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Abstract Weconsider stability of periodic travellingwaves in the generalized reduced
Ostrovsky equation with respect to co-periodic perturbations. Compared to the recent
literature, we give a simple argument that proves spectral stability of all smooth peri-
odic travelling waves independent of the nonlinearity power. The argument is based
on the energy convexity and does not use coordinate transformations of the reduced
Ostrovsky equations to the semi-linear equations of the Klein–Gordon type.

Keywords Reduced Ostrovsky equations · Stability of periodic waves · Energy-to-
period map · Negative index theory
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1 Introduction

We address the generalized reduced Ostrovsky equation written in the form

(ut + u pux )x = u, (1)
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1294 A. Geyer, D. E. Pelinovsky

where p ∈ N is the nonlinearity power and u is a real-valued function of (x, t). This
equation was derived in the context of long surface and internal gravity waves in a
rotating fluid for p = 1 [22] and p = 2 [7]. These two cases are the only cases,
for which the reduced Ostrovsky equation is transformed to integrable semi-linear
equations of the Klein–Gordon type by means of a change of coordinates [6,14].

We consider existence and stability of travelling periodic waves in the generalized
reduced Ostrovsky equation (1) for any p ∈ N. The travelling 2T -periodic waves are
given by u(x, t) = U (x − ct), where c > 0 is the wave speed, U is the wave profile
satisfying the boundary value problem

d

dz

[
(c −U p)

dU

dz

]
+U (z) = 0, U (−T ) = U (T ), U ′(−T ) = U ′(T ), (2)

and z = x − ct is the travelling wave coordinate. We are looking for smooth periodic
waves U ∈ H∞

per(−T, T ) satisfying (2). It is straightforward to check that periodic
solutions of the second-order equation (2) correspond to level curves of the first-order
invariant,

E = 1

2
(c −U p)2

(
dU

dz

)2

+ c

2
U 2 − 1

p + 2
U p+2 = const. (3)

We add a co-periodic perturbation to the travelling wave, that is, a perturbation
with the same period 2T . Separating the variables, the spectral stability problem for
the perturbation v to U is given by λv = ∂z Lv, where

L = P0
(
∂−2
z + c −U (z)p

)
P0: L̇2

per(−T, T ) → L̇2
per(−T, T ), (4)

where L̇2
per(−T, T ) denotes the space of 2T -periodic, square-integrable functions

with zero mean and P0: L2
per(−T, T ) → L̇2

per(−T, T ) is the projection operator that
removes the mean value of 2T -periodic functions.

Definition 1 We say that the travelling wave is spectrally stable with respect to co-
periodic perturbations if the spectral problem λv = ∂z Lv with v ∈ Ḣ1

per(−T, T ) has
no eigenvalues λ /∈ iR.

Local solutions of the Cauchy problem associated with the generalized reduced
Ostrovsky equation (1) exist in the space Ḣ s

per(−T, T ) for s > 3
2 [26]. For sufficiently

large initial data, the local solutions break in finite time, similar to the inviscid Burgers
equation [18,19]. However, if the initial data u0 is small in a suitable norm, then local
solutions are continued for all times in the same space, at least in the integrable cases
p = 1 [8] and p = 2 [25].

Travelling periodic waves to the generalized reduced Ostrovsky equation (1) were
recently considered in the cases p = 1 and p = 2. In these cases, travelling waves
can be found in the explicit form given by the Jacobi elliptic functions after a change
of coordinates [6,14]. Exploring this idea further, it was shown in [10,11,27] that
the spectral stability of travelling periodic waves can be studied with the help of the
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Spectral stability of periodic waves… 1295

eigenvalue problem Mψ = λ∂zψ , where M is a second-order Schrödinger operator.
Independently, by using higher-order conserved quantitieswhich exist in the integrable
cases p = 1 and p = 2, it was shown in [15] that the travelling periodic waves
are unconstrained minimizers of energy functions in suitable function spaces with
respect to subharmonic perturbations, that is, perturbations with a multiple period to
the periodicwaves. This result yields not only spectral but also nonlinear stability of the
travelling wave. The nonlinear stability of periodic waves was established analytically
for small-amplitude waves and shown numerically for waves of arbitrary amplitude
[15].

In this paper, we give a simple argument that proves spectral stability of all smooth
periodic travelling waves to the generalized reduced Ostrovsky equation (1) indepen-
dently of the nonlinearity power p and the wave amplitude. The spectral stability of
periodic waves is defined here with respect to co-periodic perturbations in the sense
of Definition 1. The argument is based on convexity of the energy function

H(u) = −1

2
‖∂−1

x u‖2L2
per

− 1

(p + 1)(p + 2)

∫ T

−T
u p+2dx, (5)

at the travelling wave profile U in the energy space with fixed momentum,

Xq =
{
u ∈ L̇2

per(−T, T ) ∩ L p+2
per (−T, T ): ‖u‖2L2

per
= 2q > 0

}
. (6)

Note that the self-adjoint operator L given by (4) is theHessian operator of the extended
energy function F(u) = H(u) + cQ(u), where

Q(u) = 1

2
‖u‖2L2

per
(7)

is the momentum function. The energy H(u) and momentum Q(u), and therefore
the extended energy F(u), are constants of motion, as can be seen readily by writing
the evolution equation (1) in Hamiltonian form as ut = ∂xgradH(u). Notice that the
travelling wave profile U is a critical point of the extended energy function F(u) in
the sense that the Euler–Lagrange equations for F(u) are identical to the boundary
value problem (2) after the second-order equation is integrated twice with zero mean.

The outline of the paper is as follows. Adopting the approach from [3–5], we prove
in Sect. 2 that the energy-to-period map E �→ 2T is strictly monotonically decreasing
for the family of smooth periodic solutions satisfying (2) and (3). This result holds for
every fixed c > 0. Thanks to monotonicity of the energy-to-period map E �→ 2T , the
inverse mapping defines the first-order invariant E in terms of the half period T and
the speed c. We denote this inverse mapping by E(T, c).

In Sect. 3, we consider continuations of the family of smooth periodic solutionswith
respect to parameter c for every fixed T > 0 and prove that E(T, c) is an increasing
function of cwithin a nonempty interval (c0(T ), c1(T )), where 0 < c0(T ) < c1(T ) <

∞. We also prove that the momentum Q(u) evaluated at u = U is an increasing
function of c for every fixed T > 0.
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1296 A. Geyer, D. E. Pelinovsky

In Sect. 4, we use the monotonicity of the mapping E �→ 2T for every fixed c > 0
and prove that the self-adjoint operator L given by (4) has a simple negative eigenvalue,
a one-dimensional kernel, and the rest of its spectrum is bounded from below by a
positive number.

Finally, in Sect. 5, we prove that the operator L constrained on the space

L2
c =

{
u ∈ L̇2

per(−T, T ): 〈U, u〉L2
per

= 0
}

(8)

is strictly positive except for the one-dimensional kernel induced by the translational
symmetry. This gives convexity of H(u) at u = U in space of fixed Q(u) given
by (6). By using the standard Hamilton–Krein theorem in [12] (see also the reviews
in [17,24]), this rules out existence of eigenvalues λ /∈ iR of the spectral problem
λv = ∂z Lv with v ∈ Ḣ1

per(−T, T ).
All together, the existence and spectral stability of smooth periodic travelling waves

of the generalized reduced Ostrovsky equation (1) is summarized in the following
theorem.

Theorem 1 For every c > 0 and p ∈ N,

(a) there exists a smooth family of periodic solutionsU ∈ L̇2
per(−T, T )∩H∞

per(−T, T )

of Eq. (2), parameterized by the energy E given in (3) for E ∈ (0, Ec), with

Ec = p

2(p + 2)
c

p+2
p ,

such that the energy-to-period map E �→ 2T is smooth and strictly monotonically
decreasing. Moreover, there exists T1 ∈ (0, π) such that

T → πc
1
2 as E → 0 and T → T1c

1
2 as E → Ec;

(b) for each point U of the family of periodic solutions, the operator L given by
(4) has a simple negative eigenvalue, a simple zero eigenvalue associated with
Ker(L) = span{∂zU }, and the rest of the spectrum is positive and bounded away
from zero;

(c) the spectral problem λv = ∂z Lv with v ∈ Ḣ1
per(−T, T ) admits no eigenvalues

λ /∈ iR.

Consequently, periodic waves of the generalized reduced Ostrovsky equation (1) are
spectrally stable with respect to co-periodic perturbations in the sense of Definition 1.

We now compare our result to the existing literature on spectral and orbital stability
of periodic waves with respect to co-periodic perturbations. First, in comparison with
the analysis in [11], the result of Theorem1 ismore general since p ∈ N is not restricted
to the integrable cases p = 1 and p = 2. On a technical level, the method of proof of
Theorem 1 is simple and robust, so that many unnecessary explicit computations from
[11] are avoided. Indeed, in the transformation of the spectral problem λv = ∂z Lv to
the spectral problem Mψ = λ∂zψ , where M is a second-order Schrödinger operator
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Spectral stability of periodic waves… 1297

from H2
per(−T, T ) → L2

per(−T, T ), the zero-mean constraint is lost.1 Consequently,

the operator M was found in [11] to admit two negative eigenvalues in L2
per(−T, T ),

which are computed explicitly by using eigenvalues of the Schrödinger operator with
elliptic potentials. By adding three constraints for the spectral problem Mψ = λ∂zψ ,
the authors of [11] showed that the operator M becomes positive on the constrained
space, again by means of symbolic computations involving explicit Jacobi elliptic
functions. All these technical details become redundant in our simple approach.

Second, we mention another type of improvement of our method compared to the
analysis of spectral stability of periodic waves in other nonlinear evolution equations
[20,21]. By establishing first the monotonicity of the energy-to-period map E �→ 2T
for a smooth family of periodic waves, we give a very precise count on the number
of negative eigenvalues of the operator L in L2

per(−T, T ) without doing numerical
approximations on solutions of the homogeneous equation Lv = 0. Indeed, the smooth
family of periodic waves has a limit to zero solution, for which eigenvalues of L in
L2
per(−T, T ) are found from Fourier series. The zero eigenvalue of L is double in this

limit and it splits once the amplitude of the periodic wave becomes nonzero. Owing to
the monotonicity of the map E �→ 2T and continuation arguments, the negative index
of the operator L remains invariant along the entire family of the smooth periodic
waves. Therefore, the negative index of the operator L is found for the entire family
of periodic waves by a simple argument, again avoiding cumbersome analytical or
approximate numerical computations.

Finally, we also mention that the spectral problem λv = ∂z Lv is typically difficult
when it is posed in the space L2

per(−T, T ) because the mean-zero constraint is needed
on v in addition to the orthogonality condition 〈U, v〉L2

per
= 0. The two constraints are

taken into account by studying the two-parameter family of smooth periodic waves
and working with a 2-by-2 matrix of projections [1,16]. This complication is avoided
for the reduced Ostrovsky equation (1) because the spectral problem λv = ∂z Lv is
posed in space L̇2

per(−T, T ) and the only orthogonality condition 〈U, v〉L2
per

= 0 is
studied with the help of identities satisfies by the periodic wave U .

As a limitation of the results of Theorem 1, we mention that the nonlinear orbital
stability of travelling periodic waves cannot be established for the reduced Ostrovsky
equations (1) by using the energy function (5) in space (6). This is because the local
solution is defined in Ḣ s

per(−T, T ) for s > 3
2 [26], whereas the energy function is

defined in L̇2
per(−T, T ) ∩ L p+2

per (−T, T ). As a result, coercivity of H(u) in the space

of fixed momentum (6) only controls the L2 norm of time-dependent perturbations.
Local well-posedness in such spaces of low regularity is questionable and so is the
proof of orbital stability of the travelling periodic waves in the time evolution of the
reduced Ostrovsky equations (1).

1 Note that this transformation reflects the change of coordinates owing to which the reduced Ostrovsky
equations are reduced to the semi-linear equations of the Klein–Gordon type. This transformation also
changes the period of the travelling periodic wave.
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Fig. 1 Phase portraits of system (9) for p = 2 (left) and p = 1 (right)

2 Monotonicity of the energy-to-period map

Travelling wave solutions of the reduced Ostrovsky equation (1) are solutions of the
second-order differential equation (2) with fixed c > 0 and p ∈ N. The following
lemma establishes a correspondence between the smooth periodic solutions of the
second-order equation (2) and the periodic orbits around the centre of an associated
planar system; see Fig. 1. For lighter notations, we replace U (z) by u(z) and denote
the derivatives in z by primes.

Lemma 1 For every c > 0 and p ∈ N the following holds:

(i) A function u is a smooth periodic solution of Eq. (2) if and only if (u, v) = (u, u′)
is a periodic orbit of the planar differential system

⎧⎨
⎩
u′ = v,

v′ = −u + pu p−1v2

c − u p
.

(9)

(ii) The system (9) has a first integral given by (3), which we write as

E(u, v) = A(u) + B(u)v2, (10)

with A(u) = c
2u

2 − 1
p+2u

p+2 and B(u) = 1
2 (c − u p)2.

(iii) Every periodic orbit of system (9) belongs to the period annulus2 of the centre at
the origin of the (u, v) plane and lies inside some energy level curve of E, with
E ∈ (0, Ec) where

Ec := A(c1/p) = p

2(p + 2)
c

p+2
p . (11)

2 The largest punctured neighbourhood of a centre which consists entirely of periodic orbits is called period
annulus; see [2].
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Proof The assertion in (i i) is provedwith a straightforward calculation. To prove (i i i),
we notice that system (9) has no limit cycles in view of the existence of a first integral,
and hence the periodic orbits form period annuli. A periodic orbit must surround at
least one critical point. The unique critical point of system (9) is a centre at the origin
on the (u, v) plane, corresponding to the energy level E = 0. In view of the presence
of the singular line

{
u = c1/p, v ∈ R

}
⊂ R

2

we may conclude, applying the Poincaré–Bendixon Theorem, that the set of periodic
orbits forms a punctured neighbourhood of the centre and that no other period annulus
is possible.

It remains to show (i). It is clear that z �→ (u, v) = (u, u′) is a smooth solution
of the differential system (9) if and only if u is a smooth solution of the second-order
equation (2) satisfying c �= u(z)p for all z. We claim that c �= u(z)p for all z ∈ R for
smooth periodic solutions u. Indeed, let p be odd for simplicity and recall that every
periodic orbit in a planar system has exactly two turning points (u, u′) = (u±, 0) per
fundamental period. The turning points correspond to the maximum and minimum of
the periodic solution u and satisfy the equation A(u±) = E . The graph of A(u) on
R

+ has a global maximum at u = c1/p with Ec given in (11).
The equation A(u) = E has exactly two positive solutions for E ∈ (0, Ec), where

u = u+ corresponds to the smaller one inside the period annulus. At E = Ec, the
equation A(u) = E has only one positive solution given by u+ = c1/p. Now assume
that for a smooth periodic solution u, there exists z1 such that u(z1) = c1/p. Then,

Eq. (2) implies that u′(z1) = ±p−1/2c− p−2
2p ; hence, the solution (u, u′)(z) to system

(9) tends to the points p± = (c1/p,±p−1/2c− p−2
2p ) as z → z1. Since E(p±) = Ec

and by continuity of the first integral, this orbit lies inside the Ec-level set. For such an
orbit, we have seen that its turning point is located at u+ = c1/p = u(z1). However,
since u′(z1) �= 0, this cannot be a turning point, which leads to a contradiction. Hence,
the assertion (i) is proved. �
Remark 1 By Lemma 1, every smooth periodic solution u of the differential equation
(2) corresponds to a periodic orbit (u, v) = (u, u′) inside the period annulus of the
differential system (9). Since E is a first integral of (9), this orbit lies inside some
energy level curve of E , where E ∈ (0, Ec). We denote this orbit by γE . The period
of this orbit is given by

2T (E) =
∫

γE

du

v
, (12)

since du
dz = v in view of (9). The energy levels of the first integral E parameterize

the set of periodic orbits inside the period annulus, and therefore, this set forms a
smooth family {γE }E∈(0,Ec). In view of Lemma 1, we can therefore assert that the
set of smooth periodic solutions of (2) forms a smooth family {uE }E∈(0,Ec), which is
parameterized by E as well. Moreover, it ensures that the period 2T (E) of the periodic
orbit γE is equal to the period of the corresponding smooth periodic solution uE of
the second-order equation (2).
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1300 A. Geyer, D. E. Pelinovsky

Themain result of this section is the following proposition, fromwhichwe conclude
that the energy-to-periodmap E �→ 2T (E) for the smooth periodic solutions of Eq. (2)
is smooth and strictly monotonically decreasing. Together with Remark 1 above and
Lemma 2 below, this proves statement (a) of Theorem 1.

Proposition 1 For every c > 0 and p ∈ N, the function

T : (0, Ec) −→ R
+, E �−→ T (E) = 1

2

∫
γE

du

v

is strictly monotonically decreasing and satisfies

T ′(E) = − p

4(2 + p)E

∫
γE

u p

(c − u p)

du

v
< 0. (13)

Proof Since A(u) + B(u)v2 = E is constant along an orbit γE , we find that

2E T (E) =
∫

γE

B(u)vdu +
∫

γE

A(u)
du

v
. (14)

To compute the derivative of T with respect to E , we first resolve the singularity in
the second integral in Eq. (14). To this end, recall that the orbit γE belongs to the level
curve {A(u) + B(u)v2 = E} and therefore

dv

du
= − A′(u) + B ′(u)v2

2B(u)v
(15)

along the orbit. Note that B(u) is different from zero for E ∈ (0, Ec). Furthermore,
BA/A′ is bounded on γE . Using the fact that the integral of a total differential d over
the closed orbit γE yields zero, we find that

0 =
∫

γE

d

[(
2BA

A′

)
(u) v

]

=
∫

γE

(
2BA

A′

)′
(u) v du +

(
2BA

A′

)
(u) dv

=
∫

γE

(
2BA

A′

)′
(u) v du −

(
2BA

A′
A′

2B

)
(u)

du

v
−

(
2BA

A′
B ′

2B

)
(u) v du

=
∫

γE

[(
2BA

A′

)′
(u) −

(
AB′

A′

)
(u)

]
v du − A(u)

du

v
,

where we have used relation (15) in the third equality. Denoting

G =
(
2BA

A′

)′
− AB′

A′ , (16)
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this ensures that

2ET(E) =
∫

γE

[B(u) + G(u)] vdu, (17)

where the integrand is no longer singular at the turning points, where the orbit γE
intersects with the horizontal axis v = 0.3 Taking now the derivative of Eq. (17) with
respect to E , we obtain that

2T (E) + 2E T ′(E) =
∫

γE

B(u) + G(u)

2B(u)v
du, (18)

where we have used that

∂v

∂E
= 1

2B(u)v

in view of (10).4 From (18), we conclude that

2T ′(E) = 1

E

∫
γE

(
B + G

2B

)
(u)

du

v
− 1

E

∫
γE

du

v

= 1

E

∫
γE

1

2B

((
2AB

A′

)′
− (AB)′

A′

)
(u)

du

v
.

In view of the expressions for A and B defined in Lemma 1, further calculations show
that

T ′(E) = − p

4(2 + p)E

∫
γE

u p

(c − u p)

du

v
. (19)

We now need to show that T ′(E) < 0 for every E ∈ (0, Ec). In view of the symmetry
of the vector field with respect to the horizontal axis and taking into account (10), we
write (19) in the form

T ′(E) = − p

2(2 + p)E

∫ u+

u−

u p

(c − u p)

√
B(u)

E − A(u)
du

= − p

2
√
2(2 + p)E

∫ u+

u−

u p

√
E − A(u)

du, (20)

where u± denote the turning points of the orbit γE with E = A(u±), i.e. the intersec-
tions of the orbit γE with the horizontal axis v = 0. Therefore, we find that T ′(E) < 0

3 The idea for this approach of resolving the singularity is taken from [5, Lemma 4.1], where the authors
prove a more general result for polynomial systems having first integrals of the form (10).
4 Note that (18) also follows by applyingGelfand–Leray derivatives in (17); see [13, Theorem26.32, p. 526].
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1302 A. Geyer, D. E. Pelinovsky

if p is even. Now we show that the same property also holds when p is odd. Denote

I1(E) :=
∫ 0

u−

u p

√
E − A(u)

du, I2(E) :=
∫ u+

0

u p

√
E − A(u)

du, (21)

then

T ′(E) = − p

2
√
2(2 + p)E

[
I1(E) + I2(E)

]
. (22)

We perform the change of variables u = u+x and find that

I2(E) =
∫ u+

0

u p√
A(u+) − A(u)

du =
∫ 1

0

u p
+x p√

A(u+) − A(u+x)
u+dx

= √
2u p

+
∫ 1

0

x p√
c(1 − x2) − 2u p

+
p+2 (1 − x p+2)

dx .

To rewrite the first integral, we change variables according to u = −|u−|x and obtain

I1(E) =
∫ 0

−|u−|
u p√

A(−|u−|) − A(u)
du =

∫ 0

1

−|u−|px p√
A(−|u−|) − A(u−x)

(−|u−|)dx

= −√
2|u−|p

∫ 1

0

x p√
c(1 − x2) + 2|u−|p

p+2 (1 − x p+2)

dx .

We claim that |u−| < u+ if p is odd. Indeed, we have that A(u) < A(−u) on (0, c1/p),
since

A(u) − A(−u) = u2
(
c

2
− 1

p + 2
u p

)
− u2

(
c

2
+ 1

p + 2
u p

)
= − 2

p + 2
u p+2 < 0.

Moreover, A is monotone on (0, c1/p). Assuming to the contrary that |u−| ≥ u+, we
would have that A(|u−|) ≥ A(u+) and hence A(u+) ≤ A(|u−|) < A(u−), which
contradicts the fact that A(u+) = A(u−). Hence, 0 < |u−| < u+ < c1/p, which
implies that |I1(E)| < I2(E), and therefore, T ′(E) < 0 also in the case when p is
odd. The proof of Proposition 1 is complete. �

The following result describes the limiting points of the energy-to-period map
E �→ 2T (E) and is proved with routine computations.

Lemma 2 For every c > 0 and p ∈ N, let E �→ 2T (E) be the mapping defined by
(12). Then

T (0) := lim
E→0

T (E) = πc1/2, (23)
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and there exists T1 ∈ (0, π) such that

T (Ec) := lim
E→Ec

T (E) = T1c
1/2, (24)

with Ec defined in (11).

Proof We can write (12) in the explicit form

T (E) =
∫ u+

u−

√
B(u)du√
E − A(u)

, (25)

where the turning points u± ≷ 0 are given by the roots of A(u±) = E . To prove the
first assertion, we use the scaling transformation

u =
(
2E

c

)1/2

x,

to rewrite the integral in (25) as follows:

T (E) = c1/2
∫ v+

v−

(1 − μx p)dx√
1 − x2 + 2μx p+2/(p + 2)

, μ := 2p/2E p/2

c(p+2)/2
,

where v± ≷ 0 are roots of the algebraic equation

v2± = 1 + 2

p + 2
μv

p+2
± .

We note that μ → 0, v± → ±1 as E → 0, which gives the formal limit

∫ v+

v−

(1 − μx p)dx√
1 − x2 + 2μx p+2/(p + 2)

→
∫ 1

−1

dx√
1 − x2

= π as μ → 0.

This yields the limit (23). The justification of the formal limit is performed by rescaling
[v−, v+] to [−1, 1] and by using Lebesgue’s dominated convergence theorem, since
the integrand function and its limit as μ → 0 are absolutely integrable.

To prove the second assertion, notice that for E = Ec, the turning points u± used
in the integral (25) are known as u± = ±c1/pq±, where q+ = 1 and q− > 0 is a root
of the algebraic equation

q2− − 2

p + 2
(−1)pq p+2

− = p

p + 2
.

If p is even, q− = 1, while if p is odd, q− ∈ (0, 1), as follows from the proof of
Proposition 1. By splitting the integral (25) into two parts, we integrate over [u−, 0]
and [0, u+] separately and use the substitution u = ±c1/px for the two integrals. Since
T ′(E) is bounded for every E > 0 from the representation (20) and is integrable as
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0 1 2 3
0

2

4

6

c

T T = π c1/2

T = T
1
 c1/2

Fig. 2 Existence region for smooth periodic waves in the (T, c) parameter plane between the two limiting
curves T = πc1/2 and T = T1c

1/2 obtained in Lemma 2

E → Ec, we obtain that T (Ec) := limE→Ec T (E) exists and is given by T (Ec) =
T1c1/2, where

T1 :=
∫ 1

0

(1 − x p)dx√
1 − x2 − 2(1 − x p+2)/(p + 2)

+
∫ q−

0

(1 − (−1)px p)dx√
1 − x2 − 2(1 − (−1)px p+2)/(p + 2)

. (26)

Both integrals are finite and positive, fromwhich the existence of T1 > 0 is concluded.
Since T ′(E) < 0 for every E > 0, we have that T1 < π . �

3 Continuation of smooth periodic waves with respect to c

In Sect. 2, we fixed the parameter c > 0 and considered a continuation of the smooth
periodicwave solutionsU with respect to the parameter E in (0, Ec), where E = 0 cor-
responds to the zero solution and E = Ec corresponds to a peaked periodic wave. The
mapping E �→ 2T (E) is found to be monotonically decreasing according to Proposi-
tion 1. Therefore, this mapping can be inverted for every fixed c > 0 andwe denote the
corresponding dependence by E(T, c). The range of themapping E �→ 2T (E), which
was calculated in Lemma 2, specifies the domain of the function E(T, c) with respect
to the parameter T at fixed c. The existence interval for the smooth periodic waves
between the two limiting cases (23) and (24) obtained in Lemma 2 is shown in Fig. 2.

When we fix the parameter c > 0, the half period T belongs to the interval
(T1c1/2, πc1/2), which corresponds to the vertical line in Fig. 2. When we fix the
parameter T > 0, the parameter c belongs to the interval (T 2/π2, T 2/T 2

1 ), which
corresponds to the horizontal line in Fig. 2.

In this section, we will fix the period 2T and consider a continuation of the smooth
periodic wave solutionsU with respect to the parameter c in a subset of R+. The next
result specifies the interval of existence for the speed c.
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Lemma 3 For every T > 0 and p ∈ N, there exists a family of 2T -periodic solutions
U = U (z; c) of Eq. (2) parametrized by c ∈ (c0(T ), c1(T )), where

c0(T ) := T 2

π2 , c1(T ) := T 2

T 2
1

> c0(T ), (27)

with T1 ∈ (0, π) given in (26) and U → 0 as c → c0(T ). Moreover, the mapping
(c0(T ), c1(T )) � c �→ U ∈ L̇2

per(−T, T ) ∩ H∞
per(−T, T ) is C1.

Proof Notice that the scaling transformation

U (z; c) = c1/pŨ (z̃), z = c1/2 z̃, T = c1/2T̃ , (28)

relates 2T -periodic solutions U of the boundary value problem (2) to 2T̃ -periodic
solutions Ũ of the same boundary value problem with c normalized to 1, that is,

d

dz̃

[
(1 − Ũ p)

dŨ

dz̃

]
+ Ũ (z̃) = 0, Ũ (−T̃ ) = Ũ (T̃ ), Ũ ′(−T̃ ) = Ũ ′(T̃ ). (29)

Lemma 1 guarantees the existence of a family {ŨẼ }Ẽ∈(0,E1)
of 2T̃ (Ẽ)-periodic solu-

tions of the boundary value problem (29). In view of Lemma 2 and since T is fixed,
we have T̃ (Ẽ) = c−1/2T ∈ (T1, π), which implies that c belongs to the interval
(c0(T ), c1(T )), where c0(T ) and c1(T ) are given by (27). Moreover, this relation
provides a one-to-one correspondence between the parameters c and Ẽ in view of the
fact that T̃ ′(Ẽ) < 0 by Proposition 1 which implies that c1/2 = T/T̃ (Ẽ) is monotone
increasing in Ẽ . In view of the transformation (28), we therefore obtain existence of
a family {Uc}c∈(c0(T ),c1(T )) of 2T -periodic solutions of the boundary value problem
(2). The value c0(T ) corresponds to the zero solution, whereas c1(T ) corresponds to
the peaked periodic wave. �

Recall that the mapping E �→ 2T (E) can be inverted for every fixed c > 0 and
that the corresponding dependence is denoted by E(T, c). The next result shows that
E(T, c) is a monotonically increasing function of c ∈ (c0(T ), c1(T )) for every fixed
T > 0.

Lemma 4 For every T > 0, p ∈ N, the mapping (c0(T ), c1(T )) � c �→ E(T, c) is
C1 and monotonically increasing.

Proof Using the transformation (28) in the boundary value problem (29), we obtain
that

E(T, c) = c
p+2
p Ẽ,

where Ẽ is the energy level of the first integral of the second-order equation in (29),

Ẽ = 1

2
(1 − Ũ p)2

(
dŨ

dz̃

)2

+ 1

2
Ũ 2 − 1

p + 2
Ũ p+2.

123



1306 A. Geyer, D. E. Pelinovsky

Now, as T is fixed and T̃ = T̃ (Ẽ) is defined by (12) for c normalized to 1, we can
define E(T, c) from the root of the following equation

T = c
1
2 T̃

(
E(T, c)c− p+2

p

)
. (30)

Since T̃ (0) = π and T̃ (E1) = T1, we have roots E(T, c0(T )) = 0 and E(T, c1(T )) =
Ec of the algebraic equation (30), with Ec given by (11) at c = c1(T ). In order to
continue the roots by using the implicit function theorem for every c ∈ (c0(T ), c1(T )),
we differentiate (30) with respect to c at fixed T and obtain

0 = 1

2
c− 1

2 T̃ (Ẽ) − p + 2

p
Ec− 3p+4

2p T̃ ′(Ẽ) + c− p+4
2p T̃ ′(Ẽ)

∂E(T, c)

∂c
. (31)

By Proposition 1, we have T̃ ′(Ẽ) < 0 for Ẽ ∈ (0, E1), so that we can rewrite (31) as
follows:

∣∣∣T̃ ′(Ẽ)

∣∣∣ ∂E(T, c)

∂c
= 1

2
c

2
p T̃ (Ẽ) + p + 2

p
Ec−1

∣∣∣T̃ ′(Ẽ)

∣∣∣ > 0. (32)

Recall that T̃ ′(Ẽ) is nonzero for every Ẽ ∈ (0, E1) and in the limit Ẽ → E1. By
the implicit function theorem and thanks to the smoothness of all dependencies, there
exists a unique, monotonically increasing C1 map (c0(T ), c1(T )) � c �→ E(T, c)
such that E(T, c) is a root of Eq. (30) and E(T, c1(T )) = Ec, where Ec is given by
(11) at c = c1(T ). �

Weshall now consider how the L2
per(−T, T ) normof the periodicwaveU with fixed

period 2T depends on the parameter c. In order to prove that it is an increasing function
of c in (c0(T ), c1(T )), we obtain a number of identities satisfied by the periodic wave
U . This result will be used in the proof of Proposition 3 in Sect. 5.

Lemma 5 For every T > 0, p ∈ N, the mapping (c0(T ), c1(T )) � c �→
‖U‖2

L2
per(−T,T )

is C1 and monotonically increasing. Moreover, if the operator L is

defined by (4), then ∂cU ∈ L̇2
per(−T, T ) satisfies

L∂cU = −U (33)

and
〈∂cU,U 〉L2

per
> 0. (34)

Proof Integrating (2) in z with zero mean, we can write

(c −U p)∂zU + ∂−1
z U = 0. (35)

From here, multiplication by ∂−1
z U and integration by parts yield

‖∂−1
z U‖2L2

per(−T,T )
= c‖U‖2L2

per(−T,T )
− 1

p + 1

∫ T

−T
U p+2dz. (36)
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On the other hand, integrating (3) over the period 2T and using Eqs. (35) and (36)
yield

2E(T, c)T = c

2
‖U‖2L2

per(−T,T )
− 1

p + 2

∫ T

−T
U p+2dz + 1

2

∥∥∥∥(c −U p)
dU

dz

∥∥∥∥
2

L2
per(−T,T )

= c

2
‖U‖2L2

per(−T,T )
− 1

p + 2

∫ T

−T
U p+2dz + 1

2
‖∂−1

z U‖2L2
per(−T,T )

= c‖U‖2L2
per(−T,T )

− (3p + 4)

2(p + 1)(p + 2)

∫ T

−T
U p+2dz. (37)

Expressing c‖U‖2
L2
per(−T,T )

from Eqs. (36) and (37), we obtain

‖∂−1
z U‖2L2

per
= 2E(T, c)T + p

2(p + 1)(p + 2)

∫ T

−T
U p+2dz. (38)

From the fact that U is a critical point of H(u) + cQ(u) given by (5) and (7) for a
fixed period 2T , we obtain

dH
dc

+ c
dQ
dc

= 0, (39)

where

H(c) = −1

2
‖∂−1

z U‖2L2
per(−T,T )

− 1

(p + 1)(p + 2)

∫ T

−T
U p+2dz

= −E(T, c)T − (p + 4)

4(p + 1)(p + 2)

∫ T

−T
U p+2dz (40)

and

cQ(c) = c

2
‖U‖2L2

per(−T,T )

= E(T, c)T + (3p + 4)

4(p + 1)(p + 2)

∫ T

−T
U p+2dz (41)

are simplified with the help of Eqs. (37) and (38) again. Next, we differentiate (40)
and (41) in c for fixed T and use (39) to obtain the constraint

dH
dc

+ c
dQ
dc

= − (p + 4)

4(p + 1)(p + 2)

d

dc

∫ T

−T
U p+2dz − Q(c)

+ (3p + 4)

4(p + 1)(p + 2)

d

dc

∫ T

−T
U p+2dz

= −Q(c) + p

2(p + 1)(p + 2)

d

dc

∫ T

−T
U p+2dz = 0. (42)
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1308 A. Geyer, D. E. Pelinovsky

From (32), (39), (40) and (42), we finally obtain

c
dQ
dc

= −dH
dc

= T
∂E(T, c)

∂c
+ (p + 4)

4(p + 1)(p + 2)

d

dc

∫ T

−T
U p+2dz

= T
∂E(T, c)

∂c
+ p + 4

2p
Q(c) > 0. (43)

To prove the second assertion, recall that the family of periodic wavesU (z; c) isC1

with respect to c by Lemma 3. Differentiating the second-order equation in (2) with
respect to c at fixed period 2T and integrating it twice with zero mean yields Eq. (33).
Notice that ∂cU is again 2T -periodic, since the period of U is fixed independently of
c. Finally, we find that

〈∂cU,U 〉L2
per

= 1

2

d

dc
‖U‖2L2

per
> 0,

since by the first assertion, the mapping c �→ ‖U‖2
L2
per

is monotonically increasing. �
As an immediate consequence of Lemmas 3 and 5, we prove the following result

which will be used in the proof of Proposition 2 in Sect. 4.

Corollary 1 For every T > 0, p ∈ N and c ∈ (c0(T ), c1(T )), the periodic solution
U of the boundary value problem (2) satisfies

∫ T

−T
U p+2dz > 0. (44)

Proof It follows from (42) that

d

dc

∫ T

−T
U p+2dz = 2(p + 1)(p + 2)

p
Q(c) > 0, c ∈ (c0(T ), c1(T )). (45)

On the other hand,
∫ T
−T U p+2dz = 0 at c = c0(T ) by Lemma 3. Integrating the

inequality (45) for c > c0(T ) implies positivity of
∫ T
−T U p+2dz. �

4 Negative index of the operator L

Recall that T (E) → T (0) = πc1/2 and U → 0 as E → 0 in view of Lemma 2.
In this limit, the operator given by (4) becomes an integral operator with constant
coefficients,

L0 = P0(∂
−2
z + c)P0: L̇2

per(−T (0), T (0)) → L̇2
per(−T (0), T (0)),

whose spectrum can be computed explicitly as

σ(L0) =
{
c(1 − n−2), n ∈ Z\{0}

}
, (46)
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by using Fourier series. For every c > 0, the spectrum of L0 is purely discrete and
consists of double eigenvalues accumulating to the point c. All double eigenvalues are
strictly positive except for the lowest eigenvalue, which is located at the origin. As is
shown in [15] with a perturbation argument for p = 1 and p = 2, the spectrum of
L for E near 0 includes a simple negative eigenvalue, a simple zero eigenvalue, and
the positive spectrum is bounded away from zero. We will show that this conclusion
remains true for the entire family of smooth periodic waves. Let us first prove the
following.

Lemma 6 For every c > 0, p ∈ N, and E ∈ (0, Ec), the operator L given by (4) is
self-adjoint and its spectrum includes a countable set of isolated eigenvalues below

C−(E) := inf
z∈[−T (E),T (E)](c −U (z)p) > 0. (47)

Proof The self-adjoint properties of L are obvious. For every E ∈ (0, Ec), there are
positive constants C±(E) such that

C−(E) ≤ c −U (z)p ≤ C+(E) for every z ∈ [−T (E), T (E)]. (48)

For the rest of the proof we use the short notation T = T (E). The eigenvalue equation
(L − λI )v = 0 for v ∈ L̇2

per(−T, T ) is equivalent to the spectral problem

P0(c −U p − λ)P0v = −P0∂
−2
z P0v. (49)

Under the condition λ < C−(E), we have c −U p − λ ≥ C−(E) − λ > 0. Setting

w := (c −U p − λ)1/2P0v ∈ L2
per(−T, T ), λ < C−(E), (50)

we find that λ is an eigenvalue of the spectral problem (49) if and only if 1 is an
eigenvalue of the self-adjoint operator

K (λ) = −(c −U p − λ)−1/2P0∂
−2
z P0(c −U p − λ)−1/2 :

L2
per(−T, T ) → L2

per(−T, T ), (51)

that is,5 w = K (λ)w. The operator K (λ) for every λ < C−(E) is a compact (Hilbert–
Schmidt) operator thanks to the bounds (48) and the compactness of P0∂−2

z P0.
Consequently, the spectrum of K (λ) in L2

per(−T, T ) for every λ < C−(E) is purely
discrete and consists of isolated eigenvalues. Moreover, these eigenvalues are positive
thanks to the positivity of K (λ), as follows:

〈K (λ)w,w〉L2
per

= ‖P0∂−1
z P0(c −U p − λ)−1/2w‖2L2

per
≥ 0, ∀w ∈ L2

per(−T, T ).

(52)
We note that

5 This reformulation can be viewed as an adjoint version of the Birmann–Schwinger principle used in
analysis of isolated eigenvalues of Schrödinger operators with rapidly decaying potentials [9].
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1310 A. Geyer, D. E. Pelinovsky

(a) K (λ) → 0+ as λ → −∞,
(b) K ′(λ) > 0 for every λ < C−(E).

Claim (a) follows from (52) via spectral calculus:

〈K (λ)w,w〉L2
per

∼ |λ|−1‖P0∂−1
z P0w‖2L2 as λ → −∞.

Claim (b) follows from the differentiation of K (λ),

〈K ′(λ)w,w〉L2
per

= 1

2
〈ρ(λ)K (λ)w,w〉L2

per
+ 1

2
〈K (λ)ρ(λ)w,w〉L2

per
,

where we have defined the weight function ρ(λ) := (c−U p − λ)−1 which is strictly
positive and uniformly bounded thanks to (48). Since K (λ) is positive due to (52), both
terms in the above expression are positive in view of a generalization of Sylvester’s
law of inertia for differential operators; see Theorem 4.2 in [23]. Indeed, to prove
that the first term is positive it suffices to show that the eigenvalues μ of ρ(λ)K (λ)

are positive. The corresponding spectral problem ρ(λ)K (λ)w = μw is equivalent to
ρ(λ)1/2K (λ)ρ(λ)1/2v = μv in view of the substitutionw = ρ(λ)1/2v. By Sylvester’s
law, the number of negative eigenvalues of K (λ) is equal to the number of nega-
tive eigenvalues of the congruent operator K̃ (λ) = ρ(λ)1/2K (λ)ρ(λ)1/2. Therefore,
ρ(λ)K (λ) is positive in view of the positivity of K (λ). The second term can be treated
in the same way.

It follows from claims (a) and (b) that positive isolated eigenvalues of K (λ) are
monotonically increasing functions of λ from the zero level as λ → −∞. The location
and number of crossings of these eigenvalues with the unit level give the location and
number of eigenvalues λ in the spectral problem (49). The compactness of K (λ) for
λ < C−(E) therefore implies that there exists a countable (finite or infinite) set of
isolated eigenvalues of L below C−(E). �

Next,we inspect analytical properties of eigenvectors for isolated eigenvalues below
C−(E) > 0 given by (47).

Lemma 7 Under the condition of Lemma 6, let λ0 < C−(E) be an eigenvalue of the
operator L given by (4). Then, λ0 is at most double and the eigenvector v0 belongs to
L̇2
per(−T (E), T (E)) ∩ H∞

per(−T (E), T (E)).

Proof As in the proof of the previous Lemma, we use the shorthand T = T (E) for
lighter notation. The eigenvector v0 ∈ L̇2

per(−T, T ) for the eigenvalue λ0 < C−(E)

satisfies the spectral problem (49) written as the integral equation

P0∂
−2
z P0v0 + P0(c −U p − λ0)P0v0 = 0. (53)

Since U ∈ H∞
per(−T, T ) and c − U p − λ0 ≥ C−(E) − λ0 > 0, we obtain that

v0 ∈ H2
per(−T, T ), and by bootstrapping arguments we find that v0 ∈ H∞

per(−T, T ).
Applying two derivatives to the integral equation (53), we obtain the equivalent dif-
ferential equation for the eigenvector v0 ∈ L̇2

per(−T, T ) ∩ H∞
per(−T, T ) and the

eigenvalue λ0 < C−(E):
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v0 + ∂2z
[
(c −U p − λ0)v0

] = 0. (54)

The second-order differential equation (54) admits at most two linearly independent
solutions in L̇2

per(−T, T ) and so does the integral equation (53) for an eigenvalue

λ0 < C−(E). Since L is self-adjoint, the eigenvalue λ0 is not defective,6 and hence,
the multiplicity of λ0 is at most two. �

We are now ready to prove the main result of this section. This proves part (b) of
Theorem 1.

Proposition 2 For every c > 0, p ∈ N, and E ∈ (0, Ec), the operator L given by (4)
has exactly one simple negative eigenvalue, a simple zero eigenvalue, and the rest of
the spectrum is positive and bounded away from zero.

Proof Thanks to Lemma 6, we only need to inspect the multiplicity of negative
and zero eigenvalues of L . By Lemma 7, the zero eigenvalue λ0 = 0 < C−(E)

can be at most double. The first eigenvector v0 = ∂zU ∈ L̇2
per(−T (E), T (E)) ∩

H∞
per(−T (E), T (E)) for λ0 = 0 follows by the translational symmetry. Indeed, dif-

ferentiating (2) with respect to z, we verify that v0 satisfies the differential equation
(54) with λ0 = 0 and, equivalently, the integral equation (53) with λ0 = 0.

Another linearly independent solutionv1 = ∂EU of the sameEq. (54)withλ0 = 0 is
obtained by differentiating (2) with respect to E for fixed c > 0. Here we understand
the family U (z; E) of smooth 2T (E)-periodic solutions constructed in Lemma 1,
where the period 2T (E) is given by (12) and is a smooth function of E . Now, we show
that the second solution v1 is not 2T (E)-periodic under the condition T ′(E) < 0
established in Proposition 1. Consequently, the zero eigenvalue λ0 = 0 is simple. For
simplicity, we assume that the family U (z; E) satisfies the condition

U (±T (E); E) = 0 (55)

at the end points, which can be fixed by translational symmetry. By differentiating the
first boundary condition in (2) with respect to E , we obtain

∂EU (−T (E); E) − T ′(E)∂zU (−T (E); E) = ∂EU (T (E); E) + T ′(E)∂zU (T (E); E).

Notice that ∂zU (±T (E); E) �= 0, since otherwise the periodic solution U would be
identically zero in view of (55) which is only possible for E = 0. Since T ′(E) �= 0 by
Proposition 1, the solution v1 = ∂EU is not 2T (E)-periodic, and therefore, the zero
eigenvalue λ0 = 0 is simple for the entire family of smooth T (E)-periodic solutions.

Next, we show that the spectrum of L includes at least one negative eigenvalue.
Indeed, from the integral version of the differential equation (2),

P0

(
c − 1

p + 1
U p

)
P0U + P0∂

−2
z P0U = 0,

6 Recall that the eigenvalue is called defective if its algebraicmultiplicity exceeds its geometricmultiplicity.
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we obtain that LU = − p
p+1 P0U

p+1, which implies that

〈LU,U 〉L2
per

= − p

p + 1

∫ T (E)

−T (E)

U p+2dz < 0. (56)

The last inequality is obvious for even p. For odd p it follows from Corollary 1 for
given T (E) ∈ (T1c1/2, πc1/2) fixed. In both cases, we have shown that L has at least
one negative eigenvalue for every E ∈ (0, Ec).

Finally, the spectrum of L includes at most one simple negative eigenvalue. Indeed,
the family of 2T (E)-periodic solutions is smooth with respect to the parameter E ∈
(0, Ec) and it reduces to the zero solution as E → 0. It follows from the spectrum
(46) for the operator L0 at the zero solution, and the preservation of the simple zero
eigenvalue with the eigenvector ∂zU for every E ∈ (0, Ec), that the splitting of a
double zero eigenvalue for E �= 0 results in appearance of at most one negative
eigenvalue of L . Thus, there exists exactly one simple negative eigenvalue of L for
every E ∈ (0, Ec). �

5 Applications of the Hamilton–Krein theorem

Since L has a simple zero eigenvalue in L̇2
per(−T, T ) by Proposition 2 with the eigen-

vector v0 = ∂zU , eigenvectors v ∈ Ḣ1
per(−T, T ) of the spectral problem λv = ∂z Lv

for nonzero eigenvalues λ satisfy the constraint 〈U, v〉L2
per

= 0; see definition (8) of

the space L2
c . Since ∂z is invertible in space L̇2

per(−T, T ) and the inverse operator is

bounded from L̇2
per(−T, T ) to itself, we can rewrite the spectral problem λv = ∂z Lv

in the equivalent form

λP0∂
−1
z P0v = Lv, v ∈ L̇2

per(−T, T ). (57)

In this form, the Hamilton–Krein theorem from [12] applies directly in L2
c . According

to this theorem, the number of unstable eigenvalues with λ /∈ iR is bounded by
the number of negative eigenvalues of L in the constrained space L2

c . Therefore,
we only need to show that the operator L is positive in L2

c with only a simple zero
eigenvalue due to the translational invariance in order to prove part (c) of Theorem 1.
The corresponding result is given by the following proposition.

Proposition 3 For every c > 0, p ∈ N, and E ∈ (0, Ec), the operator L|L2
c
: L2

c →
L2
c , where L is given by (4), has a simple zero eigenvalue and a positive spectrum

bounded away from zero.

Proof The proof relies on a well-known criterion (see for example Lemma 1 in [11] or
Theorem 4.1 in [23]) which ensures positivity of the self-adjoint operator L with prop-
erties obtained in Proposition 2, when it is restricted to a co-dimension one subspace.
Positivity of L|L2

c
: L2

c → L2
c is achieved under the condition

〈L−1U,U 〉L2
per

< 0. (58)
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To show (58), we observe that Ker(L) = span{v0}, where v0 = ∂zU and 〈U, v0〉L2
per

=
0 implies that U ∈ Ker(L)⊥. By Fredholm’s alternative (see, for example, The-
orem B.4 in [23]), L−1U exists in L̇2

per(−T, T ) and can be made unique by the

orthogonality condition 〈L−1U, v0〉L2
per

= 0. By Lemma 5, we have the existence of

∂cU ∈ L̇2
per(−T, T ) such that L∂cU = −U , see Eq. (33). Moreover, 〈∂cU, v0〉L2

per
=

0, since ∂cU and v0 = ∂zU have opposite parity. Therefore, ∂cU = L−1U and we
obtain

〈L−1U,U 〉L2
per

= −〈∂cU,U 〉L2
per

< 0,

where the strict negativity follows from Lemma 5. �
The proof of Theorem 1 follows from the results of Propositions 1, 2 and 3.
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