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Abstract

Background: Foot morphology has received increasing attention from both biomechanics researches and footwear
manufacturers. Usually, the morphology of the foot is quantified by 2D footprints. However, footprint quantification
ignores the foot’s vertical dimension and hence, does not allow accurate quantification of complex 3D foot shape.

Methods: The shape variation of healthy 3D feet in a population of 31 adult women and 31 adult men who live in
Belgium was studied using geometric morphometric methods. The effect of different factors such as sex, age, shoe
size, frequency of sport activity, Body Mass Index (BMI), foot asymmetry, and foot loading on foot shape was
investigated. Correlation between these factors and foot shape was examined using multivariate linear regression.

Results: The complex nature of a foot’s 3D shape leads to high variability in healthy populations. After normalizing
for scale, the major axes of variation in foot morphology are (in order of decreasing variance): arch height, combined
ball width and inter-toe distance, global foot width, hallux bone orientation (valgus-varus), foot type (e.g. Egyptian,
Greek), and midfoot width. These first six modes of variation capture 92.59% of the total shape variation. Higher BMI
results in increased ankle width, Achilles tendon width, heel width and a thicker forefoot along the dorsoplantar axis.
Age was found to be associated with heel width, Achilles tendon width, toe height and hallux orientation. A bigger
shoe size was found to be associated with a narrow Achilles tendon, a hallux varus, a narrow heel, heel expansion
along the posterior direction, and a lower arch compared to smaller shoe size. Sex was found to be associated with
differences in ankle width, Achilles tendon width, and heel width. Frequency of sport activity was associated with
Achilles tendon width and toe height.

Conclusion: A detailed analysis of the 3D foot shape, allowed by geometric morphometrics, provides insights in foot
variations in three dimensions that can not be obtained from 2D footprints. These insights could be applied in various
scientific disciplines, including orthotics and shoe design.
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Background
Human foot morphology is an important subject for
physical anatomical analysis in several biomedical disci-
plines, including orthopedics, orthotic design and sports
sciences [1–13]. Different environments and everyday
habits (e.g., frequency of sport activity, shoe wearing
habits), as well as personal characteristics such as sex,
body mass index, and age, have been shown to have
a significant influence on adult foot morphology [1–9].
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Human foot shape also differs among ethnic groups [2]
and changes in the course of postnatal development [10].
As a result, footprint shape has been used in a variety
of disciplines such as orthopedics [11, 12], and footwear
research [13].

A common approach to study foot morphology is to
analyze the two-dimensional footprint, despite the poten-
tial loss of information along the vertical dimension
[1, 14–16]. The reason for the ubiquitous use of footprints
is that they can be relatively easily obtained, measured,
and preserved by using wax, plaster, foam or dynamic
pressure plates [17–20]. To fill the missing 3D shape
information along the vertical dimension, feet tend to be
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classified into discrete types, such as pes planus (flat foot)
and pes cavus (high-arched foot), by visual inspection
of footprint shape [10, 14, 15]. A wide range of differ-
ent quantitative measures and indices of footprint shape,
mainly based on the geometry of the medial longitudi-
nal arch, have also been proposed [14]. Based on these
parameters, various foot typologies have been defined
[10, 14, 16]. Most of these quantifications are based on a
small number of footprint shape characteristics, such as
the sizes of different footprint regions, the curvature of the
medial longitudinal arch, or the orientation of the forefoot
relative to the rearfoot [14, 15].

Nonetheless, these quantitative measures are insuffi-
cient to describe the entire 3D foot shape. The study
of Luximon et al. [21] showed that generating 3D
foot shape from 2D information for custom footwear
design introduces error in the 3D foot shape, reveal-
ing that there is additional information in 3D shape
compared to 2D footprint. Overall, a 3D foot scanner
is recommended for collecting foot anthropometric
data because it has relatively high precision, accuracy
and robustness [22]. A promising technique to exam-
ine this full 3D shape information is statistical shape
modelling. This technique is used in dysmorphology
training [23] and various product design applications
[24]. Statistical shape modelling has also been suc-
cessfully employed in foot classification [25] based on
metatarsal bones geometry, but only a partial 3D foot
shape is described (i.e. the position of the metatarsal
bones).

To date, statistical modelling of the full 3D foot shape
has yet to be achieved. Such a model could be beneficial
in various applications. In clinical examinations, a statis-
tical model of healthy 3D foot shape could be used as a
baseline to which a patient’s 3D foot scan can be com-
pared. In footwear design, a 3D foot shape model could
help produce footwear with a better accommodation for
foot girth.

In the present paper, we propose a methodology to
quantify the 3D shape of whole feet based on geo-
metric morphometrics, which is a standard technique
used for the analysis of 3D shapes in biological datasets
[25–27]. We employ geometric morphometrics on anato-
mically matched 3D meshes of feet from a healthy pop-
ulation. The aligned meshes preserve foot topology, and
therefore statistical results, such as group means or prin-
cipal components, describe actual foot shapes and foot
shape deformations. Using geometric morphometrics, we
examine the healthy 3D foot shape, the bilateral asym-
metry of foot shape, and the difference in shape between
different foot loadings. The influence of personal char-
acteristics (e.g. body mass index, sex, age, frequency
of sport activity) on the foot shape are also investi-
gated.

Methods
Data collection
Our cohort contains 62 adults equally split between males
and females. The Ethics Committee of the Antwerp Uni-
versity Hospital approved the study and all subjects gave
their written informed consent before participating.

All individuals were considered to have healthy feet
if they had never been diagnosed with foot pathology
or injury requiring medical intervention, had no foot
complaints (i.e. no foot pain), and no incidental find-
ings were found at the time of data collection, as eval-
uated by a physical therapist. In particular, the height
of the foot arch was not an excluding factor for our
cohort, so the individuals with certain ranges of the height
of the arch, which are considered to be normal, were
selected for our cohort. In fact, 13 (20.97%) individu-
als were considered to have high arched feet, 7 (11.30%)
individuals were considered to have flat feet, while 42
(67.73%) individuals were considered to have normal
foot arch.

Foot breadth diagonal and foot length [22] were deter-
mined by applying the Principal Component Analysis
(PCA) to vertices which belong to plantar surface of each
foot. In this way, we obtained 3 main axes of variation
for each plantar surface. Once we have the main axes of
variation, we determined the foot length as the differ-
ence between the maximum and minimum value along
the first axis. Similarly, the foot breadth was computed as
the difference between the maximum and minimum value
along the second axis. The shoe sizes for each sex are dis-
tributed as follows and are given using both the European
and Mondopoint scales. Mondopoint scale: The range for
female shoe size was [224/90, 278/105], with average shoe
size 246/93 (–14/5), while the range for male shoe size was
[248/93, 291/109], with average shoe size 271/103 (–8/4).
European scale: The range for female shoe size was [36.8,
45.7], with average shoe size 39.8 (–2.2), while the range
for male shoe size was [40.6, 47.6], with average shoe size
43.9 (–1.6).

Additionally, demographic information was collected
for the cohort (Table 1). All factors except shoe size
were self-reported. We note that significant group differ-
ences were found for shoe size between sex (t = -17.138,
p <0.001). Also, a significant correlation was found
between body mass index and age (� = 0.35, p <0.001).

The 3D foot scans were acquired with an Elinvision
FootIn3D laser 3D foot scanner (rs scan, Belgium). The
3D accuracy of the scanner is 0.3mm, while the mesh res-
olution is 3.02mm. A total of four scans were made for
each person, two of the left foot (half loaded: bearing 50%
of body weight, and full loaded: bearing 100% of body
weight) and two of the right foot (half loaded and full
loaded). Before scanning of the full loaded foot starts, the
participant is allowed to establish their balance by holding
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Table 1 Cohort demographics

Age[years] Shoe size [European(Mondopoint)] Weight[kg] Height[cm] BMI Frequency of sport activity[hours/week]

µ 38.9 40.9 (258/98) 72.6 175.0 23.7 3.7

� 13.5 2.2 (17/6.8) 12.0 9.3 3.5 4.1

min 18.0 36.0 (224/90) 53.0 156.0 18.6 0.0

max 60.0 46.0 (291/109) 107.0 196.0 35.8 15.0

a side wall and setting their free leg in the most comfort-
able position. This position is held during approximately
15 s required to obtain the scan. The scans of left feet were
mirrored to the coordinate system of the right feet. Prior
to the analysis, all 3D scans were cropped just above the
ankle (lateral malleolus) to decrease the effect of differ-
ent ankle poses obtained from half loaded and full loaded
scans. Once cropped, a 3D mesh was triangulated [28] and
the obtained 3D mesh was used for further analysis.

Methods
Geometric morphometry
Before the shape variation in the population can be statis-
tically analyzed, the 3D foot meshes need to be brought
into correspondence and superimposed (Fig. 1a). This
is done in two steps. First, mesh vertices are matched
across subjects based on their anatomical similarity. Then,
those matches are used to bring all feet into anatomical
alignment (Fig. 1).

Shape Correspondence: Initially, the vertices in our 3D
meshes are randomly ordered, meaning that, say, vertex
511 in one foot mesh does not anatomically correspond to
vertex 511 in another foot mesh (Fig. 1a). The number of
vertices may also be different for every mesh. Before per-
forming statistical analysis on these meshes, we must first

establish an anatomical correspondence between them.
To do so, we choose one foot mesh, Xreference, as our ref-
erence foot and deform it to match the other feet in the
database. This deformation is described by

Xtarget = �(T(Xreference), �) (1)

where Xtarget is a foot mesh in the database, T is an affine
transformation (which rotates, shifts, and scales the whole
foot mesh), and � is an elastic deformation operation.
The degree of the deformation operation is controlled
by a user-defined elasticity parameter � . We solve for
T and � using the iterative procedure defined in [29].
Briefly, this iterative procedure operates by keeping one
of the unknowns fixed (e.g. �) and then solving Eq. 1
for the other unknown (e.g. T). Subsequently, the proce-
dure solves Eq. 1 for the other unknown (�) by keeping
the previously-computed unknown (T) fixed. This iter-
ative process repeats until no changes are observed in
either � or T. During these repetitions, the elasticity, � , is
increased to gradually introduce more deformation as the
alignment improves. Further details can be found in [29].
The final result was that the reference surface Xreference is
deformed to have its shape as similar as possible to the
shape of the target surface Xtarget . At this point, Xtarget
is replaced by �(T(Xreference), �), ensuring that each foot
mesh has the same number of vertices ordered in the same

Fig. 1 Example of shape correspondence and Procrustes alignment. a Two randomly chosen foot meshes. Initially, the vertices (e.g. blue and red
points) on these meshes do not correspond; b Foot meshes after shape correspondence. Their vertices (e.g. blue and red points) are matched and
located on the same anatomical position; c Foot meshes after Procrustes alignment. The geometric distance between corresponding vertices (e.g.
blue and red points) is minimized
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fashion. This consistent vertex order ensures that every
foot mesh has the same vertices in the same anatomical
positions (Fig. 1b).

Procrustes Alignment: Once shape correspondence has
been established across all 3D foot meshes, the meshes
still need to be brought into spatial alignment before
statistics can be accurately performed. To obtain this
alignment, all meshes are superimposed by a General-
ized Procrustes Analysis [30]. This analysis consists of
three steps that normalize the 3D foot meshes for posi-
tion, size, and orientation (Fig. 1c). In the first step, all
meshes are translated to have the same centroid (aver-
age vertex position). Next, the meshes are scaled to have
the same size. In the last step, the meshes are rotated to
minimize the summed squared distances between the ver-
tices and their corresponding sample average. The above
procedure is followed for each individual. To avoid ref-
erence bias, the whole approach is iterated three times,
where in each iteration, the population average calcu-
lated from the previous iteration is used as the reference
foot [31].

We performed a PCA of the aligned mesh vertices to
investigate the major components of variation in 3D foot
shape and to determine the mean 3D shape. PCA models
each 3D mesh as follows:

X = M +
n�

i=1
Piwi (2)

where X is the 3D shape, M is the mean 3D shape, Pi is the
ith principal component (PC) and wi represents the con-
tribution of that PC in the shape. The first PC captures
most of the population’s shape variance. For each indi-
vidual, a score (wi) along the PC can be computed. The
following PCs are computed to be uncorrelated to previ-
ous PCs, while also explaining as much of the remaining
subject variation as possible. A single PCA was performed
on the whole cohort, including left and right feet, males
and females, and different foot loadings.

Statistical analysis
To assess the influence of different subject factors on
3D foot shape, we applied multivariate linear regression
between the factors and their most relevant PCs:

F = WB + E (3)

where F is the factors matrix, W is the matrix of the
principal component contributions of each population
member for the most relevant PCs (i.e. the wi values
from Eq. 1), B is the matrix of regression coefficients,
and E� N(0, � 2I). The recorded cohort demographics of
sex (1=male, 0=female), age, shoe size, BMI, frequency of

Fig. 2 The amount of between-subject variance in 3D foot shape described by the first 6 principal components (PCs)
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Fig. 3 Histograms and views of the first six PCs of the 3D foot shape in a healthy population. a The first principal component (visualized by the foot
shapes along the PC 1 axis) is a contrast between high arched feet (low PC 1 sores) and flat feet (high PC 1 scores). b The second principal
component (visualized by the foot shapes along the PC 2 axis) represents the differences between narrow ball width with touching toes (low PC 2
scores) and wide ball width with spread out toes (high PC 2 scores). c The third principal component (visualized by the foot shapes along the PC 3
axis) is a contrast between narrow feet (low PC 3 sores) and wide feet (high PC 3 scores). d The fourth principal component (visualized by the foot
shapes along the PC 4 axis) represents the differences between feet with normal hallux bone (low PC 4 scores) and feet whose hallux bone is angled
towards the other toes-hallux valgus (high PC 4 scores). e The fifth principal component (visualized by the foot shapes along the PC 5 axis) is a
contrast between “Egyptian” foot type (low PC 5 sores) and “Greek” foot type (high PC 5 scores). f The sixth principal component (visualized by the
foot shapes along the PC 6 axis) represents the differences between feet with a narrow midfoot with toes angled laterally (low PC 6 scores) and feet
with a wide midfoot with toes angled medially (high PC 6 scores)
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Table 2 Statistical significance of the linear relation between subjects factors and foot shape

Sex Age Shoe size Frequency of sport activity BMI Foot asymmetry Foot loading

R-squared 0.9034 0.5959 0.8490 0.4042 0.7363 0.3566 0.3689

p < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

post hoc statistical power 1.0 0.9992 1.0 0.8640 1.0 0.7614 0.7905

sport activity, foot loading (1=half loaded, 0=full loaded),
and foot side (1=right foot, 0=left foot) were selected as
factors. The subset of relevant PCs, W , was determined
through dimensionality reduction by sequential forward
selection [32]. Bayesian information criterion (BIC) was
used to select PCs and to determine when to stop the
dimensionality reduction. In this way, only the PCs that
best predict the subject factors are used for the statistical
analysis. A statistical power analysis (post hoc) was applied
to the obtained results.

Foot shape changes as a result of different foot side or loading
Finally, we also employed geometric morphometrics and
multivariate linear regression to investigate how subject
characteristics impact foot asymmetry and loading. To
examine the correlation between foot asymmetry and
other factors, a non-binary asymmetry measure was
included. First, both right and reflected left foot were
brought into correspondence and aligned. Then, we
defined the foot asymmetry measure as the Euclidean
distance between each vertex on the right foot and the
corresponding vertex on the left foot. Next, we performed
PCA on the obtained foot asymmetry measure (vectors
containing all vertex distances) and applied multivariate
linear regression of the PCs on the remaining factors. We
further employed a non-binary loading measure between
half and full loaded feet, in the same manner as for deter-
mining the asymmetry measure (i.e. using the Euclidean
distance between feet under different loads). Finally, to
examine the correlation between different foot loading
and other factors, we performed the above PCA and lin-
ear regression procedures in the same manner as for the
asymmetry measure.

Results
Principal component analysis
Figure 2 shows the first six PCs, in order of decreasing
variance, explaining 92.59% of the total foot shape varia-
tion. The shape variations identified by the first 6 PCs are
shown in Fig. 3. Each PC is interpreted as a deformation
of the mean foot shape, and is shown by adding (+3� ) and
subtracting (-3� ) it from the mean foot shape (Fig. 3). The
given size of each PC (32,272 numbers per PC) represents
a limitation when displaying them. To illustrate the varia-
tion captured by each PC, we display its effect on the mean
shape in Fig. 3 and marked what we observed. We noted
that PC 1 principally captures the variation between high
arched feet (pes cavus: low PC 1 score) and flat feet (pes
planus:high PC 1 score) as well as the extent of Achilles
tendon protrusion. We observed that PC 2 mainly cap-
tures the variation between feet with a narrow ball width
(low PC 2 score) and feet with a wide ball width (high PC
2 score). Moreover, a low PC 2 score appears to charac-
terize feet with small distance between toes, while a high
PC 2 score appears to characterize feet with spread out
toes. We detected that PC 3 mostly captures the varia-
tion in global foot width, including the ankle width, as well
as variation in ball/waist/instep girth. We noted that PC
4 chiefly reflects the variation in the position of the hal-
lux bone; individuals with high scores along PC 4 had feet
with the hallux valgus, while individuals with low scores
had feet with a hallux varus. We observed that PC 5 mostly
represents variation in the shape of the toes and in the
ankle angle. Individuals with a low score on this compo-
nent are referred to as having Egyptian feet compared to
individuals with high score who are referred to as having
Greek feet. Individuals with Egyptian feet have the hal-

Table 3 Correlation between subjects factors and first six PCs

Sex � (p) Age � (p) Shoe size � (p) Frequency of sport
activity � (p)

BMI � (p) Foot asymmetry � (p) Foot loading � (p)

PC1 0.72*(0.001) -0.019 (0.761) 0.60*(< 0.001) 0.19*(0.002) 0.0574 (0.368) -0.0253 (0.691) -0.26*(< 0.001)

PC2 -0.33*(< 0.001) 0.2246*(< 0.001) -0.23*(0.002) -0.0452 (0.478) 0.16*(0.011) 0.045 (0.480) 0.14*(0.024)

PC3 0.0113 (0.860) -0.122 (0.054) 0.17*(0.008) 0.24*(< 0.001) -0.53*(< 0.001) 0.0871 (0.171) 0.06578 (0.302)

PC4 -0.067 (0.291) -0.1164 (0.067) 0.00789 (0.901) 0.0174 (0.785) -0.13*(0.033) 0.08831 (0.166) 0.26*(< 0.001)

PC5 0.01847 (0.772) -0.0192 (0.764) -0.0363 (0.570) -0.0887 (0.164) 0.17*(0.007) 0.14*(0.025) 0.06364 (0.318)

PC6 0.0018 (0.978) -0.0068 (0.915) -0.06156 (0.334) -0.23*(< 0.001) 0.01258 (0.844) -0.24*(< 0.001) 0.05232 (0.412)

*Significant at the 0.05 probability level
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lux as the longest toe, while individuals with Greek feet
have a longer second toe [33]. We detected that PC 6
mainly reflects variation in midfoot width and direction
of toes. Proportionally, the differences in variation of the
latter PCs (PC 4, PC 6) are not that large since the shape
variations they represent are more localized and limited
in range in healthy populations. A larger variation along
these PCs might be observed in a population including
patients with, for example, a pathological degree of hallux
valgus.

The influence of factors on the foot shape
We investigated the influence of different subject fac-
tors on foot shape by regressing the principal compo-
nent weights on the respective variables. For all factors,
after dimensionality reduction, the 28 most relevant PCs
were retained. Table 2 shows the statistical significance
(� = 0.05) of the factors. The obtained R-squared values

(Table 2) sum to a value greater than one, which shows
that each factor describes a high percentage of variation
within the model, and that the same shape variations
occur as a result of multiple factors. This was expected as
we had already found significant correlation between fac-
tors. We noted a significant correlation between age and
BMI (� = 0.35, p <0.001), and significant differences in
shoe size due to sex (t = -17.138, p<0.001). A post hoc sta-
tistical power analysis was also performed on each subject
factor. The results of this analysis are given for each factor
in Table 2. The factors of sex, age, shoe size, frequency of
sport activity, and BMI all had significant influence on 3D
foot shape (p <0.05) and high statistical power (> 0.8).

We examined the correlation between each factor and
first six PCs. The obtained results are shown in Table 3.
As a result of our linear regression analysis, a factor’s
strong positive correlation with a certain PC could be bal-
anced out by its possible strong negative correlation with

Fig. 4 Visualization of the effect of BMI on foot shape. The influence of BMI on foot shape of younger people (20 years old, green box), and the
influence of BMI on foot shape of older people (50 years old, purple box). Upper and lower limits are determined for each group as intersections
with contour that covers the range that 90% of the values fall into. For each group, the influence of BMI is represented by color-mapped Euclidean
distance computed between the foot shape obtained for upper limit and the foot shape obtained for lower limit
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another PC. Therefore, each individual correlation can-
not be interpreted independently. Instead, the impact of a
subject factor on the foot shape should be examined as a
whole.

To visualize the impact of subject factors on foot shape,
we used our linear regression model to predict foot shapes
when varying each factor in isolation. The representative
feet shown in Figs. 4, 5, 6, 7 and 8 were quantitatively
derived from the linear model in Eq. 2. The changes in
foot shape were observed when varying the corresponding
subject factor in Eq. 2, while other factors remained fixed
(to their averages, or in the case of correlations between
factors, to the values shown in the figures). Our evaluation
of these shape variations are described below.

First, we examined the relationship between BMI and
foot shape (Fig. 4) by fixing the age for two groups:
younger and older people (both age groups are exam-
ined due to the correlation between age and BMI). We

observed that a low BMI was associated with a narrow
ankle, a narrow Achilles tendon region, a narrow heel, a
narrow midfoot, a straight heel in the sagittal plane, and
a thinner forefoot along the dorsoplantar axis. We found
that midfoot width, ball girth, waist girth and instep girth
all increase with BMI. Similarly, we investigated the influ-
ence of age on foot shape (Fig. 5) by fixing the BMI for
two groups: underweight and overweight. We noted that
younger individuals were associated with a more notice-
able Achilles tendon, a hallux varus, a more noticeable
cuboid bone, a wider midfoot, and a narrow heel.

Next, we investigated the relation between shoe size
and foot shape (Fig. 6) for males and females (both sex
were examined separately due to their significant differ-
ence in shoe size). We observed that a smaller shoe size
was associated with a wider Achilles tendon, hallux val-
gus, a wider heel, a straight heel in the sagittal plane, and
a higher arch. We found a significant influence of sex on

Fig. 5 Visualization of the effect of age on foot shape. The influence of age on foot shape of underweight people (16.5 BMI, green box), and the
influence of age on foot shape of overweight people (27.5 BMI, purple box). Upper and lower limits are determined for each group as intersections
with contour that covers the range that 90% of the values fall into. For each group, the influence of age is represented by color-mapped Euclidean
distance computed between the foot shape obtained for upper limit and the foot shape obtained for lower limit
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