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Estimating higher-order structure functions from geophysical turbulence time series:
Confronting the curse of the limited sample size
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Utilizing synthetically generated random variates and laboratory measurements, we document the inherent
limitations of the conventional structure function approach in limited sample size settings. We demonstrate that
an alternative approach, based on the principle of maximum likelihood, can provide nearly unbiased structure
function estimates with far less uncertainty under such unfavorable conditions. The superiority of this approach
over the conventional approach does not diminish even in the case of strongly correlated samples. Two entirely
different types of probability distributions, which have been reported in the turbulence literature, are found to be
compatible with the proposed approach.
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I. INTRODUCTION

Characterization of small-scale turbulence by higher-order
statistical moments has a long and rich history in both
laboratory and geophysical settings. Dating back nearly
50 years, Van Atta and Chen [1] conducted an extensive
atmospheric boundary layer (ABL) experiment to measure
up to fourth-order moments of atmospheric velocity fluctu-
ations over the ocean. Their study revealed some intriguing
similarities, and differences, between what was observed and
the existing turbulence hypotheses [e.g., Kolmogorov and
Obukhov 1941 (KO41) [2,3]]. These findings led to increased
efforts (see Refs. [4–10], just to name a few) to acquire
extensive measurements of ABL flows in order to further
explore the statistical and dynamical features of turbulence
(e.g., power-law scaling, nonlinearity in energy cascade). At
the same time, researchers in a myriad of other geophysical
disciplines, from oceanography (e.g., phytoplankton biomass
distribution in turbulent coast waters [11,12]) to magneto-
hydrodynamics (e.g., intermittency in solar wind fluctuations
[13–17]), initiated their own investigations in this intriguing
research arena. Due to the lack of modern instrumentation, the
majority of the initial studies were conducted solely within
the Eulerian framework (by invoking the so-called Taylor’s
hypothesis). Fortunately, several recent contributions have
attempted to fill the void in the Lagrangian framework (see
Refs. [18–21] and references therein).

Over the years, the utilization of higher-order statistics not
only became common practice for (in)validating various hy-
potheses against experimental findings, but it also enabled the
research community to gain a better understanding of different
types of turbulent flows. For example, many studies have been
conducted which strive to make a distinction between active
and passive scalars [22–24] as well as contrasting atmospheric
convection [25,26] from Rayleigh-Bénard convection [27–31].
For other illustrative examples, please refer to the outstanding
books by Frisch [32] and Tsinober [33].
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In parallel to the analysis and characterization studies, a
handful of pioneering works focused on the development
of cascade models with the inherent ability to capture the
observed higher-order scaling behaviors. These models ranged
from a simplistic �-model which seeks to resemble the
intermittent behavior of turbulent cascade from a geometric
point-of-view [34,35] to a more complex probabilistic model,
which describes the energy cascade (multiplicative) process
within the inertial range in a multifractal framework [36–38].
Likewise, a number of other simplified dynamical models
(e.g., shell models, stochastic Burgers equation) [39–43]
were developed to mimic a number of intrinsic traits of
three-dimensional turbulence. From our perspective, this line
of research is still far from being mature.

It is important to acknowledge that the aforementioned
higher-order characterization and related modeling activities
are not only of importance from a pedagogical point of view,
but they are also beginning to make impacts in diverse practical
applications, including (but not limited to) combustion [44,45];
wind energy [46], and atmospheric modeling [47]. We strongly
believe that the gamut of applications can be significantly
broadened with further analyses of various geophysical data
sets. Unfortunately, the typical sample size of such data sets is
orders of magnitude fewer than their laboratory counterparts.
This disparity in sample size poses a serious challenge for
higher-order statistical analyses using the traditional sample
moments. In this paper, we advocate an alternative approach
to confront this challenge.

II. LIMITED SAMPLE SIZE PROBLEM

It is common knowledge in the turbulence research commu-
nity that capturing higher-order moments of turbulent variables
can be rather difficult without a substantial sample size of
experimental data [8,32,48–55]. In particular, the ability to
accurately estimate the moments can be directly related to
the tails of the underlying probability density function (pdf),
which signify rare events [56].

Thus, in laboratory settings, it is customary to measure
turbulence with upwards of 107 samples using hot-wire
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anemometry (sampling rate on the order of several kHz).
However, acquisition of hot-wire data in a natural geophysical
setting is quite challenging. For example, in the case of ABL
field experiments, one needs to perform meticulous hot-wire
calibration at short regular intervals in order to account for
the ever-changing, diurnally varying ABL flow parameters
[57,58]. As a viable alternative, the ABL community widely
uses sonic anemometers (sampling rate of � 20 Hz) for
measuring turbulent velocity fields. In contrast to hot wires,
these sensors require much less periodic calibration and
maintenance. However, these instruments can only collect
O(20–40) thousand samples during a measurement time
window of 15–30 min. Publications, from as early as the 1970s,
pointed out that such short time series are not adequate for
estimating moments beyond fourth-order [1,8]. Unfortunately,
one cannot circumvent this problem by simply using longer
time records owing to the frequent interference of nonstation-
ary and nonturbulent motions (a.k.a. mesoscale motions). An
earlier work attempted to tackle this problem using cumulants
[59]. It was demonstrated that a cumulant-based approach can
reliably estimate the so-called intermittency exponent [32]
from short ABL time series. However, the cumulants involve
logarithmic functions of the velocity increments; as such, they
are more influenced by the peak of the pdf rather than its tails.
Thus, their usage in the estimation of higher-order moments
is questionable. As an alternative, in this paper, we illustrate
a maximum likelihood-based moment estimation technique
which can provide statistically accurate higher-order moments
from relatively short geophysical series.

III. QUANTIFYING UNCERTAINTY IN STRUCTURE
FUNCTION ESTIMATES

It is customary to quantify the behavior of fine-scale fully
developed turbulence, using structure function (SF) analysis:

Sp = �| u(x + r) Š u(r)|p� = �| �u|p� � r�p, (1)

where Sp is the pth-order SF with respect to the spatial
separation (or increment), r . The angular brackets here indicate
spatial averaging, |�u|p is the pth-order absolute moment of
the velocity increments, and �p is the scaling exponent.

Many laboratory and geophysical turbulence studies have
shown that the pdfs of velocity increments, pdf[�u], are scale-
dependent and change steadily within the inertial subrange.
Specifically, these distributions have shown to exhibit strong
non-Gaussian behavior at small increments, then become
more Gaussian as separation increases [15,56,61–65]. A
few years ago, Barndorff-Nielsen et al. [56] demonstrated
that the normal inverse Gaussian (NIG) distribution has the
inherent ability to capture such scale-dependent traits in a
parsimonious manner. An illustrative example is shown in
Fig. 1. Here, following the approach by Rydberg [60], we
have numerically generated three NIG distributed variates with
different parameter settings. This figure clearly attests to the
fact that the NIG distribution can indeed capture heavy-tailed
(€), moderate-tailed (� ), and near-Gaussian (� ) distributions
with appropriate choice of parameters. More details regarding
the NIG distribution are provided in Appendix A.

Next, using the NIG distributed variates, we quantify the
impacts of pdf shapes and sample sizes on the uncertainty of

FIG. 1. NIG distributed variates with three different parameter
combinations: (a) � = 0.1,� = 1, (b) � = 1,� = 1, and (c) � = 2,� =
2. For all these cases, the parameters µ and � are assumed to be equal
to zero. Please refer to Appendix A for a detailed description of the
NIG parameters. For each case, 107 samples were generated using
Rydberg’s algorithm [60]. The distributions were normalized by the
standard deviation ��u. A Gaussian pdf is overlaid (dashed line) as a
reference.

the SF estimates. We consider a wide range of sample sizes (N )
from 103 to 107 for each of the three pdfs shown in Fig. 1. In
order to obtain reliable statistics, we generate 100 realizations
for each case. Based on the numerically generated variates,
we compute SF using Eq. (1). Without loss of generality, we
focus on the sixth-order SF (S6).

The decision to consider S6 as a test statistic was not
arbitrary. In turbulence literature, there is considerable interest
in the accurate estimation of S6, since its scaling exponent
is directly used to determine the intermittency exponent,
µ� � 2 Š �6, which relates to the behavior of the underlying
non-Gaussian distributions.

The estimated (henceforth “empirical”) S6 values are shown
in Fig. 2 utilizing a standard box-plot notation where 50% of
the data lie within the blue “box” and the red line segment
within the “box” is the median value of the data. The
“whiskers” (i.e., the vertical dashed line segments) correspond
to ± 2.7� , while the + are the outliers. The following
observations can be made based on this figure:

(1) For all the cases, with increasing sample size the
S6 estimates converge towards the true values as would be
expected.

(2) For comparable sample size, the uncertainty of the S6
estimate is much higher for the heavy-tailed case than the
near-Gaussian case; the moderate-tailed case falls in between.

(3) For small sizes, the S6 estimates are strongly biased for
the heavy-tailed case. The bias decreases for the moderately
tailed case, while for the near-Gaussian case, the estimates are
close to unbiased.

These findings have significant implication on geophysical
data analyses and require scrutiny in to whether a collection of
samples are robust enough to provide an accurate estimation
of a specific higher-order moment. In a recent paper, Dudok
de Wit [66] made an interesting contribution in this arena
by borrowing ideas from the Extreme Value (EV) theory. He
proposed a simple approach to compute the maximum moment
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FIG. 2. “Empirical” S6 box plots for three different NIG distributions with parameter combinations: (a) � = 0.1,� = 1, (b) � = 1,� = 1,
and (c) � = 2,� = 2. The parameters µ and � are assumed to be equal to zero. The sample sizes (N ) are varied from 103 to 107. One hundred
realizations are used for the construction of the box plots. The dashed magenta lines represent the true S6 values based on Eq. (A4).

order (pmax) for which reliable estimation of structure function
(Spmax ) is feasible for a given spatial or time series. In the
following section, using the aforementioned NIG distributed
variates, we elaborate on Dudok de Wit’s approach followed
by a recommendation for certain improvement.

IV. ESTIMATING pmax FROM LIMITED DATA

Let us denote the rank-ordered (in decreasing order)
absolute value of the velocity increments as: �k = | �u|k/��u,
where k = 1, . . . ,N . Dudok de Wit [66] showed that for
small values of k,�k versus k follows the well-known Zipf
power-law behavior:

�k �
�

k
N

� Š� �

, (2)

where � � is known as the tail index (a.k.a. shape parameter).
Via analytical derivations (with one minor approximation),
Dudok de Wit [66] related � � to pmax as follows:

pmax =
�

1
� �

�
Š 1, (3)

where the floor bracket denotes the integer part.
In Fig. 3 the rank-ordered plots for three NIG distributed

variates are shown. In these log-log plots, the power-law

behavior is clearly discernible for small values of k. Following
Dudok de Wit’s approach, � � values are estimated using
ordinary linear regression over the range of 10 � k � 1000.
These values along with the estimated pmax values are reported
in Table I.

As shown in Ref. [66], and illustrated here in Table I, there is
a clear dependence on pmax values for the various sample sizes.
Additionally, we also notice that the shape of the pdfs directly
influences pmax. For instance, in the case of the heavy-tailed
distribution (� = 0.1 and � = 1), a minimum sample size of
107 is required in order to provide a reliable estimate of S6.
However, for a near-Gaussian distribution (� = 2 and � = 2),
only 105 samples will suffice. We would like to note that these
results are in complete agreement with the ones reported in
Fig. 2.

Even though the overall approach of Dudok de Wit [66]
is quite elegant and powerful, the tail index estimation
component is rather subjective and not statistically robust.
It can be significantly improved by employing one of the
well-tested estimators from the field of EV theory [67] instead
of using linear regression. Over the years, several estimators
for � � have been proposed in the literature, including (but not
limited to) Pickand’s estimator [68], Hill estimator [69], and
the Dekkers-Einmahl-de Haan estimator [70]. In this work, we

FIG. 3. Rank-order (a.k.a. Zipf) plots for NIG distributed variates with three different parameter combinations: (a) � = 0.1,� = 1, (b)
� = 1,� = 1, and (c) � = 2,� = 2. The parameters µ and � are assumed to be equal to zero. The sample sizes (N ) are varied from 104 to 107.
The tail indices (� � ) are estimated for N = 104 (dot-dashed) and N = 107 (dashed) and reported in the bottom-left corner of the plots.
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