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Multivariate Time Series Classification using the
Hidden-Unit Logistic Model

Wenjie Pei, Hamdi Dibeklioğlu, Member, IEEE, David M.J. Tax, and Laurens van der Maaten

Abstract—We present a new model for multivariate time series
classification, called the hidden-unit logistic model, that uses
binary stochastic hidden units to model latent structure in the
data. The hidden units are connected in a chain structure that
models temporal dependencies in the data. Compared to the
prior models for time series classification such as the hidden
conditional random field, our model can model very complex
decision boundaries because the number of latent states grows
exponentially with the number of hidden units. We demonstrate
the strong performance of our model in experiments on a variety
of (computer vision) tasks, including handwritten character
recognition, speech recognition, facial expression, and action
recognition. We also present a state-of-the-art system for facial
action unit detection based on the hidden-unit logistic model.

Index Terms—time series classification, hidden unit, latent
structure modeling, temporal dependencies modeling.

I. INTRODUCTION

T IME series classification is the problem of assigning a
single label to a sequence of observations (i.e., to a time

series). Time series classification has a wide range of applica-
tions in computer vision. A state-of-the-art model for time
series classification problem is the hidden-state conditional
random field (HCRF) [1], which models latent structure in
the data using a chain of k-nomial latent variables. The HCRF
has been successfully used in, amongst others, gesture recogni-
tion [2], object recognition [1], and action recognition [3]. An
important limitation of the HCRF is that the number of model
parameters grows linearly with the number of latent states in
the model. This implies that the training of complex models
with a large number of latent states is very prone to overfitting,
whilst models with smaller numbers of parameters may be too
simple to represent a good classification function. In this paper,
we propose to circumvent this problem of the HCRF by re-
placing each of the k-nomial latent variables by a collection of
H binary stochastic hidden units. To keep inference tractable,
the hidden-unit chains are conditionally independent given the
time series and the label. Similar ideas have been explored
before in discriminative RBMs [4] for standard classification
problems and in hidden-unit CRFs [5] for sequence labeling.
The binary stochastic hidden units allow the resulting model,
which we call the hidden-unit logistic model (HULM), to
represent 2H latent states using only O(H) parameters. This
substantially reduces the amount of data needed to successfully
train models without overfitting, whilst maintaining the ability
to learn complex models with exponentially many latent states.
Exact inference in our proposed model is tractable, which
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makes parameter learning via (stochastic) gradient descent
very efficient. We show the merits of our hidden-unit logistic
model in experiments on computer-vision tasks ranging from
online character recognition to activity recognition and facial
expression analysis. Moreover, we present a system for facial
action unit detection that, with the help of the hidden-unit
logistic model, achieves state-of-the-art performance on a
commonly used benchmark for facial analysis.

The remainder of this paper is organized as follows. Section
2 reviews prior work on time series classification. Section 3
introduces our hidden-unit logistic model and describes how
inference and learning can be performed in the model. In
Section 4, we present the results of experiments comparing
the performance of our model with that of state-of-the-art time
series classification models on a range of classification tasks.
In Section 5, we present a new state-of-the-art system for facial
action unit detection based on the hidden-unit logistic model.
Section 6 concludes the paper.

II. RELATED WORK

There is a substantial amount of prior work on multivariate
time series classification. Much of this work is based on
the use of (kernels based on) dynamic time warping (e.g.,
[6]) or on hidden Markov models (HMMs) [7]. The HMM
is a generative model that models the time series data in a
chain of latent k-nomial features. Class-conditional HMMs
are commonly combined with class priors via Bayes’ rule
to obtain a time series classification models. Alternatively,
HMMs are also frequently used as the base model for Fisher
kernel [8], which constructs a time series representation that
consists of the gradient a particular time series induces in
the parameters of the HMM; the resulting representations can
be used on standard classifiers such as SVMs. Some recent
work has also tried to learn the parameters of the HMM
in such a way as to learn Fisher kernel representations that
are well-suited for nearest-neighbor classification [9]. HMMs
have also been used as the base model for probability product
kernels [10], which fit a single HMM on each time series
and define the similarity between two time series as the inner
product between the corresponding HMM distributions. A
potential drawback of these approaches is that they perform
classification based on (rather simple) generative models of the
data that may not be well suited for the discriminative task at
hand. By contrast, we opt for a discriminative model that does
not waste model capacity on features that are irrelevant for
classification. In contrast to HMMs, conditional random fields
(CRFs; [11]) are discriminative models that are commonly
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promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
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Fig. 1: Graphical model of the hidden-unit logistic model.

used for sequence labeling of time series using so-called
linear-chain CRFs. Whilst standard linear-chain CRFs achieve
strong performance on very high-dimensional data (e.g., in
natural language processing), the linear nature of most CRF
models limits their ability to learn complex decision bound-
aries. Several sequence labeling models have been proposed
to address this limitation, amongst which are latent-dynamic
CRFs [12], conditional neural fields [13], neural conditional
random fields [14], and hidden-unit CRFs [5]. These models
introduce stochastic or deterministic hidden units that model
latent structure in the data, allowing these models to represent
nonlinear decision boundaries. As these prior models were
designed for sequence labeling (assigning a label to each frame
in the time series), they cannot readily be used for time series
classification (assigning a single label to the entire time series).
Our hidden-unit logistic model may be viewed as an adaptation
of sequence labeling models with hidden units to the time
series classification problem. As such, it is closely related
to the hidden CRF model [1]. The key difference between
our hidden-unit logistic model and the hidden CRF is that
our model uses a collection of binary stochastic hidden units
instead of a single k-nomial hidden unit, which allows our
model to represent exponentially more states with the same
number of parameters.

An alternative approach to expanding the number of hidden
states of the HCRF is the infinite HCRF (iHCRF), which
employs a Dirichlet process to determine the number of hidden
states. Inference in the iHCRF can be performed via collapsed
Gibbs sampling [15] or variational inference [16]. Whilst
theoretically facilitating infinitely many states, the modeling
power of the iHCRF is, however, limited to the number of
“represented” hidden states. Unlike our model, the number of
parameters in the iHCRF thus still grows linearly with the
number of hidden states.

III. HIDDEN-UNIT LOGISTIC MODEL

The hidden-unit logistic model is a probabilistic graphical
model that receives a time series as input, and is trained to
produce a single output label for this time series. Like the
hidden-state CRF, the model contains a chain of hidden units
that aim to model latent temporal features in the data, and
that form the basis for the final classification decision. The
key difference with the HCRF is that the latent features are
model in H binary stochastic hidden units, much like in a
(discriminative) RBM. These hidden units zt can model very
rich latent structure in the data: one may think about them as
carving up the data space into 2H small clusters, all of which
may be associated with particular clusters. The parameters of
the temporal chains that connect the hidden units may be used
to differentiate between features that are “constant” (i.e., that
are likely to be presented for prolonged lengths of time) or that
are “volatile” (i.e., that tend to rapidly appear and disappear).
Because the hidden-unit chains are conditionally independent
given the time series and the label, they can be integrated out
analytically when performing inference or learning.

Suppose we are given a time series x1,...,T = {x1, . . . ,xT }
of length T in which the observation at the t-th time step is
denoted by xt ∈ RD. Conditioned on this time series, the
hidden-unit logistic model outputs a distribution over vectors
y that represent the predicted label using a 1-of-K encoding
scheme (i.e., a one-hot encoding): ∀k : yk ∈ {0, 1} and∑
k yk = 1.
Denoting the stochastic hidden units at time step t by zt ∈
{0, 1}H , the hidden-unit logistic model defines the conditional
distribution over label vectors using a Gibbs distribution in
which all hidden units are integrated out:

p(y|x1,...,T ) =

∑
z1,...,T

exp{E(x1,...,T , z1,...,T ,y)}
Z(x1,...,T )

. (1)
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Herein, Z(x1,...,T ) denotes a partition function that normalizes
the distribution, and is given by:

Z(x1,...,T ) =
∑
y′

∑
z′1,...,T

exp{E(x1,...,T , z
′
1,...,T ,y

′)}. (2)

The energy function of the hidden-unit logistic model is
defined as:

E(x1,...,T , z1,...,T ,y) = z>1 π + z>T τ + c>y +
T∑
t=2

zTt−1diag(A)zt +

>∑
t=1

[
z>t Wxt + z>t Vy + z>t b

]
. (3)

The graphical model of the hidden-unit logistic model is
shown in Fig. 1.

Next to a number of bias terms, the energy function in (3)
consists of three main components: (1) a term with parameters
W that measures to what extent particular latent features are
present in the data; (2) a term parametrized by A that measures
the compatibility between corresponding hidden units at time
step t − 1 and t; and (3) a prediction term with parameters
V that measures the compatibility between the latent features
z1,...,T and the label vector y. Please note that hidden units in
consecutive time steps are connected using a chain structure
rather than fully connected; we opt for this structure because
exact inference is intractable when consecutive hidden units
are fully connected. Intuitively, the hidden-unit logistic model
thus assigns a high probability to a label (for a particular input)
when there are hidden unit states that are both “compatible”
with the observed data and with a particular label. As the
hidden units can take 2H different states, this leads to a model
that can represent highly nonlinear decision boundaries. The
following subsections describe the details of inference and
learning in the hidden-unit logistic model. The whole process
is summarized in Algorithm 1.

A. Inference

The main inferential problem given an observation x1,...,T

is the evaluation of predictive distribution p(y|x1,...,T ). The
key difficulty in computing this predictive distribution is the
sum over all 2H×T hidden unit states:

M(x1,...,T ,y) =
∑

z1,...,T

exp{E(x1,...,T , z1,...,T ,y)}. (4)

The chain structure of the hidden-unit logistic model allows
us to employ a standard forward-backward algorithm that can
compute M(·) in computational time linear in T .

Specifically, defining potential functions that contain all
terms that involve time t and hidden unit h:

Ψt,h(xt, zt−1,h, zt,h,y)

= exp{zt−1,hAhzt,h + zt,hWhxt + zt,hVhy + zt,hbh}
(5)

ignoring bias terms, and introducing virtual hidden units z0 =
0 at time t = 0, we can rewrite M(·) as:

Algorithm 1 The inference and learning of HULM.
Input: A time series x1,...,T = {x1, . . . ,xT } and the
associated labels y.
Output:
• The conditional distribution over predicted labels
p(y|x1,...,T ) (inference);

• The conditional log-likelihood of the training data:
L(Θ) (inference);

• The gradient of L(Θ) with respect to each parameter
θ ∈ Θ: ∂L

∂θ (learning).
1: Compute the potential functions Ψt,h(xt, zt−1,h, zt,h,y)

for each hidden unit h (1 ≤ h ≤ H) at each time step t
(1 ≤ t ≤ T ) as indicated in Equation 5.

2: for t = 1→ T do
3: Calculate the forward message αt,h,k with k ∈ {0, 1}

by Equation 9.
4: end for
5: for t = T → 1 do
6: Compute the backward message βt,h,k by Equation 10.
7: end for
8: Compute the intermediate term M(x1,...,T ,y) =∑

z1,...,T
exp{E(x1,...,T , z1,...,T ,y) either with αT,h,k or

with β1,h,k by Equation 11.
9: Compute the partition function Z(x1,...,T ) =∑

y′M(x1,...,T ,y
′).

10: The conditional distribution over predicted labels is cal-
culated by p(y|x1,...,T ) =

M(x1,...,T ,y)
Z(x1,...,T ) .

11: The conditional log-likelihood of the training data L(Θ)
is calculated by Equation 14.

12: Compute the marginal distribution over a chain edge
ξt,h,k,l = P (zt,h = k, zt+1,h = l|x1,...,T ,y) by Equa-
tion 13 using forward and backward messages.

13: The gradient of L(Θ) with respect to each parameter θ ∈
Θ: ∂L∂θ is calculated by Equation 15 and 16 using marginal
distribution ξt,h,k,l.

M(·) =
∑

z1,...,T

T∏
t=1

H∏
h=1

Ψt,h(xt, zt−1,h, zt,h,y)

=

H∏
h=1

 ∑
z1,h,...,zT,h

T∏
t=1

Ψt,h(xt, zt−1,h, zt,h,y)


=

H∏
h=1

 ∑
zT−1,h

ΨT,h(xT , zT−1,h, zT,h,y)

∑
zT−2,h

ΨT−1,h(xT−1, zT−2,h, zT−1,h,y) . . .

 .
(6)

In the above derivation, it should be noted that the product
over hidden units h can be pulled outside the sum over all
states z1,...,T because the hidden-unit chains are conditionally
independent given the data x1,...,T and the label y. Subse-
quently, the product over time t can be pulled outside the sum
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because of the (first-order) Markovian chain structure of the
temporal connections between hidden units.

In particular, the required quantities can be evaluated using
the forward-backward algorithm, in which we define the
forward messages αt,h,k with k ∈ {0, 1} as:

αt,h,k =
∑

z1,h,...,zt−1,h

t∏
t′=1

Ψt′,h(xt′ , zt′−1,h, zt′,h = k,y)

(7)
and the backward messages βt,h,k as:

βt,h,k =
∑

zt+1,h,...,zT,h

T∏
t′=t+1

Ψt′,h(xt′+1, zt′,h = k, zt′+1,h,y).

(8)
These messages can be calculated recursively as follows:

αt,h,k =
∑

i∈{0,1}

Ψt,h(xt, zt−1,h = i, zt,h = k,y)αt−1,h,i (9)

βt,h,k =
∑

i∈{0,1}

Ψt+1,h(xt+1, zt,h = k, zt+1,h = i,y)βt+1,h,i.

(10)

The value of M(x1,...,T ,y) can readily be computed from the
resulting forward messages or backward messages:

M(x1,...,T ,y) =

H∏
h=1

 ∑
k∈{0,1}

αT,h,k


=

H∏
h=1

 ∑
k∈{0,1}

β1,h,k

 . (11)

To complete the evaluation of the predictive distribution, we
compute the partition function of the predictive distribution
by summing M(x1,...,T ,y) over all K possible labels:
Z(x1,...,T ) =

∑
y′M(x1,...,T ,y

′). Indeed, inference in the
hidden-unit logistic model is linear in both the length of the
time series T and in the number of hidden units H .

Another inferential problem that needs to be solved during
parameter learning is the evaluation of the marginal distribu-
tion over a chain edge:

ξt,h,k,l = P (zt,h = k, zt+1,h = l|x1,...,T ,y). (12)

Using a similar derivation, it can be shown that this quantity
can also be computed from the forward and backward mes-
sages:

ξt,h,k,l

=
αt,h,k ·Ψt+1,h(xt+1, zt,h = k, zt+1,h = l, y) · βt+1,h,l∑

k∈{0,1} αT,h,k
.

(13)

B. Parameter Learning

Given a training set D = {(x(n)1,...,T ,y
(n))}n=1,...,N

containing N pairs of time series and their associated label.
We learn the parameters Θ = {π, τ,A,W,V,b, c} of the

y

X1 X2 XT-1 XT

...

...

S1S1 S2S2 ST-1ST-1 STST

Fig. 2: Graphical model of the HCRF.

hidden-unit logistic model by maximizing the conditional log-
likelihood of the training data with respect to the parameters:

L(Θ) =

N∑
n=1

log p
(
y(n)|x(n)

1,...,T

)

=

N∑
n=1

logM
(
x
(n)
1,...,T ,y

(n)
)
− log

∑
y′

M
(
x
(n)
1,...,T ,y

′
) .

(14)

We augment the conditional log-likelihood with L2-
regularization terms on the parameters A, W, and V. As the
objective function is not amenable to closed-form optimiza-
tion (in fact, it is not even a convex function), we perform
optimization using stochastic gradient descent on the negative
conditional log-likelihood. The gradient of the conditional log-
likelihood with respect to a parameter θ ∈ Θ is given by:

∂L
∂θ

= E
[
∂E(x1,...,T , z1,...,T ,y)

∂θ

]
P (z1,...,T |x1,...,T ,y)

− E
[
∂E(x1,...,T , z1,...,T ,y)

∂θ

]
P (z1,...,T ,y|x1,...,T )

. (15)

where we omitted the sum over training examples for brevity.
The required expectations can readily be computed using the
inference algorithm described in the previous subsection.

For example, defining r(Θ) = zt−1,hAhzt,h+ zt,hWhxt+
zt,hVhy+zt,hbh for notational simplicity, the first expectation
can be computed as follows:

E
[
∂E(x1,...,T , z1,...,T ,y)

∂θ

]
P (z1,...,T |x1,...,T ,y)

=
∑

z1,...,T

P (z1,...,T |x1,...,T ,y)

(
T∑
t=1

H∑
h=1

∂r(Θ)

∂θ

)

=

T∑
t=1

∑
k∈{0,1}

∑
l∈{0,1}

(
ξt−1,h,k,l ·

∂r(Θ)

∂θ

)
. (16)

The second expectation is simply an average of these expec-
tations over all K possible labels y.

C. Comparison with HCRF

The hidden-state CRF’s graphical model, shown in Figure 2,
is similar to that of the hidden-unit logistic model (HULM).
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Fig. 3: Comparison of HCRF and HULM for binary classification on the banana dataset (ignoring the time series aspect of
the models) with the same number of hidden unitsH . The black lines show the decision boundaries learned by both models.
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Fig. 4: Running time of a single training epoch of the
HULM and HCRF model on the facial expression data (CK+)
described in Sec. IV-A as a function of the number of hidden
units. We used stochastic gradient descent with the same
configuration to train both the HULM and the HCRF.

They are both discriminative models which employ hidden
variables to model the latent structures. The key difference
between the two models is in the way the hidden units are
defined: whereas the hidden-unit logistic model uses a large
number of (conditionally independent) binary stochastic hid-
den units to represent the latent state, the HCRF uses a single
multinomial unit (much like a hidden Markov model). As a
result, there are substantial differences in the distributions that
the HCRF and HULM can model. In particular, the HULM is
a product of experts model1, whereas the HCRF is a mixture
of experts model [17], [18]. A potential advantage of product

1The expression of M(·) presented earlier clearly shows that HULM
models a distribution that is a product over H experts.

distributions over mixture distributions is in the “sharpness”
of the distributions [17]. Consider, for instance, two univariate
Gaussian distributions with equal variance but different means:
whereas a mixture those distributions will have higher variance
than each of the individual Gaussians, a product of the
distribution will have lower variance and, therefore, model a
much sharper distribution. This can be a substantial advantage
when modeling high-dimensional distributions in which much
of the probability mass tends to be lost in the tails. There
also appear to be differences in the total number of modes
that can be modeled by product and mixture distributions in
high-dimensional spaces (although it is hitherto unknown how
many modes a mixture of unimodal distributions maximally
contains [19]). Indeed, theoretical results suggest that prod-
uct distributions have more modeling power with the same
number of parameters than mixture distributions; for certain
distributions, mixture distributions even require exponentially
more parameters than their product counterparts [20].

To empirically explore these differences, we performed a
simple experiment in which we ignore the temporal component
of the HULM and HCRF models (to facilitate visualizations),
and train the models on a binary two-dimensional classification
problem. Fig. 3 shows the decision boundaries learned by
HULM and HCRF models with the same number of hidden
parameters on our test dataset. Indeed, the results suggest that
the HULM can model more complex decision boundaries than
HCRFs with the same number of parameters.

In our experiments, we also observed that HULM models
can be trained faster than HCRF models. We illustrate this in
Fig. 4, which shows the training time of both models (with
the same experimental configuration) on a facial expression
dataset. Whilst these differences in training speed may be
partly due to implementation differences, they are also the
result of the constraint we introduce that the transition matrix
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between hidden units in consecutive time steps is diagonal. As
a result, the computation of the forward message α in Eqn. 7
and backward message β in Eqn. 8 is linear in the number of
hidden units H . Consequently, the quantities M(x1,...,T ,y)
in Eqn. 11 and marginal distribution ξt,h,k,l in Eqn. 12 can
be calculated in O(THD). Taking into account the number
of label classes Y , the overall computational complexity of
HULM is O(TH(D + Y )). By contrast, the complexity of
HCRF is O(TH2(D+ Y )) [1]. This difference facilitates the
use or larger numbers of hidden units H in the HULM model
than in the HCRF model. (Admittedly, it is straightforward to
develop a diagonal version of the HCRF model, also.)

IV. EXPERIMENTS

To evaluate the performance of the hidden-unit logistic
model, we conducted classification experiments on eight dif-
ferent problems involving seven time series data sets. Since
univariate times series can be considered as a special case
of multivariate time series, we first performed experiments
on two univariate time series data sets introduced by UCR
Archive [21]: (1) Synthetic Control and (2) Swedish Leaf,
subsequently we evaluated our models on five multivariate
time series data sets : (1) an online handwritten character data
set (OHC) [22]; (2) a data set of Arabic spoken digits (ASD)
[23]; (3) the Cohn-Kanade extended facial expression data set
(CK+) [24]; (4) the MSR Action 3D data set (Action) [25];
and (5) the MSR Daily Activity 3D data set (Activity) [26].
The seven data sets are introduced in IV-A, the experimental
setup is presented in IV-B, and the results of the experiments
are in IV-C.

A. Data Sets

1) Univariate Time Series Data Sets: We performed exper-
iments on two univariate UCR data sets: Synthetic Control and
Swedish Leaf. Synthetic Control is a relatively easy data set
containing 300 training samples and 300 test samples grouped
into 6 classes. All samples in it have the identical length of
time series equaling to 60. We enrich the univariate feature
by windowing 10 frames into 1 frame resulting in the 10
dimensions for each frame. Swedish Leaf is a challenging
data set which consists of 500 training samples and 625 test
samples with the length of 128 frames spreading in 15 classes.
Similarly, we pre-process the data by windowing the features
of 30 frames into 1 frame with 30-dimension feature.

2) Multivariate Time Series Data Sets: The online hand-
written character dataset [22] is a pen-trajectory time series
data set that consists of three dimensions at each time step,
viz., the pen movement in the x-direction and y-direction, and
the pen pressure. The data set contains 2858 time series with
an average length of 120 frames. Each time series corresponds
to a single handwritten character that has one of 20 labels. We
pre-process the data by windowing the features of 10 frames
into a single feature vector with 30 dimensions.

The Arabic spoken digit dataset contains 8800 utter-
ances [23], which were collected by asking 88 Arabic native
speakers to utter all 10 digits ten times. Each time series
consists of 13-dimensional MFCCs which were sampled at

11,025Hz, 16-bits using a Hamming window. We enrich the
features by windowing 3 frames into 1 frames resulting in the
13×3 dimensions for each frame of the features while keeping
the same length of time series. We use two different versions
of the spoken digit dataset: (1) a digit version in which the
uttered digit is the class label and (2) a voice version in which
the speaker of a digit is the class label.

The Cohn-Kanade extended facial expression data set [24]
contains 593 image sequences (videos) from 123 subjects.
Each video shows a single facial expression. The videos have
an average length of 18 frames. A subset of 327 of the videos,
which have validated label corresponding to one of seven
emotions (anger, contempt, disgust, fear, happiness, sadness,
and surprise), are used in our experiments. We adopt the
publicly available shape features used in [27] as the feature
representation for our experiments. These features represent
each frame by the variation of 68 feature point locations
(x, y) with respect to the first frame [24], which leads to 136-
dimensional feature representation for each frame in the video.

The MSR Action 3D data set [25] consists of RGB-D videos
of people performing certain actions. The data set contains
567 videos with an average length of 41 frames. Each video
should be classified into one of 20 actions such as “high arm
wave”, “horizontal arm wave”, and “hammer”. We use the
real-time skeleton tracking algorithm of [28] to extract the
3D joint positions from the depth sequences. We use the 3D
joint position features (pairwise relative positions) proposed
in [26] as the feature representation for the frames in the
videos. Since we track a total of 20 joints, the dimensionality
of the resulting feature representation is 3 ×

(
20
2

)
= 570,

where
(
20
2

)
is the number of pairwise distances between joints

and 3 is dimensionality of the (x, y, z) coordinate vectors. It
should be noted that we only extract the joints features to
evaluate performances of different time series classification
models mentioned in this paper rather than pursue state-of-
the-art action-recognition performance, hence it is not fair
to compare the reported results in Table 1 directly to the
performance of the ad-hoc action-recognition methods which
employ 2D/3D appearance features.

The MSR Daily Activity 3D data set [26] contains RGB-
D videos of people performing daily activities. The data set
also contains 3D skeletal joint positions, which are extracted
using the Kinect SDK. The videos need to be classified into
one of 16 activity types, which include “drinking”, “eating”,
“reading book”, etc. Each activity is performed by 10 subjects
in two different poses (namely, while sitting on a sofa and
while standing), which leads to a total of 320 videos. The
videos have an average length of 193 frames. To represent each
frame, we extract 570-dimensional 3D joint position features.

B. Experimental Setup

In our experiments, the model parameters A,W,V of the
hidden-unit logistic model were initialized by sampling them
from a Gaussian distribution with a variance of 10−3. The
initial-state parameter π, final-state parameter τ and the bias
parameters b, c were initialized to 0. Training of our model
is performed using a standard stochastic gradient descent
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Fig. 5: Graphical model of the naive logistic model.

procedure; the learning rate is decayed during training. We set
the number of hidden units H to 100. The L2-regularization
parameter λ was tuned by minimizing the error on a small
validation set. Code reproducing the results of our experiments
is available on https://github.com/wenjiepei/HULM.

We compare the performance of our hidden-unit logistic
model with that of three other time series classification models:
(1) the naive logistic model shown in Fig. 5, (2) the popular
HCRF model [1], and (3) Fisher kernel learning model [9].
Details of these models are given below.

a) Naive logistic model: The naive logistic model is a
linear logistic model that shares parameters between all time
steps, and makes a prediction by summing (or equivalently,
averaging) the inner products between the model weights and
feature vectors over time before applying the softmax function.
Specifically, the naive logistic model defined the following
conditional distribution over the label y given the time series
data x1,...,T :

p(y|x1,...,T ) =
exp{E(x1,...,T ,y)}

Z(x1,...,T )
,

where the energy function is defined as

E(x1,...,T ,y) =

T∑
t=1

(yTWxt) + cTy.

The corresponding graphical model is shown in Fig. 5. We
include the naive logistic model in our experiments to investi-
gate the effect of adding hidden units to models that average
energy contributions over time.

b) Hidden CRF: The Hidden-state CRF model is similar
to HULM and thereby an important baseline. We performed
experiments using the hidden CRF implementation of [29].
Following [1], we trained HCRFs with 10 latent states on all
data sets. (We found it was computationally infeasible to train
HCRFs with more than 10 latent states.) We tune the L2-
regularization parameter of the HCRF on a small validation
set.

c) Fisher kernel learning: In addition to comparing with
HCRFs, we compare the performance of our model with
that of the recently proposed Fisher kernel learning (FKL)
model [9]. We selected the FKL model for our experiments
because [9] reports strong performance on a range of time
series classification problems. We trained FKL models based
on hidden Markov models with 10 hidden states (the number
of hidden states was set identical to that of the hidden CRF).
Subsequently, we computed the Fisher kernel representation
and trained a linear SVM on the resulting features to obtain

the final classifier. The slack parameter C of the SVM is tuned
on a small validation set.

C. Results

We perform two sets of experiments with the hidden-unit
logistic model: (1) a set of experiments in which we evaluate
the performance of the model (and of the hidden CRF) as
a function of the number of hidden units and (2) a set of
experiments in which we compare the performance of all
models on all data sets. The two sets of experiments are
described separately below.

1) Effect of Varying the Number of Hidden Units.: We first
conduct experiments on the ASD data set to investigate the
performance of the hidden-unit logistic model as a function of
the number of hidden units. The results of these experiments
are shown in Fig. 6. The results presented in the figure show
that the error initially decreases when the number of hidden
unit increases, because adding hidden units adds complexity
to the model that allows it to better fit the data. However, as
the hidden unit number increases further, the model starts to
overfit on the training data despite the use of L2-regularization.
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Arabic Digit

HULM

Fig. 6: Generalization error (in %) of the hidden-unit logistic
model on the Arabic speech data set as a function of the
number of hidden units.

We performed a similar experiment on the CK+ facial
expression data set, in which we also performed comparisons
with the hidden CRF for a range of values for the number of
hidden states. Fig. 7 presents the results of these experiments.
On the CK+ data set, there are no large fluctuations in the
errors of the HULM as the hidden parameter number increases.
The figure also shows that the hidden-unit logistic model
outperforms the hidden CRF irrespective of the number of
hidden units. For instance, a hidden-unit logistic model with
10 hidden units outperforms even a hidden CRF with 100
hidden parameters. This result illustrates the potential merits
of using models in which the number of latent states grows
exponentially with the number of parameters.
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Fig. 7: Generalization error (in %) of the hidden-unit logistic
model and the hidden CRF on the CK+ data set as a function
of the number of hidden units.

2) Comparison with Modern Time Series Classifiers.: In a
second set of experiments, we compare the performance of
the hidden-unit logistic model with that of the naive logistic
model, Fisher kernel learning, and the hidden CRF on all eight
problems. In our experiments, the number of hidden units in
the hidden-unit logistic model was set to 100; following [1],
the hidden CRF used 10 latent states. The results of our
experiments are presented in Table I, and are discussed for
each data set separately below.

a) Synthetic Control: Synthetic Control is a simple uni-
variate time-series classification problem from the UCR time
series classification archive [21]. Table I shows the generaliza-
tion errors by four time series classification models mentioned
above. HULM model achieves the best performance with
1.33%, which is close to the state-of-the-art performance on
this dataset (0.7%) reported in [21]. This is an encouraging
result, in particular, because the HULM method is not at
all tuned towards solving univariate time-series classification
problems.

b) Swedish Leaf: Swedish Leaf is a much more chal-
lenging univariate time-series classification problem. Whereas
the naive logistic model performs very poorly on this data set,
all other three models achieves good performance, with the
HULM slightly outperforming the other methods. It is worth
mentioning that all three methods outperform the dynamic
time warping approach that achieves 15.4% on this dataset
reported in [21]. We surmise the strong performance of our
models is due to the non-linear features transformations these
models perform. The state-of-the-art performance (6.24%) on
this dataset is obtained by the recursive edit distance kernels
(REDK) [30] which aims to embed (univariate) time series in
time-warped Hilbert spaces while preserving the properties of
elastic measure.

c) Online handwritten character dataset (OHC): Follow-
ing the experimental setup in [9], we measure the general-
ization error of all four models on the online handwritten

character dataset using 10-fold cross validation. The average
generalization error of each model is shown in Table I. Whilst
the naive logistic model performs very poorly on this data set,
all three other methods achieve very low error rates. The best
performance is obtained by FKL, but the differences between
the models are very small on this data set, presumably, due to
a ceiling effect.

d) Arabic spoken digits dataset (ASD-digit): Follow-
ing [23], the error rates for the Arabic spoken digits data set
with digit as the class label in Table I were measured using
a fixed training/test division: 75% of samples are used for
training and left 25% of samples compose test set. The best
performance on this data set is obtained by the hidden CRF
model (3.68%), whilst our model has a slightly higher error of
4.68%, which in turn is better than the performance of FKL. It
should be noted that the performance of the hidden CRF and
the hidden-unit logistic model are better than the error rate of
6.88% reported in [23] (on the same training/test division).

e) Arabic spoken digits dataset (ASD-voice): In the
experiment setup in which the speaker of a digit is the class
label for the ASD data set, the classification problem becomes
much harder than the digit version due to much more classes
involved (88 subjects). Table I shows that HULM achieves the
best performance and FKL also performs very well. While the
naive logistic model unsurprisingly performs very poorly, it
should be noted that HULM significantly outperforms HCRF
which reveals the advantage of HULM in the case of chal-
lenging classification problem.

f) Facial expression dataset (CK+): Table I presents
generalization errors measured using 10-fold cross-validation.
Folds are constructed in such a way that all videos by the
same subject are in the same fold (the subjects appearing
in test videos were not present in the training set). On the
CK+ data set, the hidden-unit logistic model substantially
outperforms the hidden CRF model, obtaining an error of
6.44%. Somewhat surprisingly, the naive logistic model also
outperforms the hidden CRF model with an error of 9.20%. A
possible explanation for this result is that the classifying these
data successfully does not require exploitation of temporal
structure: many of the expressions can also be recognized
well from a single frame. As a result, the naive logistic model
may perform well even though it simply averages over time.
This result also suggests that the hidden CRF model may
perform poorly on high-dimensional data (the CK+ data is
136-dimensional) despite performing well on low-dimensional
data such as the handwritten character data set (3-dimensional)
and the Arabic spoken data set (13-dimensional).

g) MSR Action 3D data set (Action): To measure the
generalization error of the time series classification models on
the MSR Action 3D dataset, we followed the experimental
setup of [26]: we used all videos of the five subjects for
training, and used the videos of the remaining five subjects
for testing. Table I presents the average generalization error
on the videos of the five test subjects. The four models
perform quite similarly, although the hidden CRF and the
hidden-unit logistic model do appear to outperform the other
two models somewhat. The state-of-the-art performance on
this dataset is achieved by [31], which performs temporal
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TABLE I: Generalization errors (%) on all eight problems by four time series classification models: the naive logistic model
(NL), Fisher kernel learning (FKL), the hidden CRF (HCRF), and the hidden-unit logistic model (HULM). The best performance
on each data set is boldfaced. See text for details.

Dataset Dim. Classes
Model

NL FKL HCRF HULM

Synthetic Control 1×10 6 20.00 2.33 1.67 1.33
Swedish Leaf 1×30 15 52.64 10.24 12.80 10.08
OHC 3×10 20 23.67 0.97 1.58 1.30
ASD-digit 13×3 10 25.50 6.91 3.68 4.68
ASD-voice 13×3 88 36.91 6.36 20.40 5.45
CK+ 136 7 9.20 10.81 11.04 6.44
Action 570 20 40.40 40.74 34.68 35.69
Activity 570 16 59.38 43.13 62.50 45.63

Avg. rank – – 3.50 2.38 2.63 1.50

down-sampling associated to elastic kernel machine learning.
Nevertheless, it performs cross-validation on the all possible
(252) combinations of training/test subject divisions. Hence
the direct comparison with our model is not straightforward.

h) MSR Daily Activity 3D data set (Activity): On the
MSR Daily Activity data set, we use the same experimental
setup as on the action data set: five subjects are used for
training and five for testing. The results in Table I show that
the hidden-unit logistic model substantially outperforms the
hidden CRF on this challenging data set (but FKL performs
slightly better).

In terms of the average rank over all data sets, the hidden-
unit logistic model performs very strongly. Indeed, it substan-
tially outperforms the hidden CRF model, which illustrates
that using a collection of (conditionally independent) hidden
units may be a more effective way to represent latent states
than a single multinomial unit. FKL also performs quite well
in our experiments, although its performance is slightly worse
than that of the hidden-unit logistic model. However, it should
be noted here that FKL scales poorly to large data sets: its
computational complexity is quadratic in the number of time
series, which limits its applicability to relatively small data
sets (with fewer than, say, 10, 000 time series). By contrast,
the training of hidden-unit logistic models scales linearly in
the number of time series and, moreover, can be performed
using stochastic gradient descent.

V. APPLICATION TO FACIAL AU DETECTION

In this section, we present a system for facial action
unit (AU) detection that is based on the hidden-unit logistic
model. We evaluate our system on the Cohn-Kanade extended
facial expression database (CK+) [24], evaluating its ability to
detect 10 prominent facial action units: namely, AU1, AU2,
AU4, AU5, AU6, AU7, AU12, AU15, AU17, and AU25. We
compare the performance of our facial action unit detection
system with that of state-of-the-art systems for this problem.
Before describing the results of these experiments, we first

describe the feature extraction of our AU detection system
and the setup of our experiments.

A. Facial Features

We extract two types of features from the video frames
in the CK+ data set: (1) shape features and (2) appearance
features. Our features are identical to the features used by the
system described in [27]; the features are publicly available
online. For completeness, we briefly describe both types of
features below.

The shape features represent each frame by the verti-
cal/horizontal displacements of facial landmarks with respect
to the first frame. To this end, automatically detected/tracked
68 landmarks are used to form 136-dimensional time series.
All landmark displacements are normalized by removing rigid
transformations (translation, rotation, and scale).

The appearance features are based on grayscale intensity
values. To capture the change in facial appearance, face images
are warped onto a base shape, where feature points are in the
same location for each face. After this shape normalization
procedure, the grayscale intensity values of the warped faces
can be readily compared. The final appearance features are
extracted by subtracting the warped textures from the warped
texture in the first frame. The dimensionality of the appearance
feature vectors is reduced using principal components analysis
as to retain 90% of the variance in the data. This leads
to 439-dimensional appearance feature vectors, which are
combined with the shape features to form the final feature
representation for the video frames. For further details on the
feature extraction, we refer to [27].

B. Experimental Setup

To gauge the effectiveness of the hidden-unit logistic model
in facial AU detection, we performed experiments on the CK+
database [24]. The database consists of 593 image sequences
(videos) from 123 subjects with an average length of 18.1
frames. The videos show expressions from neutral face to peak
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(a) (b)

Fig. 8: Visualization of |W| for (a) AU4 and (b) AU25.
Brighter colors correspond to image regions with higher
weights.

formation, and include annotations for 30 action units. In our
experiments, we only consider the 10 most frequent action
units.

Our AU detection system employs 10 separate binary clas-
sifiers for detecting action units in the videos. In other words,
we train a separate HULM for each facial action unit. An
individual model thus distinguishes between the presence and
non-presence of the corresponding action unit. We use a 10-
fold cross-validation scheme to measure the performance of
the resulting AU detection system: we randomly select one
test fold containing 10% of the videos, and use remaining nine
folds are used to train the system. The folds are constructed
such that there is no subject overlap between folds: i.e.,
subjects appearing in the test data were not present in the
training data.

C. Results

We ran experiments using the HULM on three feature
sets: (1) shape features, (2) appearance features, and (3)
a concatenation of both feature vectors. We measure the
performance of our system using the area under ROC curve
(AUC). Table II shows the results for HULM, and for the
baseline in [27]. The results show that the HULM outperforms
the CRF baseline of [27], with our best model achieving an
AUC that is approximately 0.03 higher than the best result
of [27].

TABLE II: AUC of the HULM and the CRF baseline in [27]
for three feature sets. *In [27], the combined feature set also
includes SIFT features.

Method
Feature Set

Shape Appear-
ance

Combina-
tion

HULM 0.9101 0.9197 0.9253
[27] 0.8902 0.8971 0.8647*

To obtain insight in what features are modeled by the
HULM hidden units, we visualized a single column of |W|
in Fig. 8 for the AU4 and AU25 models that were trained
on appearance features. Specifically, we selected the hidden

unit with the highest corresponding V-value for visualization,
as this hidden unit apparently models the most discriminative
features. The figure shows that the appearance of the eyebrows
is most important in the AU4 model (brow lowerer), whereas
the mouth region is most important in the AU25 model (lips
part).

TABLE III: Average F1-scores of our system and seven state-
of-the-art systems on the CK+ data set. The F1 scores for
all methods were obtained from the literature. Note that the
averages are not over the same AUs, and cannot readily
be compared. The best performance for each condition is
boldfaced.

AU HULM [32] [33] [34] [35] [36] [37]
1 0.91 0.87 0.83 0.66 0.78 0.76 0.88
2 0.85 0.90 0.83 0.57 0.80 0.76 0.92
4 0.76 0.73 0.63 0.71 0.77 0.79 0.89
5 0.63 0.80 0.60 – 0.64 – –
6 0.69 0.80 0.80 0.94 0.77 0.70 0.93
7 0.57 0.47 0.29 0.87 0.62 0.63 –
12 0.88 0.84 0.84 0.88 0.90 0.87 0.90
15 0.72 0.70 0.36 0.84 0.70 0.71 0.73
17 0.89 0.76 – 0.79 0.81 0.86 0.76
25 0.96 0.96 0.75 – 0.88 – 0.73
Avg. 0.79 0.78 0.66 0.78 0.77 0.76 0.84

In Table III, we compare the performance of our AU detec-
tion system with that of seven other state-of-the-art systems
in terms of the more commonly used F1-score. (Please note
that the averages are not over the same AUs, and cannot
readily be compared.) The results in the table show that
our system achieves the best F1 scores for AU1, AU17, and
AU25. It performs very strongly on most of the other AUs,
illustrating the potential of the hidden-unit logistic model.
Note that the state-of-the-art methods used in this comparison
have specifically designed and optimized for AU detection
task, while our approach is a direct application of the proposed
hidden-unit logistic model.

Detailed performance analysis of the proposed hidden-unit
logistic model (HULM), using combined features, is given in
Table IV, where accuracy (ACC), recall (RC), precision (PR),
F1, AUC measures, and number of positive samples are given
for each AU.

VI. CONCLUSIONS

In this paper, we presented the hidden-unit logistic model
(HULM), a new model for the single-label classification of
time series. The model is similar in structure to the popular
hidden CRF model, but it employs binary stochastic hidden
units instead of multinomial hidden units between the data
and label. As a result, the HULM can model exponentially
more latent states than a hidden CRF with the same number
of parameters. The results of our experiments with HULM on
several real-world datasets show that this may result in im-
proved performance on challenging time-series classification
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TABLE IV: Performance of HULM for different AUs using
combined features. P shows the number of positive samples.
ACC, RC, and denote detection accuracy, recall, and precision,
respectively.

AU P ACC RC PR F1 AUC
1 175 0.95 0.88 0.93 0.91 0.96
2 117 0.94 0.84 0.86 0.85 0.96
4 194 0.86 0.71 0.83 0.76 0.90
5 102 0.88 0.62 0.64 0.63 0.88
6 123 0.88 0.63 0.77 0.69 0.92
7 121 0.82 0.58 0.56 0.57 0.81
12 131 0.95 0.88 0.89 0.88 0.95
15 95 0.91 0.75 0.70 0.72 0.92
17 203 0.92 0.91 0.87 0.89 0.97
25 324 0.95 0.95 0.97 0.96 0.97
Avg. - 0.91 0.77 0.80 0.79 0.93

tasks. In particular, the HULM performs very competitively on
complex computer-vision problems such as facial expression
recognition.

In future work, we aim to explore more complex variants of
our hidden-unit logistic model. In particular, we intend to study
variants of the model in which the simple first-order Markov
chains on the hidden units are replaced by more powerful,
higher-order temporal connections. Specifically, we intend to
implement the higher-order chains via a similar factorization
as used in neural autoregressive distribution estimators [38].
The resulting models will likely have longer temporal memory
than our current model, which will likely lead to stronger
performance on complex time series classification tasks. A
second direction for future work we intend to explore is an
extension of our model to multi-task learning. Specifically, we
will explore multi-task learning scenarios in which sequence
labeling and time series classification is performed simul-
taneously (for instance, simultaneous recognition of short-
term actions and long-term activities, or simultaneous optical
character recognition and word classification). By performing
sequence labeling and time series classification based on the
same latent features, the performance on both tasks may be
improved because information is shared in the latent features.
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