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SUMMARY

Aeroelasticity is the discipline that studies the interact ion between structures and the
�uid �ow around them. Flexible structures can easily be defo rmed by the �uid �ow. The
resulting aerodynamic forces in turn affect the structural deformation. Typical aeroe-
lastic problems include a gust encounter and �utter. A distu rbance in the air, for ex-
ample turbulence, might cause oscillations of the aircraft 's wing. At certain air speeds
the amplitude of these oscillations grows unbounded, i.e. � utter occurs. The �utter
boundary, beyond which the oscillation amplitude grows unb ounded, should never be
surpassed in �ight. In contrast, during so-called limit-cy cle oscillations (LCOs) the oscil-
lation amplitude stays constant. Limit-cycle oscillation s are caused by non-linearities in
either the structure or the �uid �ow around the aeroelastic s ystem or by a combination
of both. Structural non-linearities can be for example free play or non-linear damping.
Aerodynamic non-linearities include shock wave dynamics, boundary-layer separation
and boundary-layer transition. This thesis only considers aerodynamic non-linearities.

Flutter onset is normally computed using a linearised metho d. However, since a cer-
tain minimum disturbance level is necessary for �utter to oc cur, �utter is, in reality, al-
ways non-linear. This means that a linearised method might n ot predict �utter onset
correctly. Hence, it might be possible that non-linear �utt er, i.e. an LCO, already occurs
below the �utter boundary predicted from linearised theory . Whether limit-cycle oscilla-
tions caused by aerodynamic non-linearities can occur belo w the linear �utter speed has
not yet been investigated systematically. Therefore, the m ain research question of this
thesis is whether LCOs caused by aerodynamic non-lineariti es can already occur below
the �utter boundary predicted from linearised theory.

Theoretically, there are two types of LCOs that might exist w hen considering aerody-
namic non-linearities only. LCOs that occur beyond the �utt er boundary are so-called
benign LCOs. These benign LCOs are stable. In other words, wh en the system is dis-
turbed, it will return to its LCO state. In contrast, so-call ed detrimental LCOs might oc-
cur already below the �utter boundary. They are stable and th ey are accompanied by an
unstable LCO of smaller amplitude that occurs at the same fre estream velocity. The am-
plitude of this unstable LCO marks the boundary between two s table states; a stable LCO
and a steady state (without oscillations). When a detriment al LCO would occur in reality,
the linearised �utter onset computation would not be correc t, since non-linear �utter,
i.e. a stable LCO, would exist below the �utter boundary. The variation of the LCO's
amplitude with for example the freestream velocity or the dy namic pressure is math-
ematically called the bifurcation behaviour. Benign LCOs c ause so-called supercritical
bifurcations and detrimental LCOs cause so-called subcrit ical bifurcations.

In this thesis limit-cycle oscillations of a two degree-of- freedom airfoil system caused
by aerodynamic non-linearities were studied. In order to do so fully coupled �uid-structure
interaction (FSI) simulations as well as forced motion osci llation simulations were per-
formed. The supercritical NLR7301 airfoil has been used for all analyses in this thesis.

ix



x SUMMARY

The degrees of freedom of the airfoil are pitch and plunge.

First, the energy budget of the LCOs was analysed. The mean po wer components
computed from FSI simulations showed that the mean total pow er (sum of the mean
power of the aerodynamic lift, aerodynamic moment and struc tural damping) is zero
at the LCO amplitude, as expected. Furthermore, a defect in t he mean power of the
aerodynamic lift was found to be responsible for the amplitu de limitation. This defect
originates from the impact of small variations of the phase o f the lift with oscillation am-
plitude. The small variations of the magnitude and phase of t he aerodynamic moment
do not have the same impact on the mean aerodynamic power (sum of the mean power
of the lift and mean power of the moment) as those of the lift. T herefore, the defect in
the mean power of the moment is much smaller than that in the me an power of the lift.
Due to the complicated �ow behaviour, no local features were found to be responsible
for the defect in the mean power of the lift.

To study the bifurcation behaviour of the LCOs of the two degr ee-of-freedom airfoil
system, an extension to the well-known p-k method used in cla ssical linear �utter analy-
sis has been developed in this thesis. This method is called t he amplitude-dependent
p-k method (ADePK), since it takes into account the amplitud e of the (forced) motion
(in contrast to the standard p-k method). ADePK solves the eq uations of motion in the
frequency domain. In order to do so, a so-called response sur face is �rst set up from
forced motion oscillation simulations at several amplitud es, frequencies and complex-
valued amplitude ratios between the two degrees of freedom. The response of the lift
and moment to these forced motion oscillation simulations i s then transferred into the
frequency domain via a Fourier transformation. During the i terations of ADePK the
�rst harmonic of the aerodynamic force and moment is obtaine d from interpolation on
the response surface. The LCO amplitude and mode shape are fo und iteratively from
ADePK. In order to verify ADePK the van der Pol-oscillator ha s been used. After veri�-
cation, the method has been validated against time domain re sults for the two degree-
of-freedom airfoil system. The bifurcation behaviour of th e LCO amplitude and mode
shape obtained from ADePK showed good agreement with the res ults of the FSI simula-
tions in the time domain.

After validation of ADePK, it has been used for systematic st udies of the bifurcation
behaviour of the LCO amplitude of the two degree-of-freedom airfoil system. Several
response surfaces were built in order to study various aerod ynamic non-linearities. A
bifurcation behaviour analysis using these response surfa ces showed that the strongest
non-linearity occurs in transonic �ow with trailing-edge s eparation. For the other test
cases, transonic inviscid �ow, subsonic �ow with trailing- edge separation and subsonic
�ow with free boundary-layer transition, limit-cycle osci llations only occurred very close
to the �utter boundary, hence the non-linearity was observe d to be relatively weak. In
case of transonic inviscid �ow multiple nested LCOs (of diff erent amplitude) occurred at
one freestream velocity, i.e. a detrimental LCO occurred.

To study the effect of LCOs close to the �utter boundary, the M ach number was var-
ied in inviscid �ow. The linear �utter boundary, shows, as ex pected, a so-called tran-
sonic dip, i.e. a minimum in the �utter boundary at transonic �ow speeds. Contours
of constant LCO amplitude showed that at subsonic Mach numbe rs the LCO amplitude
increases much faster than at transonic speeds. Furthermor e, these contours showed
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that the transonic dip could be signi�cantly less deep when a certain LCO amplitude is
considered.

A variation of the structural frequency ratio of the two degr ee-of-freedom airfoil sys-
tem showed a signi�cant in�uence on the bifurcation behavio ur for all four aerodynamic
non-linearities. In subsonic �ow with trailing-edge separ ation, increasing the structural
frequency ratio resulted in detrimental LCOs or unstable LC Os only (up to an ampli-
tude of 5 ±). For the viscous transonic �ow test case, the bifurcation b ehaviour was su-
percritical at all structural frequency ratios studied in t his thesis, except for the largest
structural frequency ratio at which only unstable LCOS (up t o an amplitude of 5 ±) were
obtained. In inviscid transonic �ow, both detrimental and b enign LCOs were observed
as well. In subsonic �ow with free boundary-layer transitio n slightly subcritical bifurca-
tions and supercritical bifurcations of the LCO solutions w ere observed when the struc-
tural frequency ratio was varied. Furthermore, for all aero dynamic non-linearities, the
LCO mode shape changes from plunge dominated to pitch domina ted when the struc-
tural frequency ratio increases, as expected. The non-dime nsional mass ratio was also
changed for all test cases, however, no signi�cant changes i n the bifurcation behaviour
were observed, unless the non-linearity was already very we ak. In that case a change
from a benign to a detrimental LCO is possible when the mass ra tio is changed. How-
ever, the strength of the non-linearity is in�uenced by a mas s ratio change. The same
holds for the addition of structural damping to the two degre e-of-freedom system. For
all sources of aerodynamic non-linearity, variation of the elastic axis location was found
to signi�cantly in�uence the strength of the non-linearity and in case of a weak non-
linearity, the bifurcation type can easily change from supe rcritical to subcritical (or the
other way around) when the elastic axis is moved. It was obser ved that a subcritical bi-
furcation of the LCO solution occurs, in viscous transonic � ow, when the elastic axis is
moved aft at the second largest structural frequency ratio t ested.

The response surface necessary to apply the ADePK method has been studied to in-
vestigate whether it revealed any clues on the bifurcation t ype. Using one-at-a-time lin-
earised aerodynamic forces it was found that, at the nominal structural parameter val-
ues, the phase of the lift has the largest in�uence on the bifu rcation behaviour. Keeping
the phase of the lift at its linearised value and performing a bifurcation behaviour com-
putation with ADePK resulted in a completely different bifu rcation behaviour than when
the amplitude-dependence of the phase of the lift is taken in to account (for all aerody-
namic non-linearities). Therefore, the phase of the lift-s lices of the response surface
versus amplitude (at the �utter- and 5 ±-LCO amplitude mode shapes) were studied. A
comparison of the sine of these slices (i.e. the sine of the ph ase of the lift versus the os-
cillation amplitude) to the bifurcation diagram revealed a very similar shape. However,
for other structural frequency ratios then the nominal one, the shape of the sine of the
lift and that of bifurcation diagram were not always similar . Hence, further investiga-
tions are needed to clarify why for other structural paramet ers these two curves do no
longer exhibit a similar shape or to identify a parameter tha t has the same shape as the
bifurcation diagram for all structural parameter values.

Using the �utter mode shape to compute the phase of the lift fr om forced motion
oscillation simulations, the local features responsible f or the behaviour of the phase of
the lift and hence for the LCO behaviour have been studied. Fo r both transonic test
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cases, the shock motion on the lower surface of the airfoil wa s found to be responsible
for the changes in the phase of the lift.

In this thesis fundamental investigations into the bifurca tion behaviour of a two-
degree-of-freedom airfoil system with aerodynamic non-li nearities have been performed.
A �rst step has been made in identifying the effect of various structural parameter changes,
in identifying the relation between the aerodynamic forces and the LCO bifurcation be-
haviour and in identifying possible ways to predict the LCO b ifurcation behaviour from
the �utter onset behaviour. These investigations with ADeP K serve as the basis for larger
degree-of-freedom systems.



SAMENVATTING

Aero-elasticiteit is de discipline die de interactie tusse n constructies en de stroming om
deze constructies bestudeert. Flexibele constructies kun nen gemakkelijk gedeformeerd
worden door de stroming. De resulterende aerodynamische kr achten beïnvloeden dan
op hun beurt de deformatie van de constructie. Typische aero -elastische problemen
zijn bijvoorbeeld een windvlaag-confrontatie en �adderen . Storingen in de lucht, zo-
als turbulentie, kunnen oscillaties van de vleugel van het v liegtuig veroorzaken. Op be-
paalde luchtsnelheden kan de amplitude van deze oscillatie s ongelimiteerd groeien, dan
treedt “�adderen” op. De �addergrens, boven welke de oscill atie amplitude ongelimi-
teerd groeit, mag tijdens een vlucht nooit worden overschre den. In tegenstelling tot
�adderen blijft bij zogenaamde limietcycli de oscillatie a mplitude constant. Limietcy-
kli worden veroorzaakt door niet-lineariteiten in de const ructie of in de stroming om de
aero-elastische constructie of door een combinatie van bei de. Niet-lineariteiten in de
constructie zijn bijvoorbeeld “freeplay” of niet-lineair e demping. Aerodynamische niet-
lineariteiten zijn de dynamica van schokgolven, grenslaag loslating en grenslaag transi-
tie. Dit proefschrift neemt alleen aerodynamische niet-li neariteiten in beschouwing.

Het optreden van �adderen wordt normaal gesproken berekend door middel van li-
nearisatie. Echter, �adderen is in werkelijkheid altijd ni et-lineair, omdat een bepaald
storingsniveau nodig is voordat �adderen optreedt. Dit bet ekent dat een gelineariseerde
methode het optreden van �adderen mogelijk niet correct zal voorspellen. Daarom zou
het mogelijk kunnen zijn dat niet-lineair �adderen, m.a.w. een limietcyclus, al onder
de, door gelineariseerde theorie voorspelde, �addergrens optreedt. Of limietcycli ver-
oorzaakt door aerodynamische niet-lineariteiten al onder de lineaire �adder snelheid
kunnen optreden is nog niet systematisch onderzocht. Daaro m is de hoofdonderzoeks-
vraag van deze dissertatie of limietcycli die veroorzaakt w orden door aerodynamische
niet-lineariteiten al onder de, door gelineariseerde theo rie voorspelde, �addergrens op
kunnen treden.

Theoretisch zijn er twee typen limietcycli die zouden kunne n optreden als alleen ae-
rodynamische niet-lineariteiten worden beschouwd. Limie tcykli die boven de �adder-
grens optreden zijn de zogenaamde goedaardige limietcycli . Deze goedaardige limietcy-
cli zijn stabiel. Met andere woorden, als het systeem wordt v erstoord, zal het naar zijn
limietcyclus-toestand terugkeren. In tegenstelling tot g oedaardige limietcycli, zouden
kwaadaardige limietcycli al onder de �addegrens kunnen opt reden. Zij zijn stabiel en
worden vergezelt door een instabiele limietcyclus met een k leinere amplitude die op de-
zelfde luchtsnelheid optreedt. De amplitude van deze insta biele limitcyclus markeert de
grens tussen twee stabiele toestanden; een stabiele limiet cyclus en een stationaire toe-
stand (zonder oscillaties). Als een kwaadaardige limietcy clus in werkelijkheid zou optre-
den, dan zou de de linearisatie om het optreden van �adderen t e voorspellen eigenlijk
niet correct zijn, omdat niet-lineair �adderen, d.w.z. een stabiele limietcyclus, al onder
de �addergrens zou optreden. De variatie van de limietcyclu s amplitude met bijvoor-

xiii
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beeld de luchtsnelheid of de dynamische druk wordt bifurcat ie gedrag genoemd in de
wiskunde. Goedaardige limietcycli veroorzaken zogenaamd e superkritische bifurcaties
en kwaadaardige limietcycli veroorzaken zogenaamde subkr itische bifurcaties.

In dit proefschrift worden limietcycli van een twee vrijhei dsgraad vleugelpro�el sys-
teem veroorzaakt door aerodynamische niet-lineariteiten bestudeerd. Om dat te doen
worden zowel �uïdum-constructie interactie simulaties al s simulaties waar een oscil-
leerende beweging wordt gesimuleerd, uitgevoerd. Het supe rkritische NLR7301 vleu-
gelpro�el is gebruikt voor alle analyses in dit proefschrif t. Het vleugelpro�el heeft als
vrijheidsgraden stampen en dompen.

Als eerste wordt de energiehuishouding van de limietcycli b estudeerd. De gemid-
delde vermogenscomponenten, berekent door middel van de �u ïdum-constructie in-
teractie simulaties, toonden aan dat het gemiddelde totale vermogen (som van het ge-
middelde vermogen van de aerodynamische liftkracht, het ae rodynamische moment en
de structurele constructie), zoals verwacht, nul is op de li mietcyclus amplitude. Een de-
fect in het gemiddelde vermogen van de liftkracht veroorzaa kt deze begrenzing van de
amplitude. Dit defect komt voort uit de impact van kleine var iaties in de fase van de
liftkracht die optreden zodra de oscillatie amplitude vera ndert. De kleine variaties in de
amplitude en de fase van het aerodynamische moment hebben ni et dezelfde impact op
het gemiddelde aerodynamische vermogen (som van het gemidd elde vermogen van de
liftkracht en van het moment) als die van de liftkracht. Daar om is het defect in het ge-
middelde vermogen van het moment veel kleiner dan dat in het g emiddelde vermogen
van de lift. Door het gecompliceerde stromingsgedrag was he t niet mogelijk om lokale
fenomenen te vinden die verantwoordelijk zijn voor het defe ct in het vermogen van de
liftkracht.

Om het bifurcatie gedrag van limietcycli van een twee vrijhe idsgraad vleugelpro-
�el systeem te bestuderen is er een uitbreiding van de gereno mmeerde p-k methode,
die wordt gebruikt in een lineaire �adder analyse, ontwikke ld in dit proefschrift. Deze
nieuwe methode wordt de amplitude-afhankelijke p-k method e (ADePK) genoemd, om-
dat rekening gehouden wordt met de amplitude van de (geforce erde) beweging (in te-
genstelling tot de standaard p-k methode). De ADePK methode lost de bewegingvergelij-
kingen in het frequentie-bereik op. Om dat te doen, moet eers t een zogenaamd response
oppervlak gegenereerd worden uit de resultaten van simulat ies van geforceerde har-
monische bewegingen met verschillende amplitudes, freque nties en complex-waardige
amplitude verhouding tussen de twee vrijheidsgraden. De re sponse van de liftkracht
en het moment op deze geforceerde bewegingen wordt dan in het frequentie-bereik ge-
transformeerd via een Fourier transformatie. Tijdens de it eraties van ADePK wordt de
eerste harmonische component van de aerodynamische kracht en die van het moment
berekend via interpolatie op het response oppervlak. De lim ietcyclus amplitude en -
trilvorm kunnen dan iteratief worden gevonden in de ADePK me thode. De van der Pol-
oscillator is gebruikt om de ADePK methode te veri�ëren. Na d eze veri�catie is de me-
thode gevalideerd met tijdsbereik resultaten voor het twee vrijheidsgraad vleugelpro�el
systeem. Het bifurcatie gedrag van de limietcyclus amplitu de en de limietcyclus trilvorm
berekend met ADePK komt goed overeen met de resultaten van �u ïdum-constructie in-
teractie simulaties in het tijdsbereik.

Nadat ADePK gevalideerd is, is de methode gebruikt voor syst ematische studies van



SAMENVATTING xv

het bifurcatie gedrag van de limietcyclus amplitude van het twee vrijheidsgraad vleu-
gelpro�el systeem. Er zijn verschillende response oppervl akken geconstrueerd om ver-
schillende aerodynamische niet-lineariteiten te kunnen b estuderen. Een analyse van
het bifurcatie gedrag, gebruikmakende van deze response op pervlakken, toonde aan
dat de sterkste niet-lineariteit optreedt in een transsoni sche stroming met achterkant-
loslating. Voor de andere testgevallen, transsonische inv isceuze stroming, subsonische
stroming met achterkant-loslating en subsonische stromin g met vrije grenslaagtransitie,
traden limietcycli alleen heel dichtbij de �addergrens op. De niet-lineariteit is daarom
relatief zwak in deze testgevallen. In transsonische invis ceuze stroming treden op één
luchtstroomsnelheid meerdere limietcycli (van verschill ende amplitude) tegelijk op, dat
willen zeggen, er treden kwaadaardige limietcycli op.

Om het effect van limietcycli dichtbij de �addergrens te bes tuderen, is het Machgetal
gevarieërd. De lineaire �addergrens laat, zoals verwacht, een zogenaamde “transsoni-
sche dip” zien, dat wil zeggen, een minimum in de �addergrens op transsonische lucht-
snelheden. Het berekenen van contouren van constante limie tcyclus amplitude toont
aan dat de limietcyclus amplitude bij subsonische Machgeta llen veel sneller toeneemt
dan bij transsonische Machgetallen. Verder lieten deze con touren zien dat, als limietcy-
cli van een bepaalde amplitude beschouwd worden, het transs onische minimum in de
�addergrens signi�cant minder diep kan zijn.

Een variatie van de verhouding van de structurele eigenfreq uenties van het twee vrij-
heidsgraad vleugelpro�el systeem laat een signi�cante inv loed op het bifurcatie gedrag
zien voor alle vier de aerodynamische niet-lineariteiten. Het verhogen van de verhou-
ding van structurele eigenfrequenties zorgt in subsonisch e stroming met achterkant-
loslating voor kwaadaardige limietcycli of alleen instabi ele limietcycli (tot een ampli-
tude van 5±). Voor het visceuze transsonische testgeval treedt superk ritisch bifurcatie
gedrag op voor alle verhoudingen van de structurele eigenfr equenties die onderzocht
zijn in deze dissertatie, behalve voor de grootste verhoudi ng, voor deze verhouding tre-
den alleen instabiele limietcycli op (tot een amplitude van 5±). In invisceuze trans-
sonische stroming treden ook zowel kwaadaardige en goedaar dige limietcycli op. In
subsonische stroming met vrije grenslaagtransitie treden minieme subkritische bifur-
caties en superkritische bifurcaties van de limietcyclus o plossingen op als de verhou-
ding van structurele eigenfrequenties gevarieërd wordt. V erder verandert de trilvorm,
zoals verwacht, voor alle aerodynamische niet-linearitei ten van dompen-gedomineerd
naar stampen-gedomineerd als de verhouding van structurel e eigenfrequenties wordt
vergroot. De dimensieloze massaverhouding is ook gevarieë rd voor alle testgevallen.
Dit resulteert echter niet in signi�cante veranderingen in het bifurcatie gedrag, behalve
als de niet-lineariteit al heel zwak was. In dat geval kan een limietcyclus van goedaar-
dig naar kwaadaardig veranderen als de massaverhouding wor dt veranderd. Echter, de
sterkte van de niet-lineariteit wordt beïnvloed door een ve randering van de massaver-
houding. Hetzelfde geldt voor het toevoegen van structurel e demping aan het twee vrij-
heidsgraad systeem. De variatie van de locatie van de elasti sche as heeft voor alle ae-
rodynamische niet-lineariteiten een signi�cante invloed op het bifurcatie gedrag en in
als de niet-lineariteit zwak is, kan het bifurcatie gedrag g emakkelijk veranderen van su-
perkritisch naar subkritisch (of andersom) als de elastisc he as wordt verplaatst. Voor de
op een na grootste verhouding van structurele eigenfrequen ties onderzocht in deze dis-
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sertatie, treedt, in visceuze transsonsiche stroming, een subkritische bifurcatie van de
limietcyclus oplossing op wanneer de elastische as naar ach ter worden verplaatst.

Het response oppervlak dat nodig is om berekeningen te kunne n doen met ADePK
is bestudeerd om te onderzoeken of het aanwijzingen over het bifurcatie gedrag be-
vat. Door middel van het een-voor-een lineariseren van de ae rodynamische krachten, is
vastgesteld dat, op de nominale structurele parameterwaar des, de fase van de liftkracht
de grootste invloed op het bifurcatie gedrag heeft. Als de fa se van de liftkracht constant
gehouden wordt op zijn gelineariseerde waarde, resulteert een compleet ander bifurca-
tie gedrag dan wanneer er rekening gehouden wordt met de ampl itude-afhankelijkheid
van de fase van de liftkracht (voor alle aerodynamische niet -lineariteiten). Daarom zijn
doorsnedes van het response oppervlak waarop de fase van de l iftkracht versus de limiet-
cyclus amplitude (op de �adder- and de 5 ±-limietcyclus-trilvorm) te zien is, bestudeerd.
Uit een vergelijking van de sinus van deze doorsnedes (d.w.z . de sinus van de liftkracht
versus de oscillatie amplitude) met het bifurcatie diagram blijkt dat de vorm van deze
twee gra�eken ongeveer hetzelfde is. Echter, voor andere ve rhoudingen van de struc-
turele eigenfrequenties dan de nominale verhouding, zijn d e vorm van de sinus van de
liftkracht en die van het bifurcatie diagram niet altijd ong eveer hetzelfde. Daarom is
verder onderzoek nodig om uit te vinden waarom deze twee curv es voor andere struc-
turele parameters niet meerdere ongeveer dezelfde vorm heb ben of om een parameter
te identi�ceren die voor alle structurele parameterwaarde s dezelfde vorm heeft als het
bifurcatie diagram.

De fase van de liftkracht is berekend met stromingssimulati es met een geforceerde
harmonische beweging op de �adder trilvorm om lokale fenome nen verantwoordelijk
voor het gedrag van de fase van de liftkracht, en dus ook voor h et bifurcatie gedrag, te
vinden. De schokgolf beweging op de onderkant van het vleuge lpro�el wordt verant-
woordelijk gehouden voor de veranderingen in de fase van de l iftkracht voor de twee
transsonische testgevallen.

In dit proefschrift zijn fundamentele analyses gedaan die h et bifurcatie gedrag van
een twee vrijheidsgraad vleugelpro�el systeem met aerodyn amische niet-lineariteiten
onderzoeken. Een eerste stap is gezet in het identi�ceren va n het effect van verschil-
lende structurele parameter variaties, in het identi�cere n van de relatie tussen de ae-
rodynamische krachten en het bifurcatie gedrag en in het ide nti�ceren van manieren
om het limietcyclus bifurcatie gedrag te voorspellen met be hulp van het lineaire �adder
gedrag. Deze studies met de ADePK methode vormen de basis voo r onderzoeken naar
systemen met meer vrijheidsgraden.
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1
I NTRODUCTION

The �eld of aeroelasticity studies the interaction between structures and a surrounding
�uid �ow. The �uid �ow around, for example, a bridge pillar or an aircraft wing, exerts
forces on the structure and when this structure is �exible en ough, it will deform. This
elastic deformation of the structure will in turn perturb th e �uid �ow surrounding the
structure. When the structure interacts with a steady �ow on e speaks of static aeroe-
lasticity. Two examples of static aeroelastic phenomena ar e divergence of aircraft wings
and tailplanes and control reversal (which make the aircraf t's control surfaces ineffec-
tive). In contrast, the interaction between structure and � uid �ow will become dynamic,
when an external disturbance for example (e.g. turbulence) causes oscillations of e.g. the
wing of the aircraft. Normally, these oscillations will be d amped. However, above certain
airspeeds, the interaction of the structure and the aerodyn amic forces is such that the os-
cillations of the wing will be ampli�ed and the oscillation a mplitude grows. This is called
�utter. Flutter can lead to structural failure and must neve r occur in �ight. Hence, for
certi�cation of an aircraft, the aircraft has to be proven �u tter-free inside its �ight enve-
lope [1]. The boundary beyond which arbitrarily small disturbance s in the �ow will lead
to unbounded growth of the wing's oscillation amplitude is c alled the �utter boundary.
Close to this �utter boundary so-called limit-cycle oscill ations (LCOs) may occur. Dur-
ing these LCOs the oscillation will grow to a constant (and bo unded) amplitude due to
the presence of a non-linearity in the structure or in the �ui d �ow. These limit-cycle
oscillations can be observed e.g. in the F-16 �ghter aircraf t with external stores [ 2–5].

Non-linearities that lead to limit-cycle oscillations in t he �eld of aeroelasticity can be
either structural or aerodynamic in nature. Structural non -linearities include non-linear
stiffeners (e.g. freeplay), geometric non-linearities an d non-linear damping. Aerody-
namic sources of non-linearity might be shock waves or �ow se paration. Combinations
of these sources of non-linearity also lead to limit-cycle o scillations, see e.g. [6–11]. LCOs
due to structural non-linearities are relatively easy to st udy both experimentally and nu-
merically, as is represented by the large amount of literatu re available on the subject,
see e.g. [12–20]. Lee et al. [21] present a detailed overview of LCOs caused by structural
non-linearities.

1
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In contrast, non-linearities in the �ow are more dif�cult to investigate both exper-
imentally and numerically. Experiments require expensive wind-tunnel tests and nu-
merical investigations require a computationally expensi ve �ow solver that is capable
of representing the sources of aerodynamic non-linearity. Numerical investigations in
this area have only gained interest due to the increased comp uter power over the last
few decades. Hence, investigations that study limit-cycle oscillations caused by aerody-
namic non-linearities are limited and therefore this thesi s focusses on limit-cycle oscil-
lations due to these non-linearities.

In this chapter �rst the motivation of this thesis is present ed. Then, the types of limit-
cycle oscillations will be discussed in Section 1.2. Section 1.3provides an overview of the
investigations performed by previous researchers. At the e nd of this section the unan-
swered questions in the �eld of �ow-induced limit-cycle osc illations will be addressed.
The objectives of this thesis following from these research questions will be presented in
Section 1.4. Finally an outline of the thesis is given in Section 1.5.

1.1. M OTIVATION OF THIS THESIS
The aviation authorities see limit-cycle oscillations as a type of �utter, i.e. they are not
allowed for certi�cated aircraft. The proof that an aircraf t is �utter-free inside its �ight
envelope has to be delivered by �ight tests and one or two othe r methods [ 1]. Generally,
a numerical prediction method, validated by (wind-tunnel) tests, is used. This �utter-
prediction method comprises a linearised method, which ass umes �utter to be a linear
phenomenon. However, �utter is, in reality, always non-lin ear, i.e. a certain minimum
excitation level is needed in order for �utter to occur. Henc e, linearised methods that
predict �utter onset will fail to predict actual, non-linea r, �utter. That is, limit-cycle os-
cillations of �nite amplitude might already occur below the �utter boundary,

Therefore, it is necessary to investigate whether a lineari sed �utter analysis predicts
the correct �utter speed, or whether stable limit-cycle osc illations do already occur be-
low the �utter boundary. Hence, the main research question o f this thesis is:

Can limit-cycle oscillations caused by aerodynamic non-li nearities occur below the
(linear) �utter boundary?

And if so, at what �ow conditions do they occur? And what struc tural properties are
needed for them to occur?

In order to investigate whether limit-cycle oscillations c an occur below the �utter bound-
ary, numerical �ow simulations are used in this thesis. The m ost direct, and commonly
used, method to study limit-cycle oscillations caused by ae rodynamic non-linearities is
�uid-structure coupling, in which a computational �uid dyn amics (CFD) code is cou-
pled to a structural solver. This approach has been used by [ 22–30]. However, such
a coupling method is computationally expensive and hence no t suitable to study the
limit-cycle oscillation amplitude as a function of, for exa mple, the freestream velocity.
Therefore, computationally ef�cient methods that predict limit-cycle oscillations with
suf�cient accuracy, i.e. non-linear reduced-order models (ROMs), are needed for a faster
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prediction and evaluation of the aircraft's non-linear aer oelastic behaviour. In this thesis
such a ROM will be developed and then it will be used to investi gate the possibility of
non-linear �utter below the �utter boundary.

1.2. LIMIT -CYCLE OSCILLATIONS
Limit-cycle oscillations (LCOs) are the simplest form of no n-linear aeroelastic oscilla-
tions. In these oscillations the oscillation amplitude �rs t grows (or decreases) and then
stays constant, i.e. the oscillation amplitude remains lim ited, due to the presence of a
non-linearity. Other, more complicated, non-linear aeroe lastic responses include higher
harmonic and sub-harmonic resonances, jump-resonances, e ntrainment, beating and
period doubling [ 31]. Limit-cycle oscillations are often used as a prototype of a non-
linear aeroelastic response. Figure 1.1 shows an example of a time signal of an LCO and
a phase plane view of an LCO.

a

time

(a) Oscillation amplitude versus time

a

_,

(b) Phase plane

Figure 1.1: A limit-cycle oscillation

For systems with aerodynamic non-linearities there exist t wo types of LCOs depending
on the strength of non-linearity, i.e. LCOs can be either ben ign or detrimental. Figure
1.2 depicts these two types of LCOs. The variation of the LCO ampl itude (or LCO mode
shape) with, for example, the freestream velocity, as shown in Figure 1.2, is called the
bifurcation behaviour. The dynamic pressure is another pos sible bifurcation parameter.
In the case of �utter, i.e. when no non-linearities are prese nt, the oscillation amplitude
would increase unboudedly and hence this is represented in t he bifurcation diagram by
a vertical line at the �utter speed, see Figure 1.2. Benign LCOs occur beyond the �utter
boundary. For a benign LCO, or more precisely, a supercritic al Hopf bifurcation, the
LCO amplitude increases with an increasing value of the bifu rcation parameter. If the
benign non-linearity is weak, the LCO amplitude will quickl y grow when the airspeed
or dynamic pressure is increased, i.e. the deviation from th e linear case is small. If the
non-linearity is strong, a smaller LCO amplitude will resul t and the deviation from the
�utter case is large. These benign LCOs are always stable, i. e. they are attractors. If a
disturbance causes a sudden oscillation amplitude increas e or decrease then the system
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will always return to the LCO state.
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Figure 1.2: Two types of LCO as described by Dowell et al. [ 32]

The second LCO type that might occur is a detrimental LCO. Det rimental LCOs are those
that would occur at airspeeds or dynamic pressures below the �utter boundary. Two
LCOs would then exist below the �utter boundary, a stable and an unstable LCO. The
unstable LCO is a so-called repeller, which separates two st able conditions (�xed points
or LCOs). If a disturbance causes an amplitude increase such that the oscillation am-
plitude of the system is smaller than the unstable LCO amplit ude, then the oscillation
amplitude will decay to zero. If the oscillation amplitude a fter the disturbance is larger
than the unstable LCO amplitude, a stable LCO results. For os cillations with initial am-
plitudes above the stable LCO amplitude, the amplitude will decay to the stable LCO
amplitude, since the stable LCO is an attractor. In this mann er LCOs might exist below
the �utter boundary. In Figure 1.2 unstable LCOs are indicated by a dashed line. The red
line indicates the so-called subcritical Hopf bifurcation , which exhibits hysteresis. When
the freestream velocity is increased up to the �utter speed, and there is no disturbance
larger than the unstable LCO amplitude, at the �utter speed a ny disturbance will cause
a sudden amplitude increase up to the stable LCO amplitude. T hen the LCO amplitude
increases with freestream velocity. When the freestream ve locity is decreased from a ve-
locity above the �utter speed, the stable LCO amplitude decr eases, until the point below
which no LCOs exist (which is called a saddle-node bifurcati on of limit cycles [ 33]) is
reached. At this point the LCO amplitude will drop to zero, i. e. the LCO will disappear. If
there is a disturbance larger than the unstable LCO amplitud e at a velocity lower than the
�utter speed but larger than the velocity at which the saddle -node bifurcation of LCOs
occurs, then a stable LCO would occur below the �utter bounda ry.
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1.3. PREVIOUS INVESTIGATIONS ON LIMIT-CYCLE OSCILLATIONS
Several reduced-order models (ROMs) for limit-cycle oscil lations caused by aerodynamic
non-linearities have been developed. An overview is given i n Section 1.3.1. Section 1.3.2
then describes the bifurcation behaviour of limit-cycle os cillations obtained from previ-
ous investigations with aerodynamic non-linearities. Fin ally, the remaining open ques-
tions are discussed in Section 1.3.3.

1.3.1. COMPUTATIONAL METHODS
To circumvent computationally expensive �uid-structure i nteraction (FSI) simulations,
various researchers have developed alternative methods. T his section presents an overview.

A �rst alternative method is the aeroelastic harmonic balan ce (HB) method [ 34, 35].
This is a frequency domain method which uses an aerodynamic h armonic balance method
to solve the governing �uid dynamic equations. In this aerod ynamic HB method, the
state variables of the �ow are described using a Fourier seri es and then the governing
�uid dynamic equations are solved in the frequency domain. G reco et al. [34] developed
a frequency-domain transonic small-disturbance equation s solver and Hall et al. [ 36]
applied this procedure for the Euler equations. The frequen cy-domain �uid dynamic
equations can easily be coupled to the equations of motion of an aeroelastic system.
These equations of motion are then solved iteratively in the frequency domain. The
aerodynamic forces are obtained from the HB �ow solver at eac h iteration. Thomas et al.
[35, 37–39] and Greco et al. [ 34] have demonstrated the prediction of limit-cycle oscilla-
tions caused by aerodynamic non-linearities by the harmoni c balance method. Thomas
et al. [37–39] used a RANS-based HB �ow solver derived from Hall et al.'s Eu ler-based
�ow solver, whereas Thomas et al. [ 35] used the Euler-based HB solver [ 36]. Ekici and
Hall [ 40] and Yao et al. [41] have suggested improvements for the coupling of the aero-
dynamic HB method and the aeroelastic equations of motion. Y ao et al. [41] have shown
that the results obtained with their aeroelastic harmonic b alance method are in good
agreement with those obtained from FSI simulations. The har monic balance method
allows for taking into account multiple harmonics in the str uctural motion and in the
aerodynamic response. However, all investigations addres sed above have only consid-
ered the �rst harmonic of the structural motion. For the aero dynamic response, in some
cases, multiple harmonics were used. Application of the aer oelastic harmonic balance
method signi�cantly reduces the computational work compar ed to coupled time do-
main simulations, due to the harmonic balance CFD solver.

Another method that can be used to investigate limit-cycle o scillations is to make
use of neural networks. In that case a neural network is set up using a certain data set
for training. The input to this network is the airfoil's moti on and the output are the aero-
dynamic forces. The network represents the relation betwee n the applied airfoil motion
and the aerodynamic forces. The equations of motion are then solved in the time domain
with the aerodynamic forces predicted from the neural netwo rk. The LCO amplitude is
predicted by applying a certain disturbance to the system an d identifying the system's
response in time, similar as for �uid-structure interactio n simulations. This approach
has been demonstrated in [ 42–44]. Balajewicz and Dowell [ 42] found a good agreement
with the bifurcation behaviour obtained from the harmonic b alance method when the
LCO amplitude was smaller than 3 ±. For larger amplitudes, no agreement was obtained
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with the HB method results. Zhang et al. [ 44] and Mannarino and Mantegazza [ 43] com-
pared their results with FSI simulations and observed good a greement when the neural
network was suf�ciently trained.

A �nal approach is to use an extended version of a linearised f requency domain
method that was actually developed to predict (linear) �utt er, such as the p-k method
or the k-method. The idea for this extended p-k method was �rs t given by Ueda et al.
[45], who used the transonic small disturbance equations as �ow solver. The main idea
is to take into account the amplitude-dependence of the aero dynamic forces instead of
the frequency-dependence only (as in a linearised �utter an alysis). Ueda et al. [45] did
this using superposition of the aerodynamic forces for a two degree-of-freedom (DoF)
airfoil system. To compute the aerodynamic forces a quasi-s teady �ow assumption was
made, which in only valid for low reduced frequencies (< 0.3) . Nevertheless, the method
of Ueda et al. was found to be successful for stable LCOs of sma ll amplitude (i.e. smaller
than 0.5±), in comparison to the results of time domain simulations. T he validity of Ueda
et al.'s method for larger amplitudes could not be proven, be cause of numerical insta-
bilities of the �ow solver during the reference time domain s imulations. Recently, the
extended version of the p-k method of Ueda et al. [ 45] has been used by He et al. [ 46].
He et al. [46] have dropped the quasi-steady �ow assumption and instead u sed CFD
simulations to compute the aerodynamic forces. They also ap plied superposition of the
aerodynamic forces obtained from forced motions of each deg ree of freedom to obtain
the total aerodynamic forces due to the motion of both degree s of freedom simultane-
ously. He et al. [ 46] have demonstrated their extended p-k method for different test cases
using CFD simulations to compute the aerodynamic forces. Go od agreement with other
methods (harmonic balance method, direct time integration ) was obtained when the
non-linearity is weak. For stronger non-linearities devia tions compared to the reference
time-domain solution (and the harmonic balance solution) a re present. Somieski [ 47]
also applied superposition of non-linear forces in an eigen value method for the compu-
tation of limit-cycle oscillations of an aircraft nose land ing gear. He used linear dynamic
relations to relate one non-linearity to the other in case of multiple non-linearities in the
aeroelastic system. In other words, a certain amplitude rel ation is chosen, dependent on
the frequency, to represent the amplitudes of the other non- linearities as a function of
that of the �rst non-linearity. The results of Somieski [ 47] were in excellent agreement
with direct time domain computations.

1.3.2. LIMIT -CYCLE OSCILLATION BIFURCATION BEHAVIOUR

The main sources of aerodynamic non-linearity of interest f or (civil) transport aircraft
are moving shock waves and unsteady interactions of these sh ock waves with the bound-
ary layer. Therefore, most of the previous investigations i nto the bifurcation behaviour
of limit-cycle oscillations have been performed in the tran sonic �ow regime. This �ow
regime is also the main focus of this thesis. However, limit- cycle oscillations have also
been observed in subsonic �ows with boundary-layer transit ion and �ow separation.
Since, the motivation of this thesis is whether and at which � ow conditions subcritical
bifurcations occur, a short overview of these limit-cycle o scillations is also presented
here.

Numerous investigations have been performed in transonic � ow in which various
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airfoils have been studied. Schewe et al. [ 48] and Dietz et al. [ 49, 50] performed wind-
tunnel experiments with the NLR7301 airfoil. Therefore, th is airfoil is often used for nu-
merical studies of limit-cycle oscillations. Several rese archers [22, 23, 25, 26, 28–30, 37,
51–53] investigated LCOs of the NLR7301 airfoil using either �uid -structure coupling or
the harmonic balance method. However, few have considered t he bifurcation behaviour
of the LCOs found for this airfoil. Thomas et al. [ 37] studied the bifurcation behaviour
of the LCO (pitch) amplitude with the HB method using both vis cous and inviscid mod-
elling of the aerodynamics. When the �ow was inviscid a large LCO amplitude was found,
i.e. the non-linearity is apparently very weak. However, fo r the viscous case a supercriti-
cal bifurcation was observed with smaller amplitudes. Henc e, from this study it was con-
cluded that viscous effects are important when studying LCO s caused by aerodynamic
non-linearities.

The bifurcation behaviour of the NACA64A010A airfoil was st udied by various re-
searchers [43, 44, 54–56] using the same linear structural model. Benign LCOs were
found at M1 Æ0.8 and ®0 Æ0± in inviscid �ow [ 43, 44, 56]. Kholodar et al. [ 54, 55] have
performed an extensive study on the LCO behaviour of the NACA 64A010A airfoil under
the variation of two structural parameters (mass ratio and u ncoupled natural frequency
ratio) using the harmonic balance method in combination wit h a �ow solver for the Eu-
ler equations. They found that the mass ratio does not signi� cantly in�uence the type of
LCO behaviour unless the non-linearity is weak. The uncoupl ed natural frequency ratio
was found to in�uence the stability and the eigenform of the L COs. When this ratio is
increased from 0.5 to 1.8, the LCOs are �rst stable (supercri tical), then become weak and
�nally unstable (subcritical). The eigenform changes from plunge dominated to a com-
plex pitch/plunge motion to pitch dominated when the freque ncy ratio is increased. The
Mach number was observed to in�uence the strength of the non- linearity signi�cantly.
Small LCO amplitudes, caused by strong non-linearities, we re only found in a very lim-
ited Mach number range [ 54, 55].

Kousen and Bendiksen [ 57] have studied the NACA64A006 airfoil using �uid-structure
coupling of the Euler equations with a linear structural mod el. They found supercritical
bifurcation behaviour of the LCO amplitude at several trans onic Mach numbers in range
from 0.85 to 0.92. At M Æ0.25 and M Æ0.6, the oscillations were still growing in ampli-
tude after sixty oscillation cycles.

Balajewicz and Dowell [ 42] and Zhang et al. [ 44] have studied the NACA0012 airfoil
in inviscid �ow numerically using neural networks and found supercritical LCOs (each
using a slightly different linear structural model though) . In addition, Balajewicz and
Dowell [ 42] also used the HB method for the NACA0012 airfoil in inviscid �ow. From
this method unstable LCOs were observed at M Æ0.7 and M Æ0.8. At M Æ0.95 both
methods predicted a supercritical bifurcation. Raveh and D owell [ 58] have also used the
NACA0012 airfoil in their study of transonic aerodynamic bu ffet. They observed LCOs at
dynamic pressures below the linearly predicted �utter dyna mic pressure when the nat-
ural frequencies of their two degree-of-freedom system are close to the buffet frequency.

All of the studies mentioned above considered limit-cycle o scillations in transonic
�ow. However, limit-cycle oscillations can also occur in su bsonic �ow, even incompress-
ible �ow at low Reynolds numbers. Poirel et al. [ 24, 59–61] and Yuan et al. [ 62] studied
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the NACA0012 airfoil at Reynolds numbers ranging from 4.5·1 04 to 1.3·105, both exper-
imentally and numerically. The airfoil was assigned either one (pitch) or two degrees of
freedom (pitch, plunge). Limit-cycle oscillations of smal l amplitude ( Ç» 6±) were ob-
served in this Reynolds number range. These small-scale LCO s are attributed to the dy-
namics of the laminar separation bubble [ 59]. They were also found from aeroelastic nu-
merical simulations in the time domain [ 60]. In addition, for the two degree-of-freedom
system large-amplitude LCOs occurred ( & 10±). These are probably caused by �ow sep-
aration at large angles of attack [ 61]. The large-amplitude LCOs do also occur when a
trip wire at 18% of the chord length is applied on the airfoil' s surface [61] (in order to
trigger transition). On the other hand, the small-scale LCO s disappear when the trip
wire is applied [ 61]. These investigations demonstrate that a laminar separat ion bub-
ble (LSB) and laminar trailing-edge separation might be ano ther source of aerodynamic
non-linearity. Poirel and Mendes [ 61] have also varied the uncoupled natural frequency
ratio by a variation of the plunge stiffness for the two degre e-of-freedom airfoil system.
It was observed that for an increase of this ratio from 0.74 to 1.2, the LCO amplitude of
both the small-amplitude and the large-scale LCOs increase d and the range of Reynolds
number for which the small-amplitude LCOs were observed dec reased. For a natural fre-
quency ratio of 1.63 the Reynolds number range for which smal l-amplitude LCOs exist
has increased compared to a frequency ratio of 1.2, but is sti ll smaller than at a frequency
ratio of 0.74.

1.3.3. CONCLUSIONS AND OPEN QUESTIONS

The central question of this thesis, as stated in Section 1.1, is whether aerodynamic non-
linearities might cause limit-cycle oscillations already below the �utter boundary pre-
dicted from linearised theory. The literature overview giv en in this section showed that
several researchers have studied limit-cycle oscillation s caused by aerodynamic non-
linearities. Furthermore, limit-cycle oscillations were found, from numerical simula-
tions or wind-tunnel measurements, in both subsonic and tra nsonic �ow, i.e. caused by
various sources of non-linearity. The bifurcation behavio ur of these limit-cycle oscilla-
tions was also studied by a few researchers, especially in tr ansonic �ow. However, most
of these studies have found supercritical bifurcation beha viour of the LCO amplitude.
Only two studies, who considered transonic inviscid �ow, ha ve observed subcritical bi-
furcations (predicted by the harmonic balance method).

Hence, the question whether a subcritical bifurcation of th e LCO amplitude can oc-
cur and at what �ow conditions and with which structure, has n ot been systematically
addressed by the research community. Especially for realis tic �ight conditions, i.e. for
viscous transonic �ows, almost no systematic investigatio ns into LCO bifurcation be-
haviour were performed and those researchers that studied L COs at these �ow condi-
tions, did not observe subcritical bifurcations of the LCO a mplitude [ 37]. The main focus
of this thesis will therefore be on subcritical bifurcation s caused by aerodynamic non-
linearities occurring in the transonic �ow regime, i.e. sho ck wave motion and unsteady
shock-wave boundary-layer interaction. Non-linearities occurring in subsonic �ow will
be addressed as well. Their detailed analysis is however out of the scope of this thesis.

Furthermore, the effect of variations of the structural mod el and of the aerodynamic
�ow conditions on the bifurcation behaviour has only been ad dressed brie�y by two re-
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search groups, in inviscid transonic �ow [ 54, 55] and in subsonic �ow with free boundary-
layer transition [ 61]. However, since the structural model might be epistemical ly uncer-
tain, it is very important to know what happens to the LCO beha viour when the struc-
tural model changes. Hence, another open question is whethe r a change in the structural
model can result in a change in the bifurcation behaviour in v iscous transonic �ow.

In addition, no studies into the relation between the aerody namic forces and the bi-
furcation behaviour of the limit-cycle oscillations have b een performed. However, such
studies are thought to be essential in order to �nd the source s of amplitude limitation
and to possibly avoid the occurrence of LCOs. Concretely, th e following questions re-
garding the type of bifurcation of limit-cycle oscillation s have not been answered satis-
factory by the research community:

• Can stable limit-cycle oscillations occur below the (linea r) �utter boundary, i.e.
can the bifurcation behaviour be subcritical, in the presen ce of aerodynamic non-
linearities only or are structural non-linearities necess ary?

• Is it possible to have unstable LCOs only without stable LCOs in the presence of
aerodynamic non-linearities?

• Is it possible to deduce the bifurcation behaviour of an LCO s olution from the (lin-
ear) �utter behaviour?

• What is the in�uence of uncertain parameters of the structur al model on the bi-
furcation behaviour?

• Which types of bifurcations are possible in subsonic lamina r/transitional �ow?

• How are the aerodynamic forces, and the occuring type of bifu rcation, related?

In order to be able to study limit-cycle oscillation bifurca tion behaviour and thus an-
swer the questions stated above, a computationally ef�cien t method is necessary. There-
fore, as suggested by the computational methods outlined in Section 1.3.1, a frequency-
domain based non-linear reduced-order model is developed i n this thesis. This ROM will
be an adapted version of the p-k method which will take into ac count the amplitude-
dependence of the aerodynamic forces via an aerodynamic res ponse surface. This re-
sponse surface is set up using harmonic forced motion oscill ations at several amplitudes,
frequencies and complex-valued amplitude ratios between t he degrees of freedom. This
leads to an improvement in accuracy compared to the extended p-k methods of Ueda
et al. [45], He et al. [ 46] and Somieski [ 47], since no superposition of the aerodynamic
forces is applied. The aerodynamic forces will be computed i n a similar way as for the
aerodynamic harmonic balance method [ 34, 35], which does not apply superposition of
the aerodynamic forces either. However, in the aeroelastic HB method, a HB �ow solver
is used to obtain the aerodynamic forces during the solution procedure of the aeroelas-
tic equations of motion. In the ROM developed in this thesis w ork, on the other hand,
the aerodynamic forces are interpolated on the aerodynamic response surface (which is
obtained a-priori from harmonic forced motion oscillation s) during the iterations of the
equations of motion-solver. Since the ROM will be a frequenc y domain method, it will be
possible to separate the aerodynamics and the structure, su ch that structural parameter
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variations can be easily studied once an aerodynamic respon se is available. Further-
more, using the ROM it might be possible to relate certain fea tures in the aerodynamic
response surface to a certain type of bifurcation behaviour of the limit-cycle oscillations.
When this is possible, can certain aerodynamic features (re versed shock motion, shock-
induced separation, etc.) even be linked to a certain respon se surface shape? And hence
to a certain bifurcation type? To the knowledge of the author , these questions have not
been answered yet by other investigators who studied limit- cycle oscillations caused by
aerodynamic non-linearities.

1.4. OBJECTIVES
From the open questions stated in Section 1.3.3, the objectives of this thesis are derived.
The main objective of this thesis is to study the bifurcation behaviour of LCOs caused
by aerodynamic non-linearities. In doing so, the main resea rch questions of this thesis
will be answered. To be able to �nd out whether a subcritical b ifurcation of the LCO
amplitude can occur due to aerodynamic non-linearities onl y, several sub-objectives are
de�ned. Concretely, these objectives are to:

• Identify the sources of the amplitude limitation in a limit- cycle oscillation caused
by an aerodynamic non-linearity. An energy budget analysis of a limit-cycle oscil-
lation is performed, in order to identify why the LCO establi shes itself and what
global features are responsible for this amplitude limitat ion. The results of this
analysis can be used to �nd out if there is a relation between t he aerodynamic
forces and the bifurcation behaviour.

• Develop and validate a frequency domain ROM for estimating t he LCO amplitude.
This method is necessary in order to study the bifurcation be haviour of the limit-
cycle oscillations in a computationally ef�cient way. The w orking principle of the
developed non-linear ROM is �rst veri�ed using analytical t est cases, because for
these test cases exact solutions are available and no expens ive CFD simulations are
necessary. Once the working principle has been established , the non-linear ROM
is validated using coupled FSI simulation results, to assur e that the developed non-
linear ROM is suf�ciently accurate.

• Study the bifurcation behaviour of limit-cycle oscillatio ns caused by various sources
of aerodynamic non-linearity using the developed ROM. In th is way, it can be es-
tablished whether stable limit-cycle oscillations can alr eady occur below the �ut-
ter boundary and for aerodynamic non-linearities these sub critical bifurcations
occur.

• Investigate the effect of a change in the structural model on the bifurcation be-
haviour of the limit-cycle oscillation amplitude. The nomi nal structural model
may result in a supercritical bifurcation, but a change in bi furcation behaviour
of the limit-cycle oscillation amplitude might occur when t he structural model
changes.

• Find a relation between the aerodynamic features and the typ e of bifurcation that
occurs. When it is possible to relate the behaviour of the aer odynamic forces or the
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local pressure distributions to the bifurcation behaviour , then this relation might
be used to quickly establish the type of bifurcation that wil l occur based on a few
forced motion oscillation simulations.

It should be noted here that the ROM developed in this thesis i s only a means to study the
bifurcation behaviour of the limit-cycle oscillations at r educed computational costs and
therefore no optimisation in terms of the ef�ciency of the RO M is attempted in this the-
sis. Furthermore, to study the (subcritical) bifurcation b ehaviour of limit-cycle oscilla-
tions caused by aerodynamic non-linearities, this thesis w ill consider a two-dimensional
aeroelastic problem, i.e. an airfoil system with two degree s of freedom; bending and tor-
sion. As these two degrees of freedom usually couple during � utter of three-dimensional
wings as well, this is thought to be a good �rst step.

1.5. OUTLINE OF THE THESIS
Chapter 2 of this thesis describes the aeroelastic problems consider ed in this thesis and
discusses the methods that are used to solve them. Chapter 3 considers the energy bud-
get of limit-cycle oscillations. Time-consuming �uid-str ucture interaction simulations
are used together with simulations in which the airfoil is fo rced to perform a sinusoidal
motion to analyse the energy budget during LCO development. This gives insight into
the factors responsible for the amplitude limitation. The f requency domain method
used for computing the LCO amplitude and mode shape is veri�e d and validated in
Chapter 4. Furthermore, the �rst applications of the amplitude-depe ndent p-k method
ADePK are shown in Chapter 4. In Chapter 5 ADePK is applied to study the LCO bifur-
cation behaviour of several aerodynamic non-linearities ( e.g. shock waves, trailing-edge
separation, boundary layer transition). In addition, the i n�uence of several structural
model parameters on the bifurcation behaviour is studied (i n both viscous and inviscid
�ow). Also, the effect of a change in Mach number is analysed i n inviscid �ow. The �-
nal part of Chapter 5 considers the response surface necessary for the frequency domain
method. The response surface is analysed and related to the b ifurcation behaviour. The
aerodynamic non-linearities responsible for the response surface curvature are identi-
�ed. Finally, Chapter 6 presents the conclusions of this thesis and an outlook to fut ure
work.
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2
AEROELASTIC PROBLEM

DESCRIPTION AND SOLUTION

STRATEGIES

2.1. INTRODUCTION
This chapter describes the aeroelastic problem that has bee n studied in this thesis, a two
DoF airfoil system and the solution strategies to solve this problem. The airfoil, the struc-
tural model and the �uid model are presented �rst. Then, the s olution strategies used to
solve the aeroelastic problem are addressed. Both time and f requency domain methods
have been applied. In the time domain, �uid-structure coupl ing is applied. The de-
tails of this coupling are shortly described in Section 2.3. The frequency domain method
used for linear �utter prediction is presented in Section 2.4. Section 2.5 describes the
frequency domain-based non-linear ROM developed in this th esis for the prediction of
LCOs, the amplitude-dependent p-k method ADePK.

2.2. AEROELASTIC PROBLEM DESCRIPTION
To solve an aeroelastic problem, a model of the system is need ed. In the structural model
the stiffness is modelled by linear springs which are propor tional to the displacement.
Structural damping, if present, is modelled by viscous damp ing proportional to the ve-
locity. Additionally, aerodynamic forces are present when the system is placed in a �uid
�ow. The aerodynamic forces are in general non-linear funct ions of the displacement,
velocity and acceleration. Newton's second law is used to de rive the equations of motion
of an aeroelastic system. In matrix form the equations of mot ion for a general aeroelastic
problem of n degrees of freedom are given by:

Parts of this chapter have been published in van Rooij et al., Prediction of aeroelastic limit-cycle oscillations
based on harmonic forced motion oscillations, AIAA journal (submitted).
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M~̈x Å D~�x Å K~x Æ~f
¡
~x, ~�x, ~̈x

¢
, (2.1)

where M is the mass matrix, containing the masses, mass moments of in ertia and the
static moments, D is the structural damping matrix, K contains the structural stiffnesses
and ~f the aerodynamic forces. ~x is the displacement vector containing the displace-
ments of all degrees of freedom (DoFs). The mass, damping and stiffness are nxn-matrices.
The displacement vector ~x and the force vector ~f are n-dimensional vectors.

The aeroelastic problems considered in this thesis will be r estricted to a maximum
of two degrees of freedom. The general equations of motion fo r such a system are given
by (2.1). To study the behaviour of limit-cycle oscillations based on aerodynamic non-
linearities only, a two degree of freedom airfoil system wit hout structural non-linearities
will be considered. This two DoF aeroelastic system is allow ed to pitch (i.e. rotate) and
plunge (i.e. translate vertically). Figure 2.1 shows an example of an airfoil system with
two degrees of freedom. It consists of two springs and two dam pers.

Figure 2.1: Sketch of the model with two degrees of freedom

The equations of motion of this two DoF system are derived usi ng conservation of linear

and angular impulse. Linear and angular impulse, denoted by ~�G and ~�H , respectively, are
de�ned as:

~�G Æm~a Æ
X

~F (2.2)

~�H Æm~r £ ~a Æ
X

~Mea, (2.3)

where m is the mass, ~a the accerelation vector and ~r the displacement vector of the
system. ~F is the vector containing the external forces in x, y and z-direction and ~Mea is
the vector containing the moments about all three axis. For t he two DoF system depicted
in Figure 2.1, the conservation of linear impulse in z-direction and the conservation of
angular impulse about the y-axis are needed to derive the equations of motion. In order
to do so the displacement vector ~r of the system is needed. This vector is de�ned as:
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~r Æ

2

6
4

S®
m cos(®)

h Å S®
m sin(®)

0

3

7
5 , (2.4)

where S® the static mass moment around the elastic axis. The plunge di splacement is
denoted by h and the rotation around the elastic axis by ®. Now it is assumed that ® is
small such that sin( ®) ¼® and cos(®) ¼1, hence~r becomes:

~r Æ

2

6
4

S®
m

h Å S®
m ®

0

3

7
5 . (2.5)

The acceleration vector a is then given by:

~̈r Æ~a Æ

2

4
0

ḧ Å S®
m ®̈

0

3

5 . (2.6)

The linearised equations of motion are now obtained using ( 2.2), (2.3), (2.5) and (2.6):

·
m S®

S® I®

¸

| {z }
M

·
ḧ
®̈

¸

|{z}
~̈x

Å
·
Dh 0
0 D®

¸

| {z }
D

· �h
�®

¸

|{z}
~�x

Å
·
Kh 0
0 K®

¸

| {z }
K

·
h
®

¸

|{z}
~x

Æ
·

¡ L
M Å xea ·L

¸

| {z }
~f

, (2.7)

where I® the mass moment of inertia, Kh the plunge stiffness, K® the torsional stiffness,
Dh is the plunge damping and D® is the torsional damping. The aerodynamic force vec-
tor ~f consists of the aerodynamic lift L and the moment around the elastic axis M Å xeaL,
where M is the moment about the quarter-chord point and xea the distance between the
quarter-chord point and the elastic axis, which is positive when the elastic axis is located
aft of the quarter-chord point. Note that in the de�nition of the moment around the
elastic axis, the small-angle assumption has again been use d.

2.2.1. NLR7301 AIRFOIL
The airfoil used in this thesis is the NLR7301 airfoil. This a irfoil has been used for various
wind tunnel tests [ 1–9] and numerical investigations e.g. [ 10–20]. The airfoil, originally
designated as the NLR HT 7310810 airfoil, has been designed b y the holograph method
[21] developed at the National Aerospace Laboratory (NLR). It i s a supercritical airfoil
with a design Mach number of 0.721 and a design lift coef�cien t of 0.595. For the wind-
tunnel measurements performed by Zwaaneveld [ 1], the airfoil was manufactured hav-
ing a 1% thick trailing-edge, instead of the sharp trailing- edge the theoretical NLR HT
7310810 airfoil had. Therefore the wind-tunnel model was re named to NLR7301 airfoil.
Experimentally the shock-free design pressure distributi on was established to occur at
M Æ0.747 and at a lift coef�cient cl of 0.455 (in case of free boundary layer transition)
[1]. The theoretically and experimentally obtained shock-fr ee pressure distributions as
well as the airfoil itself are depicted in Figure 2.2 (which has been taken from [ 1]). The
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theoretical pressure distribution shown in this �gure has b een obtained from potential
theory by Boerstoel and van Egmond [ 22]. The NLR7301 airfoil is relatively thick, with
a maximum thickness of 16.5%. The nose radius of the airfoil i s 5% of the chord length.
Since the cut-off trailing-edge NLR7301 airfoil has been us ed in various experiments and
numerical studies (as mentioned above), this airfoil, with the coordinates of Zwaaneveld
[2], has also been used in this thesis. Although it should be not ed here that the purpose of
this thesis is not to directly compare the results obtained i n this work to those obtained
from the wind-tunnel experiments mentioned above. Neverth eless, a small validation
has been performed for two steady test cases of Dietz et al. [ 8], see Appendix A.

Figure 2.2: Design pressure distribution of the NLR7301 air foil [ 1]

2.2.2. STRUCTURAL MODEL
The structural model consists of a set of mass, stiffness and damping properties of the
airfoil structure. These are constant when the structural m odel is linear, as is the case
throughout this thesis. Schewe et al. [ 5, 6] and Dietz et al. [ 7–9] have tested the NLR7301
airfoil in the Transonic Wind Tunnel Göttingen (TWG). The st ructural properties of this
airfoil model were used as a starting point in this thesis. Ta ble 2.1 provides these proper-
ties, which were taken from [ 8]. Note that in comparison to the classical two DoF system,
the elastic axis is located at the quarter-chord point, i.e. xea Æ0 m. Other elastic axis lo-
cations will be studied in Chapter 5. The chord length c and the structural properties m,
I®, K®, Kh and S® were determined from direct measurements. In addition, a gr ound
vibration test has been carried out in order to correct the me asured values obtained for
the mass moment of inertia, the static mass moment and the plu nge spring stiffness [ 8].
The pitch and plunge damping constants were obtained from th e ground vibration test
as well. More details can be found in [ 8].
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Structural parameter Value
Wing span b 1.0 m
Chord length c 0.3 m
Mass m 26.268 kg
Mass moment of inertia (about the elastic axis) I® 0.079 kgm2

Torsional spring stiffness K® 6.646·103 Nm/rad
Plunge spring stiffness Kh 1.078· 106 N/m
Static moment related to EA S® 0.331 kgm
Pitch damping D® 0.0687 kgm2/s/rad
Plunge Damping Dh 45.764 kg/s
Distance between quarter-chord point and elastic axis xea 0 m

Table 2.1: Structural parameters for the two DoF NLR7301 air foil system (taken from Dietz et al. [ 8])

2.2.3. FLUID MODEL
The �uid is modelled using the Computational Fluid Dynamics (CFD). In this thesis ei-
ther the Euler equations or the Reynolds-Averaged Navier-S tokes (RANS) equations (or
Favre-Averaged Navier-Stokes equations when the �ow is com pressible) are solved. The
CFD code used is the TAU code [ 23], which was developed by the German Aerospace
Center. The compressible RANS equations are derived from th e Navier-Stokes (NS) equa-
tions. The conservative form of the NS-equations is:

@½

@t
År ·

¡
½~u

¢
Æ 0, (2.8)

@
¡
½~u

¢

@t
År ·

¡
½~u ­ ~u

¢
Æ ¡r p År · ¯̄¿, (2.9)
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¡
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År ·

¡
½E~u

¢
Æ ¡r ·

¡
p~u

¢
År ·

¡
~u · ¯̄¿

¢
År ·~q, (2.10)

where in ½is the density, ~u Æ[u,v,w ]T is the velocity vector, p is the pressure, T is the
temperature, E ÆeÅ 1

2

¡
u2 Å v2 Å w 2

¢
is the total speci�c energy (here e is the internal

energy) and ~q Æ ¡kr T is the heat �ux vector, where k is the thermal conductivity. In
(2.9), ~u ­ ~u represents the tensor product of the velocity vector with it self. In (2.10), ¯̄¿ is
the stress tensor, whose components are given by:

¿i j Æ¹
µ

@u i

@x j
Å

@u j

@xi

¶
Å ¸± i j

@uk

@xk
, (2.11)

where ¹ is the dynamic viscosity, ¸ the Lamé coef�cient and ±i j the Kronecker delta. The

Lamé coef�cient is usually taken as: ¸ Æ ¡ 2¹
3 [24].

In order to have the same number of equations as there are unkn owns, an equation of
state is needed to complete the system. For a perfect gas in te rms of the internal energy
this is:

p Æ(· ¡ 1)½e Æ(· ¡ 1)½
µ
E ¡

1

2

¡
u2 Å v2 Å w 2¢

¶
, (2.12)
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where · is the ratio of speci�c heats.
In the Reynolds-/Favre-Averaged Navier-Stokes approach i t is assumed that the �ow

quantities can be decomposed into an average and a �uctuatio n around this average.
In the compressible case, i.e. in order to derive the Favre-A veraged Navier-Stokes equa-
tions, two decompositions are used. The �rst decomposition , which is also used for in-
compressible �ows, is known as the Reynolds' average. The Re ynolds' average, which is
a time-average, is given by:

Á (x, t ) ÆÁ̄ (x, t ) Å Á0(x, t ) , (2.13)

where Á represents a �ow quantity. The mean is indicated by a bar and t he �uctuation of
the �ow quantity is indicated by an accent. The second decomp osition is the Favre aver-
age [25, 26] (also known as the mass average). This decomposition is use d for compress-
ible �ows, since in that case it is impractical to use only the Reynolds' decomposition,
because extra unknowns will result. The Favre average [ 25, 26] is de�ned as [ 27]:

Á Æ
½Á

½̄
Å Á

00
ÆÁ̃ Å Á

00
, (2.14)

where the �uctuation of a �ow quantity is now indicated by a do uble accent and the
Favre average is indicated by a tilde. To derive the Favre-av eraged Navier-Stokes equa-
tions for a compressible �ow, the Reynolds' average is used f or the pressure and the den-
sity, whereas the Favre average is used for the other �ow quan tities (such as the velocity
components). When these decompositions are substituted in (2.8), (2.9) and (2.10) and
when the time average (i.e. the Reynolds' average) is taken o f the resulting equations, the
following Favre-Averaged Navier-Stokes equations result [27]:
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where in the momentum equation ¿i j is given by:

¿i j Æ ¡
2
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¹
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@xk
±i j Å ¹

µ
@̄u i

@x j
Å

@̄u j

@xi

¶

(2.18)

and H is the total enthalpy, de�ned as H Æh Å 1
2

¡
u2 Å v2 Å w 2

¢
, with h the enthalpy.

As can be seen from (2.16) and (2.17) there are three terms in these equations that are
unknown, these must be modelled, i.e. the system of equation s that must be solved is

not closed. The �rst of these three terms, ½u
00

i u
00

j , is called the Favre-averaged turbulent
stress tensor it is modelled by the commonly used “Boussines q hypothesis” [ 27]:
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where k is the turbulent kinetic energy (TKE), de�ned as: k Æ1
2 ·u

00

i u
00

i . The second un-

known that must be modelled is the Favre-averaged turbulent heat �ux vector ½u
00

i H 00.
Here it is modelled as follows [ 27]:
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@x j
, (2.20)

where ¹ T is the turbulent dynamic viscosity, cp is the speci�c heat at constant pressure
and PrT is the turbulent Prandtl number (Pr T Æ¹ T cp / k t , where k t is the thermal con-
ductivity).

The last term that must be modelled is the Favre-averaged tur bulent molecular dif-

fusion and turbulent transport term ¿i j u
00

j Å 1
2½u

00

j u
00

i u
00

i [27]:
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where ¾k is a constant (its value depends on the turbulence model used ).
In the following, the term “RANS equations” will refer to ( 2.15) till ( 2.17), i.e. to the

Favre-Averaged Navier-Stokes equations.

BOUNDARY CONDITIONS

In order to solve the RANS equations, boundary conditions ar e needed. At the airfoil sur-
face the no-slip condition is applied, i.e. the velocity vec tor is zero ( ~u Æ~0). At the bound-
aries of the simulation domain a far�eld boundary condition is used. TAU assigns in-
�ow/out�ow conditions to the nodes at this boundary dependi ng on the �ow direction.
For turbulent and transition modelling the turbulence inte nsity Tu and eddy viscosity
ratio ¹ T / ¹ are speci�ed at the far�eld boundary. This is discussed in mo re detail after
the turbulence and transition models have been presented. T o assure two-dimensional
�ow, symmetry boundary conditions are used at the symmetry p lanes, i.e. the velocity
in y-direction is set to zero and the gradients of scalars in y-direction are set to zero.

TURBULENCE MODEL

A two-equation turbulence model consists of two additional transport equations, one
for the turbulent kinetic energy k and another one for the dissipation rate ² or the spe-
ci�c dissipation rate ! , which is de�ned as: ! Æ² / k . Here ² is the dissipation rate, i.e.
the rate at which the turbulent kinetic energy dissipates in to internal energy. The Menter
Shear-Stress Transport (SST) is an extension to the Menter b aseline model. This baseline
model is actually a combination of the Wilcox k-! model and the k-² model. The k-!
is accurate in the near-wall region, whereas the k-² model is independent of the free-
stream in the outer layer [ 28]. The transport equation for the turbulent kinetic energy k
is the same as for that of the Wilcox k-! model. The transport equation for ! has been
changed, such that extra cross-diffusion terms appear and t he modelling constants are
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variable [ 28]. The transport equations for k and ! of the Menter SST turbulence model
are given by:
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(2.23)

where ¯ ¤ , ¾! , ° 1, ¯ and ¾! 2 are constants. F1 is a blending function between the k-!
and the k-² model [ 28]. The eddy viscosity ¹ T is modelled in the Menter SST model as:

¹ T Æ
½a1k

max (a1! ;­ F2)
, (2.24)

where a1 is a constant equal to 0.31, ­ is the absolute value of the vorticity and F2 is a
function that is one in a boundary-layer �ow and zero in a free shear-layer �ow. Further
details can be found in [ 28].

TRANSITION MODEL

When computations with free boundary layer transition are p erformed, the so-called ° ¡
Reµ transition model developed by Langtry [ 29] and Menter et al. [ 30] is used. This model
is based on two additional transport equations. The �rst equ ation is a transport equation
for the intermittency ° . The intermittency indicates whether the �ow is laminar (th en
° Æ0) or turbulent ( ° Æ1). In the transition region the intermittency factor has a v alue
between zero and one. ° is used to switch on the production of turbulent kinetic ener gy
in the turbulent part of the boundary layer.

The second transport equation is for the transition onset mo mentum-thickness Rey-
nolds number Reµt . The idea behind this equation is that Re µt is seen as a transported
scalar quantity. The non-local effect of freestream turbul ence intensity and pressure gra-
dient at the boundary layer edge is taken into account via an e mpirical correlation

Reµt Æf
¡
Tu, dp / ds

¢
.

The turbulence intensity Tu is de�ned as [ 31]:

Tu Æ100·

r
1
3

³
u 002 Å v 002 Å w 002

´

U1
, (2.25)

where u
00
, v

00
and w

00
are the velocity �uctuations of the freestream in x-, y- and z-

direction, respectively. The turbulence intensity is usua lly de�ned in %. The empirical
correlation for Re µt is used in the production term in the transport equation for Reµt .
The details of this empirical correlation can be found in [ 29].
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The transport equation for the intermittency ° and the transition momentum thick-
ness Reynolds number Reµt are given by [29, 30]:
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where P° 1 is the transition source term, E° is the destruction or relaminarisation source,
¾f is a constant, Pµt is the source term of the momentum thickness Reynolds number
and ¾µt is a constant. P° 1 is zero in the laminar part of the boundary layer and it equal
to one when the transition starts, this is controlled by an on set function. Furthermore,
another function, Flength , that is part of this production term, controls the length of the
transition region. The onset function depends on the critic al Reynolds number Re µc ,
which is connected to Re µt via an empirical correlation. The correlation between the
transition Reynolds number and the Flength function is obtained from experiments. E° is
a destruction term when the intermittency increases from ze ro to one and a relaminar-
isation term when the intermittency decreases from one towa rds zero. Some modi�ca-
tions to the model are made in case of separated �ow transitio n [30]. More details about
the ° ¡ Reµ transition model can be found in [ 29, 30].

Although, boundary-layer transition remains dif�cult to p redict, the ° ¡ Reµ transi-
tion model as used in this thesis, is an effective model for tr ansition prediction. The
model is effective especially in case of bypass transition i .e. when the freestream turbu-
lence intensity is large and the linear growth phase of the To llmien-Schlichting-waves is
bypassed. The ° ¡ Reµ transition model is able to predict a transition region by in creas-
ing the value of ° . In contrast, the eN -method developed by van Ingen [ 32] and Smith
and Gamberoni [ 33], can only predict the linear growth phase of Tollmien-Schl ichting
(TS) waves, i.e. at the transition onset location predicted by the eN -method the �ow
becomes fully turbulent immediately. Although, the linear growth phase of TS-waves
comprises the largest part of the boundary layer transition process, in reality transition
takes place over a �nite length and hence the transition onse t and transition length con-
cepts of the ° ¡ Reµ model are more realistic than the eN -method. On the other hand,
the eN -method can also predict cross-�ow instabilities, which ca nnot be predicted by
the standard ° ¡ Reµ method. Hence, the standard ° ¡ Reµ method is not suited for
boundary-layer transition studies of three-dimensional c on�gurations where cross-�ow
instabilities are expected to be dominant. However, there a re several developments to
solve this problem, see e.g. Grabe and Krumbein [ 34].

In this thesis a natural transition test case is considered a nd therefore a low turbu-
lence intensity is chosen. Seyfert and Krumbein [ 35] have shown that in such a case the
transition locations on the NLF(1)-0416 airfoil as predict ed by both the eN -method and
the ° ¡ Reµ method (with the correlation of Langtry [ 29]) agree well with experimental
results. Also, Langtry and Menter [ 36] have shown a good agreement between experi-
mental results and the numerical results from the ° ¡ Reµ method, for the PAK-B blade
cascade at low turbulence intensity levels and similar Reyn olds number as considered
in this thesis. Hence, from these investigations it is con�r med that the ° ¡ Reµ method
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is a valid transition prediction method for the purposes of t his thesis. The model will be
applied for the subsonic �ow test case shown in Section 5.2.3.

BOUNDARY CONDITIONS FOR THE TURBULENCE AND TRANSITION MODEL S

In order to use the turbulence and transition models the turb ulence intensity has to be
speci�ed at the far�eld boundary upstream of the airfoil. Ho wever, a certain intensity is
required at the leading edge of the airfoil. Therefore, Lang try [ 29] describes a method to
estimate the decrease in turbulence intensity from the far� eld boundary to the leading
edge of the airfoil. The turbulence kinetic energy decrease s according to:

k Æk inlet
¡
1Å ! inlet ¯ t

¢¡ ¯ ¤

¯ , (2.28)

where ¯ and ¯ ¤ are now equal to 0.09 and 0.0828, respectively and t is a timescale given
by: t Æx/U1 , where x is the distance from the far�eld boundary to the airfoil. The
turbulence intensity at the airfoil's leading edge can be co mputed from the turbulence
intensity at the inlet and the eddy viscosity ratio at the inl et by using equation ( 2.29);
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. (2.29)

The eddy viscosity ratio at the inlet in�uences how fast Tu de cays. When
¡
¹ T / ¹

¢
inlet

is large, then the decay rate will be small. The turbulent kin etic energy at the far�eld
boundary k inlet is determined from the turbulence intensity at the far�eld b oundary
Tu inlet and the freestream velocity. At the airfoil's surface k is zero. ! inlet is determined
from k inlet , the eddy viscosity and the density at the far�eld boundary. At the airfoil's
surface ! is determined from the distance of the point closest to the su rface and the
viscosity. More details on the boundary conditions for k and ! can be found in TAU's
technical documentation [ 37]. For the transition model, the boundary conditions are
stated by Menter et al. [ 30], i.e. ° is 1 at the far�eld boundary and at the airfoil's surface
a zero normal �ux is invoked. The boundary condition for Reµt at the far�eld boundary
can be computed from the empirical correlation for Re µt with Tu at the far�eld boundary.
At the airfoil's surface a zero �ux of Reµt is again invoked.

D ISCRETISATION

In this thesis a moving airfoil is simulated. Hence, the unst eady RANS (URANS) ap-
proach is used. This means the time derivatives in ( 2.15)-(2.17) are retained. When the
airfoil is not moving, the RANS equations are solved with pse udo time stepping.

A cell-vertex �nite volume method is applied to solve the RAN S equations. The tem-
poral discretisation has been realised by Jameson's dual ti me stepping [ 38] with the 2nd
order accurate Backward Differencing Formula (BDF2) integ ration scheme for the phys-
ical time stepping. For solving steady state problems, the c oncept of local time stepping
is applied in combination with the multigrid method. For spa tial discretisation the 2nd-
order central scheme [ 39] has been used.
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