
https://doi.org/10.1007/s10270-015-0472-2
https://doi.org/10.1007/s10270-015-0472-2

Softw Syst Model (2017) 16:55–76
DOI 10.1007/s10270-015-0472-2

THEME SECTION PAPER

Analysing the Linux kernel feature model changes using FMDiff

Nicolas Dintzner1 · Arie van Deursen1 · Martin Pinzger2

Received: 17 October 2014 / Revised: 8 March 2015 / Accepted: 25 April 2015 / Published online: 22 May 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Evolving a large scale, highly variable system is
a challenging task. For such a system, evolution operations
often require to update consistently both their implementa-
tion and its feature model. In this context, the evolution of
the featuremodel closely follows the evolution of the system.
The purpose of this work is to show that fine-grained feature
changes can be used to guide the evolution of the highly vari-
able system. In this paper, we present an approach to obtain
fine-grained feature model changes with its supporting tool
“FMDiff”. Our approach is tailored for Kconfig-based vari-
ability models and proposes a feature change classification
detailing changes in features, their attributes and attribute
values. We apply our approach to the Linux kernel fea-
ture model, extracting feature changes occurring in sixteen
official releases. In contrast to previous studies, we found
that feature modifications are responsible for most of the
changes. Then, by taking advantage of the multi-platform
aspect of the Linux kernel, we observe the effects of a fea-
ture change across the different architecture-specific feature
models of the kernel. We found that between 10 and 50% of
feature changes impact all the architecture-specific feature

Communicated by Andrzej Wąsowski and Thorsten Weyer.

B Nicolas Dintzner
N.J.R.Dintzner@tudelft.nl

Arie van Deursen
Arie.vanDeursen@tudelft.nl

Martin Pinzger
Martin.Pinzger@aau.at

1 Software Engineering Research Group, Delft University of
Technology, Delft, The Netherlands

2 Software Engineering Research Group, University of
Klagenfurt, Klagenfurt, Austria

models, offering a new perspective on studies of the evolu-
tion of the Linux feature model and development practices
of its developers.

Keywords Software product line · Feature model ·
Evolution

1 Introduction

Software product lines are designed to maximize reuse of
development artefacts while reducing development costs,
through the identification and formalization of what is com-
mon and variable between different members of a product
family [9]. Features, as configuration units, represent func-
tionalities or characteristics that may be included in products
of a product line. Available features are often formalized
in a feature model, describing both the options themselves
and their allowed combinations. The choice of features to
offer to customers and their allowed configurationswill influ-
ence every step of the development of the product line: its
design, architecture, implementation techniques and applica-
ble methods to instantiate products from a set of assets
(source code, scripts, resources) [9].

Over time, as a software product line evolves, features
are added, removed or modified and the associated assets
should be updated accordingly. Software product lines are
often long-lived systems, and the complexity of the system
increases over time to the point where evolution opera-
tions become error prone and specific approaches and tools
become necessary [39,42,44]. We can find in the literature
accounts of the issues arising during the evolution of such
systems [1,19,42]. In a different domain, it has been shown
that the analysis of fine-grained source code changes facili-
tates softwaremaintenance [14]. Encouraged by such results,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-015-0472-2&domain=pdf

56 N. Dintzner et al.

we propose to explore a similar idea in the context of highly
variable software: observing the details of the fine-grained
evolution of a feature model to derive information about the
evolution of the system.

Feature model evolution has been extensively studied in
the past [15,26,41,44]. These studies provide insights on
which operations may occur on features, detailed examples
of transformations occurring on large scale product lines—
industrial and open source, and the evolution of featuremodel
structural metrics (number of leaves, nodes, constraints). But
it is interesting to note that studies detailing feature evolution
scenarios, such as [21,25,30], tend to focus on transformation
leading to (dis)appearance of complete features, not covering
changes to existing features or constraints, leaving us with
little knowledge about the details of such changes.

In this paper, we propose to elaborate and apply our
existing tool supported approach to extract and classify fine-
grained feature model changes in the Linux kernel feature
model [12]. While the Linux kernel is not a software prod-
uct line per se, it has the technical characteristics of such
systems, among which an explicit variability model, which
we assimilate to a feature model following the work by Sin-
cero et al. [36,37], making this system an interesting case of
highly variable software. We rely on our existing classifica-
tion of feature changes, based on the Kconfig language.1

We improved FMDiff, the supporting tool, to extract a
larger corpus of data coveringmore than twenty architecture-
specific feature models applied for over sixteen releases of
the Linux kernel, from release 2.6.39 until release 3.14. We
use the collected data to draw lessons about the evolution of
the Linux kernel.

First, we are interested in discovering the frequent change
operations affecting the feature model that developers per-
form over time. This data will allow us to see whether the
most commonly studied feature changes are also the most
common change operations occurring on the features of
Linux kernel. Several studies (e.g. [17,21,27]) quantified
the addition and removal of features in the Linux kernel
over time or present structural metrics of the kernel’s feature
model, such as the depth of feature structures or the number
of leaf features in each release, but despite being often stud-
ied, more detailed information can be obtained. This leads to
our first research question: RQ1: What are the most common
operations performed on features in the Linux kernel feature
model? Over the studied time period, we found that the most
common feature change operation on this system is also the
one that is the least described by current research on vari-
able system evolution, namely the modification of existing
features (instead of merely adding or removing them).

1 https://www.kernel.org/doc/Documentation/kbuild\discretionary-/
kconfig-language.txt.

Secondly, we know that the Linux kernel is designed to
support many different processor architectures, each poten-
tially differing widely from others in terms of supported
features. In this study, we extract the Linux feature model on
a per architecture basis. While we study the evolution of all
of thosemodels, some studies restrict themselves to the study
of one of them to extrapolate their findings on others [21].
We also note that developers working on the Linux feature
model have, except in trivial cases, no means to know which
architecture can be impacted by a feature change. We use
FMDiff to compare the evolution of those different models
and answer the following research question: RQ2: To what
extent does a feature change affect all architecture-specific
feature models of the Linux kernel? Our data show that the
different architecture feature models follow very different
evolution paths and that between 10 and 50% of feature
changes affect all architectures dependingon the release.This
suggests that extrapolation of observations done on the evo-
lution of one architecture-specific feature model should be
conducted with care, and points to a potential caveat in the
Linux development process.

The key contribution of this paper is FMDiff, an approach
to extract and automatically classify feature model changes
from the versioning history of Kconfig-based feature mod-
els. Furthermore, the paper contributes (1) a feature model
change classification scheme, focused on Kconfig-based
variability models; (2) the FMDiff tool; (3) two studies with
the Linux kernel featuremodel showing that changes to exist-
ing features constitute a large proportion of feature changes
of the Linux feature model and showing that the evolution of
architecture-specific featuremodels of Linux followdifferent
evolution path.

The remainder of this paper is organized as follows. Sec-
tion 2 provides some background information on the Linux
kernel, its featuremodel, and the tools we rely on to extract it.
We present our feature change classification and its rationale
in Sect. 3.FMDiff is introduced and evaluated in Sect. 4.We
illustrate the capability of our tool in Sect. 5 by answering our
two research questions.We reflect on the use of FMDiff and
fine-grained feature changes in the context of the evolution
of highly variable systems and product lines in Sect. 6. Sec-
tion 7 presents related work. Finally, we conclude this paper
and elaborate on potential future applications of FMDiff
in Sect. 8.

2 Background: the Linux kernel variability model

The approach described in this paper is based on the extrac-
tion of feature models (FMs) declared with the Kconfig
language. In this section, we present general information
regarding the Kconfig language, the Linux kernel that we

123

https://www.kernel.org/doc/Documentation/kbuilddiscretionary {-}{}{}/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuilddiscretionary {-}{}{}/kconfig-language.txt

Analysing the Linux kernel feature model changes using FMDiff 57

used as a case study, and the model transformation we per-
form on the Linux feature model before analysis.

2.1 The Kconfig language

Kconfig is a variability modelling language used to describe
configuration options (features) and their composition rules
(cross-tree constraints). Listing 1 exemplifies the declaration
of a configuration option in the Kconfig language.

In this work, we assimilate configuration options declared
in theKconfig language to features and the set of optionswith
their constraints to a feature model [37]. The models created
using Kconfig will differ from more standard feature models
declared using FODA notation [18], but the constructs of
both notations of can be mapped to one another [34].

In the Kconfig language, features have at least a name
(following the config keyword on line 3) and a type. The
type attribute specifies what kind of values can be associated
with a feature. A feature of type Boolean can either be
selected (with value y for ‘yes’) or not selected (with value
n for ‘no’). Tristate features have a second selected state (m
for ‘module’), implying that the features are selected and are
meant to be added to the kernel in the form of a loadable ker-
nel module. Finally, features can be of type integer (int or
hex) or typestring. In our example, theACPI_AC feature
is of type tristate (line 4). Features can also have default
values, in our example the feature is selected by default (y
on line 5), provided that the condition following the if key-
word is satisfied. The text following the type on line 4 is the
prompt attribute. It defines whether the feature is visible in
the configuration tools during the configuration process. The
absence of such text means the feature is not visible.

Kconfig supports two types of dependencies. The first one
represents prerequisites, using the depends (or depends
on) statement followed by an expression of features (see
line 6). If the expression is satisfied, the feature becomes
selectable.The secondone, expressing reverse-dependencies,
is declared by the select statement. If the feature is
selected, then the target of the select will be selected as
well (POWER_SUPPLY is the target of the select state-
ment on line 7). The select statement may be conditional.
In such cases, an if statement is appended. depends,
select and constrained default statements are used to
specify the cross-tree constraints of the Linux kernel FM. A
feature can have any number of such statements.

Furthermore, Kconfig provides the means to express
constraints on sets of features, such as the if statement
shown on line 1. This statement implies that all features
declared inside the if block depend on the ACPI feature.
This is equivalent to adding a depends ACPI statement
to every feature declared within the if block. Another
possibility is to use choices. Such statement provides
constructs similar to “alternative” (1 of) and “or” feature

1 if ACPI
2

3 config ACPI_AC
4 tristate " AC Adapter "
5 default y if ACPI
6 depends X86
7 select POWER_SUPPLY
8 help
9 This driver supports the AC Adapter

10 object ,(...) .
11

12 endif

Listing 1 Example of a feature declaration in Kconfig

constraints (1 or more of) found in the FODA feature
modelling notation [18]. A choice itself can also be sub-
jected to constraints and have dependencies expressed using
depends statement.

Finally, features can have the “option” attribute, allowing
the definition is a wide range of key/value pairs associated
with features. This is used to flag features to be used in default
(or generated) configurations for instance—option with the
key “def_conf_list”. Another usage is to tune the module
resolution mechanism or import additional variables.

Kconfig offers the possibility to define a feature hierar-
chy using menus and menuconfigs. Those objects are used to
express logical grouping of features and organize the presen-
tation of features in the kernel configurator. The configurator
may also rely on the dependencies declared between fea-
tures to create the displayed hierarchy. Constrains defined
on menus and menuconfigs are applicable to all elements
within. Menu can have the “visible” attribute, associated
with a Boolean expression of features, complementing the
“prompt” attribute. More details about the Kconfig language
can be found in the official documentation.2

2.2 The Linux kernel

An example of system relying on the Kconfig language to
manage its variability is the Linux kernel. Linux users can
tailor their own kernel with Menuconfig (among other
tools), the kernel configurator. This tool displays available
configuration options in the form of a tree, and as the user
selects or unselects options, the tree is updated to show only
options that are compatible with the current selection.

Such tools use the textual descriptions of the Linux fea-
tures contained with Kconfig files as an input and provide a
collection of selected features as an output, in the form of a
list of feature names. During the configuration process, the
configurator identifies the files to include and the features
to display, depending on constraints expressed in those files.

2 https://www.kernel.org/doc/Documentation/kbuild/kconfig-langua
ge.txt.

123

https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

58 N. Dintzner et al.

Constraints on file selection, or selectability of features, are
resolved using naming convention based on feature names.

The choice of the target hardware architecture (e.g. X86,
ARM, SPARC) does not follow this rule. Because the choice
of target architecture defines which file should be read first,
it uses another mechanism. The name of the chosen archi-
tecture is defined during start-up (and can be modified later
on) and stored in a variable used to build the first visualiza-
tion of the FM ($SRCARCH, visible in “./Kconfig”). If no
target architecture is given when starting the tool, it uses the
architecture of the machine on which it is run by default. As
a result, no parts of the Linux kernel FM represent the choice
between architectures, while the architectures themselves are
present as features.

This becomes important when rebuilding the Linux FM:
without knowing which hardware architecture is being con-
sidered, we do not know which files to consider when
rebuilding the FM. To avoid this problem, the methodology
commonly applied is to rebuild a partial Linux FM per sup-
ported hardware architecture [21,23]. In this study, we use
this specific approach when rebuilding the Linux FMs and
analysing FM changes.

2.3 Feature model representation

A prerequisite to our approach is to be able to extract feature
definitions from Kconfig files. For this, we use an existing
tool, Undertaker, to translate Kconfig features into an
easier to process format [43]. This tool has been used in the
past for similar purposes. Undertaker uses it to reformat
the Kconfig model before using it to determine feature pres-
ence conditions. It produces a set of “.rsf” files, containing
annotated triplets formatted according to the “Rigi Standard
Format” [40]. Each file contains an architecture-specific FM,
i.e. an instance of the Linux FM where the choice of hard-
ware architecture is predetermined.

Listing 2 shows the example of the feature declared in
Listing 1 in rsf triplets as output by Undertaker.

The first line shows the declaration of a feature (Item)
with name ACPI_AC and type tristate. The second line
declares a prompt attribute for featureACPI_AC and its value
is set to true (1). The third line declares the default value
of the ACPI_AC feature, which is set to y if the expres-
sion X86 && ACPI evaluates to true. Line 4 adds a select
statement reading when ACPI_AC is selected the feature
POWER_SUPPLY is selected as well, if the expression X86
&& ACPI evaluates to true. Finally, the last line adds a
cross-tree constraint reading feature ACPI_AC is selectable
(depends) only if X86 && ACPI evaluates to true.

Undertaker eases feature extraction but modifies their
declaration. Among the applied modifications, two are most
important for our approach: first, Undertaker flattens
the feature hierarchy and then resolves features depends

1 Item ACPI_AC tristate
2 Prompt ACPI_AC 1
3 Default ACPI_AC "y" " X86 && ACPI "
4 ItemSelects ACPI_AC POWER_SUPPLY " X86 && ←�

ACPI "
5 Depends ACPI_AC " X86 && ACPI "

Listing 2 Representation of the feature declaration of Listing 1 in .rsf
format

statements. Concerning the flattening of the hierarchy,
Undertaker modifies the depends statement of each
feature to mirror the effects of its hierarchy. For instance,
Undertaker propagates surrounding if conditions to the
depends statements of all features contained in the if-block.
This explains the addition of ACPI to the condition of the
depends statement on line 5 of Listing 2. Concerning the
resolution of depends statements, Undertaker propa-
gates conditions expressed in the depends statement of
a feature to its default and select conditions. This
explains the condition X86 && ACPI that has been added
to the select (ItemSelects) and default value (Default)
statements. Such transformations will influence the results of
the comparison process and the interpretation of the captured
changes. However, it has to be noted that the changes pre-
serve the Kconfig semantics as described in [33].

3 Change classification

Asmentioned in Sect. 2, the Linux featuremodel is expressed
inKconfig, describing both forward and backward dependen-
cies with the “selects” and “depends” statements. We aim at
classifying feature changes occurring in the Linux kernel
feature model (FM), capturing as accurately as possible the
different changes that might occur on its statement. Existing
feature change classifications [8,26] do not consider some
specificities of theKconfiggrammar (e.g. select relationships
with conditions). For this reason, we devise a new classifica-
tion scheme, based on existing work, but specifically tailored
for the Kconfig language.

We present a three-level classification scheme of fea-
ture changes, namely change category, change sub-category
and change type. Each category describes a feature change
on a different level of granularity. Items on each level are
named based on the modified entity (feature, statement and
statement fragment), such as a default statement and
the change operation applied i.e. addition (ADD), removal
(REM) or modification (MOD). Figure 1 depicts our change
classification scheme.

Thefirst level, change category, describes changes at a FM
level. Here, features can be either added, removed or modi-
fied. The corresponding change categories are

123

Analysing the Linux kernel feature model changes using FMDiff 59

Fig. 1 FMDiff 3-level feature model changes classification scheme

ADD_FEATURE, REM_FEATURE and MOD_FEATURE. In
the following, we abbreviate lower-level change types by
prefixing the feature property that can change with the three
change operations ADD, REM, and MOD.

The next level, change sub-category, describes which
property of the feature changed. We differentiate between
attribute changes (i.e. type or prompt properties), and
changes in the dependencies, default value, and select state-
ments. The corresponding twelve change sub-categories
are {ADD, REM, MOD}_ATTR, {ADD, REM, MOD}_
DEPENDS, {ADD, REM, MOD}_DEF_VAL and {ADD,-
REM,MOD}_SELECT.

Finally, change types detail which attribute, or part of a
statement, is modified. The change types are as follows:

– Attribute change types:we track changes occurring on the
type and prompt attributes. Combined with the three pos-
sible operations, we have {ADD, REM, MOD}_TYPE
and {ADD, REM, MOD}_PROMPT.

– Depends statement change types: depends statements
contain a Boolean expression of features. We use a set of
change types describing changes occurring in that expres-
sion, namely {ADD, REM, MOD}_DEPENDS_EXP.
In addition, we further detail these changes by recording
the addition and removal of feature references (mentions
of feature names) in the Boolean expression with the two
change types {ADD,REM}_DEPENDS_REF.

– Default statement change types: default statements are
composed of a default value and a condition. Both the
condition and the value can be Boolean expressions of
features. Default values can be either added or removed
recorded as {ADD, REM}_DEF_VAL change types.
Changes in the default statement condition are stored as
{ADD, REM, MOD}_DEF_VAL_COND. Finally, we
track feature references changes in the default value
using{ADD, REM}_DEF_VAL_REF and in the default
value condition using change types {ADD, REM}_
DEF_VAL_COND_REF.

– Select statement change types: select statements are com-
posed of a target and a condition which, if satisfied,
will trigger the selection of the target feature. Similar

to the default statement change types, we record {ADD,
REM, MOD}_SELECT_TARGET changes. Changes to
the select condition are recorded as {ADD, REM,MOD}
_SELECT_COND. Finally, to track changes in feature
references inside a select condition, we use the {ADD,
REM}_SELECT_REF change types.

The three change categories, twelve change sub-categories
and twenty-seven change types form a hierarchy allowing
us to classify changes occurring in FMs expressed in the
Kconfig language. Note that feature references contained
in depend statements, select statements and default value
statements can only be added or removed as reference is
either present or not. This leaves us with seven entities on
which three operations are possible and three for which
we will consider only two—for a total of twenty-seven
change types.

As an example consider an existing feature with a default
value definition to which a developer adds a condition. The
change will be fully characterized by the change category
MOD_FEATURE and the sub-category MOD_DEF_VAL,
since the feature and default value declaration already
existed, and finally the ADD_DEF_VAL_COND change type
denoting the addition of a condition to the default value state-
ment, and a ADD_DEF_VAL_REF change type for each of
the features referenced in the added default value condition.

Kconfigprovides several additional capabilities, namely
menus to organize the presentation of features in the Linux
kernel configurator tool, range attribute on features and
options such asenv,defconfig_list or modules.We
do not keep track of menu changes, but we do capture the
dependencies induced by menus. Undertaker propagates
feature dependencies of menus to the features a menu con-
tains in the same way it propagates if block constraints.
Undertaker does not export the range attribute of fea-
tures; therefore, we cannot keep track of changes on this
attribute and do not include them in our feature change clas-
sification scheme. We plan to address this issue in our future
work. Furthermore, Undertaker does not export options
such as env, defconfig_list or modules, and we

123

60 N. Dintzner et al.

cannot track changes in such statements. But, because those
options are not properties of features and do not change their
characteristics, we consider the loss of this information as
negligible when studying FM evolution.

Regarding our classification scheme, note that some com-
binations of change category, sub-category and change types
are not possible or do not occur in practice. For instance, the
change types denoting that a depends or a select statement
was added cannot occur together with the change category
REM_FEATURE denoting that the feature declaration was
removed. Some combinations are also constrained by Kcon-
fig, such as the change type ADD_TYPE can only occur in the
context of a feature creation, i.e. with the change category
ADD_FEATURE.

Currently, our change classification does not explic-
itly describe more complex feature model changes e.g.
merge feature or move feature. Such changes can
be viewed as a combination of simple changes described
by our change classification. A merge operation would then
result in the deletion of a feature and probably changes in the
constraints of another one. The semantic of the change oper-
ation is lost (we cannot know that it was a merge operation),
but its effect on the FM itself is captured in the form of a set
of change types.

4 FMDiff

In this section, we present our approach to automate fea-
ture change extraction and the tool that supports it: FMDiff.
We then compare feature changes captured by FMDiff and
changes observed in the original model. This allows us to
evaluate the consistency of the changes captured with our
approach and verify that FMDiff provides more informa-
tion than textual differencing.

4.1 FMDiff overview

The main objective of FMDiff is to automate the extraction
of changes occurring on the Linux FM and classify those
changes according to the scheme presented in the previous
section. The extraction of feature changes is performed in
several steps as depicted in Fig. 2.

4.1.1 Feature model extraction

The first step of our approach consists in extracting the
Linux FM from Kconfig files. We first obtain the Kconfig
files of selected Linux kernel versions from its source code
repository.3 Next, we use the Undertaker tool to extract

3 Official Linux kernel Git repository: https://github.com/torvalds/
linux.

Fig. 2 Change extraction process overview

architecture-specific FMs for each version. Undertaker out-
puts one “.rsf” file per architecture per version, in the format
described in Sect. 2.

We perform a few noteworthy transformations when
loading rsf triplets into FMDiff. The rsf triplets contain
Kconfig choice structures, which are not always named
in the Kconfig files. They are automatically renamed by
Undertaker (e.g. CHOICE_32) guaranteeing the con-
sistency of the rsf representation. Because the naming
process is an automatic and does not depend on the con-
tent of choice, or its attributes, the same choice struc-
ture can be renamed differently in different versions. As
a consequence, we cannot rely on naming to identify
uniquely and reliably evolving choice structures. For those
reasons, we ignore all choices when reconstructing the
feature model from “.rsf” files. Note that the hierarchy con-
strains imposed by the choices are still reported on the
relevant features during the hierarchy flattening process.
However, we do lose information regarding mutually
exclusive features.

Features can declare dependencies on those choice,
referring to them by their generated name. We replace all

123

https://github.com/torvalds/linux
https://github.com/torvalds/linux

Analysing the Linux kernel feature model changes using FMDiff 61

choice identifiers in feature statements by CHOICE. Doing
this, we cannot trace the evolution of choice structures but
prevent polluting the results with changes in the choice name
generation order while we still are able to track changes in
feature dependencies on choices.

4.1.2 FMDiff feature model reconstruction

As a second step, we reconstruct FMs from two consecutive
versions of a “.rsf” file. FMDiff compares FMs that are
instances of the meta-model shown in Fig. 3.

FeatureModel represents the root element having two
attributes denoting the architecture and the version of the
FM. A FeatureModel contains any number of features
represented as Feature. Each feature has a name, type
(Boolean, tristate, integer, etc.) and prompt attribute. In
addition, each feature contains a Depends attribute rep-
resenting the depends statements of a Kconfig feature
declaration. All features referenced by the depends state-
ment are stored in a collection of feature names, called
DependsReferences.

Each feature can have any number of Default
Statements, containing a default value and its associ-
ated condition. Furthermore, a feature can have any number
of Select Statements containing a select target and
a condition. The condition of both statements is recorded
as string by the attribute Condition. The features ref-
erenced by the condition of each statement are stored in
the collection DefaultValueReferences or Select
References respectively.

The “.rsf” output also allows a feature to have multiple
depends statements, but in our meta-model, we allow fea-
tures to have only one. In the case where FMDiff finds more
than one for a single feature, it concatenates those statements
using a logical AND operator. This preserves the Kconfig
semantics associated with multiple depends statements.

It is possible for a feature to have two default value state-
ments, with the same default value (“y” for instance) but with
different conditions. In such cases, our matching heuristic
would be unable to distinguish between the two. The same
is true for features that have two select statements with the
same target. To circumvent this problem, we concatenate
conditions of default statements with a logical OR opera-
tor if their respective default values are the same. We do the
same transformation for select statement conditions, for the
same reasons.

By using Undertaker and the rsf format as an input, we
make a trade-off. The simple structure of the “.rsf” files
facilitates the reconstruction of the Linux feature model.
The hierarchy flattening give us, locally on each feature,
additional information about constraints imposed by the
hierarchy—allowing us to capture such changes later on. On
the other hand, we cannot capture all feature attributes and

Fig. 3 FMDiff feature metamodel

we lose some information regarding choice structures—but
preserve their induced constraints, and regrouping default
value statements does not always respect Kconfig semantics.
The consequences of this choice on the approach and the
collected data are discussed in Sect. 6.

In the context of this study, we extended our data set
by including in it every rebuilt architecture-specific feature
model. Once we obtain the .rsf representation of a Linux
architecture-specific model, we can proceed with the change
identification and extraction.

4.1.3 Comparing models

For the comparison of two FMs, FMDiff builds upon the
EMF Compare4 framework. EMF Compare is part of the
Eclipse Modelling Framework (EMF) and provides a cus-
tomizable “diff” engine to compare models. It is used to
compare models in various domains, like interface history
extraction [31], or IT services modelling [13], and is flexible
and efficient. EMF Compare takes as input a meta-model, in
our case the meta-model shown in Fig. 3, and two instances
of that meta-model each representing one version of an
architecture-specific Linux FM. EMF Compare outputs the
list of differences between them.

The algorithm provided by EMF Compare is a two step
process: first a matching phase and then a diffing phase. The
first step, the “matching” phase, identifies which objects are
conceptually the same in the two instances. The diffing step
uses items considered to be identical in two model instances
to generate a list of model differences. Both steps need to
be specialized for our study: we must provide matching
rules, and a translation from EMF model changes to feature
model changes.

Tomatch features in two FMs, we rely on their name only:
two features in twomodels represent the same concept if they
have the same name. Note that this allows us to match fea-
tures even if their dependencies or type have been modified.
Similarly, we need to provide rules to identify whether two
default or select statements are the same. For default value

4 http://www.eclipse.org/emf/compare/.

123

http://www.eclipse.org/emf/compare/

62 N. Dintzner et al.

statements, we use a combination of the feature name and
the default value. For select statements, we use the targeted
feature name and the feature name. Our choices of matching
rules have consequences on how differences are computed. A
renamed feature cannot be matched in two models using our
rules. Its old versionwill be seen as removed, and the newone
as added. Default or select statements can only be matched if
their associated feature and its default value (or select target
respectively) are the same in bothmodels. Changes in default
values (select target) are captured as the removal of a default
value (select) statement and the addition of a new one.

During the second phase, the “diffing” EMF Compare
generates a list of the differences between the two models,
expressed using concepts from the FMDiff feature meta-
model. For instance, a difference can be an “addition” of
a string in the DependsReferences attribute of a fea-
ture. Another example is the “change” of the Condition
attribute of a Select Statement element, in which case
EMF Compare gives us the old and new attribute value.

4.1.4 Classifying changes

The last step of our process consists in translating the dif-
ferences obtained by EMF Compare into feature changes as
defined by our classification scheme.

The translation process comprises four steps. First, we run
through differences pertaining to the “contains” relationship
of the FeatureModel object to identify which features
have been added and removed, giving us the feature change
category. Then, we focus on differences in “contains” rela-
tionships on each Feature to extract changes occurring at
a statement level, providing us with the change sub-category.
The differences in attribute values of the various proper-
ties are then analysed to determine the change type. Finally,
changes are regrouped by feature name, creating for each
feature change the three-level classification.

The results are stored in a relational database. We record
for each feature change: the architecture and version of the
FM in which the change occurred, the name of the feature
affected, the change classification and the old and new values
of the attribute. We extract the information per architecture-
specific FM.We build one database per architecture in which
we store both the changes and the FMs.

4.2 Evaluating FMDiff

FMDiff’s value lies in its ability to accurately capture
changes occurring on the Linux feature model (consis-
tency) and its ability to provide information that would be
otherwise difficult to obtain (interestingness). To evaluate
FMDiff with respect to those two aspects, we compare it
with the information on changes that we obtained by manu-
ally analysing the textual differences between two versions

of Kconfig files. We consider FMDiff data to be consistent
if it contains all changes seen in Kconfig files, and its data
interesting if it provides more information than what can
be obtained using textual differences. We start by describ-
ing the data set used for the evaluation and then assess
them separately.

4.2.1 Data set

Using Git, we can navigate in the history of the Linux FM
and extract snapshots that will be used for later compari-
son. It has been shown that the Linux FM is modified for
corrective reasons during a release cycle [17,21]. To avoid
comparing feature model that might not be consistent with
implementation, or simply do not reflect what was initially
intended by the developer (a bug), we chose to compare only
tagged releases. We noticed that few feature model changes
were operated between the first release candidate version
of a kernel and its last stable revision. For those reasons,
we believe sufficient details can be obtained by extracting
changes between stable official releases.

For all releases of theLinuxKernel from2.6.28 to 3.14,we
rebuild 26 architecture-specific FMs. We extract the changes
occurring in 16 releases, over a time period of 3 years (from
March 2011 for 2.6.38 to April 2014 for 3.14). This range of
releases covers the first release supported by our infrastruc-
ture (Undertaker) up to the latest available release at the time
of the study.

Between release 2.6.38 and 3.14, five new architectures
were introduced (Unicore32 in 2.6.39, Openrisc in 3.1,
Hexagon in 3.2, C6X in 3.3, and arm64 in 3.7). We include
those architectures in our study to capture the effects of
the introduction of new architectures on the Linux FM. We
extract the feature history of 21 architectures present in ver-
sion 2.6.38 and follow the addition of new architectures, for
a total of 26 in 3.14. Our data set contains 2,734,353 records
describing the history of the Linux kernel FM.

4.2.2 Consistency

Asmentioned in Sect. 4, the extraction and reconstructions of
the Linux FM affect the data at our disposal during the com-
parison process, preventing us from obtaining certain types
of changes (choices, range attributes, ...). But, those excep-
tions aside, all other feature changes that can be observed
in Kconfig files history should be also visible in FMDiff
data set. Changes not meeting this criteria would be signs of
inconsistencies between the two representations of the same
changes. To evaluate the consistency of the captured changes,
we verify that a set of feature changes observed in Kconfig
files are also recorded by FMDiff.
Method we randomly pick twenty-five Kconfig files from
different sub-systems (memory management, drivers, and so

123

Analysing the Linux kernel feature model changes using FMDiff 63

on) modified over five releases. We then use the Unix “diff”
tool to manually identify the changed features.

Because FMDiff captures feature changes per architec-
ture, we first determine in which architecture(s) those feature
changes are visible. Then, we compare Kconfig files diff’
with the feature changes captured by FMDiff for one of
those architectures. We pick architectures in such a way that
all architectures are used during the experiment.

For each feature change, FMDiff data (1) matches the
Kconfig modification if it contains the description of all
feature changes—including attribute and value changes; (2)
partially matches if FMDiff records a change of a feature
but that change differs from what we found out by manually
analysing the Kconfig files; (3) mismatches if the change is
not captured by FMDiff.

Apartial ormismatchwould indicate that FMDiffmisses
changes; hence, the more full matches, the more consistent
FMDiff data are. We also take into account that renamed
features will be seen in FMDiff as “added” and “removed”.

Results In the selected twenty-five modified Kconfig files, 51
features were touched. Forty-eight of those feature changes
could bematched to FMDiff data, described by 121 records
of our database. A single partial match was recorded, caused
by an incomplete “.rsf” file. A default value statement
(def_bool_y) was not translated by Undertaker in any
of the architecture-specific “.rsf” files. In two cases, the
FMDiff changes did not match the Kconfig feature changes.
In both cases, developers removed one declaration of a fea-
ture that was declared multiple (2) times, with different
default values, in different Kconfig files. In FMDiff, a
change in the feature default value was recorded, which is
consistent with the effect of the deletion on the architecture-
specific FM.Based on this, we argue that FMDiff accurately
described this change.

Over our sample of feature changes, FMDiff did cap-
ture all the changes occurring in “.rsf” files. Moreover, a
large majority (94%) of Kconfig file changes were reflected
in FMDiff’s data. In the remaining cases, FMDiff still
captures accurately the effects of Kconfig file changes on
Linux FM. We conclude, based on our sample, that the data
set obtained with FMDiff is consistent with respect to the
changes occurring on the Linux FM.

4.2.3 Interestingness

Developers and maintainers of the Linux kernel often work
on features. Changes on features might affect the ones
they work on, or their direct dependencies. To identify
such changes, textual differencing tools in combination with
repository history navigation facilities can be used (such as
GitK for Git repositories). Inspired by the work of Ying et

al. [46], we propose here to compare the information that
can be obtained by textual differences and using FMDiff
to evaluate the interestingness of the collected data. We will
consider that FMDiff provides “interesting” information for
developers and maintainers if it makes available information
otherwise difficult to obtain.

Method We trace 100 feature changes randomly selected
from the FMDiff data set to the Kconfig file modifica-
tions that caused them. For each change, we determine
the set of Kconfig files of both versions of the Linux FM
that contain the modified feature. We then perform the tex-
tual diff on these files and manually analyse the changes.
If the diff cannot explain the feature change recorded by
FMDiff, we move up the Kconfig file hierarchy and analyse
the textual differences of files that include this file via the
source statement.

The comparison between FMDiff changes and Kconfig
file changes can either (1) match if the change can be traced
to a modification of a feature in a Kconfig file; (2) indirectly
match if the change canbe explainedby aKconfigfile change,
but the feature or attribute seen as modified in the Kconfig
file is not the same as the one observed in FMDiff data;
or finally, (3) mismatch if it cannot be traced to a Kconfig
file change.

We observe an indirect match when a FMDiff change
is the result of Undertaker propagating dependency
changes onto other feature attributes or onto its subfeatures
(e.g. when a depends statement is modified on a parent
feature). Here, indirect matches indicate that FMDiff cap-
tures side effects of changes made on Kconfig files, more
difficult to observe using textual differences.

Results Among the hundred randomly extracted changes,
four were modifications of feature Boolean expressions,
adding or removing multiple feature references. We traced
each reference addition/removal separately, resulting in 108
tracked feature changes.

We successfully traced 107 changes out of 108 back to
Kconfig files changes. A single mismatch was found, involv-
ing a choice statement that could not be explained; but the
change was consistent with the content of Undertaker’s
output. We obtained 26 matches, 79 indirect matches, and
finally 2 features were renamed and those changes were
successfully captured as deletion and creation of a new fea-
ture. Among the indirect matches, 61 are due to hierarchy
expansion and 18 due to depends statement expansion on
other attributes.

The large number of indirect matches is explained by an
over-representation in our sample of changes induced by
the addition of new architectures. Architectures are added
by creating, in an architecture-specific folder (e.g. /arch),
a Kconfig file referring existing generic Kconfig files in
other folders (e.g. /drivers). Hence, we observe feature addi-

123

64 N. Dintzner et al.

tions in an architecture-specific FMwithout modifications to
feature declarations.

A total of 79 feature changes captured by FMDiff could
not be directly linked to feature changes inKconfigfiles but to
changes in the feature hierarchy or other feature attributes.
We argue that even if FMDiff data do not always reflect
the actual modifications performed by developers in Kconfig
files, it captures the effect of the changes on the Linux FM.
In fact, those 79 indirect matches indicate that FMDiff data
containmore information thanwhat can be obtained from the
textual differences between two versions of the sameKconfig
file, where such effects need to be reconstructed manually.

5 Using FMDiff to understand feature changes in
the Linux kernel feature model

FMDiff captures changes occurring on features of the Linux
kernel and stores each individual change in a database.
Thanks to this format, we can easily query the gathered infor-
mation to study the evolution of the kernel feature model
(FM) over time. We use this information to identify the
most common change operations performed on features and
study the pervasiveness of feature changes across the mul-
tiple architecture-specific FMs of the kernel, and to answer
the research questions as raised in the introduction.

5.1 High-level view of the Linux FM evolution

FMs, as central elements of the design and maintenance
of SPLs, have attracted substantial attention over the past
few years in the research community. For example, several
studies describe practical SPL evolution scenarios related to
FM changes [25,30,32], focusing mostly on addition and
removal of features. An open question, however, is whether
the changes commonly studied are also the most frequent
ones on large scale systems. This leads us to our first research
question, which we answer using FMDiff data. RQ1: What
are the most common operations performed on features in
the Linux kernel feature model?

Let us consider the highest level of changes that FMDiff
captures: addition, removal and modification of features. We
use our database to query, for a given architecture, features
that were changed during a specific release. Listing 3 shows
an example of such query, giving us the number of features
modified during release 3.0 for a single architecture. We
compute, for sixteen releases, the total number of changed
features and the number of modified, added and removed
features in each architecture-specific FM, using only the first
level of our change classification. To obtain an overview of
the changes occurring in each release, we average number of
modified, added and removed features per architecture.

1 select count (distinct feature_name)
2 from fine_grain_changes
3 where revision =' v3 .0 '
4 and change_category =' MOD_FEATURE '

Listing 3 Example of query on FMDiff data: modified features in
release 3.0

As shown in Fig. 4, during release 3.0, the average num-
ber of feature changes in architecture-specific FMswere 722.
About 70% of those changes are modifications of existing
features, 22% are additions of new features, and only about
8% of those changes are feature removals. Note that the total
number of architectures taken into account varies over time.
In Fig. 4, the number of architectures used for the computa-
tion of the graph is noted in parenthesis above each column.

Over the 14 studied releases, on average per architecture,
creation of new features accounts for 10–50% of feature
changes. Deletion of features accounts for 5–20% of all fea-
ture changes, and modification of existing features accounts
for 30–80% of all feature changes.

In this case, modifications of existing features include
modification of their “depend statement”. Such statements
are affected by direct developer action (edition of the fea-
ture attribute in a Kconfig file) or by changes in the feature
hierarchy, as the hierarchy is used during FM extraction
(see Sect. 2).

With this information, we can answer our first research
question.Modifications of existing features account, on aver-
age, for more than 50% of the feature changes in most
releases (13 out of 16), making them the most frequent high-
level feature change occurring on the Linux kernel FM. This
clearly shows that modifications of existing features is a
common operation during the evolution of the Linux FM
compared to the other changes (adding and removing fea-
tures). This conclusion above is specific to certain types of
representations of FMs. In the most common FODA nota-
tion, cross-tree constraints refer to features, but are attached
to a FM rather than to the features themselves. A modifi-
cation to a cross-tree constraint is arguably different than a
feature modification. In this specific case, because cross-tree
constraints are part of the definition of a given, well-specified
feature, we can make such claim.

5.2 Evolution of architecture-specific FMs

In this section, we compare the evolution of the different
architecture-specific FMs. Our aim is to assess how similar
their evolution is and answer our second research ques-
tion: RQ2: To what extent does a feature change affect all
architecture-specific FMs of the kernel?

123

Analysing the Linux kernel feature model changes using FMDiff 65

Fig. 4 Evolution of the feature change category distribution (averaged over architectures)

5.2.1 Motivation

The Linux kernel feature model (FM) has been extensively
studied as an example of highly variable system. In order
to analyse the evolution of its FM, a common assumption
is that all hardware architecture-specific FMs supported by
the kernel evolve in a similar fashion [21]. This implies that
observations made on a single architecture can be, and are,
extrapolated to the entire kernel. Such approaches are justi-
fiedby the fact that the different architectures share up to 60%
of their features [11] and that the growth rate of architecture-
specific FMs are similar [21]. By comparing the evolution of
the different architecture-specific FMs, we see under which
condition such extrapolations hold.

We propose here to observe the evolution of those feature
models in regard to the development practices applied by
developers. The Kconfig file structure makes a clear distinc-
tion between features that are meant to be used for a single
architecture (organized in a subfolder of the main “arch”
directory) and the others. This provides guidance to devel-
opers during maintenance, about where to declare those very
specific features. However, every subsystem of the kernel
(memory, file system, drivers,...) can contain architecture-
specific features.

In practice, when a change is applied to a configura-
tion option in a Kconfig file, there is no guarantee that this

change is affecting all architecture-specific FMs in a sim-
ilar way. Concrete examples of such changes can be found
by browsing through the Linux kernel source code repository
history. During release 3.0, feature ACPI_POWER_METER
was removed and replaced by SENSORS_ACPI_POWER
contained in another code module.5 We can observe that
the ACPI_POWER_METER feature is removed from the
file “/drivers/acpi/Kconfig” file and that SENSORS_ACPI_-
POWER is added to “/drivers/hwmon/Kconfig”. The same
change is captured by FMDiff in the form of the removal of
ACPI_POWER_METER and the addition of SENSORS_-
ACPI_POWER. Using our database, we can observe that
the removal of the ACPI_POWER_METER only affected
two architectures: x86 and IA64. However, the addition of
SENSORS_ACPI_POWER can be seen in x86, IA64 and
ARM. Given the commit message, it is unclear whether this
was the expected outcome or not. The change does not seem
to have been reverted since then.

Another example is the addition of an existing feature to an
existing architecture-specific FM.Also in release 3.0, feature
X86_E_POWERSAVERpre-existing in theX86 architecture
was added to other architectures and its attributemodified.By
searching the Git history, we identified the commit6 remov-

5 commit: 7d0333.
6 commit: bb0a56.

123

https://github.com/torvalds/linuxcommit/7d0333653840b0c692f55f1aaaa71d626fb00870
https://github.com/torvalds/linux/commit/bb0a56ecc4ba2a3db1b6ea6949c309886e3447d3

http://landley.net/writing/docs/cross-compiling.html
http://landley.net/writing/docs/cross-compiling.html
https://github.com/torvalds/linux/commit/2ee91e54bd5367bf4123719a4f7203857b28e046
https://github.com/torvalds/linux/commit/cfa11e08ed39eb28a9eff9a907b20913020c69b5
https://lkml.org/lkml/2011/7/26/490

	Analysing the Linux kernel feature model changes using FMDiff
	Abstract
	1 Introduction

