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Salt Reconstruction in Full Waveform Inversion
with a Parametric Level-Set Method

A. Kadu, T. van Leeuwen and W. A. Mulder

Abstract—Seismic full-waveform inversion tries to estimate
subsurface medium parameters from seismic data. Areas with
subsurface salt bodies are of particular interest because they
often have hydrocarbon reservoirs on their sides or underneath.
Accurate reconstruction of their geometry is a challenge for
current techniques. This paper presents a parametric level-set
method for the reconstruction of salt-bodies in seismic full-
waveform inversion. We split the subsurface model in two parts: a
background velocity model and the salt body with known velocity
but undetermined shape. The salt geometry is represented by a
level-set function that evolves during the inversion. We choose
radial basis functions to represent the level-set function, leading
to an optimization problem with a modest number of parameters.
A common problem with level-set methods is to fine tune the
width of the level-set boundary for optimal sensitivity. We propose
a robust algorithm that dynamically adapts the width of the level-
set boundary to ensure faster convergence. Tests on a suite of
idealized salt geometries show that the proposed method is stable
against a modest amount of noise. We also extend the method to
joint inversion of both the background velocity model and the
salt-geometry.

Index Terms—Level set, Inverse problem, Seismology

I. INTRODUCTION

SEISMIC imaging attempts to obtain detailed images of
the subsurface from seismic data. Such data are obtained

by placing explosive or other types of sources on or near the
surface and recording the response with a large array of re-
ceivers at the surface. By repeating the experiment many times
for different source positions, enough data can be gathered to
form useful images. The scale of these experiments varies from
tens of meters, for instance, for near-surface imaging, to tens
of kilometers in oil and gas exploration, up to the whole Earth
in global seismology. For hydrocarbon exploration, depths
typically extend to several kilometers.

One of the main challenges of seismic imaging is that the
propagation velocity of the seismic waves traveling through
the subsurface is unknown. Since this velocity can vary sig-
nificantly, both laterally and with depth, it has to be estimated
prior to applying a conventional imaging method. A wrong
subsurface velocity can lead to severely distorted images. The
conventional workflow for seismic imaging, therefore, is to
first estimate the subsurface velocity and subsequently back-
propagate the data to obtain an image. The success of this
two-step approach relies crucially on the ability to isolate
the reflection events in the data. This can only be done if
the earth structure is relatively simple, e.g. smoothly varying
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with small perturbations. A particularly relevant setting in
which the separation-of-scales argument fails to hold is in the
presence of strong contrasts, such as salt diapirs, salt slabs,
anhydrite or basalt layers. Salt geometries are of particular
interest because they often have hydrocarbon reservoirs on
their sides or underneath.

Full-waveform inversion (FWI) attempts to fit the data using
a fairly precise numerical model for wave-propagation in
heterogeneous media [15], [37], [55]. By posing the inverse
problem as a non-linear least-squares problem, the velocity
structure in the subsurface can, in principle, be estimated
quantitatively. However, this optimization problem is severely
non-linear and ill-posed, making it very difficult to obtain
reasonable results without a good initial guess of the velocity
parameters. Starting from an initial guess that is far away from
the truth often leads to an incorrect subsurface model. While
many approaches have been proposed to mitigate this problem,
the issue remains unsolved [8], [35], [51], [53].

In this paper, we aim to alleviate the ill-posedness of the
problem to some extent by adding an appropriate regulariza-
tion. In the particular setting of salt bodies, it is reasonable
to assume that the subsurface can be described as one or
more continuous bodies (salt) with known constant material
parameters, surrounded by continuously varying parameters
(sediment). Our approach is based on a level-set method,
where we implicitly represent the shape of the salt body with a
level-set function. By expanding the level-set function in some
basis, we greatly reduce the effective number of parameters
and obtain a non-linear optimization problem that is better
behaved than the original non-linear least-squares problem.

The paper is organized as follows. In Section II, we review
the details of the classical FWI approach and give an overview
regularization approaches specifically aimed at the reconstruc-
tion of salt bodies. In Section III, we present the basics of the
parametric level-set method and discuss several practical issues
in detail. Numerical results on a stylized seismic example
are presented in Section IV. Finally, Section V concludes the
paper.

II. FULL WAVEFORM INVERSION

Full waveform inversion (FWI) is non-linear data-fitting
scheme aiming to retrieve detailed estimates of subsurface
properties from seismic data. The basic workflow of FWI is
as follows: (1) predict the observed data by solving a wave-
equation, given an initial guess of the subsurface velocity, (2)
compute the difference between predicted and observed data,
and (3) update the velocity in order to improve the data fit. This
process is repeated in an iterative fashion until the residual
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drops below some tolerance. An excellent overview of various
flavors of this basic scheme can be found in [55].

There are several ways to model seismic wave propagation,
in either the frequency or time domain. We refer the reader
to the reviews by [9] and [54]. For our purpose, it suffices
to consider a two-dimensional scalar Helmholtz equation that
models the acoustic pressure:

ω
2m(x)u(ω,x)+∇

2u(ω,x) = q(ω,x), (1)

where x ∈ R2 denotes the subsurface position, m(x) is the
squared slowness with units s2/m2, ω is the angular frequency,
q the source term and u the pressure wavefield. We consider
an unbounded domain and impose Sommerfeld radiation con-
ditions [4]. The observed data are modeled by solving (1) for
several sources {qi}ns

i=1 and sampling the resulting wavefields
ui at locations {x j}nr

j=1 and frequencies {ωk}
n f
k=1, i.e.,

di jk = ui(ωk,x j).

The inverse problem is now to retrieve m(x) from a set of
observations di jk. This problem has been extensively studied
and uniqueness results are available for a few specific cases,
including layered earth-models, small perturbations around a
known smooth reference medium and asymptotic versions of
the problem. We refer to [49] for an extensive overview.

A. Discretization and optimization

A common approach to the inverse problem is to first
discretize and solve the wave equation for forward modelling
and to subsequently formulate a finite-dimensional data-fitting
problem.

A finite-difference discretization of (1) on an N-point grid
with absorbing boundary conditions leads to a sparse system
of equations

A(ω,m)u = q,

where A ∈ CN×N is structurally symmetric and indefinite.
Various dispersion-minimizing finite-difference stencils have
been proposed in the literature [20], [45], [52] and several
absorbing boundary conditions are described in [10] and [11].

The system of equations can be solved by a decomposition
of A such as the LU (lower and upper triangular) decompo-
sition. The advantage of this direct approach is that, once the
decomposition has been performed, the system can be solved
efficiently for multiple sources by forward and backward sub-
stitution [25], [27]. The direct approach with nested dissection
[16] is efficient for 2-D problems [19], [20], [48]. However,
the time and memory complexities of LU factorization and its
limited scalability on large-scale distributed memory platforms
prevent its application to large-scale 3-D problems that may
involve more than 10 million unknowns [31]. Helmholtz-
specific factorization methods have been developed [56], but
these are only suitable when the computational cost can be
amortized over many sources.

Iterative solvers provide an alternative approach for solving
the Helmholtz equation [12], [21], [34], [39]. These itera-
tive solvers are usually implemented with Krylov subspace
methods [41] that are preconditioned by solving a damped

Helmholtz equation. The solution of the damped equation
is computed efficiently with a multigrid method. The main
advantage of the iterative approach is the low memory require-
ment, although the main drawback results from the difficulty
to design an efficient preconditioner because A is indefinite
[13]. Also, the iterative scheme has to be started again for
each source.

Organizing the observations in a vector d ∈ CM with M =
nsnrn f , we introduce the forward operator

d = F(m).

Application of the forward operator on a given model m in-
volves the solution of n f ns Helmholtz equations, including the
LU decompositions, and constitutes the main computational
cost of FWI.

The conventional least-squares formulation of FWI can now
be expressed as

min
m
{ f (m) = 1

2‖F(m)−d‖2
2}. (2)

This optimization problem is typically solved with a Newton-
like algorithm [38]:

mk+1 = mk−λkH−1
k ∇ f (mk),

where λk is the step size and Hk denotes (an approximation of)
the Hessian of f at iteration k. The gradient of the objective
is given by

∇ f (m) = J(m)∗(F(m)−d),

where J(m) is the Jacobian of F and J∗ denotes its adjoint or
conjugate transpose. In practice, the Jacobian matrix is never
formed explicitly but its action is computed using the adjoint-
state method [18]. This entails solving nsn f linear systems
with A∗ and the residual as right-hand sides. The action of the
(Gauss-Newton) Hessian may be computed in a similar fashion
at the cost of additional Helmholtz-solves [38]. This can be
done cheaply in 2D if the LU factors are kept in memory while
needed [29].

B. Ill-posedness and local minima
Unfortunately, waveform inversion is hampered by the pres-

ence of local minima in f [42]. In practice, this requires a
good initial estimate of the parameters m. To circumvent this
problem, the data can be inverted in a multi-scale fashion,
starting at some lowest frequency available in the data and
using the inversion result to initialize a next pass at a higher
frequency [8], [47]. The low frequencies are important in
reconstructing the large-scale variations in the model, while
high frequencies fill in the details [6]. All of these will
fail, however, when the initial guess does not explain the
observations well enough for the lowest available frequency.

Many alternative formulations have been proposed that
depart from the usual data-fitting approach [5], [35], [50], [51],
[53]. While these approaches can to some extent mitigate the
non-linearity of the problem, they do not solve the inherent
ill-posedness of the problem. This means that some features
of m are simply not recoverable, regardless of the method we
use to estimate the parameters. To address this problem, we
need to add regularization.
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C. Regularization

We distinguish two types of regularization: implicit regular-
ization, where we add a penalty ρ(m) to the objective in (2) to
penalize unwanted features, and explicit regularization, where
we expand m in an appropriate basis that contains only the
features we desire. For example, when we expect the model
to vary smoothly, we can penalize the second derivative by a
penalty term

ρ(m) = ‖Lm‖2
2,

with L the discrete Laplace operator. Alternatively, we can
choose a representation of the form

m = Ba,

where B consists of smooth basis functions such as B-splines.
This type of regularization works well when the scales of
the model are separable, since we can invert for a smoothly
varying velocity from low-frequency data [8].

In some geological settings, however, the scales do not
separate, and we need to find an alternative form of regular-
ization. If we expect our model to have strong discontinuities,
a popular choice is a Total-Variation (TV) regularization with
ρ(m) = ‖Dm‖1, with D a discrete gradient operator [24], [40].
A natural basis is hard to define in this case. Alternatively,
we can regularize the model by imposing the constraint
‖Dm‖1 ≤ τ [14].

A disadvantage is that TV regularization acts globally and
causes the model to be blocky everywhere. Nevertheless, some
promising results have been obtained recently [2], [3], [14].

As an alternative to TV regularization, a level-set method
for waveform inversion in the presence of salt-bodies has been
considered by [17], [23]. For completeness sake and to set the
notation, we first give a brief overview of the classical level-set
approach and then introduce our approach.

III. LEVEL-SET METHOD

We represent m(x) as being constant in a certain region
and continuously varying elsewhere. We start again from the
continuous formulation of the inverse problem and derive a
finite-dimensional optimization problem analogous to (2). We
represent m as

m(x) =
{

m1 if x ∈Ω,
m0(x) otherwise.

Here, Ω indicates the salt-body, m1 is the constant value of the
model parameter inside the salt body and m0(x) denotes the
spatially varying parameters in the sediment. Fig. 1 sketches
three different models, representing the smooth variation,
blocky structure and a combination of both. Model 1 is a
typical sediment structure, while model 2 represents the salt
geometry. We generally expect a seismic velocity distribution
similar to model 3, combining model 1 and 2.

We can represent the model formally as

m(x) = [1−χΩ(x)]m0(x)+χΩ(x)m1,

where χΩ(x) is the indicator function of Ω. The inverse
problem now consists of finding the set Ω and the model

Model 1

0 2 4 6 8 10

x [km]

0

1

2

3

z
 [
k
m

]

2000

3000

4000

Model 2

0 2 4 6 8 10

x [km]

0

1

2

3

z
 [
k
m

]

2000

3000

4000

Model 3

0 2 4 6 8 10

x [km]

0

1

2

3

z
 [
k
m

]

2000

3000

4000

Fig. 1. Model 1: smooth velocity variation (sediment). Model 2: random 2D
body with higher velocity (salt). Model 3: combination of smooth variation
and blocky model. All velocities in m/s.

parameters m0(x) and m1. The basic idea behind the level-
set method is to represent the domain Ω through a level-set
function as Ω = {x |φ(x) ≥ 0} [28], [32]. This then leads us
to represent the indicator function as χΩ(x) = h(φ(x)), where
h is the Heaviside function h(s) = (1+ sign(s))/2.

To be able to compute sensitivities, one typically uses a
smooth approximation of the Heaviside function. A common
choice is

hε(s) =
1

1+ e−s/ε
,

where hε → h as ε → 0. This function has the nice property
that its derivative is non-zero everywhere. A disadvantage is
that, in order to accurately represent the indicator function,
the level-set function φ will need to tend to ±∞. This induces
very steep gradients in φ around the boundary of the level-
set. In turn, these steep gradients in φ require that we pick
a proportionally large ε to remain sensitive to changes in the
level-set. This suggest that we pick ε in accordance with the
(maximum) gradient of φ . We will get back to this observation
in Section III-C.

To avoid some of these issues, we use a smooth Heaviside
defined by

hε(s) =


0 if s <−ε,
1
2

[
1+ s

ε
+ 1

π
sin(πs

ε
)
]

if − ε ≤ s≤ ε,

1 if s > ε.

To avoid getting trapped in the region where h′ε = 0, we again
have to pick ε in accordance with the (maximum) gradient of
φ . A practical heuristic to pick ε and adapt it to the current
φ will be discussed in Section III-C.

The level-set method was originally introduced for tracking
regions in fluid flow applications, providing a natural way to
evolve the level-set by solving a Hamilton-Jacobi equation
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[33]. In applications like FWI, it is not obvious how to update
φ away from the boundary of Ω, because h′ε(x) quickly tends
to zero. The problem of finding the level-set function is ill-
posed.

A. A parametric level-set approach

We adopt a method proposed in [1] and represent the level-
set function with a finite set of radial basis functions (RBFs):

φ(x) =
L

∑
i=1

αiΨ(β‖x−ξ i‖2),

where Ψ(r) is a RBF, ξ i are the nodes and β is a scaling
parameter. The choice of RBF will be discussed in more detail
in the next subsection.

Discretization on an N-point grid leads to the so-called
RBF-kernel matrix K ∈ RN×L with elements ki j = Ψ(β‖xi−
ξ j‖2), allowing us to represent the parameters as

m(m0,m1,α) = m0� (1−hε (Kα))+m1hε (Kα) , (3)

where � represents element-wise multiplication, also known
as the Hadamard product. We can now define the corre-
sponding optimization problem for the parametric level-set ap-
proach, for fixed m0,m1, as minization over the cost functional

f̃ (α) = 1
2‖F(m(α))−d‖2

2. (4)

The gradient of this objective is given by

∇ f̃ (α) =

(
∂m
∂α

)T

∇ f (m(α)), (5)

where
∂m
∂α

= diag
{
(m11−m0)�h′ε(Kα)

}
K.

B. Radial basis functions

Radial basis functions are a means to approximate smooth
multivariate functions. They have been extensively studied
in the context of the interpolation of scattered data in high
dimensions and for meshless methods [7], [36], [58]. RBFs
are classified into two main types, global RBFs, which have
infinite support, and compactly supported RBFs. Next, we dis-
cuss some relevant properties when we consider approximating
a given smooth function φ using RBFs.

1) Global RBFs: Global RBFs have infinite support and
hence the RBF kernel matrix K is dense. An overview of
several common global RBFs is given in Table I and their
radial behavior is shown in Fig. 2. For the multiquadric, the
kernel matrix is positive definite [26]. Among the advantages
of global RBFs are (1) highly accurate and often exponentially
convergent, (2) easy applicable to high-dimensional problems,
(3) meshless in the approximation of multivariate scattered
data and (4) numerical accuracy is easily improved by adding
more points in regions with large gradients.

However, the corresponding interpolation matrix is dense
and ill-conditioned and therefore sensitive to the shape pa-
rameter. As a result, the application of traditional RBF inter-
polation to large-scale problems is computationally expensive.

TABLE I
GLOBAL RBFS.

Name Ψ(r)
Gaussian exp(−r2)

Multiquadric
√

1+ r2

Inverse multiquadric (IMQ) 1√
1+r2

Inverse quadratic (IQ) 1
1+r2
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Fig. 2. Various types of global and compact (Wendland) RBF.

2) Compactly supported RBF: These result in a sparse, pos-
itive definite, and generally better conditioned kernel matrix
[57]. However, the order of approximation is usually less than
with global RBFs. Table II provides an overview of some
common compactly supported RBFs. Fig. 2 presents their
radial behavior.

C. Shape representation

To determine which type of RBF is most suitable for our
purpose, we study how well we can represent typical salt
bodies with various RBFs. These salt models are discretized
on a cartesian grid with grid spacing h. We choose the nodes
of the RBFs on a cartesian grid with a larger grid spacing
hr = 5h and normalize the scale parameter for the compactly
supported RBFs with β = 1

γhr
.

We determine the coefficients α by solving

min
α

1
2‖hε(Kγ α)−m‖2

2,

with a L-BFGS method [30]. Results for the Wendland-4 RBF
with γ = 4 and ε = 10−1 are shown in Fig. 3(a–d). The lower-
order Wendland RBFs gave a less good approximation. Results
with the global RBFs are similar to those of the compact ones.

TABLE II
WENDLAND COMPACTLY-SUPPORTED RBFS. HERE, k DENOTES THE

ORDER OF SMOOTHNESS (I.E., φ IS K TIMES CONTINUOUSLY
DIFFERENTIABLE).

Name Ψ(r) k

Wendland-1 (1− r)2
+ 0

Wendland-2 (1− r)4
+(4r+1) 2

Wendland-3 (1− r)6
+(35r2 +18r+3) 4

Wendland-4 (1− r)8
+(32r3 +25r2 +8r+1) 6

.
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As noted earlier in Section III, we need to pick ε in
accordance with the gradient of level-set function in order to
have optimal sensitivity. We propose to choose ε adaptively
based on the (fraction) of upper bound on the gradient. It is
represented as

ε = κ
[
max(Kγ α)−min(Kγ α)

]
. (6)

This choice of ε with κ = 5× 10−2 produced the results in
Fig. 3(e–h).

D. Algorithm

Algorithm 1 summarizes parametric level-set full waveform
inversion (PLS-FWI). This method introduces a small, O(N)
flops overhead compared the the conventional FWI approach.
This is negligible compared to the O(N(3/2)) complexity of
solving the Helmholtz equation in 2D with nested dissection.

Algorithm 1 PLS-FWI Basic Algorithm
Input: Data d∈Rns×nr×n f , estimate of background parameter

m0, salt parameter m1, initial estimate of weights α , κ

Output: final weights α , model m
1: for j = 1 to itermax do
2: compute Heaviside ε from equation (6)
3: compute misfit f̃ (α) from equation (4) and gradient

∇ f̃ (α) from equation (5)
4: α ← α +λ H̃−1∇ f̃ (α)
5: end for
6: compute m from equation (3).

Algorithm 2 outlines the multi-scale approach of PLS-
FWI. We reduce κ for Heaviside ε after every frequency
band to decrease the size of level-set boundary. The idea
is to start optimization with large boundary (high κ) and
small initial level-set to capture large sensitivity, allowing for
large updates. Decreasing the level-set boundary then provides
sharper images.

Algorithm 2 PLS-FWI Multi-scale Algorithm
Input: Data in frequency batches {d1,d2, . . .dn}, estimate

of background parameter m0, salt parameter m1, initial
estimate of weights α0

Output: model m
1: κ ← 0.1
2: for i = 1 to nbatches do
3: α i← PLS-FWI(di,m0,m1,α i−1,κ)
4: κ ← 0.8×κ

5: end for
6: ε ← 0
7: compute m from equation (3).

IV. RESULTS

To demonstrate the capabilities of the parametric level-
set full waveform inversion, we perform simulations on four
different velocity models. These models are shown in Fig. 4.
Each has a background velocity increasing linearly with depth
as 1500+bz with b = 0.8333. The salt bodies in these model

have a constant velocity of 4500 m/s. We choose a grid spacing
of 50 m in each direction, providing a total of N = 201×61
grid points.

The acquisition setup is shown in Fig. 5, with 50 sources
placed at top of the model and 100 receivers placed at the
depth of 50 m. Also shown is the part of the model to which
the data are most sensitive. Features of the model in the lower
left and right corners are hard to recover because of the limited
aperture.

We use a frequency-domain finite-difference code [46] to
generate the data for frequencies between 2.5 and 3.5Hz with a
spacing of 6.25×10−2 Hz. The data are weighted in frequency
by a Ricker wavelet with a peak frequency of 15 Hz. For
the inversion, we select four bands, [2.5− 2.75]Hz, [2.75−
3.0]Hz, [3.0− 3.25]Hz and [3.25− 3.5]Hz, each with 4 four
frequencies.

For PLS-FWI, the RBF grid has a spacing of 250m in both
directions. As shown in Fig. 6, two extra layers of RBF nodes
are added outside the physical domain to provide flexibility in
reconstructing the level-set near the boundary. We use a fourth-
order Wendland RBF with γ = 4 and choose ε adaptively as
described in Section III-C. We found that ε usually stabilizes
after the first few iterations.

We compare FWI and PLS-FWI on noise-free and on
data with white noise, with an SNR of 10dB. Finally, we
perform a joint reconstruction of both the salt geometry and
the background model m0 = 1500+ bz, parametrized by the
slope b.

For FWI, we use a projected Quasi-Newton method [44]
to solve the resulting optimization problem with bound-
constraints on m to ensure that the velocity stays within
the feasible range of [1500,4500]m/s. To solve the resulting
optimization problem in α (PLS-FWI), we rely on the L-BFGS
approximation of the Hessian [43]. We perform 150 iterations
per frequency band while resetting the L-BFGS memory after
handling each frequency band. For joint salt and background
reconstruction with PLS-FWI, we use a bisection method to
find the optimal b.

A. Salt geometry determination

The initial model for conventional FWI and the background
model for PLS-FWI are taken to be the same, linearly increas-
ing velocity models as in the true ones. For PLS-FWI, we let
m1 correspond to the true velocity in the salt and initialize the
level-set as shown in Fig. 6. For model B, we initialize the
level-set function with two positive regions near the top of the
two salt bodies.

1) Noise-free data: Fig. 7a, 7c, 7e and 7g show the re-
constructed models using FWI. To a large extent, the results
predict the top of the salt but fail to identify its proper shape.
They also include some artefacts, as shown in the left bottom
part of Fig. 7g. On the other hand, PLS-FWI almost perfectly
recovers the salt geometry in each of the models, as can be
seen in Fig. 7b, 7d, 7f and 7h. These models retain their
sharpness even with low frequencies because we reduce ε to
zero in step 6 of algorithm 2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a), (b), (c), (d) show level-set reconstructions of salt geometries with fixed ε = 0.1, while (e), (f), (g), (h) reveal the improved reconstructions with
new formulation of ε presented in equation (6) (red dotted line denotes the reconstructed zero contour of the level-set).
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Fig. 4. Velocity models (in m/s) created for the inversion test. They are referred to as model A (a), model B (b), model C (c) and model D (d).

Fig. 5. Source and receivers for the simulation. Sources are placed on top,
receivers at a depth of 50 m. The two ray paths separate the region recoverable
by inversion from the shaded non-recoverable part [22].
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Fig. 6. Placements of RBF on the computational grid (denoted by thick black
line). To initialize the zero contour of the level set (green line) that defines the
salt body, a few RBFs around the center have been allocated positive values
(denoted by red plusses), others are negative (denoted by blue dots).

To compare the proposed method with conventional FWI,

TABLE III
COMPARISON OF MISFIT AND RRE VALUES FOR CLASSICAL FWI VS

PLS-FWI

Model
ERF RRE

FWI PLS-FWI FWI PLS-FWI

A 0.0281 5.8197×10−4 0.8213 0.0707
B 0.0221 2.9183×10−4 0.8072 0.0856
C 0.0261 4.7127×10−4 0.9102 0.0732
D 0.0339 9.0299×10−6 0.8088 0.0434

we define the error reduction factor (ERF),

ERFrecon =
‖F(mrecon)−d‖2

‖F(m0)−d‖2
.

An ERF close to the best achievable ERF (0 in case of noise-
free data) indicates a better performance of the reconstruction
method in reducing the data misfit. Table III shows the
improvement in the data misfit with PLS-FWI over classic
FWI. The data misfit is reduced by a factor 10−4 on average
with the use of PLS-FWI.

To compare the reconstructions for different methods, we
define a measure called the Relative Reconstruction Error
(RRE) as

RRErecon =
‖mrecon−mtrue‖2

‖m0−mtrue‖2
,

where mrecon is the model reconstructed by FWI or PLS-
FWI. From Table III, we observe that the RRE is reduced
dramatically with PLS-FWI.
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Fig. 7. Salt reconstruction with classical FWI and parametric level-set full waveform inversion (PLS-FWI) from noise free data. (a), (c), (e) and (g) represent
models A, B, C, and D, reconstructed with classical full waveform inversion. (b), (d), (f) and (h) represent reconstructed model A, B, C, D using PLS-FWI.
The red dotted line shows the true geometry of salt.

2) Noisy data: Fig. 8a, 8c, 8e and 8g show the recon-
structed models using FWI while Fig. 8b, 8d, 8f, 8h show the
models reconstructed by PLS-FWI. The results are essentially
the same as for the noise-free case, except for some artifacts
outside the region of interest in the PLS-FWI results. Fig. 9
exhibit the variation of achieved level-set function for Model
A. The gradient near the left bottom corner still is large,
suggesting the method has difficulty in getting rid of the
incorrect salt geometry.

Table IV shows the improvement in the data misfit with
PLS-FWI over classic FWI. For noisy data, we also look at
the best achievable ERF, which is defined as

ERFachievable =
‖F(mtrue)−d‖2

‖F(m0)−d‖2
.

This quantity denotes the smallest ERF achievable by any
reconstruction method. The ERF for PLS-FWI is closer to
the best achievable ERF than that of FWI. With the classic
approach, the relative reconstruction error is slightly affected
when noise is added to data. On the other hand, RRE changes
by a large factor in the presence of noise with the proposed
method. The false salt geometries mainly attribute to these
large changes.

TABLE IV
COMPARISON OF MISFIT AND RRE VALUES FOR CLASSIC FWI VS.

PLS-FWI (NOISY DATA).

Model
ERF RRE

FWI PLS-FWI achievable FWI PLS-FWI

A 0.5425 0.5254 0.5246 0.8432 0.2437
B 0.6172 0.5956 0.5950 0.8332 0.2085
C 0.6090 0.5958 0.5951 0.9199 0.1817
D 0.5530 0.5325 0.5321 0.8239 0.1382

B. Simultaneous reconstruction of salt and background

Next, we jointly reconstruct the salt geometry and the
background, parametrized by b. For each frequency band, we
first estimate the optimal b, for fixed α and setting ε = 0,
using a bisection method and subsequently estimate the salt
geometry with PLS-FWI (Algorithm 1). The bisection method
is initialized with the interval [0,1] for b.

Fig. 10a, 10b, 10c and 10d show the reconstructed models
for noisy data. The salt geometry is accurately predicted, but
contains a few artifacts. Table V indicates the predicted values
of b in each of the models, which are very close to true value
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Fig. 8. Salt reconstruction with classic FWI and Parametric level-set full waveform inversion (PLS-FWI) with noisy data of SNR 10 dB. (a), (c), (e), (g)
represent reconstructed model A, B, C, D with classic full waveform inversion respectively. (b), (d), (f), (h) represent reconstructed model A, B, C, D with
PLS-FWI respectively. Red dotted line shows the true geometry of salt.
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Fig. 9. Gradient of the final level set function for model A with noisy data.

TABLE V
RECOVERED VALUES OF b FOR DIFFERENT MODELS (NOISY DATA).

Model A B C D

b 0.8351 0.8351 0.8345 0.8333

of b = 0.8333.

V. DISCUSSIONS AND CONCLUSION

Accurately determining the geometry of subsurface salt
bodies from seismic data is a difficult problem. When casting
the inverse problem into a non-linear data-fitting problem,
both the presence of local minima and the ill-posedness of
the problem prevent accurate recovery of the salt-geometry.

We have investigated the application of a parametric level-set
method to address this problem. We represent the Earth model
as a continuously varying background with an embedded salt
body. The salt geometry is described by the zero contour
of a level-set function, which in turn is represented with a
relatively small number of radial basis functions. This formu-
lation includes some additional parameters such as the width
of the basis functions and the smoothness of the Heaviside
function. The latter is of particular importance as it controls the
sensitivity to changes in the salt geometry. We propose a robust
algorithm that adaptively chooses the required smoothness
parameter and tested the method on a suite of idealized Earth
models with different salt geometries. For a fixed and accurate
background model, the level-set method is shown to give
superior estimates of the salt geometry and is stable against
a moderate amount of noise. Additional results demonstrate
that is feasible to jointly estimate the background and the salt
geometry.

To further develop the method as a viable alternative to
conventional full-waveform inversion, tests on more realistic
Earth models are needed. In particular, the joint estimation of
the background model and salt geometry needs to be inves-
tigated further. Even when representing the level-set function
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Fig. 10. Simultaneous reconstruction of salt and background with Parametric level-set full waveform inversion (PLS-FWI) on noisy data with SNR 10 dB.
(a), (b), (c), (d) represent reconstructed model A, B, C, D respectively. Red dotted line shows the true geometry of salt.

with a finite basis, there are many level-set functions that result
in the same salt geometry. To address this issue, additional
regularization is needed. An often-used approach is to re-
initialize the level-set function by solving an eikonal equation.
In the parametric framework, this can be included by adding
the discretized eikonal equation as a regularization term.

In this paper, we fixed RBF grid a priori. For very complex
salt-geometries, this may no longer be feasible as it would
require too many nodes for their accurate representation. An
adaptive choice of the RBF grid may address this problem but
it is not obvious how to refine the grid.
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