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Capelin: Data-Driven Compute Capacity
Procurement for Cloud Datacenters using

Portfolios of Scenarios
Georgios Andreadis, Fabian Mastenbroek, Vincent van Beek, and Alexandru Iosup

Abstract—Cloud datacenters provide a backbone to our digital society. Inaccurate capacity procurement for cloud datacenters can
lead to significant performance degradation, denser targets for failure, and unsustainable energy consumption. Although this activity is
core to improving cloud infrastructure, relatively few comprehensive approaches and support tools exist for mid-tier operators, leaving
many planners with merely rule-of-thumb judgement. We derive requirements from a unique survey of experts in charge of diverse
datacenters in several countries. We propose Capelin, a data-driven, scenario-based capacity planning system for mid-tier cloud
datacenters. Capelin introduces the notion of portfolios of scenarios, which it leverages in its probing for alternative capacity-plans. At
the core of the system, a trace-based, discrete-event simulator enables the exploration of different possible topologies, with support for
scaling the volume, variety, and velocity of resources, and for horizontal (scale-out) and vertical (scale-up) scaling. Capelin compares
alternative topologies and for each gives detailed quantitative operational information, which could facilitate human decisions of
capacity planning. We implement and open-source Capelin, and show through comprehensive trace-based experiments it can aid
practitioners. The results give evidence that reasonable choices can be worse by a factor of 1.5-2.0 than the best, in terms of
performance degradation or energy consumption.

Index Terms—Cloud, procurement, capacity planning, datacenter, practitioner survey, simulation

F

1 INTRODUCTION

C LOUD datacenters are critical for today’s increasingly
digital society [21, 23, 24]. Users have come to expect

near-perfect availability and high quality of service, at low
cost and high scalability. Planning the capacity of cloud in-
frastructure is a critical yet non-trivial optimization problem
that could lead to significant service improvements, cost
savings, and environmental sustainability [5]. This activity
includes short-term capacity planning, which includes the
process of provisioning and allocating resources from the
capacity already installed in the datacenter, and long-term
capacity planning, which is the process of procuring machines
that form the datacenter capacity. This work focuses on
the latter, which is a process involving large amounts of
resources and decisions that are difficult to reverse.

Although many approaches to the long-term capacity-
planning problem have been published [14, 54, 66], com-
panies use much rule-of-thumb reasoning for procurement
decisions. To minimize operational risks, many such indus-
try approaches currently lead to significant overprovision-
ing [26], or miscalculate the balance between underprovi-
sioning and overprovisioning [50]. In this work, as Figure 1
depicts, we approach the problem of capacity planning for
mid-tier cloud datacenters with a semi-automated, special-
ized, data-driven tool for decision making.

We focus in this work mainly on mid-tier providers of
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Figure 1. Capelin, a new, data-based capacity planning process for
datacenters, compared against the current approach.

cloud infrastructure that operate at the low- to mid-level
tiers of the service architecture, ranging from IaaS to PaaS.
Compared to the extreme-scale operators Google, Facebook,
and others in the exclusive GAFAM-BAT group, the mid-tier
operators are small-scale. However, they are both numerous
and they are responsible for much of the datacenter capacity
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in modern, service-based and knowledge-driven economies.
This work addresses four main capacity planning challenges
for mid-tier cloud providers. First, the lack of published
knowledge about the current practice of long-term cloud
capacity planning. For a problem of such importance and
long-lasting effects, it is surprising that the only studies
of how practitioners make and take long-term capacity-
planning decisions are either over three decades old [45]
or focus on non-experts deciding how to externally procure
capacity for IT services [7]. A survey of expert capacity
planners could reveal new requirements.

Second, we observe the need for a flexible instrument
for long-term capacity planning, one that can address var-
ious operational scenarios. State-of-the-art tools [31, 35, 63]
and techniques [14, 25, 58] for capacity-planning operate
on abstractions that match only one vendor or focus on
simplistic problems. Although single-vendor tools, such as
VMware’s Capacity Planner [63] and IBM’s Z Performance
and Capacity Analytics tool [35], can provide good advice
for the cloud datacenters equipped by that vendor, they do
not support real-world cloud datacenters that are heteroge-
neous in both software [2][5, §2.4.1] and hardware [11, 19][5,
§3]. Yet, to avoid vendor lock-in and licensing costs, cloud
datacenters acquire heterogeneous hardware and software
from multiple sources and could, for example, combine
VMware’s, Microsoft’s, and open-source OpenStack+KVM
virtualization management technology, and complement
it with container technologies. Although linear program-
ming [64], game theory [58], stochastic search [25], and
other optimization techniques work well on simplistic
capacity-planning problems, they do not address the multi-
disciplinary, multi-dimensional nature of the problem. As
Figure 1 (left) depicts, without adequate capacity planning
tools and techniques, practitioners need to rely on rules-
of-thumb calibrated with casual visual interpretation of the
complex data provided datacenter monitoring. This state-
of-practice likely results in overprovisioning of cloud data-
centers, to avoid operational risks [27]. Even then, evolving
customers and workloads could make the planned capacity
insufficient, leading to risks of not meeting Service Level
Agreements [1, 8], inability to absorb catastrophic failures [5,
p.37], and even unwillingness to accept new users.

Third, we identify the need for comprehensive evalu-
ations of long-term capacity-planning approaches, based
on real-world data and scenarios. Existing tools and tech-
niques have rarely been tested with real-world scenarios,
and even more rarely with real-world operational traces that
capture the detailed arrival and execution of user requests.
Furthermore, for the few thus tested, the results are only
rarely peer-reviewed [1, 54]. We advocate comprehensive
experiments with real-world operational traces and diverse
scaling scenarios to test capacity planning approaches.

Fourth and last, we observe the need for publicly
available, comprehensive tools for long-term capacity
planning. However, and in stark contrast with the many
available tools for short-term capacity planning, few pro-
curement tools are publicly available, and even fewer are
open-source. From the available tools, none can model all
the aspects needed to analyze cloud datacenters from §2.

We propose in this work Capelin, a data-driven,
scenario-based alternative to current capacity planning ap-

proaches. Figure 1 visualizes our approach (right column
of the figure) and compares it to current practice (left
column). Both approaches start with inputs such as work-
loads, current topology, and large volumes of monitoring
data (step 1 in the figure). From this point on, the two
approaches diverge, ultimately resulting in qualitatively
different solutions. The current practice expects a committee
of various stakeholder to extract meaning from all the input
data ( 3 ), which is severely hampered by the lack of decision
support tools. Without a detailed understanding of the
implications of various decisions, the final decision is taken
by committee, and it is typically an overprovisioned and
conservative approach ( 4 ). In contrast, Capelin adds and
semi-automates a data-driven approach to data analysis and
decision support ( 2 ), and enables capacity planners to take
fine-grained decisions based on curated and greatly reduced
data ( 3 ). With such support, even a single capacity plan-
ner can make a tailored, fine-grained decision on topology
changes to the cloud datacenter ( 4 ). More than a purely
technical solution, this approach can change organizational
processes. Overall, our main contribution is:

1) We design, conduct, and analyze community interviews
on capacity planning in different cloud settings (Sec-
tion 3). We use broad, semi-structured interviews, from
which we identify new, real-world requirements.

2) We design Capelin, a semi-automated, data-driven ap-
proach for long-term capacity planning in cloud datacen-
ters (Section 4). At the core of Capelin is an abstraction,
the capacity planning portfolio, which expresses sets of
“what-if” scenarios. Using simulation, Capelin estimates
the consequences of alternative decisions.

3) We demonstrate Capelin’s ability to support capacity
planners through experiments based on real-world op-
erational traces and scenarios (Section 5). We implement
a prototype of Capelin as an extension to OpenDC,
an open-source platform for datacenter simulation [37].
We conduct diverse trace-based experiments. Our ex-
periments cover four different scaling dimensions, and
workloads from both private and public clouds. They also
consider different operational factors such as the sched-
uler allocation policy, and phenomena such as correlated
failures and performance interference [43, 61, 65].

4) We release our prototype of Capelin, consisting of ex-
tensions to OpenDC 2.0 [47], as Free and Open-Source
Software (FOSS), for practitioners to use. Capelin is engi-
neered with professional, modern software development
standards and produces reproducible results.

2 A SYSTEM MODEL FOR DC OPERATIONS

In this work we assume the generic model of cloud infras-
tructure and its operation depicted by Figure 2.

Workload: The workload consists of applications execut-
ing in Virtual Machines (VMs) and containers. The emphasis
of this study is on business-critical workloads, which are
long-running, typically user-facing, and back-end enterprise
services at the core of an enterprise’s business [56, 57]. Their
downtime, or even just low Quality of Service (QoS), can
incur significant and long-lasting damage to the business.
We also consider virtual public cloud workloads in this model,
submitted by a wider user base.
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Figure 2. Generic model for datacenter operation.

The business-critical workloads we consider also include
virtualized High Performance Computing (HPC) parts.
These are primarily comprised of conveniently (embarrass-
ingly) parallel tasks, e.g., Monte Carlo simulations, forming
batch bags-of-tasks. Larger HPC workloads, such as scientific
workloads from healthcare, also fit in our model.

Our system model also considers app managers, such
as the big data frameworks Spark and Apache Flink, and
machine learning frameworks such as TensorFlow, which
orchestrate virtualized workflows and dataflows.

Infrastructure: The workloads described earlier run on
physical datacenter infrastructure. Our model views data-
center infrastructure as a set of physical clusters of possibly
heterogeneous hosts (machines), each host being a node in a
datacenter rack. A host can execute multiple VM or con-
tainer workloads, managed by a hypervisor. The hypervisor
allocates computational time on the CPU between the work-
loads that request it, through time-sharing (if on the same
cores) or space-sharing (if on different cores).

We model the CPU usage of applications for discretized
time slices. Per slice, all workloads report requested CPU
time to the hypervisor and receive the granted CPU time
that the resources allow. We assume a generic memory
model, with memory allocation constant over the runtime of
a VM. As is common in industry, we allow overcommission
of CPU resources [6], but not of memory resources [57].

Infrastructure phenomena: Cloud datacenters are com-
plex hardware and software ecosystems, in which com-
plex phenomena emerge. We consider in this work two
well-known operational phenomena, performance variabil-
ity caused by performance interference between collocated
VMs [43, 44, 61] and correlated cluster failures [9, 20, 22].

Live Platform Management (RM&S in Figure 2): We
model a workload and resource manager that performs
management and control of all clusters and hosts, and is re-

sponsible for the lifecycle of submitted VMs, including their
placement onto the available resources [3]. The resource
manager is configurable and supports various allocation poli-
cies, defining the distribution of workloads over resources.
The devops team monitors the system and responds to
incidents that the RM&S cannot self-manage [8].

Capacity Planning: Closely related with infrastructure
and live platform management is the activity of capacity
planning. This activity is conducted periodically and/or
at certain events by a capacity planner (or committee).
The activity typically consists of first modeling the current
state of the system (including its workload and infras-
tructure) [48], forecasting future demand [15], deriving a
capacity decision [67], and finally calibrating and validating the
decision [41]. The latter is done for QoS, possibly expressed
as detailed Service Level Agreements (SLAs) and Service
Level Objectives (SLOs).

Which cloud datacenters are relevant for this model?
We focus in this work on capacity planning for mid-tier
cloud infrastructures, characterized by relatively small-scale
capacity, temporary overloads being common, and a lack
of in-house tools or teams large enough to develop them
quickly. In Section 3 we analyze the current state of the
capacity planning practice in this context and in Section 7
we discuss existing approaches in related literature.

Which tools support this model? We are not aware of
analytical tools that can cope with these complex aspects.
Although tools for VM simulation exist [13, 32, 51], few sup-
port CPU over-commissioning and none outputs detailed
VM-level metrics; the same happens for infrastructure phe-
nomena. From the few industry-grade procurement tools
who published details about their operation, none supports
the diverse workloads and phenomena considered here.

3 REAL-WORLD EXPERIENCES WITH CAPACITY
PLANNING IN CLOUD INFRASTRUCTURES

Real-world practice can deviate significantly from published
theories and strategies. In this section, we conduct and
analyze interviews with 8 practitioners from a wide range of
backgrounds and multiple countries, to assess whether this
is the case in the field of capacity planning.

3.1 Method
Our goal is to collect real-world experiences from practition-
ers systematically and without bias, yet allowing personal-
ized lines of investigation.

3.1.1 Interview type
The choice of interview type is guided by the trade-off
between the systematic and flexible requirements. A text
survey, while highly suited for a systematic study, gener-
ally does not allow for low-barrier individual follow-up
questions or even conversations. An in-person interview
without pre-defined questions allows full flexibility, but can
result in unsystematic results. We use the general interview
guide approach [59], a semi-structured type of interview that
ensures key topics are covered but permits deviations from
the script. We conduct in-person interviews with a prepared
script of ranked questions, and allow the interviewer the
choice of which scripted questions to use and when to ask
additional questions.
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Table 1
Summary of interviews. (Notation: TTD = Time to Deploy, CP = Cloud Provider, DC = Datacenter, M = Monitoring, m/y = month/year, NIT =

National IT Infrastructure Provider, SA = Spreadsheet Analysis.)

Int. Role(s) Backgr. Scale Scope Tooling Workload Comb. Frequency TTD

1 Researcher CP rack multi-DC M combined 3m, ad-hoc ?
2 Board Member NIT iteration multi-DC – combined 4–5y 12–18m
3 Manager, Platform Eng. CP rack multi-DC M combined ad-hoc 4–5m
4 Manager NIT iteration per DC M benchmark 6–7y 18m
5 Hardware Eng. NIT iteration per DC M benchmark 6y 18m
6 Researcher NIT rack multi-DC M separate 6m 12m
7 Manager NIT iteration multi-DC M, SA combined 5y 3.5-4y

3.1.2 Data collection
Our data collection process involves three steps. Firstly, we
selected and contacted a broad set of prospective interviewees
representing various kinds of datacenters, with diverse roles
in the process of capacity planning, and with diverse re-
sponsibility in the decisions.

Secondly, we conducted and recorded the interviews. Each
interview is conducted in person and digitally recorded
with the consent of the interlocutor. Interviews last be-
tween 30 and 60 minutes, depending on availability of
the interlocutors and complexity of the discussion. To help
the interviewer select questions and fit in the time-limits
imposed by each interviewee, we rank questions by their
importance and group questions broadly into 5 categories:
(1) introduction, (2) process, (3) inside factors, (4) outside
factors, and (5) summary and followup. The choice between
questions is then dynamically adjusted to give precedence
to higher-priority questions and to ensure each category
is covered at least briefly. The script itself is listed in the
extended technical report [4].

Thirdly, the recordings are manually transcribed into a
full transcript. Because matters discussed in these inter-
views may reveal sensitive operational details about the
organisations of our interviewees, all interview materials are
handled confidentially. No information that could reveal the
identity of the interlocutor or that could be confidential to
an organization’s operations is shared and all raw records
will be destroyed directly after this study.

3.1.3 Analysis of Interviews
Due to the unstructured nature of the chosen interview
approach, we combine a question-based aggregated analysis
with incidental findings. Our approach is inspired by the
Grounded Theory strategy set forth by Coleman et al. [16],
and has two steps. First, for each transcript, we annotate each
statement made based on which questions it is relevant to.
This may be a sub-sentence remark or an entire paragraph
of text, frequently overlapping between different questions.
We augment this systematic analysis with more general
findings, including comments on unanticipated topics.

Secondly, we traverse all transcripts for each question
and form aggregate observations for each question in the tran-
script. The technical report [4] details the findings. From
these, we synthesize Capelin requirements (§4.1).

3.2 Observations from the Interviews

Table 1 summarizes the results of the interviews. In total, we
transcribed over 35,000 words,which is a very large amount
of raw interview data. We conducted 7 interviews with

practitioners from commercial and academic datacenters,
with roles ranging from capacity planners, to datacenter en-
gineers, to managers. We summarize our main observations:
O1: A majority of practitioners find that the process involves
a significant amount of guesswork and human interpretation.
Interlocutors managing commercial infrastructures empha-
size multi-disciplinary challenges such as lease and support
contracts, and personnel considerations.
O2: In all interviews, we notice the absence of any dedi-
cated tooling for the capacity planning process. Instead, the
surveyed practitioners rely on visual inspection of data,
through monitoring dashboards. We observe two main rea-
sons for not using dedicated tooling: (1) tools tend to under-
represent the complexity of the real situation, and (2) have
high costs with many additional, unwanted features.
O3: The organizations using these capacity planning ap-
proaches provide a range of digital services, ranging from
general IT services to specialist hardware hosting. They run
VM workloads, in both commercial and scientific settings,
and batch and HPC workloads, mainly in scientific settings.
O4: A large variety of factors are taken into account when
planning capacity. The three named in a majority of inter-
views are (1) the use of historical monitoring data, (2) finan-
cial concerns, and (3) the lifetime and aging of hardware.
O5: Success and failure in capacity planning are underspeci-
fied. Definitions of success differ: two interviewees see the
use of new technologies as a success, and one interprets
the absence of total failure events as a success. Challenges
include chronic underutilization, increasing complexity, and
small workloads. Failures include late decisions, mispredic-
tion, and new technology having unforeseen consequences.
O6: The frequency of capacity planning processes seems corre-
lated with the duration of core activities using it: commercial
clouds deploy within 4-5 months from the start of capacity
planning, whereas scientific clouds take 1–1.5 years.
O7: We found three financial and technical factors that play a
role in capacity planning: (1) funding concerns, (2) special
hardware requests, and (3) the cost of new hardware. In two
interviews, interlocutors state that financial considerations
prime over the choice of technology (e.g., vendor, model).
O8: The human aspect of datacenter operations is emphasized
in 5 of the 7 interviews. The datacenter administrators need
training, and wrong decisions in capacity planning lead
to stress within the operational teams. Users also need
training, to leverage heterogeneous or new resources.
O9: We observe a wide range of requirements and wishes
expressed by interlocutors about custom tools for the process.
Fundamentally, the tool should help manage the increasing
complexity faced by capacity planners. A key requirement
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for any tool is interactivity: practitioners want to be able to
interact with the metrics they see and ask questions from
the tool during capacity planning meetings. The tool should
be affordable and usable without needing the entire toolset
of the vendor. One interviewee asks for support for infras-
tructure heterogeneity, to support scientific computing.
O10: Two interviewees detail “what-if” scenarios they would
like to explore with a tool, using several dimensions: (1)
the topology, in the form of the computational and memory
capacity needed, or new hardware arriving; (2) the work-
load, and especially emerging kinds; and (3) the operational
phenomena, such as failures and the live management of the
platform (e.g., scheduling and fail-over scenarios).

4 DESIGN OF CAPELIN: A CAPACITY PLANNING
SYSTEM FOR CLOUD INFRASTRUCTURE

In this section, we synthesize requirements and design
around them a capacity planning approach for cloud in-
frastructure. We propose Capelin, a scenario-based capacity
planning system that helps practitioners understand the im-
pact of alternatives. Underpinning this process, we propose
as core abstraction the portfolio of capacity planning scenarios.

4.1 Requirements Analysis
In this section, from the results of Section 3, we synthesize
the core functional requirements addressed by Capelin. In-
stead of aiming for full automation–a future objective that is
likely far off for the field of capacity planning–the emphasis
here is on human-in-the-loop decision support [38, P2].
(FR1) Model a cloud datacenter environment (see O2, O3,

O7, and O9): The system should enable the user to
model the datacenter topology and virtualized work-
loads introduced in Section 2.

(FR2) Enable expression of what-if scenarios (see O2,
O10): Users can express what-if scenarios with diverse
topologies, failures, and workloads. The system should
then execute the what-if scenario(s), and produce and
justify a set of user-selected QoS metrics.

(FR3) Enable expression of QoS requirements, in the form
of SLAs, consisting of several SLOs (see O2, O5, O9).
These requirements are formulated as thresholds or
ranges of acceptable values for user-selected metrics.

(FR4) Suggest a portfolio of what-if scenarios, based on
user-submitted workload traces, given topology, and

specified QoS requirements (see O2, O10). This greatly
simplifies identifying meaningful scenarios.

(FR5) Provide and explain a capacity plan, optimizing for
minimal capacity within acceptable QoS levels, as spec-
ified by FR4 (see O2, O9). The system should explain
and visualize the data sources it used to make the plan.

4.2 Overview of the Capelin Architecture
Figure 3 depicts an overview of the Capelin architecture.
Capelin extends OpenDC, an open-source, discrete event
simulator with multiple years of development and oper-
ation [37]. We now discuss each main component of the
Capelin architecture, taking the perspective of a capacity
planner. We outline the abstraction underpinning this archi-
tecture, the capacity planning portfolios, in §4.3.

4.2.1 The Capelin Process
The frontend and backend of Capelin are embedded in
OpenDC. This enables Capelin to leverage the simulator’s
existing platform for datacenter modeling and allows for
inter-operability with other tools as they become part of the
simulator’s ecosystem. The capacity planner interacts with
the frontend of Capelin, starting with the Scenario Portfolio
Builder (component A in Figure 3), addressing FR2. This
component enables the planner to construct scenarios, using
pre-built components from the Library of Components ( B ).
The library contains workload, topology, and operational
building blocks, facilitating fast composition of scenarios. If
the (human) planner wants to modify historical workload
behavior or anticipate future trends, the Workload Mod-
eler ( C ) can model workloads and synthesize custom loads.

The planner might not always be aware of the full range
of possible scenarios. The Scenario Portfolio Generator ( D )
suggests customized scenarios extending the given base-
scenario (FR4). The portfolios built in the builder can be ex-
plored and evaluated in the Scenario Portfolio Evaluator ( E ).
Finally, based on the results from this evaluation, the Capac-
ity Plan Generator ( F ) suggests plans to the planner (FR5).

4.2.2 The Datacenter Simulator
In Figure 3, the Frontend ( G ) acts as a portal, through which
infrastructure stakeholders interact with its models and ex-
periments. The Backend ( H ) responds to frontend requests,
acting as intermediary and business-logic between frontend,
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and database and simulator. The Database ( I ) manages the
state, including topology models, historical data, simulation
configurations, and simulation results. It receives inputs
from the real-world topology and monitoring services, in
the form of workload traces. The Simulator ( J ) evaluates
the configurations stored in the database and reports the
simulation results back to the database.

OpenDC [47] is the simulation platform backing Capelin,
enabling the capacity planner to model (FR1) and experi-
ment (FR5) with the cloud infrastructure, interactively. The
software stack of this platform is composed of a web app
frontend, a web server backend, a database, and a discrete-
event simulator. This kind of simulator offers a good trade-
off between accuracy and performance, even at the scale of
mid-tier datacenters and with long-term workloads.

4.2.3 Infrastructure

The infrastructure follows the system model described in
Section 2. We consider three components for the cloud
infrastructure, that is, the datacenter to be managed and
planned: the workload ( K ), the (logical or physical) resource
topology ( L ), and a monitoring service ( M ).

4.3 A Portfolio Abstraction for Capacity Planning

In this work we propose a new abstraction, which organizes
multiple scenarios into a portfolio (see the right-hand side of
Figure 3). Each portfolio includes a base scenario, a set of
candidate scenarios given by the user and/or suggested by
Capelin, and a set of targets used to compare scenarios and
select the best. Our portfolio reflects the multi-disciplinary
and multi-dimensional nature of capacity planning by in-
cluding multiple scenarios and a set of targets, which we
describe in the following, in turn. In contrast, most capacity
planning approaches in published literature are tailored
towards a single scenario—a single potential hardware ex-
pansion, a single workload type, one type of service-quality
metrics; this approach does not cover the complexities that
capacity planners are currently facing (see Section 3.2).

4.3.1 Scenarios

A scenario represents a point in the capacity planning (data-
center design) space to explore. It consists of a combination
of workload, topology, and a set of operational phenomena.
Phenomena can include correlated failures, performance
variability, security breaches, etc., allowing the scenarios to
accurately capture real-world operations. Such phenomena
are often hard to predict intuitively during capacity plan-
ning, due to emergent behavior that can arise at scale.

The baseline for comparison in a portfolio is the base
scenario. It represents the status quo of the infrastructure
or, when planning infrastructure from scratch, it consists of
very simple base workloads and topologies.

The other scenarios in a portfolio, called candidate scenar-
ios, represent changes to the configuration that the capacity
planner could be interested in. Changes can be effected in
one of the following four dimensions: (1) Variety: qualitative
changes to the workload or topology (e.g., different arrival
patterns, or resources with more capacity); (2) Volume: quan-
titative changes to the workload or topology (e.g., more
workloads or more resources); (3) Velocity: speed-related

changes to workload or topology (e.g., faster resources); and
(4) Vicissitude combines (1)-(3) over time.

This approach to derive candidate scenarios is system-
atic, and although abstract it allows approaching many
of the practical problems discussed by capacity planners.
For example, should we scale horizontally (scale-out) or verti-
cally (scale-up)? [55]. Scaling out, which is done by adding
cheaper clusters of commodity machines, contrasts to scal-
ing up, which is done by acquiring more expensive, “beefy”
machines. Scaling out can be cheaper for the same perfor-
mance, and offers a more failure-targets (machines). Yet,
scaling up could lower operational costs, due to fewer
per-machine licenses, fewer switch-ports for networking,
and smaller floor-space due to fewer racks. Experiment 5.2
explores this dichotomy.

4.3.2 Targets
A portfolio also has a set of targets that prescribe on what
grounds the different scenarios should be compared. Targets
include the metrics that the practitioner is interested in and
their desired granularity, along with relevant SLOs (FR3).
Following the taxonomy defined by the performance orga-
nization SPEC [30], we support both system-provider metrics
(such as operational risk and resource utilization) and or-
ganization metrics (such as SLO violation rates and perfor-
mance variability). Targets also include a time range over
which metrics should be recorded and compared.

5 EXPERIMENTS WITH CAPELIN

In this section, we explore how Capelin can be used to
answer capacity planning questions. We conduct extensive
experiments using Capelin and data from operational traces
collected long-term from private and public datacenters.

5.1 Experiment Setup
We implement a prototype of Capelin (§5.1.1), and verify the
reproducibility of its results and that it can be run within the
expected duration of a capacity planning session (§5.1.2). All
experiments use long-term, real-world traces as input.

Our experiment design, which Table 2 summarizes, is
comprehensive and addresses key questions such as: Which
input workload (§5.1.3)? Which datacenter topologies to
consider (§5.1.4)? Which operational phenomena (§5.1.6)?
Which allocation policy (§5.1.5)? Which user- and operator-
level performance metrics to use, to compare the scenarios
proposed by the capacity planner (§5.1.7)?

The most important decision for our experiments is
which scenarios to explore. Each experiment takes in a
capacity planning portfolio (see Section 4.3), starts from a
base scenario, and aims to extend the portfolio with new
candidate scenarios and its results. The baseline is given by
expert datacenter engineers, and has been validated with hardware
vendor teams. Capelin creates new candidates by modifying
the base scenario along dimensions such as variety, volume,
and velocity of any of the scenario-components. In the
following, we experiment systematically with each of these.

5.1.1 Software prototype
We extend the open-source OpenDC simulation plat-
form [37] with capabilities for modeling and simulating
the virtualized workloads prevalent in modern clouds. We
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Table 2
Experiment configurations. The Velocity experiment only appears in the technical report. A legend of topology dimensions is provided below.

(Notation: PI = Performance Interference, pub = public cloud trace, pri = private cloud trace.)

Candidate Topologies Workloads Op. Phenomena

Sec. Focus Mode Quality Direction Variance Trace Loads Failures PI Alloc. Policy

§5.2 Hor. vs. Ver. pri sampled 3 3 active-servers

[4] Velocity pri sampled 3 3 active-servers

§5.3 Op. Phen. – – – – pri original 7 / 3 7 / 3 all

§5.4 Workloads pri / pub sampled 3 7 active-servers

replace

Mode QualityDirection Variance

volumehorizontalexpand velocityvertical heterogeneoushomogeneous

model the CPU and memory usage of each VM along
with hypervisors deployed on each managed node. Each
hypervisor implements a fair-share scheduling model for
VMs, granting each VM at least a fair share of the available
CPU capacity, but also allowing them to claim idle capacity
of other VMs. The scheduler permits overprovisioning of
CPU resources, but not of memory resources, as is common in
industry practice. We also model a workload and resource
manager that controls the deployed hypervisors and de-
cides based on configurable allocation policies (described
in §5.1.5) to which hypervisor to allocate a submitted VM.
Our experiments and workload samples are orchestrated by
Capelin, which is written in Kotlin (a modern JVM-based
language), and processed and analyzed by a suite of tools
based on Python and Apache Spark.

We release our extensions of the open-source OpenDC code-
base and the analysis software artifacts on GitHub1, as part of
release 2.0 [47]. We conduct thorough validation and tests
of both the core OpenDC and our additions, as detailed
in the technical report [4]. Our validation also includes a
“replay” experiment, showing how the differing placement
of workloads between simulation and original setup has
only a minor impact on results.

5.1.2 Execution and Evaluation
Our results are fully reproducible, regardless of the physical
host running them. All setups are repeated 32 times. The re-
sults, in files amounting to hundreds of GB in size due to the
large workload traces involved, are evaluated statistically
and verified independently. Factors of randomness (e.g.,
random sampling, policy decision making if applicable, and
performance interference modeling) are seeded with the
current repetition to ensure deterministic outcomes, and for
fairness are kept consistent across scenarios.

Capelin could be used during capacity planning meet-
ings. A single evaluation takes 1–2 minutes to complete,
enabled by many technical optimizations we implemented.
The full set of experiments is conveniently parallel, taking
around 1 hour and 45 minutes to complete on a “beefy”
but standard machine with 64 cores and 128GB RAM; par-
allelization across machines would reduce this to minutes.

5.1.3 Workload
We experiment with a business-critical workload trace from
Solvinity, a private cloud provider. The anonymized version of

1. https://github.com/atlarge-research/opendc

this trace has been published in a public trace archive [36].
We were provided with the full, deanonymized data arti-
facts of this trace, which consists of more than 1,500 VMs
along with information on which physical resources where
used to run the trace and which VMs were allocated to
which resources. We cannot release these full traces due to
confidentiality, but release the summarized results.

The full trace includes a range of VM resource-usage mea-
surements, aggregated over 5-minute-intervals over three
months. It consumes 3,063 PFLOPs (exascale), with the mean
CPU utilization on this topology of 5.6%. This low utiliza-
tion is in line with industry, where utilization levels below
15% are common [62] to reduce the risk of not meeting SLAs.

For all experiments, we consider the full trace, and
further generate three other kinds of workloads as sam-
ples (fractions) of the original workload. These workloads
are sampled from the trace, resulting, in turn, to 306
PFLOPs (0.1 of the full trace), 766 (0.25), and 1,532 (0.5).
To sample, Capelin randomly takes VMs from the full trace
and adds their total load, until the desired load is reached.

For the §5.4 experiment, we further experiment with
a public cloud trace from Azure [17]. We use the most
recent release of the trace. The formats of the Azure and
the Solvinity traces are very similar, indicating a de facto
standard has emerged across the private and public cloud
communities. One difference in the level of anonymity of
the trace requires an additional assumption. Whereas the
Solvinity trace expresses CPU load as a frequency (MHz),
the Azure trace expresses it as a utilization metric ranging
from 0 to the number of cores of that VM. Thus, for the
Azure trace, in line with Azure VM types on offer we
assume a maximum frequency of 3 GHz and scale each
utilization measurement by this value. The Azure trace is
also shorter than Solvinity’s full trace, so we shorten the
latter to Azure’s length of 1 month.

We combine for the §5.4 experiment the two traces and
investigate possible phenomena arising from their interac-
tion. We disable here performance interference, because we
can only derive it for the Solvinity trace (see §5.1.6). To
combine the two traces, we first take a random sample of 1%
from the (very large) Azure trace, consisting of 26,901 VMs
running for one month. We then further sample this 1%-
sample, using the same method as for Solvinity’s trace.

5.1.4 Datacenter topology
As explained at the start of §5.1, for all experiments we set
the topology that ran Solvinity’s original workload (the full
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Table 3
Aggregate statistics for both workloads used in this study.

Characterization Solvinity Azure

VM submissions
per hour

Mean (×10−3) 31.836 4.547
CoV 134.605 17.188

VM duration [days] Mean 20.204 2.495
CoV 0.378 3.072

CPU load [TFLOPs] Mean (×102) 9.826 64.046
CoV 2.992 4.654

trace in §5.1.3) as the base scenario’s topology. This topology
is very common for industry practice. It is a subset of the
complete topology of the Solvinity when the full trace was
collected, but we cannot release the exact topology or the
entire workload of Solvinity due to confidentiality.

From the base scenario, Capelin derives candidate sce-
narios as follows. First, it creates a temporary topology
by choosing half of the clusters in the topology, consisting
of average-sized clusters and machines, compared to the
overall topology. Second, it varies the temporary topology,
in four dimensions: (1) the mode of operation: replacement
(removing the original half and replacing it with the mod-
ified version) and expansion (adding the modified half
to the topology and keeping the original version intact);
(2) the modified quality: volume (number of machines/cores)
and velocity (clock speed of the cores); (3) the direction of
modification: horizontal (more machines with fewer cores
each) and vertical (fewer machines with more cores each);
and (4) the kind of variance: homogeneous (all clusters in the
topology-half modified in the same way) and heterogeneous
(two thirds in the topology-half being modified in the des-
ignated way, the remaining third in the opposite way, on the
dimension being investigated in the experiment).

Each dimension is varied to ensure cores and machine
counts multiply to (at least) the same total core count as
before the change, in the modified part of the topology.
For volume changes, we differentiate between a horizontal
mode, where machines are given 28 cores (a standard size
for machines in current deployments), and vertical modes,
where machines are given 128 cores (the largest CPU models
we see being commonly deployed in industry). For velocity
changes, we differentiate between the clock speed of the
base topology and a clock speed that is roughly 25% higher.
Because we do not investigate memory-related effects, the
total memory capacity is preserved.

Last, due to confidentiality, we can describe the base and
derived topologies only in relative terms.

5.1.5 Allocation policies

We consider several policies for the placement of VMs on
hypervisors: (1) prioritizing by available memory (mem),
(2) by available memory per CPU core (core-mem), (3) by
number of active VMs (active-servers), (4) mimicking
the original placement data (replay), and (5) randomly
placing VMs on hosts (random). Policies 1-3 are actively
used in production datacenters [60].

For each policy we use two variants, following the
Worst-Fit strategy (selecting the resource with the most avail-
able resource of that policy) and the Best-Fit strategy (the
inverse, selecting the least available, labeled as -inv in §5.3).

Table 4
Parameters for the lognormal failure model we use in experiments. We

use the normal logarithm of each value.

Parameter [Unit] Scale Shape

Inter-arrival time [hour] 24× 7 2.801
Duration [minute] 60 60× 8
Group size [machine-count] 2 1

5.1.6 Operational phenomena
Each capacity planning scenario can include operational
phenomena. In these experiments, we consider two such
phenomena, (1) performance variability caused by inter-
ference between collocated VMs, and (2) correlated cluster
failures. Both are enabled, unless otherwise mentioned.

We assume a common model [43, 61] of performance
interference, with a score from 0 to 1 for a given set of collo-
cated workloads, with 0 indicating full interference between
VMs contending for the same CPU, and 1 indicating non-
interfering VMs. We derive the value from the CPU Ready
fraction of a VM time-slice: the fraction of time a VM is
ready to use the CPU but is not able to, due to other VMs
occupying it. We mine the placement data of all VMs run-
ning on the base topology and collect the set of collocated
workloads along with their mean score, defined as the mean
CPU ready time fraction subtracted from 1, conditioned by
the total host CPU load at that time, rounded to one decimal.
At simulation time, this score is then activated if a VMs is
collocated with at least one of the others in the recorded set
and the total load level on the system is at least the recorded
load. The score is then applied to each collocated VMs with
probability 1/N , where N is the number of collocated VMs,
by multiplying its requested CPU cycles with the score and
granting it this (potentially lower) amount of CPU time.

The second phenomenon we model are cluster failures,
which are based on a common model for space-correlated
failures [22] where a failure may trigger more failures within
a short time span; these failures form a group. We consider in
this work only hardware failures that crash machines (full-
stop failures), with subsequent recovery after some dura-
tion. We use a lognormal model with parameters for failure
inter-arrival time, group size, and duration, as listed in
Table 4. The failure duration is further restricted by a min-
imum of 15 minutes, since faster recoveries and reboots at
the physical level are rare. The choice of parameter values is
inspired by GRID’5000 [22] (public trace also available [39])
and Microsoft Philly [40], scaled to Solvinity’s topology.

5.1.7 Metrics
In our article, we use the following metrics: (1) the total
overcommitted CPU cycles (in MFLOP) of all VMs, defined
as the sum of CPU cycles that were requested but not
granted, (2) the total power consumption (in Wh) of all
machines, using a linear model based on machine load [10],
with an idle baseline of 200 W and a maximum power draw
of 350 W, and (3) the number of time slices a VM is in a
failed state, summed across all VMs. While no SLO metrics
are explicitly present in this list, we have two proxies (both
Service Level Indicators (SLIs)) from which we can infer
violations of such higher-level metrics. Incidents such as
overcommitted CPU cycles and failed VM slices directly
affect the availability of the service. High prevalence of these
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incidents in a short time-span even cause unavailability
of services, propagating into SLO metrics that could be
formulated here. We analyze a total of 14 metrics and list
full results in all metrics in the technical report [4].

5.2 Horizontal vs. Vertical Resource Scaling
Our main findings from this experiment are:
MF1: Capelin enables the exploration of a complex trade-off

portfolio of multiple metrics and capacity dimensions.
MF2: Vertically scaled topologies can improve power con-

sumption (median lower by 1.47x-2.04x) but can lead
to significant performance penalties (median higher
by 1.53x-2.00x) and increased chance of VM failure
(median higher by 2.00x-2.71x, which is a high risk!)

MF3: Capelin reveals how correlated failures impact vari-
ous topologies. Here, 147k–361k VM-slices fail.

The scale-in vs. scale-out decision has historically been
a challenge across the field [55][29, §1.2]. We investi-
gate this decision in a portfolio of scenarios centered
around horizontally (symbol ) vs. vertically ( ) scaled re-
sources (see §5.1.4). We also vary: (1) the decision mode, by
replacing the existing infrastructure ( ) vs. expanding it ( ),
and (2) the kind of variance, homogeneous resources ( )
vs. heterogeneous ( ). On these three dimensions, Capelin
creates candidate topologies by increasing the volume ( )
and compares their performance using four workload in-
tensities, two of which are shown in this analysis (we refer
to the technical report for the full analysis [4]). We consider
three metrics for each scenario: Figure 4 (top) depicts the
overcommitted CPU cycles, Figure 4 (middle) depicts the
power consumption, and Figure 4 (bottom) depicts the
number of failed VM time slices.

Our key performance indicator is overcommitted CPU
cycles, that is, the count of CPU cycles requested by VMs
but not granted, either due to collocated VMs requesting
too many resources at once, or due to performance interfer-
ence effects taking place. We observe in Figure 4 (top) that
vertically scaled topologies (symbol ) have significantly
higher overcommission (lower performance) than their hor-
izontally scaled counterparts ( , the other three symbols
identical). The median value is higher for vertical than for
horizontal scaling, for both replaced ( ) and expanded ( )
topologies, by a factor of 1.53x–2.00x (calculated as the ratio
between medians of different scenarios at full load). This
is a large factor, suggesting that vertically scaled topologies
are more susceptible to overcommission, and thus lead to
higher risk of performance degradation. Among replaced
topologies (all combinations including ), the horizontally
scaled, homogeneous topology ( ) yields the best
performance, and in particular the lowest median overcom-
mitted CPU. We also observe that expanded topologies ( )
have lower overcommission than the base topology, so
adding machines is worthwhile. We observe all these effects
strongly for the full trace (3,063 PFLOPs), but less pro-
nounced for the lower workload intensity (1,531 PFLOPs).

But performance is not the only criterion for capac-
ity planning. We turn to power consumption, as a proxy
for analyzing cost and environmental concerns. We see
in Figure 4 (middle) that vertically scaled topologies ( )
drastically improve power consumption over horizontal
scaling ( ), for median values by a factor of 1.47x–2.04x.

Figure 4. Results for a portfolio of candidate topologies and different
workloads(§5.2): (top) overcommitted CPU cycles, (middle) total power
consumption, (bottom) total number of time slices in which a VM is in a
failed state. Table 2 describes the symbols used to encode the topology.

As expected, all expanded topologies ( ), which have more
machines, incur higher power-consumption than replaced
topologies ( ). Higher workload intensity (i.e., results for
the 3,063 PFLOPs over 1,532) incurs higher power consump-
tion, although less pronounced than the aspects considered
earlier. The lower magnitude of this effect is consistent with
the relatively high power consumption of (close to) idle
machines and workload stability (i.e., large bursts are rare).

We also consider the amount of failed VM time-slices, in
Figure 4 (bottom). Each failure here is full-stop (§5.1.6),
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Figure 5. Overcommitted CPU cycles for a portfolio of operational phe-
nomena (the “none” through “all” sub-plots), and allocation policies (leg-
end), for Experiment 5.3.

which typically escalates the alarm to engineers. Thus, this
metric should be minimized. We observe significant differ-
ences here: the median failure time of a homogeneous ver-
tically scaled topology ( ) is between 2.00x-2.71x higher
than the base topology. Qualitatively, this metric shows sim-
ilarities with the overcommitted CPU cycles. Vertical scal-
ing is correlated with worse performance and with higher
failure counts. The effect is less pronounced when making
heterogeneous compared to homogeneous procurement. We
obtained similar results when scaling velocity ( ) [4].

Takeaway: Capelin gives practitioners the possibility to
explore a complex trade-off portfolio of dimensions such as
power consumption, performance, failures, workload in-
tensity, etc. Optimization questions surrounding horizontal
and vertical scaling can therefore be approached with a
data-driven approach. We find that decisions including het-
erogeneous resources can provide meaningful compromises
between more generic, homogeneous resources; and lead to
different decisions related to personnel training (not shown
here). We show significant differences between candidate
topologies in all metrics, translating to very different power
costs, long-term. We conclude that Capelin can help test
intuitions and support complex decision making.

5.3 Impact of Operational Phenomena
Our main findings from this experiment are:
MF4: Capelin enables the exploration of diverse allocation

policies and operational phenomena, both of which
lead to important differences in capacity planning.

MF5: Modeling performance interference can explain
80.6%—94.5% of the overcommitted CPU cycles.

MF6: Different allocation policies lead to different perfor-
mance interference intensities, and to median overcom-
mitted CPU cycles different by factors between 1.56x
and 30.3x compared to the best policy—high risk!

This experiment addresses operational factors in the
capacity planning process. We explore the impact of bet-
ter handling of physical machine failures, the impact of
(smarter) scheduler allocation policies, and the impact of
(the absence of) performance interference on overall perfor-
mance. Figure 5 shows the impact of different operational
phenomena on performance, for different allocation poli-
cies. We observe that performance interference has a strong

Figure 6. Total power consumption for a portfolio of candidate topologies
(legend), subject to different workloads (the “all-pri” to “all-pub” sub-plots),
for Experiment 5.4.

impact on overcommission, dominating it compared to the
“failures” sub-plot, where only failures are considered, or
with the “none” sub-plot, where no failures or interference
are considered. Depending on the allocation policy, it rep-
resents between 80.6% and 94.5% of the overcommission
recorded in simulation for the “all” sub-plot, where both
failures and interference are considered. We also see the
large impact that live resource management (in this case, the
allocation policy) can have on Quality of Service. Median
ratios vary between 1.56x and 30.3x vs. the best policy, with
active-servers (see §5.1.5) generally best-performing. While
the random policy is second-best in terms of performance, its
performance is much worse for other metrics, such as power
consumption, failures, and maximum number of VMs per
machine (see the technical report [4]).

Takeaway: We conclude Capelin can help model aspects that
are important but typically not considered for capacity planning.

5.4 Impact of a New Workload
Our main findings from this experiment are:
MF7: Capelin enables exploring what-if scenarios that in-

clude new workloads as they become available.
MF8: Power consumption can vary significantly more in all-

private vs. all-public scenarios, by 4.79x–5.45x.
This experiment explores the impact of adding a new

workload type to an existing datacenter. This appears often
in practice, e.g., for new customers. We combine here the
1-month Solvinity and Azure traces (see §5.1.3).

Figure 6 shows the power consumption for different
combinations of both workloads and different topologies.
(The technical report [4] analyzes more metrics.) We observe
the unbiased variance of results [18, p. 32] is positively
correlated with the fraction of the workload taken from
the public cloud (Azure). Depending on topology, the vari-
ance increase with this fraction ranges from 4.78x to 5.45x.
Expanding the volume horizontally ( ) leads to the
lowest increase in variance. The workload statistics listed in
Table 3 show that the Azure trace has far fewer VMs, with
higher load per VM and shorter duration, thus explaining
the increased variance. Last, all candidate topologies have a
higher power consumption than the base topology.

Takeaway: We conclude Capelin can support new workloads
as they appear, even before they are physically deployed.
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6 THREATS TO VALIDITY

We identify three main sources of threats to validity for this
work: (1) the interviews, (2) the experiments, and (3) the
simulator. We list the most important threats here and pro-
vide more details in Sec. 6 and 7 of the technical report [4].

Related to (1), we see two points of concern for the
validity of the interview study. First, confidentiality limits us
from sharing source transcripts, but we include detailed
analysis results [4]. Second, we recognize the limited sample
size of our study, which follow-up studies could address.

Related to (2), we see three points of concern for the
validity of the experimental study. First, the diversity of mod-
eled resources is limited, but these other resources would
have limited impact on CPU contention. Second, the avail-
ability of input data from our experiments is limited due
to confidentiality; however, similar (anonymized) datasets
exist. Third, the choice of allocation policies may influence
the validity of the results; we address this by comparing to
industry practice.

Related to (3), we see three points of concern for the
validity of the simulator. First, the simulator’s outputs need to
be valid, which we ensure by inspecting a wide variety of
metrics. Second, the simulator’s outputs need to be sound,
which we address by a “replay experiment” mimicking real-
world operation and by meeting with experts to discuss
our assumptions and results. Third, the simulator’s outputs
need to be reliable, which we ensure by employing snapshot
testing and industry-standard development practices.

7 RELATED WORK

We summarize in this section the most closely related work,
which we identified through a survey of the field that
yielded over 75 relevant references. For further details,
see the technical report [4]. Overall, our work is the first
to: (1) conduct community interviews with capacity plan-
ning practitioners managing cloud infrastructures, which
resulted in unique insights and requirements, (2) design and
evaluate a data-driven, comprehensive approach to cloud
capacity planning, which models real-world operational
phenomena and provides, through simulation, multiple
VM-level metrics as support to capacity planning decisions.

Related to (1), we see two works as closely related to our
interview study of practitioners. In the late-1980s, Lam et al.
conducted a written questionnaire survey [45] and, mid-
2010s, Bauer et al. conducted semi-structured interviews [7].
The target group of these studies differs from ours, however,
since both focus on practitioners from different industries
planning the resources used by their IT department.

Related to (2), our work extends a three-fold body of
related work. First, we survey process models for capacity
planning. To enable their comparison, we unify the ter-
minology and the stages proposed by these models, and
create the super-set of systems-related stages summarized
in Table 5. From a systems perspective, Capelin proposes
a comprehensive process. Second, we survey systematically
the main scientific repositories and collect 57 works related to
long-term capacity planning. Our scope of long-term planning
(procurement) excludes more dynamic, short-term process
such as Google’s Auxon [33] or the Cloud Capacity Man-
ager [42], which address the live management of capacity

Table 5
Comparison of process models for capacity planning. Sources:

Lam [45, p. 92], Howard [34] (referenced by Browning [12, p. 7]),
Menascé [48, p. 179], Gunther [28, p. 22], and Kejariwal [41, p. 4].

Stage [45] [12] [48] [28] [41] Capelin

Assessing current cap. X X X X X
Identifying all workloads X X
Characterize workloads X X X X X
Aggregate workloads X X
Validate workload char. X X
Determine resource req. X X
Predict workload X X X X
Characterize perf. X X X
Validate perf. char. X X X
Predict perf. X X X
Characterize cost X X
Predict cost X X
Analyze cost and perf. X X
Examine what-if scen. X X
Design system X X
Iterate and calibrate X X

already procured; explained differently, Capelin (this work)
helps decide on long-term capacity procurement, whereas
Auxon and others like focus on the different problems
of what to do with that capacity, short-term, once it is
already there. Other work investigates the dynamic man-
agement of physical components, such as CPU frequency
scaling [46]. We find that the majority of studies only
consider one resource dimension, and four inputs or less
for their capacity planning model. Few are simulation-
based [1, 14, 49, 52, 53, 54], with the rest using primarily
analytical models. The notable Janus [1] focuses only on dat-
acenter networks. Janus operates in a design space adjacent
to Capelin: it considers network topologies, network traffic
patterns, topology changes, and evaluation metrics, all to
derive network topology change plans. Considering this
parallel structure of plans, if Janus is open-sourced, it could
likely be integrated into Capelin on two levels: (1) to provide
feedback on the network dimension of simulated scenarios,
and (2) to optimize the network topology, during scenario
generation. Third and last, we survey system-level simulators,
and study 10 of the best-known in the large-scale distributed
systems community. Among the simulators that support
VMs [13, 32, 51] and could be useful for simulating cloud
datacenters, few have been tested with traces at the scale
of this study, few support CPU over-commissioning, none
support both operational phenomena (§5.1.6), and none can
output detailed VM-level metrics used in this work.

8 CONCLUSION AND FUTURE WORK

Accurately planning cloud datacenter capacity is critical
to meeting the needs of the 2020s society whilst saving
costs and ensuring environmental sustainability. However,
the current practice has not been analyzed in decades and
publicly available tools to support practitioners are scarce.
Capelin, a data-driven, scenario-based alternative to current
planning approaches, addresses these problems.

In this work, we have designed, implemented, and eval-
uated Capelin. We have conducted a guided interview with
diverse practitioners from a variety of backgrounds, whose
results led us to synthesize five functional requirements. We
have designed Capelin to meet them, including the ability to
model datacenter topologies and virtualized workloads, to
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express what-if scenarios and QoS requirements, to suggest
scenarios to evaluate, and to evaluate and explain capacity
plans. Capelin uses a novel abstraction, the capacity plan-
ning portfolio, to represent, explore, and compare scenarios.
Experiments based on real-world workload traces collected
from private and public clouds demonstrate Capelin’s ca-
pabilities. Results show that Capelin can support capacity
planning processes, exploring changes from a baseline sce-
nario alongside four dimensions. We found that capacity
plans common in practice could potentially lead to signif-
icant performance degradation. We also gave evidence of
the important, but often discounted, impact of operational
choices (e.g., the allocation policy) and operational phenom-
ena (e.g., performance interference).

We have released Capelin as FOSS for capacity plan-
ners to use. We are investigating the use of AI/ML search
techniques to make the Capacity Plan Generator component
more capable of exploring the enormous design-space.
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