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Abstract 

In this paper, we propose a method of automated vehicle operation in taxi systems that addresses the problem of associating trips 
to automated taxis (ATs) and assigning those vehicles to paths on an urban road network. This system is envisioned to provide a 
transport service within a city area with a seamless door-to-door connection for all passengers’ origins and destinations. ATs can 
drive themselves on the roads with reduced direct human input, which allow taxis to satisfy the next trip or park themselves while 
waiting for a request if needed. We propose an integer programming model to define the routing of the vehicles according to a 
profit maximization function while depending on dynamic travel times which vary with the flow of the ATs. This will be 
especially important when the number of automated vehicles circulating on the roads is so high that will cause traffic congestion. 
The total profit involves the system revenue, vehicle fuel costs, vehicle depreciation costs, parking costs, penalties for unsatisfied 
trips and passengers’ congestion delay. The model is applied to a small case study and the results allow assessing the impact of 
the ATs movements on traffic congestion and the profitability of the system. Even with a small case study, it is possible to 
conclude that having in consideration the effect of the vehicle flows on travel time leads to different results in terms of the system 
profit, the parking cost and the driving distance which points out the importance of this type of models. 
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1. Introduction 

In the recent years, technology development has accelerated the process of vehicle automation. This technology is 
expected to have a beneficial impact on travel efficiency, especially on interurban roads. With respect to the impacts 
of these vehicles, studies have used micro-simulation tools or mathematical models to estimate the changes in road 
capacity and congestion under different levels of vehicle automation and cooperation. (Arem et al., 2006; Bose and 
Ioannou, 2003; Calvert et al., 2011).  

Regarding the use of automated vehicles as transit systems, there are currently many projects which are testing 
the use of automated pods or buses in pilot experiments. One of the most relevant example being the CityMobil2 
project (CityMobil2, n.d.) in which several field experiments are being run in Europe to test the possibilities of 
automated bus systems. In 2015 the province of Gelderland in the Netherlands started developing a project named 
WEpods with two self-driving vehicles, which are used between the Wageningen University and the train station 
(WEpods, 2015). 

Several approaches have been proposed to test the effect of transit automation on mobility, especially looking at 
the combination between traditional taxis and shared use taxi fleets. The automated taxis (ATs) may provide a new 
type of door-to-door service competing with the traditional taxis or even the public transport because these new 
systems would be able to avoid extra manpower costs and make the AT service cheaper. Fagnant & Kockelman 
(2014) used a simulation method to study the implications of shared ATs and described the results of a case-study 
application. The results indicate that each shared automated vehicle can replace around 11 conventional ones, with 
up to 10% more travel distance. The International Transport Forum (ITF) built a model to test the introduction of 
100% autonomous fleets of taxis to satisfy transport demand in a city (International Transport Forum, 2015). Results 
showed that with the subway still in operation each automated vehicle could remove 9 out of 10 cars, whilst without 
metro, the number goes down to 5. Spieser et al. (2014)  used an analytical mathematical formulation to estimate the 
number of shared automated vehicles to replace all modes of personal transportation in the case-study city of 
Singapore. Using actual data, they are able to conclude that a shared-vehicle mobility solution could meet the 
personal mobility needs of the entire population with 1/3 of the number of passenger vehicles currently in operation. 

A recent study addressed the traffic assignment of privately owned automated vehicles from user optimum 
perspective with the objective of minimizing each family’s own transport costs (Correia and van Arem, 2016). This 
model proposed an equilibrium convergence where households with similar trips should have similar transport costs. 
Since system optimum vehicle assignment is a nonlinear problem which is difficult to solve, this was tackled by an 
iterative process where travel times do not change during each assignment of vehicles to trips.  

In this paper, we are going to study a transport system with a fleet of automated vehicles used as taxis which 
provide a transport service within a city area with a seamless door-to-door connection for passengers’ origins and 
destinations. Then a model is proposed to address the problem of assigning the vehicles to paths on an urban road 
network while satisfying the demand. Moreover, this model is expected to solve the problem with dynamic travel 
times which vary with the flow of the ATs. 

2. Mathematical model 

In this section, we describe a linear programming model whose objective is to determine the optimal vehicle 
routing of the AT system. We consider a private taxi service between any pair of nodes within the city road network, 
with no background traffic flow which means the flow is generated only by the ATs themselves. Clients use an 
online app to book an AT with the travel information including the origin, the destination and the desired departure 
time. The model works on the assumption that the taxi company can achieve total control of the system by being 
free to accept or reject requests according to a profit maximization objective. 

 Sets: 

𝑵𝑵 = {1,… , 𝑖𝑖, …𝑁𝑁}: set of the nodes in the network, where 𝑁𝑁 is the total number of nodes. 
𝑻𝑻 = {0,… , 𝑡𝑡, … , 𝑇𝑇}: set of time instants in the service period, where 𝑇𝑇 is the total number of time steps in the service 
period. 
𝑻𝑻′ = {−𝑇𝑇𝑟𝑟, …0,… , 𝑡𝑡, … , 𝑇𝑇, … , 𝑇𝑇 + 𝑇𝑇𝑟𝑟}: set of time instants in the operation time, including the service period 
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{0 … 𝑇𝑇} and the buffer periods {−𝑇𝑇𝑟𝑟 … 0} and {𝑇𝑇 … 𝑇𝑇 + 𝑇𝑇𝑟𝑟},  where 𝑇𝑇𝑟𝑟 is the number of time steps in the buffer 
period. 
𝑬𝑬 = {1, … , 𝑒𝑒, … , 𝐸𝐸}: set of trips, where 𝐸𝐸 is the total number of all the trips in the service period. 
𝑽𝑽 = {1, … , 𝑣𝑣, … , 𝑉𝑉}: set of vehicles, where 𝑉𝑉 is the total number of taxis in the system. 
𝑲𝑲 = {0, … , 𝑘𝑘, … , 𝐾𝐾}: set of breakpoints for dynamic travel time, where 𝐾𝐾 is the total number of the break points in 
the flow-travel time curve. 
𝑨𝑨 = {… , (𝑖𝑖, 𝑗𝑗), … }: set of links of the road network where vehicles move,  𝑖𝑖 ≠ 𝑗𝑗. 
𝑩𝑩 = {… , (𝑖𝑖𝑡𝑡1, 𝑗𝑗𝑡𝑡2), … }: set of links in the time-space network, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡1, 𝑡𝑡2 ∈ 𝑻𝑻′, 𝑡𝑡1 < 𝑡𝑡2, 𝛿𝛿𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑡𝑡2 − 𝑡𝑡1  ≤
𝛿𝛿𝑖𝑖𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚. 

Data: 

𝑎𝑎𝑒𝑒: desired departure time for the 𝑒𝑒th trip, 𝑒𝑒 ∈ 𝑬𝑬. 
𝑏𝑏𝑒𝑒: latest arrival time for the 𝑒𝑒th trip, 𝑒𝑒 ∈ 𝑬𝑬. 
𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒: the origin node for the 𝑒𝑒th trip, 𝑒𝑒 ∈ 𝑬𝑬. 
𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒: the destination node for the 𝑒𝑒th trip, 𝑒𝑒 ∈ 𝑬𝑬. 
𝐷𝐷𝑖𝑖𝑖𝑖

𝑒𝑒 : equals to 1 if there is an 𝑒𝑒th request from 𝑖𝑖 to 𝑗𝑗 who desires to start from time instant 𝑡𝑡, 𝑖𝑖 = 𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒 , 𝑡𝑡 =
𝑎𝑎𝑒𝑒, ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑵𝑵, ∀𝑒𝑒 ∈ 𝑬𝑬, ∀𝑡𝑡 ∈ 𝑻𝑻. 
𝛿𝛿𝑖𝑖𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚: maximum travel time from node 𝑖𝑖 to node 𝑗𝑗, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨. 
𝛿𝛿𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖𝑚𝑚: minimum travel time from node 𝑖𝑖 to node 𝑗𝑗, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨. 
𝛿𝛿𝑖𝑖𝑖𝑖

𝑘𝑘 : travel time from node 𝑖𝑖 to node 𝑗𝑗 at breakpoint 𝑘𝑘, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, 𝑘𝑘 ∈ 𝑲𝑲. 
𝑑𝑑𝑖𝑖𝑖𝑖: travel distance from node 𝑖𝑖 to node 𝑗𝑗, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨. 
𝑂𝑂𝑂𝑂𝑡𝑡𝑖𝑖𝑖𝑖 : shortest travel time from node 𝑖𝑖 to node 𝑗𝑗, ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑵𝑵 (computed with 𝛿𝛿𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖𝑚𝑚).  
𝐶𝐶𝑎𝑎𝑂𝑂𝑖𝑖𝑖𝑖: Capacity of each link (𝑖𝑖, 𝑗𝑗) which is the number of vehicles that go through the link at the highest travel time, 
∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨. 

Parameters: 

𝑃𝑃𝑜𝑜: price rate of taxi per time step. 
𝐶𝐶𝑓𝑓: fuel cost per driving distance. 
𝐶𝐶𝑑𝑑: vehicle depreciation cost per vehicle. 
𝐶𝐶𝑝𝑝: parking cost per time step. 
𝜌𝜌: penalty cost per trip if a trip is rejected by AT and needs public transport. 
𝐶𝐶𝑑𝑑𝑒𝑒𝑑𝑑: penalty cost per time step for congestion delay of passengers’ requests. 

Decision variables: 

𝑥𝑥𝑖𝑖𝑡𝑡1,𝑖𝑖𝑡𝑡2
𝑣𝑣 : binary variable equals to 1 if vehicle 𝑣𝑣 drives from node 𝑖𝑖 to 𝑗𝑗 from time instant 𝑡𝑡, ∀(𝑖𝑖𝑡𝑡1, 𝑗𝑗𝑡𝑡2) ∈ 𝑩𝑩, ∀𝑣𝑣 ∈ 𝑽𝑽. 

𝑦𝑦𝑖𝑖𝑡𝑡
𝑣𝑣 : binary variable equals to 1 if vehicle 𝑣𝑣 parks at 𝑖𝑖 from time instant 𝑡𝑡 to 𝑡𝑡 + 1, ∀𝑖𝑖 ∈ 𝑵𝑵, ∀𝑣𝑣 ∈ 𝑽𝑽, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 +

𝑇𝑇𝑟𝑟 − 1. 
𝑆𝑆𝑖𝑖𝑖𝑖

𝑒𝑒𝑣𝑣: binary variable equals to 1 if trip 𝑒𝑒 from node 𝑖𝑖 = 𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒 to node 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  is done using vehicle 𝑣𝑣, ∀𝑒𝑒 ∈ 𝑬𝑬, 
∀𝑣𝑣 ∈ 𝑽𝑽. 
𝑃𝑃𝑖𝑖𝑖𝑖

𝑒𝑒𝑣𝑣𝑡𝑡: binary variable equals to 1 if trip 𝑒𝑒 from node 𝑖𝑖 = 𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒 to node 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  done by vehicle 𝑣𝑣 departs at time 
instant 𝑡𝑡, ∀𝑒𝑒 ∈ 𝑬𝑬, ∀𝑣𝑣 ∈ 𝑽𝑽, ∀𝑡𝑡 ∈ 𝑻𝑻, 𝑐𝑐𝑒𝑒 ≤ 𝑡𝑡 ≤ 𝑎𝑎𝑒𝑒 + 𝑤𝑤𝑎𝑎𝑖𝑖𝑡𝑡𝑒𝑒. 
𝐴𝐴𝑖𝑖𝑖𝑖

𝑒𝑒𝑣𝑣𝑡𝑡: binary variable equals to 1 if trip 𝑒𝑒 from node 𝑖𝑖 = 𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒 to node 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  done by vehicle 𝑣𝑣 arrives at time 
instant 𝑡𝑡, ∀𝑒𝑒 ∈ 𝑬𝑬, ∀𝑣𝑣 ∈ 𝑽𝑽, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑐𝑐𝑒𝑒 + 𝑂𝑂𝑂𝑂𝑡𝑡𝑖𝑖𝑖𝑖 ≤  𝑡𝑡 ≤ 𝑏𝑏𝑒𝑒. 
𝐿𝐿𝑡𝑡

𝑣𝑣: binary variable equals to 1 if vehicle 𝑣𝑣 is transporting a passenger from time instant 𝑡𝑡 to 𝑡𝑡 + 1, ∀𝑣𝑣 ∈ 𝑽𝑽, 
∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1 . 
𝐹𝐹𝑖𝑖𝑖𝑖

𝑡𝑡 : flow of vehicles on link (𝑖𝑖, 𝑗𝑗) starting from time instant 𝑡𝑡, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1. 
𝜆𝜆𝑖𝑖𝑖𝑖

𝑡𝑡,𝑘𝑘: binary variable equals to 1 if the traffic flow on link (𝑖𝑖, 𝑗𝑗) starting from 𝑡𝑡 is taking the value on breakpoint 𝑘𝑘 of 
the flow-travel time curve, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1, ∀𝑘𝑘 ∈ 𝑲𝑲. 
𝛿𝛿𝑖𝑖𝑖𝑖

𝑡𝑡 : travel time when travelling on link (𝑖𝑖, 𝑗𝑗)  starting from time instant 𝑡𝑡, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1. 

Objective function: 
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max(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑃𝑃𝑃𝑃 ∙ ∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 ∙ 𝑂𝑂𝑂𝑂𝑃𝑃𝑖𝑖𝑖𝑖
𝑒𝑒∈𝑬𝑬,𝑒𝑒∈𝑽𝑽
𝑖𝑖=𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒
𝑖𝑖=𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒

− 𝐶𝐶𝑓𝑓 ∙ ∑ 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑖𝑖𝑡𝑡2
𝑒𝑒 ∙ 𝑑𝑑𝑖𝑖𝑖𝑖

(𝑖𝑖𝑡𝑡1,𝑖𝑖𝑡𝑡2)∈𝑨𝑨,
𝑒𝑒∈𝑽𝑽

− 𝐶𝐶𝑑𝑑 ∙ 𝑉𝑉 − 𝐶𝐶𝑝𝑝 ∙ ∑ 𝑦𝑦𝑖𝑖𝑡𝑡𝑒𝑒
𝑖𝑖∈𝑵𝑵,𝑒𝑒∈𝑽𝑽

𝑡𝑡∈𝑻𝑻′,𝑡𝑡≤𝑇𝑇+𝑇𝑇𝑟𝑟−1

− 𝜌𝜌 ∙∑

(

  
 
𝐷𝐷𝑖𝑖𝑖𝑖𝑒𝑒 − ∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒

𝑒𝑒∈𝑽𝑽
𝑖𝑖=𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒
𝑖𝑖=𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒 )

  
 

𝑒𝑒𝑒𝑒𝑬𝑬
− 𝐶𝐶𝑑𝑑𝑒𝑒𝑑𝑑 ∙ ∑ (∑𝐴𝐴𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡 ∙ 𝑃𝑃

𝑡𝑡𝑒𝑒𝑻𝑻′
− (𝑎𝑎𝑒𝑒 + 𝑂𝑂𝑂𝑂𝑃𝑃𝑖𝑖𝑖𝑖) ∙ 𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒)

𝑒𝑒𝑒𝑒𝑬𝑬,𝑒𝑒∈𝑽𝑽
𝑖𝑖=𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒
𝑖𝑖=𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒

 

(1) 

The objective function is considered from both the AT company and the passengers’ perspective. For the AT 
company, it aims to maximize the total profit which includes the total revenue from the customers, the vehicle fuel 
costs, the vehicle depreciation costs and the parking costs. The revenue is only charged for the shortest travel time of 
each request in order to avoid detour problems. Regarding the passengers, when a request is rejected, they would use 
public transport as an alternative to finish this trip and the AT system should pay a fixed charge for the users as a 
penalty. Late arrivals of AT service are also penalized in order to involve the system performance for the clients. 

Constraints:  

𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 ≤ ∑ 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑑𝑑𝑡𝑡2
𝑒𝑒

𝑖𝑖𝑡𝑡1,𝑑𝑑𝑡𝑡2𝑒𝑒𝑩𝑩
𝑡𝑡1≥𝑎𝑎𝑒𝑒,𝑡𝑡2≤𝑏𝑏𝑒𝑒

      ∀𝑒𝑒 ∈ 𝑬𝑬, 𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  
(2) 

𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 ≤ ∑ 𝑥𝑥𝑑𝑑𝑡𝑡1,𝑖𝑖𝑡𝑡2
𝑒𝑒

𝑑𝑑𝑡𝑡1,𝑖𝑖𝑡𝑡2𝑒𝑒𝑩𝑩
𝑡𝑡1≥𝑎𝑎𝑒𝑒,𝑡𝑡2≤𝑏𝑏𝑒𝑒

    ∀𝑣𝑣 ∈ 𝑽𝑽, 𝑒𝑒 ∈ 𝑬𝑬, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  
(3) 

∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡
𝑡𝑡𝑒𝑒𝑻𝑻
𝑡𝑡=𝑎𝑎𝑒𝑒

= 𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒      𝑒𝑒 ∈ 𝑬𝑬, 𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒, 𝑃𝑃 ≤ 𝑎𝑎𝑒𝑒 (4) 

∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡
𝑡𝑡𝑒𝑒𝑻𝑻′

𝑎𝑎𝑒𝑒+𝑂𝑂𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖≤𝑡𝑡≤𝑏𝑏𝑒𝑒

= 𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒      𝑒𝑒 ∈ 𝑬𝑬, 𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  
(5) 

∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡 ≤ 1
𝑡𝑡𝑒𝑒𝑻𝑻
𝑡𝑡=𝑎𝑎𝑒𝑒

     𝑒𝑒 ∈ 𝑬𝑬, 𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  (6) 

∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡 ≤ 1
𝑡𝑡∈𝑻𝑻′

𝑎𝑎𝑒𝑒+𝑂𝑂𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖≤ 𝑡𝑡≤𝑏𝑏𝑒𝑒

    𝑒𝑒 ∈ 𝑬𝑬, 𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  
(7) 

∑(𝑃𝑃𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡 ∙ 𝑃𝑃) ≤ ∑ (𝐴𝐴𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡 ∙ 𝑃𝑃)
𝑡𝑡∈𝑻𝑻′

𝑎𝑎𝑒𝑒+𝑂𝑂𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖≤ 𝑡𝑡≤𝑏𝑏𝑒𝑒
𝑡𝑡∈𝑻𝑻
𝑡𝑡=𝑎𝑎𝑒𝑒

     𝑒𝑒 ∈ 𝑬𝑬, 𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒 
(8) 

∑𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒
𝑒𝑒∈𝑽𝑽

≤ 1      ∀𝑒𝑒 ∈ 𝑬𝑬, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  (9) 

∑𝑦𝑦𝑖𝑖𝑡𝑡𝑒𝑒
𝑖𝑖∈𝑵𝑵

≤ 1   ∀𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃 ∈ 𝑻𝑻′, 𝑃𝑃 ≤ 𝑇𝑇 + 𝑇𝑇𝑜𝑜 − 1  (10) 

∑ 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑖𝑖𝑡𝑡2
𝑒𝑒

𝑖𝑖𝑡𝑡1,𝑖𝑖𝑡𝑡2∈𝑩𝑩
≤ 1   ∀𝑃𝑃 ∈ 𝑵𝑵, 𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃1 ∈ 𝑻𝑻′ (11) 
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{0 … 𝑇𝑇} and the buffer periods {−𝑇𝑇𝑟𝑟 … 0} and {𝑇𝑇 … 𝑇𝑇 + 𝑇𝑇𝑟𝑟},  where 𝑇𝑇𝑟𝑟 is the number of time steps in the buffer 
period. 
𝑬𝑬 = {1, … , 𝑒𝑒, … , 𝐸𝐸}: set of trips, where 𝐸𝐸 is the total number of all the trips in the service period. 
𝑽𝑽 = {1, … , 𝑣𝑣, … , 𝑉𝑉}: set of vehicles, where 𝑉𝑉 is the total number of taxis in the system. 
𝑲𝑲 = {0, … , 𝑘𝑘, … , 𝐾𝐾}: set of breakpoints for dynamic travel time, where 𝐾𝐾 is the total number of the break points in 
the flow-travel time curve. 
𝑨𝑨 = {… , (𝑖𝑖, 𝑗𝑗), … }: set of links of the road network where vehicles move,  𝑖𝑖 ≠ 𝑗𝑗. 
𝑩𝑩 = {… , (𝑖𝑖𝑡𝑡1, 𝑗𝑗𝑡𝑡2), … }: set of links in the time-space network, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡1, 𝑡𝑡2 ∈ 𝑻𝑻′, 𝑡𝑡1 < 𝑡𝑡2, 𝛿𝛿𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑡𝑡2 − 𝑡𝑡1  ≤
𝛿𝛿𝑖𝑖𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚. 

Data: 

𝑎𝑎𝑒𝑒: desired departure time for the 𝑒𝑒th trip, 𝑒𝑒 ∈ 𝑬𝑬. 
𝑏𝑏𝑒𝑒: latest arrival time for the 𝑒𝑒th trip, 𝑒𝑒 ∈ 𝑬𝑬. 
𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒: the origin node for the 𝑒𝑒th trip, 𝑒𝑒 ∈ 𝑬𝑬. 
𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒: the destination node for the 𝑒𝑒th trip, 𝑒𝑒 ∈ 𝑬𝑬. 
𝐷𝐷𝑖𝑖𝑖𝑖

𝑒𝑒 : equals to 1 if there is an 𝑒𝑒th request from 𝑖𝑖 to 𝑗𝑗 who desires to start from time instant 𝑡𝑡, 𝑖𝑖 = 𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒 , 𝑡𝑡 =
𝑎𝑎𝑒𝑒, ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑵𝑵, ∀𝑒𝑒 ∈ 𝑬𝑬, ∀𝑡𝑡 ∈ 𝑻𝑻. 
𝛿𝛿𝑖𝑖𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚: maximum travel time from node 𝑖𝑖 to node 𝑗𝑗, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨. 
𝛿𝛿𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖𝑚𝑚: minimum travel time from node 𝑖𝑖 to node 𝑗𝑗, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨. 
𝛿𝛿𝑖𝑖𝑖𝑖

𝑘𝑘 : travel time from node 𝑖𝑖 to node 𝑗𝑗 at breakpoint 𝑘𝑘, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, 𝑘𝑘 ∈ 𝑲𝑲. 
𝑑𝑑𝑖𝑖𝑖𝑖: travel distance from node 𝑖𝑖 to node 𝑗𝑗, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨. 
𝑂𝑂𝑂𝑂𝑡𝑡𝑖𝑖𝑖𝑖 : shortest travel time from node 𝑖𝑖 to node 𝑗𝑗, ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑵𝑵 (computed with 𝛿𝛿𝑖𝑖𝑖𝑖

𝑚𝑚𝑖𝑖𝑚𝑚).  
𝐶𝐶𝑎𝑎𝑂𝑂𝑖𝑖𝑖𝑖: Capacity of each link (𝑖𝑖, 𝑗𝑗) which is the number of vehicles that go through the link at the highest travel time, 
∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨. 

Parameters: 

𝑃𝑃𝑜𝑜: price rate of taxi per time step. 
𝐶𝐶𝑓𝑓: fuel cost per driving distance. 
𝐶𝐶𝑑𝑑: vehicle depreciation cost per vehicle. 
𝐶𝐶𝑝𝑝: parking cost per time step. 
𝜌𝜌: penalty cost per trip if a trip is rejected by AT and needs public transport. 
𝐶𝐶𝑑𝑑𝑒𝑒𝑑𝑑: penalty cost per time step for congestion delay of passengers’ requests. 

Decision variables: 

𝑥𝑥𝑖𝑖𝑡𝑡1,𝑖𝑖𝑡𝑡2
𝑣𝑣 : binary variable equals to 1 if vehicle 𝑣𝑣 drives from node 𝑖𝑖 to 𝑗𝑗 from time instant 𝑡𝑡, ∀(𝑖𝑖𝑡𝑡1, 𝑗𝑗𝑡𝑡2) ∈ 𝑩𝑩, ∀𝑣𝑣 ∈ 𝑽𝑽. 

𝑦𝑦𝑖𝑖𝑡𝑡
𝑣𝑣 : binary variable equals to 1 if vehicle 𝑣𝑣 parks at 𝑖𝑖 from time instant 𝑡𝑡 to 𝑡𝑡 + 1, ∀𝑖𝑖 ∈ 𝑵𝑵, ∀𝑣𝑣 ∈ 𝑽𝑽, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 +

𝑇𝑇𝑟𝑟 − 1. 
𝑆𝑆𝑖𝑖𝑖𝑖

𝑒𝑒𝑣𝑣: binary variable equals to 1 if trip 𝑒𝑒 from node 𝑖𝑖 = 𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒 to node 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  is done using vehicle 𝑣𝑣, ∀𝑒𝑒 ∈ 𝑬𝑬, 
∀𝑣𝑣 ∈ 𝑽𝑽. 
𝑃𝑃𝑖𝑖𝑖𝑖

𝑒𝑒𝑣𝑣𝑡𝑡: binary variable equals to 1 if trip 𝑒𝑒 from node 𝑖𝑖 = 𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒 to node 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  done by vehicle 𝑣𝑣 departs at time 
instant 𝑡𝑡, ∀𝑒𝑒 ∈ 𝑬𝑬, ∀𝑣𝑣 ∈ 𝑽𝑽, ∀𝑡𝑡 ∈ 𝑻𝑻, 𝑐𝑐𝑒𝑒 ≤ 𝑡𝑡 ≤ 𝑎𝑎𝑒𝑒 + 𝑤𝑤𝑎𝑎𝑖𝑖𝑡𝑡𝑒𝑒. 
𝐴𝐴𝑖𝑖𝑖𝑖

𝑒𝑒𝑣𝑣𝑡𝑡: binary variable equals to 1 if trip 𝑒𝑒 from node 𝑖𝑖 = 𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒 to node 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  done by vehicle 𝑣𝑣 arrives at time 
instant 𝑡𝑡, ∀𝑒𝑒 ∈ 𝑬𝑬, ∀𝑣𝑣 ∈ 𝑽𝑽, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑐𝑐𝑒𝑒 + 𝑂𝑂𝑂𝑂𝑡𝑡𝑖𝑖𝑖𝑖 ≤  𝑡𝑡 ≤ 𝑏𝑏𝑒𝑒. 
𝐿𝐿𝑡𝑡

𝑣𝑣: binary variable equals to 1 if vehicle 𝑣𝑣 is transporting a passenger from time instant 𝑡𝑡 to 𝑡𝑡 + 1, ∀𝑣𝑣 ∈ 𝑽𝑽, 
∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1 . 
𝐹𝐹𝑖𝑖𝑖𝑖

𝑡𝑡 : flow of vehicles on link (𝑖𝑖, 𝑗𝑗) starting from time instant 𝑡𝑡, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1. 
𝜆𝜆𝑖𝑖𝑖𝑖

𝑡𝑡,𝑘𝑘: binary variable equals to 1 if the traffic flow on link (𝑖𝑖, 𝑗𝑗) starting from 𝑡𝑡 is taking the value on breakpoint 𝑘𝑘 of 
the flow-travel time curve, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1, ∀𝑘𝑘 ∈ 𝑲𝑲. 
𝛿𝛿𝑖𝑖𝑖𝑖

𝑡𝑡 : travel time when travelling on link (𝑖𝑖, 𝑗𝑗)  starting from time instant 𝑡𝑡, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1. 

Objective function: 
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max(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = 𝑃𝑃𝑃𝑃 ∙ ∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 ∙ 𝑂𝑂𝑂𝑂𝑃𝑃𝑖𝑖𝑖𝑖
𝑒𝑒∈𝑬𝑬,𝑒𝑒∈𝑽𝑽
𝑖𝑖=𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒
𝑖𝑖=𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒

− 𝐶𝐶𝑓𝑓 ∙ ∑ 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑖𝑖𝑡𝑡2
𝑒𝑒 ∙ 𝑑𝑑𝑖𝑖𝑖𝑖

(𝑖𝑖𝑡𝑡1,𝑖𝑖𝑡𝑡2)∈𝑨𝑨,
𝑒𝑒∈𝑽𝑽

− 𝐶𝐶𝑑𝑑 ∙ 𝑉𝑉 − 𝐶𝐶𝑝𝑝 ∙ ∑ 𝑦𝑦𝑖𝑖𝑡𝑡𝑒𝑒
𝑖𝑖∈𝑵𝑵,𝑒𝑒∈𝑽𝑽

𝑡𝑡∈𝑻𝑻′,𝑡𝑡≤𝑇𝑇+𝑇𝑇𝑟𝑟−1

− 𝜌𝜌 ∙∑

(

  
 
𝐷𝐷𝑖𝑖𝑖𝑖𝑒𝑒 − ∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒

𝑒𝑒∈𝑽𝑽
𝑖𝑖=𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒
𝑖𝑖=𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒 )

  
 

𝑒𝑒𝑒𝑒𝑬𝑬
− 𝐶𝐶𝑑𝑑𝑒𝑒𝑑𝑑 ∙ ∑ (∑𝐴𝐴𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡 ∙ 𝑃𝑃

𝑡𝑡𝑒𝑒𝑻𝑻′
− (𝑎𝑎𝑒𝑒 + 𝑂𝑂𝑂𝑂𝑃𝑃𝑖𝑖𝑖𝑖) ∙ 𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒)

𝑒𝑒𝑒𝑒𝑬𝑬,𝑒𝑒∈𝑽𝑽
𝑖𝑖=𝑜𝑜𝑜𝑜𝑖𝑖𝑒𝑒
𝑖𝑖=𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒

 

(1) 

The objective function is considered from both the AT company and the passengers’ perspective. For the AT 
company, it aims to maximize the total profit which includes the total revenue from the customers, the vehicle fuel 
costs, the vehicle depreciation costs and the parking costs. The revenue is only charged for the shortest travel time of 
each request in order to avoid detour problems. Regarding the passengers, when a request is rejected, they would use 
public transport as an alternative to finish this trip and the AT system should pay a fixed charge for the users as a 
penalty. Late arrivals of AT service are also penalized in order to involve the system performance for the clients. 

Constraints:  

𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 ≤ ∑ 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑑𝑑𝑡𝑡2
𝑒𝑒

𝑖𝑖𝑡𝑡1,𝑑𝑑𝑡𝑡2𝑒𝑒𝑩𝑩
𝑡𝑡1≥𝑎𝑎𝑒𝑒,𝑡𝑡2≤𝑏𝑏𝑒𝑒

      ∀𝑒𝑒 ∈ 𝑬𝑬, 𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  
(2) 

𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 ≤ ∑ 𝑥𝑥𝑑𝑑𝑡𝑡1,𝑖𝑖𝑡𝑡2
𝑒𝑒

𝑑𝑑𝑡𝑡1,𝑖𝑖𝑡𝑡2𝑒𝑒𝑩𝑩
𝑡𝑡1≥𝑎𝑎𝑒𝑒,𝑡𝑡2≤𝑏𝑏𝑒𝑒

    ∀𝑣𝑣 ∈ 𝑽𝑽, 𝑒𝑒 ∈ 𝑬𝑬, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  
(3) 

∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡
𝑡𝑡𝑒𝑒𝑻𝑻
𝑡𝑡=𝑎𝑎𝑒𝑒

= 𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒      𝑒𝑒 ∈ 𝑬𝑬, 𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒, 𝑃𝑃 ≤ 𝑎𝑎𝑒𝑒 (4) 

∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡
𝑡𝑡𝑒𝑒𝑻𝑻′

𝑎𝑎𝑒𝑒+𝑂𝑂𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖≤𝑡𝑡≤𝑏𝑏𝑒𝑒

= 𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒      𝑒𝑒 ∈ 𝑬𝑬, 𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  
(5) 

∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡 ≤ 1
𝑡𝑡𝑒𝑒𝑻𝑻
𝑡𝑡=𝑎𝑎𝑒𝑒

     𝑒𝑒 ∈ 𝑬𝑬, 𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  (6) 

∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡 ≤ 1
𝑡𝑡∈𝑻𝑻′

𝑎𝑎𝑒𝑒+𝑂𝑂𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖≤ 𝑡𝑡≤𝑏𝑏𝑒𝑒

    𝑒𝑒 ∈ 𝑬𝑬, 𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  
(7) 

∑(𝑃𝑃𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡 ∙ 𝑃𝑃) ≤ ∑ (𝐴𝐴𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑡𝑡 ∙ 𝑃𝑃)
𝑡𝑡∈𝑻𝑻′

𝑎𝑎𝑒𝑒+𝑂𝑂𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖≤ 𝑡𝑡≤𝑏𝑏𝑒𝑒
𝑡𝑡∈𝑻𝑻
𝑡𝑡=𝑎𝑎𝑒𝑒

     𝑒𝑒 ∈ 𝑬𝑬, 𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒 
(8) 

∑𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒
𝑒𝑒∈𝑽𝑽

≤ 1      ∀𝑒𝑒 ∈ 𝑬𝑬, 𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒, 𝑗𝑗 = 𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒  (9) 

∑𝑦𝑦𝑖𝑖𝑡𝑡𝑒𝑒
𝑖𝑖∈𝑵𝑵

≤ 1   ∀𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃 ∈ 𝑻𝑻′, 𝑃𝑃 ≤ 𝑇𝑇 + 𝑇𝑇𝑜𝑜 − 1  (10) 

∑ 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑖𝑖𝑡𝑡2
𝑒𝑒

𝑖𝑖𝑡𝑡1,𝑖𝑖𝑡𝑡2∈𝑩𝑩
≤ 1   ∀𝑃𝑃 ∈ 𝑵𝑵, 𝑣𝑣 ∈ 𝑽𝑽, 𝑃𝑃1 ∈ 𝑻𝑻′ (11) 
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∑ 𝑥𝑥𝑖𝑖𝑡𝑡,𝑗𝑗𝑡𝑡1
𝑣𝑣

𝑖𝑖𝑡𝑡,𝑗𝑗𝑡𝑡1∈𝑩𝑩
+ ∑ 𝑦𝑦𝑖𝑖𝑡𝑡

𝑣𝑣

𝑖𝑖∈𝑵𝑵
= 1     𝑣𝑣 ∈ 𝑽𝑽, 𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1 (12) 

∑ 𝑥𝑥𝑖𝑖𝑡𝑡,𝑗𝑗𝑡𝑡1
𝑣𝑣

𝑖𝑖𝑡𝑡,𝑗𝑗𝑡𝑡1∈𝑩𝑩
+ 𝑦𝑦𝑖𝑖𝑡𝑡

𝑣𝑣 = ∑ 𝑥𝑥𝑗𝑗𝑡𝑡2,𝑖𝑖𝑡𝑡
𝑣𝑣

𝑖𝑖𝑡𝑡2,𝑗𝑗𝑡𝑡∈𝑩𝑩
+ 𝑦𝑦𝑖𝑖𝑡𝑡−1

𝑣𝑣             ∀𝑖𝑖 ∈ 𝑵𝑵, 𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1, 𝑣𝑣 ∈ 𝑽𝑽 (13) 

∑ 𝑥𝑥𝑖𝑖0,𝑗𝑗𝑡𝑡1
𝑣𝑣

𝑖𝑖0,𝑗𝑗𝑡𝑡1∈𝑩𝑩
+ ∑ 𝑦𝑦𝑖𝑖0

𝑣𝑣

𝑣𝑣∈𝑽𝑽
= 𝑉𝑉          𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐𝑝𝑝 𝑠𝑠𝑡𝑡𝑐𝑐𝑡𝑡𝑖𝑖𝑠𝑠𝑐𝑐 (14) 

𝐹𝐹𝑖𝑖𝑗𝑗
𝑡𝑡1 = ∑ 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑗𝑗𝑡𝑡2

𝑣𝑣

𝑣𝑣∈𝑽𝑽
     ∀(𝑖𝑖𝑡𝑡1, 𝑗𝑗𝑡𝑡2) ∈ 𝑩𝑩 (15) 

𝐹𝐹𝑖𝑖𝑗𝑗
𝑡𝑡 ≤ 𝑄𝑄𝑖𝑖𝑗𝑗     ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1 (16) 

𝐹𝐹𝑖𝑖𝑗𝑗
𝑡𝑡 = ∑ 𝜆𝜆𝑖𝑖𝑗𝑗

𝑡𝑡,𝑘𝑘 ∙ 𝑝𝑝
𝑘𝑘∈𝑲𝑲

       ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1 (17) 

𝛿𝛿𝑖𝑖𝑗𝑗
𝑡𝑡 = ∑ 𝛿𝛿𝑖𝑖𝑗𝑗

𝑘𝑘 ∙ 𝜆𝜆𝑖𝑖𝑗𝑗
𝑡𝑡,𝑘𝑘

𝑘𝑘∈𝑲𝑲
      ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1 (18) 

∑ 𝜆𝜆𝑖𝑖𝑗𝑗
𝑡𝑡,𝑘𝑘

𝑘𝑘∈𝑲𝑲
= 1      ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1 (19) 

𝛿𝛿𝑖𝑖𝑗𝑗
𝑡𝑡1 ≤ (𝑡𝑡2 − 𝑡𝑡1) ∙ 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑗𝑗𝑡𝑡2

𝑣𝑣 + 𝑡𝑡𝑖𝑖𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 ∙ (1 − 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑗𝑗𝑡𝑡2

𝑣𝑣 )           ∀(𝑖𝑖𝑡𝑡1, 𝑗𝑗𝑡𝑡2) ∈ 𝑩𝑩, 𝑣𝑣 ∈ 𝑽𝑽 (20) 

𝛿𝛿𝑖𝑖𝑗𝑗
𝑡𝑡1 ≥ (𝑡𝑡2 − 𝑡𝑡1) ∙ 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑗𝑗𝑡𝑡2

𝑣𝑣 + 𝑡𝑡𝑖𝑖𝑗𝑗
𝑚𝑚𝑖𝑖𝑚𝑚 ∙ (1 − 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑗𝑗𝑡𝑡2

𝑣𝑣 )           ∀(𝑖𝑖𝑡𝑡1, 𝑗𝑗𝑡𝑡2) ∈ 𝑩𝑩, 𝑣𝑣 ∈ 𝑽𝑽 (21) 

𝐿𝐿𝑡𝑡
𝑣𝑣 = ∑ 𝑃𝑃𝑖𝑖𝑗𝑗

𝑒𝑒𝑣𝑣𝑡𝑡1

𝑖𝑖=𝑜𝑜𝑟𝑟𝑖𝑖𝑒𝑒,𝑗𝑗=𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒
𝑒𝑒∈𝑵𝑵,∀𝑡𝑡1∈𝑻𝑻,𝑡𝑡1≤𝑡𝑡

− ∑ 𝐴𝐴𝑖𝑖𝑗𝑗
𝑒𝑒𝑣𝑣𝑡𝑡2

𝑖𝑖=𝑜𝑜𝑟𝑟𝑖𝑖𝑒𝑒,𝑗𝑗=𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒
𝑒𝑒∈𝑵𝑵,∀𝑡𝑡2∈𝑻𝑻′,𝑡𝑡2≤𝑡𝑡

               ∀𝑡𝑡 ∈ 𝑻𝑻, 𝑡𝑡 ≤ 𝑇𝑇′ − 1, 𝑣𝑣 ∈ 𝑽𝑽 
(22) 

𝐿𝐿𝑡𝑡
𝑣𝑣 + ∑ 𝑦𝑦𝑖𝑖𝑡𝑡

𝑣𝑣

𝑖𝑖∈𝑵𝑵
≤ 1             ∀𝑡𝑡 ∈ 𝑻𝑻, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1, 𝑣𝑣 ∈ 𝑽𝑽 (23) 

Constraints (2) impose that trip 𝑐𝑐 from node 𝑖𝑖 to node 𝑗𝑗 can only be satisfied by vehicle 𝑣𝑣 if that vehicle has 
passed through node 𝑖𝑖 after the earliest departure time 𝑐𝑐𝑒𝑒. Constraints (3) impose that trip 𝑐𝑐 from node 𝑖𝑖 to node 𝑗𝑗 
can only be satisfied by vehicle 𝑣𝑣 if that vehicle has pass through node 𝑗𝑗 before the latest arrival time 𝑏𝑏𝑒𝑒. Constraints 
(4) and (5) assure that a satisfied trip must have only one departure time and only one arrival time or this trip is not 
satisfied at all. Constraints (6) and (7) guarantee that one trip can only have one departure time and only one arrival 
time when it is served or this trip is not satisfied by any vehicle. Constraints (8) impose that the departure time 
instant of a satisfied trip must happen before the arrival time instant. Constraints (9) yield that a satisfied trip must 
be served by only one AT. Constraints (10) impose that for a specific time step 𝑡𝑡 to 𝑡𝑡 + 1 one automated taxi should 
only park at one node or not park at all. Constraints (11) guarantee that one trip with specific origin and departure 
time can only have one destination and one arrival time. Constraints (12) ensure that each vehicle can only have one 
status at time instant 𝑡𝑡: either going to the next destination or parking at that place. Constraints (13) are flow 
conservation constraints which make sure that the number of taxis leaving from node 𝑖𝑖 and parking there at time 
instant 𝑡𝑡 is equal to the number of vehicles arriving or parking at the same node ending at time instant 𝑡𝑡. Constraint 
(14) describes the initial status of the AT fleet. At the beginning of the operation period, all vehicles are stocked at 
the central parking station. Constraints (15) compute the flow of vehicles on each road link (𝑖𝑖, 𝑗𝑗) from time instant 
𝑡𝑡1. Constraints (16) limit flow by the capacity of each link. Constraints (17)-(19) define the travel time on road link 
(𝑖𝑖, 𝑗𝑗) starting at time instant 𝑡𝑡 as a function of the congestion level represented by the breakpoint 𝑝𝑝. Constraints (20) 
and (21) impose the travel time is not greater than the maximum travel time or smaller than the minimum travel 
time. Meanwhile they also guarantee that when vehicle 𝑣𝑣 is travelling on link (𝑖𝑖𝑡𝑡1,𝑗𝑗𝑡𝑡2), the travel time must be 
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𝛿𝛿𝑖𝑖𝑖𝑖
𝑡𝑡1.Constraints (22) and (23) impose that when the vehicle is transporting a passenger, it should not stop or park at 

any node. 

3. Case study and results 

In this section, we apply the model to a small toy network to illustrate how it works and the results that can be 
obtained. We consider a road network with 9 nodes and 12 links (Figure 1). The length of each link is 1 km and the 
central parking station is located at node 5. The capacity of each link is 3 vehicles per direction per time step. The 
minimum travel time (𝛿𝛿𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚) on each link is considered as 1 time step and  the assumed maximum speed is 30km/h. 
With a simplified volume-delay function, the travel time values are 1, 2 and 4 time step respectively, when the 
traffic flows are 1, 2 and 3 vehicles respectively (Figure 2). When ATs parking at the central node 5, it is free to 
charge while parking at other nodes should be paid. 

   
Figure 1:  Road network  with  9 nodes and 12 links 

 
Figure 2: Traffic flow and travel time value

 
There are 10 time steps from time instant 0 to 10 in the service period. Each time step of the optimization is 2 

minutes. A short time period with 2 time steps is set in order to be possible to satisfy the early trips and late trips in 
the service period, which makes the operation time run from -2 to 12 time instant. Using Monte Carlo simulation, 
we generate 20 requests each of which has an origin, a destination and a desired departure time based on an uneven 
distribution with a higher probability for node 5 to be an origin. In this case study, the number of ATs serving in the 
system is 5. 

 

 
Figure 3 AT movement results 
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∑ 𝑥𝑥𝑖𝑖𝑡𝑡,𝑗𝑗𝑡𝑡1
𝑣𝑣

𝑖𝑖𝑡𝑡,𝑗𝑗𝑡𝑡1∈𝑩𝑩
+ ∑ 𝑦𝑦𝑖𝑖𝑡𝑡

𝑣𝑣

𝑖𝑖∈𝑵𝑵
= 1     𝑣𝑣 ∈ 𝑽𝑽, 𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1 (12) 

∑ 𝑥𝑥𝑖𝑖𝑡𝑡,𝑗𝑗𝑡𝑡1
𝑣𝑣

𝑖𝑖𝑡𝑡,𝑗𝑗𝑡𝑡1∈𝑩𝑩
+ 𝑦𝑦𝑖𝑖𝑡𝑡

𝑣𝑣 = ∑ 𝑥𝑥𝑗𝑗𝑡𝑡2,𝑖𝑖𝑡𝑡
𝑣𝑣

𝑖𝑖𝑡𝑡2,𝑗𝑗𝑡𝑡∈𝑩𝑩
+ 𝑦𝑦𝑖𝑖𝑡𝑡−1

𝑣𝑣             ∀𝑖𝑖 ∈ 𝑵𝑵, 𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1, 𝑣𝑣 ∈ 𝑽𝑽 (13) 

∑ 𝑥𝑥𝑖𝑖0,𝑗𝑗𝑡𝑡1
𝑣𝑣

𝑖𝑖0,𝑗𝑗𝑡𝑡1∈𝑩𝑩
+ ∑ 𝑦𝑦𝑖𝑖0

𝑣𝑣

𝑣𝑣∈𝑽𝑽
= 𝑉𝑉          𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑖𝑖𝑐𝑐𝑝𝑝 𝑠𝑠𝑡𝑡𝑐𝑐𝑡𝑡𝑖𝑖𝑠𝑠𝑐𝑐 (14) 

𝐹𝐹𝑖𝑖𝑗𝑗
𝑡𝑡1 = ∑ 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑗𝑗𝑡𝑡2

𝑣𝑣

𝑣𝑣∈𝑽𝑽
     ∀(𝑖𝑖𝑡𝑡1, 𝑗𝑗𝑡𝑡2) ∈ 𝑩𝑩 (15) 

𝐹𝐹𝑖𝑖𝑗𝑗
𝑡𝑡 ≤ 𝑄𝑄𝑖𝑖𝑗𝑗     ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1 (16) 

𝐹𝐹𝑖𝑖𝑗𝑗
𝑡𝑡 = ∑ 𝜆𝜆𝑖𝑖𝑗𝑗

𝑡𝑡,𝑘𝑘 ∙ 𝑝𝑝
𝑘𝑘∈𝑲𝑲

       ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1 (17) 

𝛿𝛿𝑖𝑖𝑗𝑗
𝑡𝑡 = ∑ 𝛿𝛿𝑖𝑖𝑗𝑗

𝑘𝑘 ∙ 𝜆𝜆𝑖𝑖𝑗𝑗
𝑡𝑡,𝑘𝑘

𝑘𝑘∈𝑲𝑲
      ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1 (18) 

∑ 𝜆𝜆𝑖𝑖𝑗𝑗
𝑡𝑡,𝑘𝑘

𝑘𝑘∈𝑲𝑲
= 1      ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑨𝑨, ∀𝑡𝑡 ∈ 𝑻𝑻′, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1 (19) 

𝛿𝛿𝑖𝑖𝑗𝑗
𝑡𝑡1 ≤ (𝑡𝑡2 − 𝑡𝑡1) ∙ 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑗𝑗𝑡𝑡2

𝑣𝑣 + 𝑡𝑡𝑖𝑖𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 ∙ (1 − 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑗𝑗𝑡𝑡2

𝑣𝑣 )           ∀(𝑖𝑖𝑡𝑡1, 𝑗𝑗𝑡𝑡2) ∈ 𝑩𝑩, 𝑣𝑣 ∈ 𝑽𝑽 (20) 

𝛿𝛿𝑖𝑖𝑗𝑗
𝑡𝑡1 ≥ (𝑡𝑡2 − 𝑡𝑡1) ∙ 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑗𝑗𝑡𝑡2

𝑣𝑣 + 𝑡𝑡𝑖𝑖𝑗𝑗
𝑚𝑚𝑖𝑖𝑚𝑚 ∙ (1 − 𝑥𝑥𝑖𝑖𝑡𝑡1,𝑗𝑗𝑡𝑡2

𝑣𝑣 )           ∀(𝑖𝑖𝑡𝑡1, 𝑗𝑗𝑡𝑡2) ∈ 𝑩𝑩, 𝑣𝑣 ∈ 𝑽𝑽 (21) 

𝐿𝐿𝑡𝑡
𝑣𝑣 = ∑ 𝑃𝑃𝑖𝑖𝑗𝑗

𝑒𝑒𝑣𝑣𝑡𝑡1

𝑖𝑖=𝑜𝑜𝑟𝑟𝑖𝑖𝑒𝑒,𝑗𝑗=𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒
𝑒𝑒∈𝑵𝑵,∀𝑡𝑡1∈𝑻𝑻,𝑡𝑡1≤𝑡𝑡

− ∑ 𝐴𝐴𝑖𝑖𝑗𝑗
𝑒𝑒𝑣𝑣𝑡𝑡2

𝑖𝑖=𝑜𝑜𝑟𝑟𝑖𝑖𝑒𝑒,𝑗𝑗=𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒
𝑒𝑒∈𝑵𝑵,∀𝑡𝑡2∈𝑻𝑻′,𝑡𝑡2≤𝑡𝑡

               ∀𝑡𝑡 ∈ 𝑻𝑻, 𝑡𝑡 ≤ 𝑇𝑇′ − 1, 𝑣𝑣 ∈ 𝑽𝑽 
(22) 

𝐿𝐿𝑡𝑡
𝑣𝑣 + ∑ 𝑦𝑦𝑖𝑖𝑡𝑡

𝑣𝑣

𝑖𝑖∈𝑵𝑵
≤ 1             ∀𝑡𝑡 ∈ 𝑻𝑻, 𝑡𝑡 ≤ 𝑇𝑇 + 𝑇𝑇𝑟𝑟 − 1, 𝑣𝑣 ∈ 𝑽𝑽 (23) 

Constraints (2) impose that trip 𝑐𝑐 from node 𝑖𝑖 to node 𝑗𝑗 can only be satisfied by vehicle 𝑣𝑣 if that vehicle has 
passed through node 𝑖𝑖 after the earliest departure time 𝑐𝑐𝑒𝑒. Constraints (3) impose that trip 𝑐𝑐 from node 𝑖𝑖 to node 𝑗𝑗 
can only be satisfied by vehicle 𝑣𝑣 if that vehicle has pass through node 𝑗𝑗 before the latest arrival time 𝑏𝑏𝑒𝑒. Constraints 
(4) and (5) assure that a satisfied trip must have only one departure time and only one arrival time or this trip is not 
satisfied at all. Constraints (6) and (7) guarantee that one trip can only have one departure time and only one arrival 
time when it is served or this trip is not satisfied by any vehicle. Constraints (8) impose that the departure time 
instant of a satisfied trip must happen before the arrival time instant. Constraints (9) yield that a satisfied trip must 
be served by only one AT. Constraints (10) impose that for a specific time step 𝑡𝑡 to 𝑡𝑡 + 1 one automated taxi should 
only park at one node or not park at all. Constraints (11) guarantee that one trip with specific origin and departure 
time can only have one destination and one arrival time. Constraints (12) ensure that each vehicle can only have one 
status at time instant 𝑡𝑡: either going to the next destination or parking at that place. Constraints (13) are flow 
conservation constraints which make sure that the number of taxis leaving from node 𝑖𝑖 and parking there at time 
instant 𝑡𝑡 is equal to the number of vehicles arriving or parking at the same node ending at time instant 𝑡𝑡. Constraint 
(14) describes the initial status of the AT fleet. At the beginning of the operation period, all vehicles are stocked at 
the central parking station. Constraints (15) compute the flow of vehicles on each road link (𝑖𝑖, 𝑗𝑗) from time instant 
𝑡𝑡1. Constraints (16) limit flow by the capacity of each link. Constraints (17)-(19) define the travel time on road link 
(𝑖𝑖, 𝑗𝑗) starting at time instant 𝑡𝑡 as a function of the congestion level represented by the breakpoint 𝑝𝑝. Constraints (20) 
and (21) impose the travel time is not greater than the maximum travel time or smaller than the minimum travel 
time. Meanwhile they also guarantee that when vehicle 𝑣𝑣 is travelling on link (𝑖𝑖𝑡𝑡1,𝑗𝑗𝑡𝑡2), the travel time must be 
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𝛿𝛿𝑖𝑖𝑖𝑖
𝑡𝑡1.Constraints (22) and (23) impose that when the vehicle is transporting a passenger, it should not stop or park at 

any node. 

3. Case study and results 

In this section, we apply the model to a small toy network to illustrate how it works and the results that can be 
obtained. We consider a road network with 9 nodes and 12 links (Figure 1). The length of each link is 1 km and the 
central parking station is located at node 5. The capacity of each link is 3 vehicles per direction per time step. The 
minimum travel time (𝛿𝛿𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚) on each link is considered as 1 time step and  the assumed maximum speed is 30km/h. 
With a simplified volume-delay function, the travel time values are 1, 2 and 4 time step respectively, when the 
traffic flows are 1, 2 and 3 vehicles respectively (Figure 2). When ATs parking at the central node 5, it is free to 
charge while parking at other nodes should be paid. 

   
Figure 1:  Road network  with  9 nodes and 12 links 

 
Figure 2: Traffic flow and travel time value

 
There are 10 time steps from time instant 0 to 10 in the service period. Each time step of the optimization is 2 

minutes. A short time period with 2 time steps is set in order to be possible to satisfy the early trips and late trips in 
the service period, which makes the operation time run from -2 to 12 time instant. Using Monte Carlo simulation, 
we generate 20 requests each of which has an origin, a destination and a desired departure time based on an uneven 
distribution with a higher probability for node 5 to be an origin. In this case study, the number of ATs serving in the 
system is 5. 

 

 
Figure 3 AT movement results 
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For this case study, we consider the following parameters: price rate 𝑃𝑃𝑃𝑃 = 2€/time step, vehicle fuel cost 

𝐶𝐶𝑓𝑓 = 0.1€ / km, vehicle depreciation cost 𝐶𝐶𝑑𝑑 = 5 €/vehicle, parking cost, penalty cost for using public transport 
𝜌𝜌 = 2€ / trip, congestion delay penalty 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 = 0.05€/time step. 

Firstly a scenario with the parking cost 𝐶𝐶𝑝𝑝 = 0.05€/time step is tested and the graphical results of every 
vehicle’s movements (𝑥𝑥𝑖𝑖𝑡𝑡1,𝑗𝑗𝑡𝑡2

𝑣𝑣 ) in the optimal solution are shown in Figure 3. In this figure, each solid line represents 
the AT’s movement when it is satisfying passengers’ demand while the dashed line represents an empty AT. Each 
vehicle’s position at a specific time instant is shown by the number with a circle in this figure. Before the service 
period the ATs, are allowed to travel from central node 5 to any node in the network if it is needed. In this case, two 
ATs (vehicle 1and 4) are relocated before time instant 0 in order to pick up passengers in time.  

According to constraints(15)-(19), when more than one AT is travelling on the same link starting at the same time 
instant, traffic congestion must be formed. This can be seen in Figure 3. When only assigning vehicle 1 to road link 
(2,5) starting from time instant 1, the travel time would be 1 time step. Then vehicle 3 is also assigned to the same 
link at the same departure time hence this leads to a more crowded road link. Therefore the travel time for both 
vehicles is delayed. 

Table 1 Optimization model results 

 

Total 
profit 
(€) 

Parking 
price 

(€/time 
step) 

Number 
of 

satisfied 
requests 

(out of 20) 

Total idle 
time 

(time step) 

Paid 
parking 

time 
(time step) 

% of 
congestion 

Congestion 
delay 

(time step) 

Total 
travel 

distance 
(km) 

Computational 
time 
(s) 

Dynamic 
travel time 15.00 

0 
14 14 12 0% 0 40 34.4 

Static travel 
time 15.00 14 13 10 8% - 40 1.3 

Dynamic 
travel time 14.15 

0.05 
15 5 1 2% 0 47 23.9 

Static travel 
time 14.15 15 11 7 10% - 44 4.45 

Dynamic 
travel time 14.00 

0.10 
15 5 2 2% 0 40 12.6 

Static travel 
time 14.10 15 7 1 12% - 40 5.4 

A comparison between AT routing optimization with dynamic and static travel time was done and Table 1 
presents the AT service results under different parking price rate scenarios. The column “Total idle time” represents 
the parking time at all the nodes in the road network while column “Paid parking time” is the total parking time at 
all the nodes except node 5. “Congestion delay” is computed as the total number of time steps between the real 
travel time and the shortest travel time for all the AT trips while “Number of delay requests” is only for the trips 
when ATs are serving requests. The computational time is within one minute for all the scenarios and the static 
travel time scenario has the shorter computational time than the dynamic one when the parking price is the same. 

When parking at any node of the road network is free, there is no difference of the optimal solution between the 
scenario with dynamic and static travel time. This is because the system is free to park anywhere at any time to 
avoid traffic congestion so more than one AT travelling on the same link is not needed. When travel time is static, 
the system is free to generate congestion on each link which brings 8% congested links in this scenario and this 
could also be seen in the other parking rate scenarios. Moreover, the total idle time is the highest among all parking 
rates.  

With regards to 0.05€/time step for parking price, two scenarios have the same value of profit but the optimal 
solutions are different which could be seen from the column “Paid parking time” and the “Total travel distance”. 
The static travel time scenario pays 0.3€ more for 6 time-step parking and the dynamic one pays 0.3€ more because 
of the extra 3 km driving distance. This also indicates that in the dynamic scenario the model leads to a higher 
driving distance to avoid congestion and also avoid paying parking time in order to get a higher system profit. 

When the parking price is 0.1 €/time step, the system decides to serve 15 out of 20 requests for both of the 
scenarios. But the values of profit are different because of the parking cost. When ATs park at nodes except the 
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central node 5, the system should pay for it. As a result, the dynamic travel time scenario paid 0.1€ more. In addition 
to this, there are 2% congestion links but no congestion delay for the passengers with dynamic travel time. This is 
due to the objective function which proposes the penalty for passengers’ delay but no extra costs when empty ATs 
are travelling slower because of the congestion.  

4. Conclusion 

This paper proposed a mathematical model to study a dynamic travel time based AT system to provide transport 
service within the city area. The contribution of this paper is to consider the travel time on each road link according 
to the number of vehicles travelling on and do system optimization with the objective to maximize the total profit of 
such system by deciding on each AT’s routing selection. This model is able to include traffic congestion when 
computing the vehicle routing to the ATs to achieve system optimum in the vehicle routing solutions. The model 
was then applied to a case study with 10 time-step service period and 20 travel requests generating from the road 
network with 9 nodes and 12 links. From that application we were able to take the following conclusions: 

Traffic congestion happens when vehicles travelling on the network and this leads to arrival delay for the trips 
compared with the scenario when considering the travel times static and never change on that link. The system profit 
is sensitive to the parking price and the penalty cost for arrival late because traffic congestion may generate benefit 
loss and no congestion leads to more parking costs. Sometimes the system would like to take a longer route and 
drive more distance in order to avoid traffic congestion and parking costs according to the profit maximization 
objective. 

The next step will be applying the model in a real-size case with a rolling-horizon method which intends to divide 
one day into several horizons and make it possible to solve the real-time demand.  
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For this case study, we consider the following parameters: price rate 𝑃𝑃𝑃𝑃 = 2€/time step, vehicle fuel cost 

𝐶𝐶𝑓𝑓 = 0.1€ / km, vehicle depreciation cost 𝐶𝐶𝑑𝑑 = 5 €/vehicle, parking cost, penalty cost for using public transport 
𝜌𝜌 = 2€ / trip, congestion delay penalty 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 = 0.05€/time step. 

Firstly a scenario with the parking cost 𝐶𝐶𝑝𝑝 = 0.05€/time step is tested and the graphical results of every 
vehicle’s movements (𝑥𝑥𝑖𝑖𝑡𝑡1,𝑗𝑗𝑡𝑡2

𝑣𝑣 ) in the optimal solution are shown in Figure 3. In this figure, each solid line represents 
the AT’s movement when it is satisfying passengers’ demand while the dashed line represents an empty AT. Each 
vehicle’s position at a specific time instant is shown by the number with a circle in this figure. Before the service 
period the ATs, are allowed to travel from central node 5 to any node in the network if it is needed. In this case, two 
ATs (vehicle 1and 4) are relocated before time instant 0 in order to pick up passengers in time.  

According to constraints(15)-(19), when more than one AT is travelling on the same link starting at the same time 
instant, traffic congestion must be formed. This can be seen in Figure 3. When only assigning vehicle 1 to road link 
(2,5) starting from time instant 1, the travel time would be 1 time step. Then vehicle 3 is also assigned to the same 
link at the same departure time hence this leads to a more crowded road link. Therefore the travel time for both 
vehicles is delayed. 

Table 1 Optimization model results 

 

Total 
profit 
(€) 

Parking 
price 

(€/time 
step) 

Number 
of 

satisfied 
requests 

(out of 20) 

Total idle 
time 

(time step) 

Paid 
parking 

time 
(time step) 

% of 
congestion 

Congestion 
delay 

(time step) 

Total 
travel 

distance 
(km) 

Computational 
time 
(s) 

Dynamic 
travel time 15.00 

0 
14 14 12 0% 0 40 34.4 

Static travel 
time 15.00 14 13 10 8% - 40 1.3 

Dynamic 
travel time 14.15 

0.05 
15 5 1 2% 0 47 23.9 

Static travel 
time 14.15 15 11 7 10% - 44 4.45 

Dynamic 
travel time 14.00 

0.10 
15 5 2 2% 0 40 12.6 

Static travel 
time 14.10 15 7 1 12% - 40 5.4 

A comparison between AT routing optimization with dynamic and static travel time was done and Table 1 
presents the AT service results under different parking price rate scenarios. The column “Total idle time” represents 
the parking time at all the nodes in the road network while column “Paid parking time” is the total parking time at 
all the nodes except node 5. “Congestion delay” is computed as the total number of time steps between the real 
travel time and the shortest travel time for all the AT trips while “Number of delay requests” is only for the trips 
when ATs are serving requests. The computational time is within one minute for all the scenarios and the static 
travel time scenario has the shorter computational time than the dynamic one when the parking price is the same. 

When parking at any node of the road network is free, there is no difference of the optimal solution between the 
scenario with dynamic and static travel time. This is because the system is free to park anywhere at any time to 
avoid traffic congestion so more than one AT travelling on the same link is not needed. When travel time is static, 
the system is free to generate congestion on each link which brings 8% congested links in this scenario and this 
could also be seen in the other parking rate scenarios. Moreover, the total idle time is the highest among all parking 
rates.  

With regards to 0.05€/time step for parking price, two scenarios have the same value of profit but the optimal 
solutions are different which could be seen from the column “Paid parking time” and the “Total travel distance”. 
The static travel time scenario pays 0.3€ more for 6 time-step parking and the dynamic one pays 0.3€ more because 
of the extra 3 km driving distance. This also indicates that in the dynamic scenario the model leads to a higher 
driving distance to avoid congestion and also avoid paying parking time in order to get a higher system profit. 

When the parking price is 0.1 €/time step, the system decides to serve 15 out of 20 requests for both of the 
scenarios. But the values of profit are different because of the parking cost. When ATs park at nodes except the 
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central node 5, the system should pay for it. As a result, the dynamic travel time scenario paid 0.1€ more. In addition 
to this, there are 2% congestion links but no congestion delay for the passengers with dynamic travel time. This is 
due to the objective function which proposes the penalty for passengers’ delay but no extra costs when empty ATs 
are travelling slower because of the congestion.  

4. Conclusion 

This paper proposed a mathematical model to study a dynamic travel time based AT system to provide transport 
service within the city area. The contribution of this paper is to consider the travel time on each road link according 
to the number of vehicles travelling on and do system optimization with the objective to maximize the total profit of 
such system by deciding on each AT’s routing selection. This model is able to include traffic congestion when 
computing the vehicle routing to the ATs to achieve system optimum in the vehicle routing solutions. The model 
was then applied to a case study with 10 time-step service period and 20 travel requests generating from the road 
network with 9 nodes and 12 links. From that application we were able to take the following conclusions: 

Traffic congestion happens when vehicles travelling on the network and this leads to arrival delay for the trips 
compared with the scenario when considering the travel times static and never change on that link. The system profit 
is sensitive to the parking price and the penalty cost for arrival late because traffic congestion may generate benefit 
loss and no congestion leads to more parking costs. Sometimes the system would like to take a longer route and 
drive more distance in order to avoid traffic congestion and parking costs according to the profit maximization 
objective. 

The next step will be applying the model in a real-size case with a rolling-horizon method which intends to divide 
one day into several horizons and make it possible to solve the real-time demand.  
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