z_c\) and \([z_c, z_c]\) the internal state of their neuron \(i\), an example of the proposed model is represented by Fig. 2.

![Image of Deep neural network to simultaneously forecast day-ahead prices in several countries.](image-url)
The third DL model for predicting day-ahead prices is a hybrid model combining a GRU and a DNN network. As with the LSTM-DNN hybrid structure, the motivation behind this model is to include a layer that is tailored to sequential data. However, to reduce the computational burden of the LSTM layer, a GRU layer is used instead to model the time data sequences $[X_i]_{i=1}^{N}$. Specifically, if in Fig. 2 the LSTM cell states $[z_{t},c_{t}]^T$ are replaced by the corresponding GRU cell state z_{s}, the modified figure would represent an example of the new proposed model.

Fig. 2. Hybrid DNN-LSTM network to simultaneously forecast day-ahead prices in several countries.

3.4. GRU-DNN model

The third DL model for predicting day-ahead prices is a hybrid model combining a GRU and a DNN network. As with the LSTM-DNN hybrid structure, the motivation behind this model is to include a layer that is tailored to sequential data. However, to reduce the computational burden of the LSTM layer, a GRU layer is used instead to model the time data sequences $[X_i]_{i=1}^{N}$. Specifically, if in Fig. 2 the LSTM cell states $[z_{t},c_{t}]^T$ are replaced by the corresponding GRU cell state z_{s}, the modified figure would represent an example of the new proposed model.

3.5. CNN model

The fourth DL model for predicting day-ahead prices is a CNN network. As in the previous two cases, the inputs are divided between those that model sequential past data and those that model information regarding the day ahead. For the hybrid models, the division was necessary because the recurrent layers needed sequential data. In this new separation, the model uses 2 parallel CNNs to model the electricity price dynamics. In particular, a first CNN considers the r input sequences $[X_i]_{i=1}^{r}$ as r input channels. Then, a parallel CNN regards the remaining q input sequences $[X_i]_{i=1}^{q}$ as q input channels. Next, both networks perform a series of convolution and pooling operations. Finally, the feature maps at the end of both CNNs are connected into a fully connected layer that models the day-ahead prices $p = [p_{1}, ..., p_{r}, p_{q}]^T$. With the hybrid networks, the motivation behind using this structure is to have a network with layers tailored to sequential past data as well as with layers tailored to non-sequential data.

Defining the internal states of both networks by $z_{W_i}^{l}$ and $z_{W_j}^{l}$, with i representing the layer of the network, j the specific feature map in layer i, and k the state within the feature map j of layer i, Fig. 3 depicts an example of this type of structure. For the sake of simplicity, the example illustrates both CNNs performing just a single convolution and pooling operation and using only two filters.

3.6. Selection of the network structure

To complete the modeling framework, the structure of the models have to be selected; in particular, for each of the proposed forecasters, there are many hyperparameters to be selected, e.g. the number of neurons, the type of activation function, etc. However, while the structure of the proposed models is general for any electricity market, the specific architecture and implementation details might be not. Specifically, hyperparameters such as the number of neurons might depend on the market under study, and thus, they should be optimized accordingly. As a result, in this section, we limit the explanation to which hyperparameters are optimized. Next, in later sections, we indicate the specific optimal selection for the case study.

3.6.1. Common hyperparameters

While some hyperparameters are model-specific, three of them are common to the four models:

1. **Activation function**: Except for the output layer that does not use any, all the layers within a network use, for the sake of simplicity, the same activation function. This function is chosen with a single hyperparameter, and in the case of the hybrid models, i.e. GRU-DNN and LSTM-DNN, two hyperparameters are used so that each network type can employ a different activation function.

2. **Dropout**: Dropout [57] is included as a possible regularization technique to reduce overfitting and to improve the training performance. To do so, at each iteration, dropout selects a fraction of the neurons and prevents them from training. This fraction of neurons is defined as a real hyperparameter between 0 and 1.

3. **L1-norm penalization**: In addition to dropout, the models can add an L1-norm penalization to the network parameters as a different way of regularizing. Defining the network weights by W and using another binary hyperparameter, the models can choose whether to add to the cost function the following term:

$$\lambda ||W||_1. \tag{5}$$

If regularization is selected, λ becomes a real hyperparameter.

3.6.2. DNN hyperparameters

The DNN model uses two additional model-specific hyperparameters:

- n_1/n_2: number of neurons in the first/second hidden layer.

3.6.3. LSTM-DNN/GRU-DNN hyperparameters

For the two hybrid models, there are three additional model-specific hyperparameters:
1. \(n_{\text{LSTM/GRU}} \): number of neurons in the recursive layer.

2. \(n_{\text{DNN}} \): number of neurons in the DNN layer.

3. **Sequence length**: For the LSTM structure, each input is modeled as a sequence of past values. Considering that values too far in the past do not cause any effect in the day-ahead prices, selecting the right length for the input sequences might remove unnecessary complexities. Therefore, a third hyperparameter is used to select the length of the input sequences.

3.6.4. CNN hyperparameters

Depending on which of the two CNN structures they affect, the specific hyperparameters of the CNN model can be divided into three groups:

1. The hyperparameters that are common and equal to the two CNN structures:
 (a) **Pooling frequency**: The pooling operation does not have to be always performed right after every convolution. Therefore, an integer hyperparameter is used to select how frequently, i.e. after how many convolutional layers, pooling is performed.
 (b) **Pooling type**: To enlarge the number of possible architectures, a binary hyperparameter selects whether the model uses the average pooling or the maximum pooling operation.

2. The hyperparameters that only apply to one of the two CNN structures:
 (c) **Channel length**: For the CNN with past sequences, the length of the input channels is selected as an integer hyperparameter. In the case of the other CNN, the input channels have a length of 24 that correspond with the 24 hours of the day ahead.

3. The integer hyperparameters that, while employed in both networks, their value can be different.
 (d) **Filter size**: the size of the filter of the convolution operation.
 (e) **Number of convolutions**: the number of convolutional layers in each CNN.
 (f) **Feature maps in first layer**: The number of feature maps in every layer is determined by selecting the number of feature maps in the first layer. In particular, the number of feature maps in successive layers is simply doubled every two convolutional layers. This choice is used to reduce the total number of hyperparameters. In particular, a more general approach could be to select the number of convolution layers, and then, to model the number of features maps in each of these layers with a different hyperparameter. However, this approach is avoided as it requires a much larger computational cost.

3.7. Model estimation

In the proposed framework, all the neural networks are trained by minimizing the mean absolute error. In particular, given the training set \(\mathcal{F} = \left\{ (\mathbf{x}_k, \mathbf{p}_k) \right\}_{k=1}^N \) with \(N \) data points, the networks are trained via the following optimization problem:

\[
\begin{align*}
\text{minimize} & \quad \sum_{k=1}^{N} \| \mathbf{p}_k - F(\mathbf{x}_k, \mathbf{w}) \|_1, \\
\end{align*}
\]

where \(\mathbf{w} \) represents the vector of all network weights and \(F: \mathbb{R}^n \rightarrow \mathbb{R}^{24(n+1)} \) the neural network map. The selection of the mean absolute error instead of the more traditional root mean square error is...
done for a simple reason: as the electricity prices have large spikes, the Euclidean norm would put too much importance on the spiky prices. The optimization problem is solved using Adam [58], a stochastic gradient descent method [59] that uses adaptive learning rates. The advantage of using this optimization method is that the learning rate does not need to be tuned online. Together with Adam, the proposed models also consider early stopping [60] to avoid overfitting.

4. Benchmark models for electricity price forecasting

In order to have a large benchmark study, we consider, in addition to the 4 proposed DL forecasters, a set of 23 different models that have been proposed in the literature of electricity prices forecasting. In addition, to further enlarge the benchmark, we consider different versions of each of the 27 individual models in order to have a benchmark of 98 models.

As the 23 models from the literature will be used to evaluate the proposed DL models, they are referred to as base forecasters. Moreover, as the aim of this study is not only the evaluation of the DL models but also to establish a large benchmark within the community of electricity price forecasting, we try to consider a fair selection of base models by including the most common and known forecasters from the literature. In particular, we use the excellent literature review of [2] and the newest advances in the field to make the selection as complete as possible. It is important to note that, while the main principles of each base model are defined below, the model equations are not provided. Instead, we refer to the original papers for full documentation.

Based on the model separation of [2], the 23 base forecasters are divided into three different classes: statistical methods without exogenous inputs, statistical methods with exogenous inputs, and machine learning methods.

4.1. Statistical methods without exogenous inputs

The first class of models comprises statistical methods that only use past prices as input features. Among them, we make the distinction between AR models, GARCH models, and exponential smoothing methods.

4.1.1. AR-type models

The first subclass of forecasters assumes homoskedasticity, i.e. constant variance and covariance functions, and models time correlation in the time series using a linear model. Within this subclass, we have selected four models:

1. The well-known wavelet-ARIMA model [18], a method that has been regularly used in other empirical evaluations [42,61–63]. This model will be denoted as wavelet-ARIMA (WARIMA).
2. The double seasonal ARIMA (DSARIMA) model [9], an ARIMA model that considers the double seasonality, i.e. weekly and daily, of electricity prices.
3. The AR model of [64], an autoregressive model with lags of 24, 48, and 168 hours, that also models differences among days of the week.
4. The wavelet-ARIMA-RBF model [42], a forecaster that considers the traditional wavelet-ARIMA structure but adds an RBF network to model the residuals. This model will be denoted as WARIMA-RBF.

4.1.2. GARCH-based models

Unlike the AR-type models, GARCH-based models do not require homoskedasticity in the time series. However, unlike the former, GARCH models are not accurate in forecasting spot electricity prices in standalone applications; particularly, they need to be coupled with AR-type models to boost their predictive accuracy [2, Section 3.8.6]. As a result, within this subclass, we regard the following hybrid model:

5. The ARIMA-GARCH model [15], a forecaster that considers a standard ARIMA model with GARCH residuals.

4.1.3. Exponential smoothing methods

The last subclass is exponential smoothing, a family of algorithms that make a prediction using an exponentially weighted average of past observations. Among these methods, we have selected two different forecasters:

6. The DSHW [65] model, an algorithm that was successfully used by [9] for forecasting spot electricity prices.
7. The exponential smoothing state space model with Box-Cox transformation, ARMA errors, trend and seasonal components (TBATS) [66], a forecaster that is able to model multiple seasonabilities. While this method has never been used before for electricity price forecasting, it is a generalization of the DSHW model [66]. Therefore, it is an interesting method to consider.

4.2. Statistical methods with exogenous inputs

The second class of models are statistical methods that consider regressors to enhance the predictive accuracy. Typical regressors for forecasting electricity prices are the grid load, the available capacity, or the ambient temperature. Among these models, we can distinguish four subclasses: ARX-type models, regime-switching models, semiparametric models, and models with automated input selection.

4.2.1. ARX-type models

The first subclass is the natural generalization of adding exogenous inputs to the AR-based models of Section 4.1.1. Like the AR models, they also assume homoskedasticity of the data. For the benchmark, we consider four ARX models:

8. The DR model [17], an ARX model that uses the grid load as a regressor and that has been used in other empirical evaluations [51].
9. The TF model [17], an ARX model with moving average terms that, like the DR model, it uses the grid load as a regressor and it has also been used in other comparisons [51].
10. The ARX model proposed in [64], an extension of the AR method defined in Section 4.1.1 that uses the grid load as a regressor. We will refer to this model as ARX.
11. The full-ARX (fARX) model [67], an ARX model that is an extension of the previous ARX.

4.2.2. Regime-switching models

The second subclass, i.e. regime-switching models, considers that the time series can be modeled by different regimes, that each regime has an independent model, and that switches between regimes can be modeled by the value of some variable. We consider a single regime switching model:

12. The TARX model defined in [10], a model with two regimes that separate normal prices from spiky dynamics. As decision variable, the model uses the difference between the mean price of one day and of eight days before. Then, each of the regimes is modeled with an ARX model that uses the grid load as an exogenous input.

4.2.3. Semiparametric models

Semiparametric models are based on the premise that, given some empirical data, a nonparametric kernel density estimator might lead to a better fit than any parametric distribution. To benefit from this hypothesis, they relax the assumption about the probability distribution that is typically needed when estimating their parametric counterparts. An example of semiparametric models are the semiparametric ARX models, which have the same functional form as the equivalent ARX models, but they relax the normality assumption needed for the
maximum likelihood estimation [68,8]. For the benchmark, we regard two different semiparametric models:

13. The Hsieh-Manski ARX (IHMARX) estimator, an algorithm originally analyzed in [68] and studied in the context of electricity price forecasting in [8].

14. The smoothed nonparametric ARX (SNARX) estimator, a semiparametric model that was also originally analyzed in [68] and applied to electricity price forecasting in [8].

4.2.4. Models with automated input selection

In the last subclass, we consider a set of models that automatically select the important exogenous inputs. While this type of models are instantiations of the previous three subclasses, we separate them in a fourth subclass due to their special structure. For the benchmark, we consider two of them:

15. The fARX regularized with Lasso (fARX-Lasso) [67] model, the fARX model defined in the subclass of ARX models that uses Lasso [69] as a regularization tool to automatically reduce the contribution of unimportant inputs.

16. The fARX-EN [67] model, the same model but using elastic nets [70] as a regularization tool.

4.3. Artificial intelligence models

The last class of models comprises the machine learning models, a family of algorithms that, while also including exogenous inputs, are able to model more complex nonlinear relations than the previously defined models. Within this class, we can distinguish three subclasses: models based on neural networks, SVR-based models, and ensemble methods.

4.3.1. Neural network based models

This subclass can be seen as a family of simpler DL algorithms. For the benchmark, we regard two different models:

17. The traditional MLP model, a standard neural network with a single hidden layer widely used by many authors [9,21,22].

18. The RBF network, a model introduced in Section 4.1.1 as part of a hybrid forecaster that has also had standalone applications [27].

4.3.2. SVR based models

Support vector regressors perform a nonlinear mapping of the data to a higher-dimensional space where linear functions are used to perform regression. For the benchmark, we include the following three models:

19. The plain SVR model as used in [71].

20. The SOM-SVR [25,72] model, a forecaster that first clusters data via self-organizing maps (SOM) and then predicts prices using a different SVR model per cluster.

21. The SVR-ARIMA [26] model, a hybrid forecaster that uses a SVR model to capture the nonlinearity of prices and an ARIMA model for the linearity.

4.3.3. Ensemble models

Within this final subclass, we include algorithms based on ensemble methods. Particularly, we consider the two well-known algorithms based on regression trees [73]:

22. The random forest (RF) [74] model, a forecaster that predicts data by combining several regression trees. It is based on the principle of bagging [73, Chapter 8], i.e. combining models with low bias and high variance error in order to reduce the variance while keeping a low bias.

23. The XGB [75] model, which also forecasts data by combining regression trees, but it is based on the principle of boosting [73, Chapter 10], i.e. combining models with high bias and low variance in order to reduce the bias while keeping a low variance.

It is important to note that, while to the best of our knowledge, these models have never been used for electricity price forecasting, we include them in the benchmark as they display reasonable results.

4.4. Modeling options

To have a more fair comparison, the mentioned models are not only considered in their traditional form; particularly, for each model, three modeling options with two alternatives per modeling option are considered, i.e. a model that could use the 3 modeling options would have $2^3 = 8$ model alternatives.

4.4.1. Modeling option 1: Spikes preprocessing

Due to the fact that the dynamics of electricity prices are characterized by large, but infrequent, spikes [2], better models might be obtained if spikes are disregarded during the estimation process. As a result, when estimating the model parameters, we consider two model alternatives:

1. MO1A1: A first alternative that limits the spike amplitude to the mean plus/minus three times the standard deviation.

2. MO1A2: A second one that uses raw prices.

4.4.2. Modeling option 2: Feature selection

For all the models that include exogenous inputs, there are two additional model alternatives:

1. MO2A1: A first alternative that uses the features from the original paper. For all the base models, the original input is the day-ahead grid load forecast given by the transmission system operator.

2. MO2A2: A second alternative where the features are optimally selected considering all the available data in the market under study. This step is done following the feature selection method described in [3], where the features are optimally selected by minimizing the sMAPE of the model in a validation set.

4.4.3. Modeling option 3: Market integration

As explained in Section 3, all the DL models simultaneously predict electricity prices in various spot markets. This was done because, as shown in [3], the accuracy of forecasting electricity prices can be enhanced by including market integration. Therefore, for all the forecasters that model the day-ahead prices in a single model, i.e. that do not need 24 independent models, two additional model alternatives are considered:

1. MO3A1: A first alternative where the models only predict the prices in the local market.

2. MO3A2: A second alternative where the models consider market integration and simultaneously predict the prices in various markets.

It is important to note that, while this modeling option is only possible for some models, considering market integration is available for many more. In particular, for any of the models with exogenous inputs, market integration could be modeled using features from connected markets as model inputs. Therefore, when evaluating the second alternative of modeling option 2, i.e. MO2A2, market integration is implicitly considered if features from connected markets are part of the optimal set of inputs.
4.5. Hyperparameter optimization

In order to have a fair comparison, not only different modeling options should be considered, but also the hyperparameters of the models should be optimized. In particular, considering that the hyperparameters of the DL models are tuned, the configuration of the base models should also be tuned. As motivated in Section 2.3, this optimization step is performed using Bayesian optimization. Examples of hyperparameters in the base models are: the size of the lags in all the AR-based models, the penalty coefficient in the SVR model, or the number of trees in the random forest.

4.6. Summary

We summarized in Table 1 all the considered benchmark methods with their properties and modeling options. In particular, the first column denotes whether a model is nonlinear, the second one whether it considers exogenous inputs, and the last three whether the model can make use respectively of modeling options 1, 2, and 3. It necessary to remark that these three columns do not indicate which alternative is the best; more specifically, they simply show whether a model can consider the alternatives of each modeling option.

It is important to note that, while 27 individual benchmark models have been defined, a total of 98 models are in fact included in the benchmark. In particular, considering the three modeling options, a total of $27 \cdot 2 (\text{MO1}) + 14 \cdot 2 (\text{MO2}) + 8 \cdot 2 (\text{MO3}) = 98$ forecasters are included. However, as a comparison of 98 models would be too vast, the results in the case study are directly given in base of the best alternative for each of the 27 individual models. A description of which alternative performs the best for each model is listed in Section 5.3.

5. Case study

In this section, we perform the empirical study to evaluate the proposed DI models and to analyze the predictive accuracy of the various base models. To do so, we consider the day-ahead market in Belgium, i.e. European power exchange (EPEX)-Belgium, in the period from 01/01/2010 to 31/11/2016. In particular, as a first step to analyze the models, we motivate the data that is considered. Then, we perform the required hyperparameter optimization so that all the forecasters employ an optimized structure. Next, after the hyperparameters are optimized, we compare the predictive accuracy of the various forecasters using a year of out-of-sample data. From this comparison, we are able to establish a first evaluation of the DI models as well as to rank the benchmark models according to their performance. Finally, the differences in performance are analyzed via statistical testing.

5.1. Data

In general, when looking at the day-ahead forecasting literature, several inputs have been proposed as meaningful explanatory variables, e.g. temperature, gas and coal prices, grid load, available generation, or weather [2].

5.1.1. Data selection

For this research, in addition to the past prices p_t in the EPEX-Belgium, we consider several exogenous inputs. As defined by the second modeling alternative MO2 in Section 4.4.2, the specific subset of inputs is given as either one of the following alternatives:

1. A first subset that considers as exogenous input the day-ahead grid load forecast given by the transmission system operator. This selection is done as this variable has been widely used in the literature [8,10,67], and for all the base models, it is the exogenous input used in the original papers.

2. A second subset that is obtained by regarding all the available information for the market under study and performing feature selection. This step is done following the feature selection method described in [3]. The available input features are:

 (a) The day-ahead forecast l_t of the grid load in the EPEX-Belgium.
 (b) The day-ahead forecast g_t of the available generation in the EPEX-Belgium.
 (c) Past prices p_t in the neighboring EPEX-France market.
 (d) The day-ahead forecast l_t of the grid load in the EPEX-France.
 (e) The day-ahead forecast g_t of the available generation in the EPEX-France.

 We make the distinction between these two alternatives because, while it is necessary to optimize each model for our case study, it is also important to evaluate them in their original format, i.e. as they were originally proposed in the literature.

 It is important to note that, while we optimize the input features for every model, discussing the results of the feature selection would be too large to include within the manuscript (we evaluate 27 models, each model predicts 24 hours, and there are available more than 750 individual input features that can be selected per hour and per model). As a consequence, the main results of the feature selection, i.e. which features are in general relevant to predict the different hours of the day, are provided as supplementary material in Appendix B [94,95].

5.1.2. Data division

To perform the different experiments, we divide the data into three sets:

1. Training set (01/01/2010–30/11/2014): these data are used for training and estimating the different models.

Table 1

Compilation of methods considered in the benchmark. The first two columns denote possible properties of the model. The last three columns respectively denote whether a model can make use of the 2 alternatives of modeling option 1, the 2 alternatives of modeling option 2, and the 2 alternatives of modeling option 3.

<table>
<thead>
<tr>
<th>Model</th>
<th>Properties Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-linear Exog. inputs</td>
</tr>
<tr>
<td>AR</td>
<td></td>
</tr>
<tr>
<td>DSARIMA</td>
<td></td>
</tr>
<tr>
<td>WARIMA</td>
<td></td>
</tr>
<tr>
<td>WARIMA RBF</td>
<td></td>
</tr>
<tr>
<td>ARIMA-GARCH</td>
<td></td>
</tr>
<tr>
<td>DSIHW</td>
<td></td>
</tr>
<tr>
<td>TBATS</td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td></td>
</tr>
<tr>
<td>ARX</td>
<td></td>
</tr>
<tr>
<td>TARX</td>
<td></td>
</tr>
<tr>
<td>IIMARX</td>
<td></td>
</tr>
<tr>
<td>SNARX</td>
<td></td>
</tr>
<tr>
<td>fARX</td>
<td></td>
</tr>
<tr>
<td>fARX-Lasso</td>
<td></td>
</tr>
<tr>
<td>fARX-EN</td>
<td></td>
</tr>
<tr>
<td>MLP</td>
<td></td>
</tr>
<tr>
<td>RBF</td>
<td></td>
</tr>
<tr>
<td>SVR</td>
<td></td>
</tr>
<tr>
<td>SOM-SVR</td>
<td></td>
</tr>
<tr>
<td>SVR-ARIMA</td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td></td>
</tr>
<tr>
<td>XGB</td>
<td></td>
</tr>
<tr>
<td>DNN</td>
<td></td>
</tr>
<tr>
<td>LSTM</td>
<td></td>
</tr>
<tr>
<td>GRU</td>
<td></td>
</tr>
<tr>
<td>CNN</td>
<td></td>
</tr>
</tbody>
</table>
2. Validation set (01/12/2014–30/11/2015): a year of data is used to select the optimal hyperparameters.

3. Test set (01/12/2015–30/11/2016): a year of data that is not used at any step during the model estimation process, is employed as the out-of-sample data to compare the models.

Considering that there are 24 electricity prices per day, the training dataset comprises 43,536 data points. Likewise, both validation and test datasets comprise 8,760 data points each.

5.1.3. Data processing

In order to obtain time series that are easier to forecast, the data used for the statistical models are processed using a Box-Cox transformation [76]. This preprocessing step, which includes the log-transformation as a special case, is a standard one in the literature of electricity price forecasting [9–11,19,51]. For the machine learning and DL models, the data is respectively normalized to the intervals [0,1] and [−1,1]. This transformation is done because, based on experimental results using the validation set, these two preprocessing steps help to obtain more accurate models.

It is important to note that these transformations are only applied when estimating the parameters, not for computing metrics or statistical significance.

5.1.4. Data access

For the sake of reproducibility, we have only considered data that are publicly available. Particularly, the electricity prices can be obtained from the ENTSO-E transparency platform [77]. Similarly, the load and generation day-ahead forecasts are available on the webpages of RTE [78] and Elia [79], the respective TSOs in France and Belgium.

5.2. Modeling implementation: frameworks and libraries

In order to implement the proposed DL framework, we use the Keras [80] DL library in combination with the mathematical language Theano [81]. The full framework is developed in Python.

For the base models, the libraries employed differ more. In general, most of the forecasters are also modeled in R. The only exception are the DSHW and the TBATS forecasters, both of which are modeled using the R language and its forecast library [82]. For the remaining 17 models, we can distinguish several groups according to the library/framework used:

1. For the RF, the AR, the DR, the ARX, the TARX, the RBF, the three fARX-based models, and the three SVR-based models, the scikit-learn library [83] is used.
2. The XGB model is built using the xGBoost library [75] which is developed by the same authors that proposed the algorithm.
3. The MLP is modeled using the same frameworks as the other DL models.
4. The remaining models, i.e. the IHMARX, the SNARX, the TF, and the 4 ARIMA-based models, are estimated by solving the corresponding maximum likelihood estimation problem. In particular, to solve the various nonlinear optimization problems that arise from the maximum likelihood technique, we employ CasADi [84], a symbolic framework for automatic differentiation and numerical optimization. Within this group, we also model the ARIMA part of the SVR-ARIMA model.

In addition, to solve the optimization problems that estimate the models’ parameters, we distinguish between two different stopping criteria:

1. Except for the neural network models, the stopping criterion is given by the moment that a (local) minimum is reached. We assume that a local minimum is reached when the gradient of the objective function is lower than some tolerance; in our study, that was 10^{-6}.
2. For the neural network models, we monitor the performance of a validation set and we stop the training when the improvements on this validation set cease (we assume that the improvement ceases if the accuracy in the validation set worsens for ten consecutive epochs). This criterion is called early stopping [60], and it is done because neural networks would overfit to the training data and would not generalize well if a (local) minimum is reached.

It is important to note that, for all non-convex models, the described stopping criteria cannot ensure that the best model is found, i.e. the optimal solutions are in local minima or in their vicinity. To improve this situation, we have added multi-start optimization to the hyperparameter selection; by doing so, when optimizing the hyperparameters, larger regions of the parameter space are explored and the quality of the obtained local solution can be improved.

5.3. Best Alternative per Modeling Option

In Section 4.4, we have described the three modeling options that are available for each benchmark model. In this section, we present and explain the best alternative for each of the options when considering the case study. It is important to note that all the results listed here are based on the validation dataset.

The obtained results are listed in Table 2 where, for each benchmark model and each modeling option, i.e. MO1, MO2, and MO3, the best model alternative is shown. In particular, the optimal alternative is given by one of the following labels:

- A1 (A2) to respectively denote that alternative 1 (2) performs the best.
- NI (non-important) to denote that the modeling option has no effect, i.e. both alternatives perform similarly.
- No label if the model cannot use the modeling option.

Table 2

<table>
<thead>
<tr>
<th>Model</th>
<th>MO1</th>
<th>MO2</th>
<th>MO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSARIMA</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARIMA</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARIMA-RBF</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIMA-GARCH</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSHW</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBATS</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>A1</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td>TF</td>
<td>A1</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td>ARX</td>
<td>A1</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td>TARX</td>
<td>A1</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td>IHMARX</td>
<td>A1</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>SNARX</td>
<td>A1</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>fARX</td>
<td>A1</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>fARX-Lasso</td>
<td>A1</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>fARX-EN</td>
<td>A1</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>MLP</td>
<td>NI</td>
<td>A2</td>
<td>NI</td>
</tr>
<tr>
<td>RBF</td>
<td>A1</td>
<td>A2</td>
<td>A1</td>
</tr>
<tr>
<td>SVR</td>
<td>NI</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>SOM-SVR</td>
<td>NI</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>SVR-ARIMA</td>
<td>NI</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>A2</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>XGB</td>
<td>A2</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>DNN</td>
<td>A2</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>LSTM</td>
<td>A2</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>GRU</td>
<td>A2</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>CNN</td>
<td>A2</td>
<td>A2</td>
<td></td>
</tr>
</tbody>
</table>
Based on the results of Table 2 we can draw the following conclusions:

1. Considering the results of modeling option MO1, preprocessing price spikes (Alternative A1) seems to be helpful for all statistical models. In contrast, preprocessing seems to be irrelevant or decrease the performance in the case of machine learning models. A possible explanation for this effect is the fact that price spikes are nonlinear effects, and as such, they can compromise the prediction quality of statistical models since they are largely linear [20]. In contrast, as machine learning models are able to model more complex nonlinear relations, it is possible that they can predict up to certain degree some of the nonlinear price spikes.

2. Observing the results of modeling option MO2, it is clear that, except for the non-parametric models, when the input features are optimally selected (Alternative A2) the accuracy of the models improves. In particular, the models obtain better performance when, instead of simply considering the load in the local market (Alternative A1), the model also includes input features like the load or generation in a neighboring market.

3. Analyzing the results of modeling option MO3, we can observe how the accuracy improvements by predicting multiple markets at the same time (Alternative A2) are restricted to the deep learning models. As originally argued in [3], this result is due to multitasking, a technique that can be successfully used to improve the predictive accuracy of deep neural networks but that might not be helpful for other models. In particular, when multitasking, deep neural networks solve auxiliary and related tasks, e.g. predicting neighboring markets, in order to generalize better and avoid overfitting.

5.4. Hyperparameter optimization

In Section 3.6, we have described the hyperparameters that should be optimized for each DL model. In this section, we present the obtained optimal configurations for the case study. For the base models, while their hyperparameters are also optimized, including here the optimization results and hyperparameter definitions would require a huge amount of space. As a result, for the sake of conciseness, the results and definitions are listed in Appendix C [94,95].

When analyzing the results, it is important to keep in mind that all the hyperparameter solutions (and in turn the model sizes) depend on the current amount of data. In particular, as deep learning models employ a large number of parameters, they also require large amounts of data to accurately estimate their parameters. As a result, if the amount of data is not enough to obtain the best model in terms of prediction performance, the hyperparameter optimization could select a smaller model that performs better with the current amount of data but that is not the best model overall. As we argued in Section 5.7, this effect might explain the lower empirical performance observed for the most complex model, i.e. the CNN.

5.4.1. DNN model

For the DNN, the optimal structure consists of a first and second hidden layers with respectively 239 and 162 neurons, the rectifier linear unit (ReLU) as the activation function, and no regularization nor dropout. The obtained optimal hyperparameters are summarized in Table 3.

5.4.2. LSTM model

For the second proposed model, the optimal structure is an LSTM layer with 83 neurons and a regular layer with 184 neurons. Moreover, for the LSTM layer, the activation function is a hyperbolic tangent (tanh) function and the sequence length of input values is 2 weeks of past data. For the regular layer, the optimal activation is a ReLU function. In addition, none of the two layers require regularization nor dropout. The obtained optimal hyperparameters are represented in Table 4.

5.4.3. GRU model

Similar to the LSTM-DNN model, the optimal hyperparameters for the GRU-DNN model are summarized in Table 5.

5.4.4. CNN model

Finally, for the CNN model, the network that processes past data consists of three convolutional layers with respectively 64, 128, and 256 feature maps, each of them with a filter of size 3. After each of these layers, a max pooling operation and a batch normalization are performed. For the network that processes day-ahead data, the optimal structure is exactly the same. Both networks use the ReLU as activation function, a dropout factor of 0.31, and no regularization. The obtained optimal hyperparameters are summarized in Table 6.

5.4.5. General observations

When analyzing the optimal hyperparameter results for the DL models, we can observe two interesting results that are common to the four models:

1. Except for the recurrent layers that require a tanh activation function, the optimal activation function for all the other deep learning layers is the ReLU function. This result agrees with the general observations in the field of DL, see e.g. [30], where ReLU is the default recommended activation function for any modern neural network with the exception of the LSTM and GRU cells, which by default require a tanh activation function.

2. Traditional regularization, i.e. performing dropout or penalizing with a L_1 norm the parameters of the neural network to impose sparsity on the network parameters, is in general not helpful (the only exception is the CNN model that does requires dropout). While this result might seem surprising (considering the small size of the datasets and the large number of parameters of the DL networks), it can be explained due to the combination of two effects:

(a) While the proposed models are deep structures, they are less deep than DL networks used for more traditional applications, e.g. image or speech recognition. As a result, the number of parameters is smaller, and thus, the regularization step is less critical.

(b) The models are trained using early stopping. While this is not a regularization technique by itself, it prevents overfitting. As a result, the regularization step becomes less critical.

5.5. Comparing predictive accuracy

After describing the experimental setup and obtaining the optimal model structures, we can compute and compare the predictive accuracy of the various models. However, to have a meaningful and complete assessment, not only the accuracy of the models should be computed, but also the statistical significance of the results should be established. In this section, we perform the first step of this analysis, i.e. we compute the accuracy of the models. Next, in the following section, the statistical tests are performed.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Optimal hyperparameters for the DNN model.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperparameter</td>
<td>Value</td>
</tr>
<tr>
<td>Activation function</td>
<td>ReLU</td>
</tr>
<tr>
<td>Dropout</td>
<td>No</td>
</tr>
<tr>
<td>Regularization</td>
<td>No</td>
</tr>
<tr>
<td>r_1</td>
<td>239</td>
</tr>
<tr>
<td>r_2</td>
<td>162</td>
</tr>
</tbody>
</table>
5.5.1. Main results

To compare and analyze the predictive accuracy of the various forecasters, we compute their sMAPE on the test set. In addition, to guarantee that the assessment is similar to real conditions, i.e. that the forecaster is re-estimated when new data is available, the models are re-estimated on daily basis. The obtained results are listed in Table 7.

5.5.2. Observations

From the results displayed in Table 7, we can make various observations:

i. The DNN, GRU, and LSTM models, i.e. 3 of the 4 proposed DL forecasters, seem to outperform all the considered literature models.

ii. A line can be drawn between statistical models and machine learning methods. In particular, except for the fARX-based models, the other statistical methods perform worse than any artificially intelligence model.

iii. According to their performance, the models seem to be divided in eight clusters:

 (1) The DNN model with a 12.3% sMAPE.
 (2) The DL models with a recurrent layer, i.e. LSTM and GRU, with a 13% sMAPE.
 (3) The three SVR-based models and the MLP with a 13.3–13.4% sMAPE.
 (4) The CNN, the XGB, and the statistical models with automatic feature selection with a sMAPE between 13.7% and 13.9%.
 (5) The RF, the fARX, and the RBF models with a 14.7–15.3% sMAPE.
 (6) With a 16.7–17.9% sMAPE, the TBATS and the statistical methods with exogenous inputs but without moving average (except for the fARX).
 (7) With a 19.3–19.4% sMAPE, the ARIMA-GARCH and 2 of the 3 models without exogenous inputs nor moving average.
 (8) With a 22–23% sMAPE, the statistical methods with a moving average term (except for the ARIMA-GARCH).

iv. Surprisingly, the models with moving average seem to perform worse than their simpler AR counterparts.

v. The TBATS model appears to be the best alternative when no exogenous inputs are available. In particular, it even matches the performance of some statistical methods with exogenous inputs.

vi. From the considered models from the literature, SVRs and MLPs perform the best.

vii. The SVR hybrid methods, i.e. SVR-ARIMA and SOM-SVR, perform no different that the simple SVR model.

5.6. Statistical testing

In this section, we study the statistical significance of the differences in predictive accuracy among the various forecasters.

5.6.1. Diebold-Mariano test

To assess this statistical significance, we use the DM test as defined by (2) and (3), where the loss differential at time k is built using the absolute error:

Table 7

Comparison of the predictive accuracy of the various forecasters by means of sMAPE. The labels ML and SM respectively refer to machine learning and statistical methods.

<table>
<thead>
<tr>
<th>Model</th>
<th>sMAPE [%]</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNN</td>
<td>12.34</td>
<td>ML</td>
</tr>
<tr>
<td>GRU</td>
<td>13.04</td>
<td></td>
</tr>
<tr>
<td>LSTM</td>
<td>13.06</td>
<td></td>
</tr>
<tr>
<td>MLP</td>
<td>13.27</td>
<td></td>
</tr>
<tr>
<td>SVR</td>
<td>13.29</td>
<td></td>
</tr>
<tr>
<td>SOM-SVR</td>
<td>13.36</td>
<td></td>
</tr>
<tr>
<td>SVR-ARIMA</td>
<td>13.39</td>
<td></td>
</tr>
<tr>
<td>XGB</td>
<td>13.74</td>
<td></td>
</tr>
<tr>
<td>fARX-EN</td>
<td>13.76</td>
<td>SM</td>
</tr>
<tr>
<td>CNN</td>
<td>13.91</td>
<td>ML</td>
</tr>
<tr>
<td>fARX-Lasso</td>
<td>13.92</td>
<td>SM</td>
</tr>
<tr>
<td>RBF</td>
<td>14.77</td>
<td>ML</td>
</tr>
<tr>
<td>fARX</td>
<td>14.79</td>
<td>ST</td>
</tr>
<tr>
<td>RF</td>
<td>15.39</td>
<td>ML</td>
</tr>
<tr>
<td>IHMARX</td>
<td>16.72</td>
<td>ST</td>
</tr>
<tr>
<td>DR</td>
<td>16.99</td>
<td></td>
</tr>
<tr>
<td>TARX</td>
<td>17.08</td>
<td></td>
</tr>
<tr>
<td>TARX</td>
<td>17.34</td>
<td></td>
</tr>
<tr>
<td>SNARX</td>
<td>17.58</td>
<td></td>
</tr>
<tr>
<td>TBATS</td>
<td>17.9</td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>19.3</td>
<td></td>
</tr>
<tr>
<td>ARIMA-GARCH</td>
<td>19.3</td>
<td></td>
</tr>
<tr>
<td>WARIMA-RBF</td>
<td>22.82</td>
<td></td>
</tr>
<tr>
<td>WARIMA</td>
<td>22.84</td>
<td></td>
</tr>
<tr>
<td>DSARIMA</td>
<td>23.40</td>
<td></td>
</tr>
<tr>
<td>DSHW</td>
<td>23.57</td>
<td></td>
</tr>
</tbody>
</table>

Table 4

Optimal hyperparameters for the LSTM model.

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activation function - DNN</td>
<td>ReLU</td>
</tr>
<tr>
<td>Activation function - LSTM</td>
<td>Tanh</td>
</tr>
<tr>
<td>Dropout</td>
<td>No</td>
</tr>
<tr>
<td>Regularization</td>
<td>No</td>
</tr>
<tr>
<td>nDNN</td>
<td>184</td>
</tr>
<tr>
<td>nLSTM</td>
<td>83</td>
</tr>
<tr>
<td>Sequence length</td>
<td>2 weeks</td>
</tr>
</tbody>
</table>

Table 5

Optimal hyperparameters for the GRU model.

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activation function - DNN</td>
<td>ReLU</td>
</tr>
<tr>
<td>Activation function - LSTM</td>
<td>Tanh</td>
</tr>
<tr>
<td>Dropout</td>
<td>0.32</td>
</tr>
<tr>
<td>Regularization</td>
<td>No</td>
</tr>
<tr>
<td>Pooling frequency</td>
<td>1</td>
</tr>
<tr>
<td>Pooling type</td>
<td>Max pooling</td>
</tr>
<tr>
<td>Filter size - Past</td>
<td>3</td>
</tr>
<tr>
<td>Filter size - D.A.</td>
<td>3</td>
</tr>
<tr>
<td>Number of convolutions - Past</td>
<td>3</td>
</tr>
<tr>
<td>Number of convolutions - D.A.</td>
<td>3</td>
</tr>
<tr>
<td>Initial feature maps - Past</td>
<td>64</td>
</tr>
<tr>
<td>Initial feature maps - D.A.</td>
<td>64</td>
</tr>
<tr>
<td>Channel length</td>
<td>1 week</td>
</tr>
</tbody>
</table>

Table 6

Optimal hyperparameters for the CNN model. The label D.A. refers to the network that processes day-ahead data. The label Past refers to the network for past data.

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activation function</td>
<td>ReLU</td>
</tr>
<tr>
<td>Dropout</td>
<td>0.31</td>
</tr>
<tr>
<td>Regularization</td>
<td>No</td>
</tr>
<tr>
<td>Pooling frequency</td>
<td>1</td>
</tr>
<tr>
<td>Pooling type</td>
<td>Max pooling</td>
</tr>
<tr>
<td>Filter size - Past</td>
<td>3</td>
</tr>
<tr>
<td>Filter size - D.A.</td>
<td>3</td>
</tr>
<tr>
<td>Number of convolutions - Past</td>
<td>3</td>
</tr>
<tr>
<td>Number of convolutions - D.A.</td>
<td>3</td>
</tr>
<tr>
<td>Initial feature maps - Past</td>
<td>64</td>
</tr>
<tr>
<td>Initial feature maps - D.A.</td>
<td>64</td>
</tr>
<tr>
<td>Channel length</td>
<td>1 week</td>
</tr>
</tbody>
</table>
\[d_k^{M_1M_2} = |d_k^{M_1} - d_k^{M_2}|. \] (7)

Moreover, we follow the procedure of \([3,85,86]\) and perform an independent DM test for each of the 24 time series representing the hours of a day. The reason for that is twofold: first, as we use the same information to forecast the set of 24 day-ahead prices, the forecast errors within the same day would exhibit a high correlation, and thus, the full error sequence would be correlated. Second, as we study each hour separately, the DM tests allow us to distinguish between three situations:

1. The accuracy of forecaster \(M_1\) is significantly better than the one of forecaster \(M_2\).
2. The accuracy of \(M_1\) is significantly better than the accuracy of \(M_2\), but at some hours, \(M_2\)’s accuracy is significantly better.
3. \(M_1\)’s accuracy is never significantly better than \(M_2\)’s.

In detail, for each hour \(h = 1,...,24\) and for each model pair \(M_i\) and \(M_j\), we perform a one-sided DM test, at a 95% confidence level, with the null hypothesis of the predictive accuracy of \(M_i\) being equal or worse than \(M_j\)’s:

\[
\begin{align*}
H_0: & \quad E[d_k^{M_iM_j}] \geq 0, \quad \text{for } h = 1,...,24, \\
H_1: & \quad E[d_k^{M_iM_j}] < 0,
\end{align*}
\]

where \(d_k^{M_iM_j} = \cdots d_{k-N/k}^{M_iM_j}\) represents the vector of loss differentials at hour \(h\).\(^{1}\)

Next, we perform the complementary one-side DM test with the null hypothesis of \(M_i\) having the same or worse accuracy than \(M_j\):

\[
\begin{align*}
H_0: & \quad E[-d_k^{M_iM_j}] \geq 0, \quad \text{for } h = 1,...,24, \\
H_1: & \quad E[-d_k^{M_iM_j}] < 0,
\end{align*}
\]

Finally, we establish that the predictive accuracy of \(M_1\) is significantly better than \(M_2\’s\) if two conditions are met:

1. In at least one of the regular DM\(_h\) tests the null hypothesis is rejected, i.e. the predictive accuracy of \(M_1\) is at least significantly better in 1 of the 24 prediction windows.
2. None of the complementary DM\(_h\) tests rejects the null hypothesis, i.e. the predictive accuracy of \(M_2\) is not significantly better in any of the 24 prediction horizons.

If both \(M_i\) and \(M_j\) are at least significantly better in one of the 24 prediction windows, we perform a further DM test considering the full vector of loss differential \(d_1,\ldots,d_8\).\(^{2}\) Specifically, recalling that optimal \(k\)-step-ahead forecast errors are at most \((k-1)\)-dependent [56], we perform a DM test on the full loss differential considering serial correlation of order 23:

\[
\begin{align*}
H_0: & \quad E[d_1^{M_iM_j}] \geq 0, \\
H_1: & \quad E[d_1^{M_iM_j}] < 0,
\end{align*}
\]

If the null hypothesis of DM\(_{23}\) is rejected, we consider that, while at some hours \(M_i\)’s accuracy is significantly better than \(M_j\’s\), \(M_j\’s\) accuracy is significantly better when considering the full error sequence.

5.6.2 Results

The obtained results are summarized in Table 8. There are three possible scenarios:

1. Cells that display a > represent the cases where the alternative hypothesis is accepted with a 95% confidence, i.e. the predictive accuracy of \(M_1\) is statistically significantly better than the one of \(M_2\).
2. Cells that display a < represent the cases where, while the predictive accuracy of \(M_2\) is at least significantly better in one of the 24 predictive horizons, the overall predictive accuracy of \(M_1\) when considering the full loss differential is still statistically significantly better.
3. Empty cells represent the cases where \(M_2\) is not significantly better than \(M_1\).

Considering the results listed in Table 8, we confirm the various observations made in Section 5.5.2:

1. The DNN, LSTM, and GRU models, i.e. 3 of the 4 proposed forecasters, are indeed statistically significantly better than the rest. In particular, the DNN shows a predictive accuracy that is statistically significantly better than the accuracy of all others. In addition, the LSTM and GRU models have an accuracy that is statistically significantly better than all others except the MLP.
2. Except for the iARX-based models, the accuracy of the machine learning methods is statistically significantly better than the accuracy of statistical methods.
3. Based on accuracy differences that are statistically significant, we can observe a very similar group separation pattern as the one described in Section 5.5.2.
4. The models with moving average terms have an accuracy that is statistically significantly worse than their AR counterparts.
5. The TBATS model has an accuracy that is statistically significantly better than any other model without exogenous inputs.
6. The accuracy of the SVR and hybrid-SVR models is not statistically significantly different.

To illustrate the first observation, i.e. that the proposed DNN, GRU and LSTM models are significantly better than the rest, we depict in Figs. 4 and 5 the test statistics obtained when applied to the DNN and GRU models. In these figures, at each hour \(h\), the points above the upper horizontal line accept, at a 95% confidence, the alternative hypothesis in DM\(_h\), i.e. that the specific DL model has an accuracy that is statistically significantly better. Similarly, any point below the lower horizontal line accepts, at a 95% confidence, the alternative hypothesis in DM\(_h\), i.e. that the specific DL model has an accuracy that is statistically significantly worse.

From Fig. 4 representing the DNN results we can observe how, except for the LSTM and GRU models, for any other forecaster the DNN is at least significantly better at one hour and never significantly worse. In other words, the DNN is statistically significantly better than all other models except the LSTM and GRU forecasters. When compared with these two, while the DNN shows an overall accuracy that is statistically significantly better, the LSTM’s accuracy is better at hours 01:00 and 22:00, and the GRU’s accuracy at hours 01:00, 02:00, 03:00, and 06:00.

From Fig. 5 representing the GRU results we can draw similar conclusions. In particular, the GRU model is statistically significantly better than all other models except the DNN, LSTM, GRU, MLP, XGB, and iARX-EN. However, for the XGB and iARX-EN models, while their accuracy is statistically significantly better at one hour, the GRU has an overall accuracy that is significantly better. From Fig. 6 representing the LSTM results, we can draw similar conclusions as the ones obtained from Fig. 5.

For the sake of simplicity, Table 8 only represents a summary of all the performed DM tests; particularly, as a total of 17550 DM tests were performed (24/23 model pairs x 50 DM test per model pair), it is impossible to list them all neither here nor even in an appendix [94,95]. To address that, we have created a website (goo.gl/FzA4Cb) where all the DM test results can be obtained. In particular, following the same structure as Figs. 4 and 5, we have upload 27 figures representing the DM results for the 27 models. In addition, we have also uploaded an excel sheet with all the p-values of the 17,550 DM tests.
Table 8
DM results for the base and DL models. \checkmark represents the cases where M_1's accuracy is statistically significantly better than M_2's. \checkmark represent the cases where, while M_2's accuracy is at least significantly better in one of the 24 hours, the accuracy of M_1 is still statistically significantly better if the whole loss differential sequence is considered. The labels ST and ML respectively refer to statistical and machine learning methods.

<table>
<thead>
<tr>
<th>Model class</th>
<th>Statistical methods</th>
<th>ML</th>
<th>ST</th>
<th>ML</th>
<th>ST</th>
<th>ML</th>
<th>ST</th>
<th>Machine learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>TF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSARIMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WARIMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WARIMA-RBF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSHW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AR</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARIMA-GARCH</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TARX</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DR</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIMARX</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RF</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FARX</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RBF</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARIMA-EN</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CNN</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SVR-ARIMA</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOM-SVR</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SVR</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LSTM</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRU</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DNN</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td></td>
</tr>
</tbody>
</table>
To discuss the obtained results, we distinguish between three different topics: an analysis specific to the proposed DL models, an evaluation of the general results of the benchmark study, and a discussion on why neural networks have usually failed to predict electricity prices but in this paper they represent the best model.

5.7.1. DL models

From the results and observations that are drawn in the previous section, we can conclude that the proposed DNN, GRU and LSTM models are the best alternative for forecasting day-ahead prices in the Belgian market. In particular, the benchmark is quite large and these 3 models outperform all the rest in a statistically significant manner.

Moreover, while the DNN is significantly better than the GRU and LSTM forecasters, these two are better at some specific hours. Therefore, if a highly accurate system is targeted, e.g. by combining several forecasts, the three DL models are still necessary. However, if a single model is to be used, e.g. due to limitations in computation, the DNN is clearly the forecaster of choice.

Something that is interesting worthy to discuss is the reason why the GRU, LSTM, and CNN models perform worse than the DNN. In particular, the four of them are deep structures with the potential to model complex nonlinear patterns and, in the case of the GRU and LSTM models, they are especially appropriate for modeling time series data. So, how can it be that the DNN has an accuracy that is statistically significantly better? There are two possible hypotheses:

1. The amount of data: DL models require large amounts of data to be properly trained. When comparing the four DL models, the DNN has fewer parameters than the other three; as a result, it might be easier to train. This hypothesis also agrees with the fact that the CNN performance is the worse of the four as it is the model with the largest number of parameters.

2. A second possible reason is the structure of the networks. In particular, the GRU, LSTM, and CNN models separate the data corresponding to the day-ahead and the past data in two different networks. As a result, if some past data and day-ahead data are heavily related, none of the three structures is able to build these relations properly. By contrast, the DNN model makes no assumption about the input data and allows any possible relation to be built.

It is important to note that these are just hypotheses. In particular, further research is necessary to properly explain this effect.

The last finding worthy to discuss is the performance of the CNN. In particular, the fourth proposed DL model performs no better than simpler machine learning methods like XGB or SVR. An extra hypothesis (in addition to the provided two) to explain this effect is the fact that the CNN uses local operations. As a result, when making the connections to the next layer, but performs local convolution operations that interrelate local groups of data. As a result, while this structure is very
5.7.2. Benchmark

Regarding the benchmark results, besides being the proposed DNN, GRU, and LSTM models the best forecasters, several other effects need to be discussed.

5.7.2.1. Moving average models. One of the most important effects to be examined is the fact that statistical models with moving average terms perform worse than their AR-counterparts. In particular, as the moving average terms provide an additional resource to model error correlation, they should have the potential to be more accurate. However, if we consider the structure of the model estimation, we can observe that the former is not necessarily true: as the moving average term leads to models that are estimated using non-convex optimization, the global minima is not guaranteed and the resulting models might have a lower performance.

Despite this explanation, the truth is that, when looking at the literature of electricity price forecasting, moving average models have traditionally outperformed their AR counterparts. A possible explanation for this performance mismatch between past studies and this paper is the change in the dynamics of day-ahead electricity prices during the last years. In particular, due to the increasing penetration of renewable sources, day-ahead prices are becoming more volatile and price spikes are occurring more often. Due to these effects, the resulting optimization problems might be more nonlinear, and in turn, the global minima might become harder to reach.

5.7.2.2. Machine learning vs. statistical methods. Another effect worth discussing is the fact that machine learning methods clearly outperform statistical methods. In particular, while several past studies led to empirical results that showed that the accuracy of machine learning methods was not better than the one of statistical methods, we can clearly observe that this is not the case in the EPEX-Belgium market. Possible explanations for this effect can be the following: as before, the market under study has large nonlinearities and spikes, and thus, it requires complex nonlinear models to accurately forecast the prices. In addition, the computational power of recent years has dramatically increased, and thus, more data can be used for parameter estimation and the structure of the considered machine learning methods can be more complex. The latter argument also agrees with the fact that DL models have the best performance.

5.7.2.3. fARX-based models. An exception to the previous statement are the fARX-based models. In particular, despite being statistical methods, they clearly perform better than any other statistical method and even better than some machine learning algorithms. These results confirm the findings of [67] and show that this model is one of the best statistical methods for predicting electricity prices. A possible explanation for this performance is the combination of two characteristics:
1. The structure of these models is very general and includes many possible exogenous inputs, which makes them very flexible.

2. At the same time, they use automatic feature selection to reduce the model complexity and make the models tailored to the market under study.

5.7.2.4. Hybrid models. A fourth important consideration is the fact that, in general, hybrid models do not outperform their regular versions. In particular, nor SVR-ARIMA nor SOM-SVR outperform the simpler SVR model. Likewise, WARIMA-RBF does not outperform the simpler WARIMA. An exception might be the ARIMA-GARCH, which outperforms the WARIMA and DSARIMA models.

5.7.2.5. TBATS. A final remark to be made is the fact that the TBATS model is clearly the best choice to predict prices when no regressors are available, and it even is a good choice when exogenous inputs exist. This observation is very important as, to the best of our knowledge, nobody has ever tested the accuracy of the TBATS model for predicting day-ahead electricity prices.

5.7.3. Why do the proposed models improve the performance?

When we consider the literature of electricity price forecasting, there are many examples where neural networks have been outperformed by other forecasters [12,27,42,51,62,63,87–90]. The results obtained in this paper lead to the opposite conclusion: in this case study, neural networks outperform all other models. In this section, to clarify this discrepancy, we provide the rationale behind the superior performance of the proposed DL models. In particular, we examine four features that past studies have typically not considered and we argue that by not considering them the accuracy worsens.

5.7.3.1. Depth. As briefly motivated in the introduction, deep neural networks can generalize and obtain better results than their shallow counterparts. This effect is related to the universal approximation theorem [91], which states that a neural network with a linear output layer can approximate any continuous function on compact subsets of \mathbb{R}^n provided that it has enough neurons, but does not indicate whether this number is tractable [30]. In particular, the family of functions could be approximated by a tractable number of neurons if the depth is larger than some threshold number d [30]. As a result, when approximating a target function, a deep network might need a much smaller number of neurons than its shallow counterpart, and thus, it might be able to approximate the function more easily and better. In our case study, this effect is observed in Table 7, where a shallow neural network, i.e. the MLP model, has a lower accuracy than the DNN, GRU, and LSTM models.
6. Conclusions

Three of the four proposed DL forecasters, i.e. the deep neural network (DNN) model, the long-short term memory (LSTM) model, and the gated recurrent unit (GRU) model, are shown to obtain a predictive accuracy that is statistically significantly better than all other models. In addition, among these three models, the DNN is able to outperform the other two with a difference in accuracy that is statistically significant. Despite this difference, the three models are necessary to obtain a high-performing forecaster, as the accuracy of the GRU and LSTM models still better at some specific hours.

Among the rest of the forecasters, it is observed a clear division is observed between machine learning and statistical methods, where the former display an accuracy that is statistically significantly better. In addition, models with moving average terms are shown to suffer the worst performance and hybrid methods are shown not to outperform their simpler counterparts.

In future work, this research will be expanded with four further investigations. First, the effect in forecasting accuracy of more advanced DL techniques, e.g. autoencoders, will be analyzed. Second, the usage of expert advice to combine the individual benchmark models will be studied. Third, the benchmark comparison will be extended to other markets. Fourth, the effect of the dataset size for each model will be extensively analyzed using a large number of experiments.

Acknowledgment

This research has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 675318 (INCITE).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apenergy.2018.02.069.

References

[77] ENTSO-E transparency platform. [https://transparency.entsoe.eu/] [accessed on 15.05.2017].

[78] RTE, Grid data. [https://data.rte-france.com/] [accessed on 15.05.2017].

[80] Chollet F. Keras; 2015. [https://github.com/fchollet/keras].

