
https://doi.org/10.1007/s13272-018-0312-5
https://doi.org/10.1007/s13272-018-0312-5




696	 B.�Aigner et al.

1 3

1  Introduction

Past research indicates that MDO can o�er huge bene�ts 
in complex product design. Boeing Phantom Works� scien-
tists�[6, 30] estimate that MDO can o�er 8�10% gains for 
innovative aircraft design and even 40�50% gains for design-
ing radically new and undeveloped concepts�[17]. Despite 
the high potential gains, MDO is not as widely used as one 
would expect. Both technical�[1] and non-technical barriers 
are hampering its full exploitation, as discussed below in 
this section [4, 27, 28].

To get a better understanding of the scope of the work 
presented here, it is convenient to refer to Fig.�1, where the 
di�erent parts of the MDO development process are illus-
trated. The MDO development process in this �gure can be 
roughly cut in half, with the formulation phase on the left 
side and the execution phase on the right. In the formulation 
phase, the tool repository is de�ned (or provided), the MDO 
problem to be solved is formulated, and a formal speci�ca-
tion of the MDO solution strategy used to solve the problem 
is de�ned. This inexecutable MDO solution strategy is the 
blueprint of the executable work�ow. The actual, executable 
MDO work�ow is created in a simulation work�ow platform 
of choice (e.g., RCE,1 Optimus2) and run to �nd the optimal 
design. In a realistic design situation, the optimization is not 
performed just once; rather, the analysis of the design that 
is found after a certain run will provide new insights. These 
insights will be translated to an adjustment of the MDO 
problem formulation (e.g., change of objective, addition 
of constraints, etc.) and a recon�guration of the associated 
MDO solution strategy (e.g., addition, removal, and replace-
ment of analysis tools). This process of problem adjustment 
and process recon�guration is iterated until a satisfactory 
design is found, or the project deadline has been reached. 
The focus of the system development described in this paper 
is on the visualization of the blocks in the formulation phase: 
tool repository, MDO problem, and MDO solution strategy.

One of the most critical technical barriers for MDO 
comes from the large (and continuously increasing) size 
of typical MDO problems. In the words of Pate et�al.�[23], 
the formulation of these problems has become increasingly 
complex as the number of analysis tools and design variables 
included in typical studies has grown. In this context, the 
problem of determining a feasible data �ow between tools 
to produce a speci�ed set of system-level outputs is combi-
natorially challenging. Especially, when complex and high-
�delity tools need to be included, the cost and time require-
ments to integrate the MDO system can easily approach the 
cost and time requirements of creating any of the discipline 
analyses themselves.

These cost and time requirements for the integration 
of the MDO system have also been identi�ed in several 
research projects that have attempted to perform MDO 
by automating a full chain of design tools. In the previ-
ous projects of the DLR, it was found that the majority 
of the project time (60�80%)�[7] would be used to create 
such an automated chain for aircraft design tools. Similar 
conclusions were drawn by Flager and Haymaker�[8] who 
performed research into the design process metrics of both 
a legacy (current) design method and an MDO development 
process for the design of a hypersonic vehicle by Boeing�[6, 
30], see Fig.�2. In this �gure, it is clear that the set-up time 
of the MDO work�ow exceeds the 6 week set-up time of 

Fig. 1   Overview of the MDO 
development process and its two 
phases

Tool
repository

MDO
problem

MDO solution
strategy

Simulation MDOptimized
design

triggers
iteration

Formulation phase Execution phase

Application area KADMOS and VISTOMS

CMDOWS CMDOWS CMDOWS

Fig. 2   Comparison of legacy design and MDO development process 
metrics for the design of a hypersonic vehicle�[8]

1  http://rcenv​ironm​ent.de/.
2  https​://www.noesi​ssolu​tions​.com/our-produ​cts/optim​us.



697Graph-based algorithms and�data-driven documents for�formulation and�visualization of�large…

1 3

the legacy method by 133%. This �gure also shows that 
with the MDO design method, one needs to spend more 
resources in the �Speci�cation� phase category. This is to be 
expected, since, during the set-up of a fully automated chain 
of design tools, one needs to know down to the smallest 
detail what information is used and produced by each tool 
and which data are fed back and forward within a certain 
tool execution sequence. If the speci�cation of the indi-
vidual design tools and the overall MDO system could be 
improved, then the set-up time of the MDO process can 
be drastically reduced as well, thereby making the MDO 
approach even more convenient with respect to the conven-
tional approach.

It is our conviction that the cost and time requirements 
for the integration of tools in a large and complex MDO 
system could be reduced by enabling the designer to analyze, 
visualize, and inspect the MDO system down to the smallest 
detail during the integration e�ort. Any system integrator is 
aware of the value of such analysis and visualization, but, 
in practice, the manual generation and update of this sort 
of documentation is too cumbersome. For example, if visu-
alizations of the tool repository or MDO solution strategy 
are created, they are usually a collection of spreadsheets 
and text documents, which have to be updated manually 
and are hard to keep consistent. On top of that, such manu-
ally created overviews are not (fully) machine-readable and 
thereby cannot be used for any further automated analysis, 
integration, or manipulation of the MDO system. Therefore, 
the analysis, visualization, and inspection of MDO systems 
should be automated and based on machine-readable �les 
or documents.

This is one of the main goals of the EU project AGILE,3 
where the developments described in this paper are tak-
ing place. The process for the generation of the necessary 
visualizations to support the MDO formulation phase is 
based on the outcome of KADMOS, the Knowledge- and 
graph-based AGILE Design for Multidisciplinary Opti-
mization System developed at DUT.4 KADMOS takes 

care of the automatic integration of the various design 
and analysis tools in the MDO system and supports the 
formulation of the MDO problem at hand and its solution 
strategy. KADMOS� functionalities are brie�y explained 
in Sect.�2.2, while detailed information can be found in 
another publication�[12]. As illustrated in Fig.�1, KAD-
MOS stores the output of the MDO formulation process by 
means of a standardized XML format, called CMDOWS 
(Common MDO Work�ow Schema), which is discussed 
in Sect.�2.1. The creation of the visualizations is done by 
coupling the CMDOWS �les to a custom-built visuali-
zation package developed at RWTH Aachen University. 
This system, called VISTOMS (Visualization Tool for 
MDO Systems), is the main subject of this paper and its 
functionalities are described in detail in Sect.�2.3. The 
produced visualizations are presented in Sect.�3, based on 
a real MDO system for wing optimization, created within 
the AGILE project.

2 � Methodology

As mentioned, the developments presented in this paper 
are based on two software packages: the MDO system 
formulation tool KADMOS and the visualization pack-
age VISTOMS. A top-level overview of the collaboration 
between KADMOS and VISTOMS is shown in Fig.� 3. 
The approach is referred to as the �dynamic visualization 
approach�, where dynamic refers to the ability of interac-
tive visualization objects to change appearance under mouse 
�hovering� and clicking (more in Sect.�2.3). The set-up has 
been done, such that the graph information for any of the �rst 
three blocks in Fig�1 (which is usually stored in CMDOWS 
�les) is translated by KADMOS into the JSON (JavaScript 
Object Notation) representation required by VISTOMS. This 
collection of JSON data is then visualized with VISTOMS 
through an HTML (Hypertext Markup Language) page that 
can be opened in any web browser and includes the interac-
tive visualization objects. It should be noted that the use of 
KADMOS shown in Fig.�3 only represents a small part of 
the package. The majority of KADMOS is actually geared 
towards producing and editing the CMDOWS �les (more 
in Sect.�2.2), not at the postprocessing for which it is used 

Fig. 3   Top-level overview 
of the dynamic visualization 
approach

KADMOS graph VISTOMS

CMDOWS

imported
as

exported
as

provides
data for

3  Aircraft Third-Generation MDO for Innovative Collaboration of 
Heterogeneous Teams of Experts, see: http://www.agile​-proje​ct.eu.
4  See: https​://bitbu​cket.org/imcov​angen​t/kadmo​s.



698	 B.�Aigner et al.

1 3

in the dynamic visualization approach. All elements of the 
top-level overview in Fig.�3 are discussed in the upcoming 
section.

2.1 � CMDOWS

CMDOWS is an open-source,5 XML-based workflow 
schema that was developed at DUT to enable the exchange 
of the formulated MDO system between MDO framework 
applications, as visualized in Fig.�4. Other publications have 
already addressed the deployment of a formalized schema 
as an exchange format for MDO applications�[14�16]. How-
ever, for the purpose of the AGILE project, it was necessary 
to use something that is feasible for collaborative MDO pro-
jects and connecting a wider range of MDO applications. 
Therefore, CMDOWS was created within the project as 
a new schema, as described in a publication by Van Gent 
et�al.�[11]. The di�erent stages of the MDO system in the 
formulation phase can all be stored in the CMDOWS for-
mat. Each stage in Fig.�1 (from left to right) enriches the 
CMDOWS �le to go from a repository of design tools to 
a full description of the optimization strategy. KADMOS 
is able to provide the graph-based representation for each 
stage (see next section) and can store these in a CMDOWS 
�le; however, visualizing the outcome of these stages is not 
properly handled by KADMOS. In addition, the CMDOWS 
�les, although based on XML, do not o�er a practical means 
to the user for inspecting the generated MDO system formu-
lation. Therefore, the work presented here was focused on 
the link between the visualization package VISTOMS and 
CMDOWS. Within that link, the e�cient graph-based algo-
rithms of KADMOS were used for data processing purposes.

2.2 � KADMOS

As mentioned in the previous section, the use of KADMOS 
is twofold in this work:

�	 Creation of the CMDOWS �les to be used as input for 
the approach in Fig.�3

�	 Graph-based data processing of the CMDOWS �les to 
convert the XML representation into the JSON format 
required for VISTOMS

Both applications of KADMOS are only discussed brie�y 
here.

2.2.1 � KADMOS as�MDO system formulator

The ability of KADMOS to support the speci�cation of the 
MDO system is discussed in detail in earlier work�[12]. A 
mapping between the three stages of the formulation phase 
in Fig.�1 and the associated KADMOS graphs is shown in 
Fig.�5. Four di�erent graph types are associated with the 
three formulation phases.

The repository connectivity graph (RCG) is an object 
that represents the design and analysis tool repository as a 
web of data containing function and variable nodes and their 
connections. This graph is established easily for large tool 
databases by exploiting the central data schema approach, 
such as CPACS�[22]. The example in Fig.�5 (left) concerns a 
very small repository with only eight function nodes (design 
competences) and ten variables. Larger tool repositories, 
such as the one used in the results section of this paper, are 
still stored as a graph structure, but their visualizations, as 
expected, have severe readability limitations.

The MDO problem is represented in KADMOS with the 
fundamental problem graph (FPG), see Fig.�5 (middle). The 
FPG is a subset of the RCG in terms of nodes and edges. In 
addition, its nodes are also enriched with attributes required 
to specify the MDO problem at hand, such as design vari-
ables, objective, and constraints.

Finally, the neutral representation of the MDO solu-
tion strategy is stored in two separate graph constructs: the 
MDAO process graph (MPG) and the MDAO data graph 
(MDG), where the �rst contains the process execution �ow 
of the various MDO system components, and the second 
speci�es the speci�c data exchanged between those compo-
nents. These graphs are created automatically by KADMOS 
based on the FPG and stored in the same CMDOWS �le, 
thereby using all the elements of the schema.

2.2.2 � KADMOS as�data processor

The system formulation capabilities of KADMOS cover all 
stages of the formulation phase given in Fig.�1, and can store 

schema

Tool
repository

Visualization
package

Collabora-
tive

workflow

MDO
system

formulation

Schema
operations

library

Fig. 4   Concept of exchangeability between di�erent MDO frame-
work applications through a work�ow schema�[11]

5  Available at: http://cmdow​s-repo.agile​-proje​ct.eu.



699Graph-based algorithms and�data-driven documents for�formulation and�visualization of�large…

1 3

the CMDOWS �le for each stage, although these capabilities 
could be taken over by other platforms, as well. Especially, 
the creation of the tool repository is a relatively easy task 
that can be performed with other applications. For example, 
in AGILE, the business process platform KE Chain6�[10] 
also contains a module to create a tool repository and export 
it as a CMDOWS �le. However, even if other platforms cre-
ate the CMDOWS �le, KADMOS is still required as a data 
processor to provide the right data format for VISTOMS.

This data processing is required to provide VISTOMS 
with �les that are directly interpretable; hence, no cumber-
some analysis of the data is required before visualizing it. In 
other words, the KADMOS graphs do contain all the infor-
mation that is required to visualize it, but some of the infor-
mation is stored implicitly. To improve responsiveness of the 
visualization package, this information is transferred explic-
itly to the JSON �les read by VISTOMS. An example of 
this would be the input and output variables of a single tool. 
This information is stored in the graph, but, to determine 
this information for a single tool, one has to loop over all the 
incoming and outgoing connections of the tool. Instead, the 

input and output variables per tool are stored explicitly in 
the JSON �les, so that VISTOMS does not have to perform 
the loop when the information is requested. Similarly, if the 
variables follow a central data schema, then the hierarchy 
of the variables (which is lost in the graph representation) 
is reestablished based on the variable names and stored in a 
nested dictionary in the JSON �les.

The KADMOS data processing step provides VISTOMS 
with easily accessible information about the MDO system 
to be visualized. The processing, which takes in the order 
of seconds (depending on the size of the system), prevents a 
lot of waiting time when using the dynamic visualizations. 
Downside of the JSON �les with directly useable informa-
tion is that some information is stored multiple times in 
slightly di�erent ways, thereby increasing the size of the col-
lection of JSON �les with respect to the original CMDOWS 
�le. However, this decrease in storage e�ciency is well 
worth the associated performance increase when using the 
dynamic visualizations.

2.3 � VISTOMS

The combination of KADMOS itself and the visualizations 
developed in the course of this research provide the MDO 

D1

G1

G2

D2

F1

A
COOR

OPT
CONV

2
3

4

5
6

7

8

8

8

9

1

D1

x1

z1
z2

y1y2

c

f

G1

G2

D2

F1

g1
g2

AaCOOR

OPT
CONV

z1 z2

z1*

z2*

y2c0

y2*

y2c

g1*

g2*

f*

D1x1

z1

z2

y1

y2 c

f

G1
G2

D2

F1

F2

D3

g1
g2

Aa

= design variable

Tool
repository

MDO
problem

MDO solution
strategy

Repository connectivity graph Fundamental problem graph

MDAO data graph

MDAO
process graph

= system input/output

= coupling variable

= design competence

= objective

= constraints

= disciplinary analysis

= preprocessing function

= functions (objective, etc.)

D1x1

z1

z2

y1

y2 c

f

G1
G2

D2

F1

g1
g2

Aa

Fig. 5   Top-level overview of KADMOS and its relation to the formulation phase of the MDO development process in Fig.�1 (all visualizations 
are based on the Sellar problem�[26])

6  See: https​://www.ke-chain​.com.



700	 B.�Aigner et al.

1 3

integrator with a powerful set of tools to support creation, 
inspection, debugging, and modi�cation of large and com-
plex MDO problem formulations. The presented visualiza-
tions are obtained using the open-source library D3.js�[5]. In 
the following sections, D3.js as well as signi�cant state-of-
the-art visualization techniques are currently used in MDO 
will be introduced. Subsequently, the newly developed visu-
alization techniques embedded in VISTOMS will be pre-
sented. Their ultimate goal is to enhance the understanding 
of complex MDO systems, which is necessary for e�ective 
MDO problem formulation, documentation, and knowledge 
sharing.

2.3.1 � D3.js library

D3.js is an open-source JavaScript library, developed and 
released by Bostock under the BSD license, for creating 
and modifying documents based on data�[5]. D3.js sup-
ports the user in visualizing any data by combining the 
standards HTML, SVG (Scalable Vector Graphics), and 
CSS (Cascading Style Sheets). It is, therefore, an easy to 
use and powerful tool for visualization that can be opened 
with any standard web browser. The coding can be directly 
performed within an HTML �le, which can then be opened 
in the web browser showing the embedded visualizations. 
The library comes with a prede�ned set of standard visu-
alization techniques that can be easily accessed, modi�ed, 
and extended. Any visualizations, also those that are not 
prede�ned in D3.js, can be obtained and modi�ed using 
standard SVG commands. The data behind the visualiza-
tions can be stored in JSON (JavaScript Object Notation) 
or CSV (Comma-Separated Values) �les, and are accessible 
via JavaScript code.

2.3.2 � State-of-the-art visualization techniques in�MDO

In the �eld of MDO, the visualization of MDO systems is 
widely recognized as a valuable tool to enhance knowledge 
about the problem formulation at hand. Therefore, over the 
years, various visualization techniques have been developed. 

The N2 chart, introduced by Lano in 1977� [20], is, for 
instance, a well-known method for visualizing system cou-
plings. The Design Structure Matrix (DSM), which is simi-
lar to the N2 chart, was developed by Steward in 1981�[29] 
and shows inter-dependencies between competences in a 
square adjacency matrix (see Fig.�6).

In Fig.�6, each of the non-blank o�-diagonal elements 
(x�s and numbers) represents a data dependence between 
the competences, which are arranged on the diagonal. Both 
DSM and N2 chart thereby enable the representation of the 
data exchanged among the various competences by showing 
the data dependence in a system (see bottom right graph in 
Fig.�5). However, these visualizations are not e�ective in 
formalizing the execution order of the tools and the trigger-
ing of the various loops including any required iterations by 
convergers or optimizers. However, with increasing number 
and complexity of analysis tools, the choice of competence 
execution order becomes more important and more com-
plex, as well. Wagner and Palambros developed the so-called 
functional dependence table (FDT) to account for constraints 
and objectives in an MDO problem formulation�[31]. The 
drawback of the FDT is that information about inter-depend-
encies between competences and functions is partially lost, 
and therefore, a competence execution order cannot be 
indicated. A combination between DSM and FDT called 
Recon�gurability in MDO Problem Synthesis (REMS) was 
introduced by Alexandrov and Lewis enabling indication of 
couplings between competences as well as constraints and 
objectives�[2]. Nevertheless, the execution order of the com-
petences is not available within the representation of REMS.

This capability is enabled by the extended DSM (XDSM) 
introduced by Lambe and Martins in 2012 (see Fig.�7)�[19].

The XDSM provides a visualization that captures 
the full description of an MDO problem, combining the 
advantages of DSM and FDT. In general, an XDSM can 
be read as a square adjacency matrix, where the compe-
tences are arranged on the diagonal and the columns and 
lines indicate competence inputs and outputs, respectively. 
The competences are connected via data pipelines (gray 
lines) indicating data transfer. Feed-forward connections 

Fig. 6   Design structure matrix (DSM)�[29] Fig. 7   XDSM for an individual discipline feasible (IDF) architec-
ture�[19]



701Graph-based algorithms and�data-driven documents for�formulation and�visualization of�large…

1 3

are shown on the right and feedback connections on the 
left side of the diagonal. The so-called edges (rhomboids 
on the o�-diagonal) indicate a connection between two 
competences (also referred to as couplings), i.e., the infor-
mation that is processed from one competence to the other. 
The so-called process lines (thin black lines) in combina-
tion with the numbers in the diagonal blocks indicate the 
order of the work�ow execution (MDAO process graph, 
c.f., Fig.�5).

Although the XDSM o�ers the means for a detailed and 
comprehensive description of an MDO system, its readabil-
ity quickly degrades when the number of competences and 
their coupling increases, at least in its static document-based 
version.

The HTML-based rendering approach of the presented 
visualization package enables the use of e�ective stand-
ard representations, such as the XDSM, while o�ering the 
dynamic scaling and displaying options necessary to guar-
antee readability and inspectability also for MDO systems 
of extremely large size. Examples are discussed in the next 
section.

2.3.3 � Visualization techniques for�CMDOWS �les

For the CMDOWS �les, three main visualization types have 
been selected and further developed:

�	 XDSM;
�	 Egde Bundling View;
�	 Sankey Diagram.

The visualization package is accessible via web browser. 
Figure�8 shows the starting page of VISTOMS.

Note that VISTOMS provides solely a visual representa-
tion of an MDO system, in which no actual competences can 
be executed. Rather, the automated creation of executable 
work�ows from the MDO architecture is a task, which is 
performed in simulation work�ow platforms by parsing a 
CMDOWS �le�[13].

In the following sections, the three above-mentioned 
visualizations will be described in detail with respect to 
their capability to enhance the insight into MDO systems. 
The interested reader can directly access and experience 
a number of example visualizations via the open-access 
CMDOWS browser interface.7 On the browser interface, a 
number of pre-generated CMDOWS �les are available for 
demo purposes. Note that the VISTOMS visualizations can 
also be created for any MDO system using the open-source 
KADMOS package.

XDSM The enhanced XDSM visualization developed 
in this research is based on the open-source XDSMjs pack-
age, which was released by Lafage in 2016�[9, 18]. The 
main structure is the same as the conventional XDSM 
(see Fig.�7), while the major di�erence between the two 
is that, using the D3.js library, the XDSM can be accessed 
dynamically and interactively via a web browser. However, 
for large and complex MDO systems, not all the embed-
ded information can be clearly visualized at once with the 
XDSMjs package. Therefore, within the scope of the pre-
sented research, the XDSMjs package was further enhanced 
to give the user the possibility to access the full informa-
tion embedded into an MDO system in a human intelligible 
way. While the basic layout was kept simple, more detailed 
information can be inspected interactively on demand. The 
main features of the XDSM view in VISTOMS are given in 
Fig.�9 showing an MDO system architecture for the Sellar 
problem,8 which was already presented in Sect.�2.2 (see 
also Fig.�5 for the KADMOS graph representations of this 
MDO problem).

Note that the overlay frames in Fig.�9 are not visible 
in the actual visualization package and have only been 
included for this paper to explain the visualization capa-
bilities. For this purpose, the focus of Fig.�9 is set on the 
connection between the competences DOE and D1. For 
detailed inspection of the XDSM, the user has several 
options. Hovering over an edge with the mouse displays 
the names of the underlying data that are processed here. 
Right clicking on an edge gives the user two options. 
First, it is possible to examine basic information about 
the edge such as the total number of connections and 
their dimension. Second, the user can further examine the 

Fig. 8   Main page of VISTOMS. The di�erent graphs of the MDO 
system (RCG, FPG, etc.) can be selected via drop-down menu using 
any of the three visualization techniques (XDSM, Edge Bundles, and 
Sankey Diagram)

7  Available at: http://cmdow​s.agile​-proje​ct.eu.
8  VISTOMS for Sellar problem available at: https​://www.agile​-proje​
ct.eu/�les​/VISTO​MS_Sella​rProb​lem.



702	 B.�Aigner et al.

1 3

underlying data of the selected edge. The data are shown 
as a hierarchical tree�[5] containing a subset of the under-
lying data model (e.g. CPACS schema as an XML-based 
parameterization of an aircraft) where the categories and 
subcategories are represented by the branches and leafs 
(see Fig.�9, overlay frame 1). The tree view is expandable 
and collapsible via mouse click according to the user�s 
requirements. The layout can be organized according to 
di�erent categorizations. These include the basic hierar-
chical data schema (e.g. CPACS), but also, for instance, 
a categorization according to the node types in the MDO 
system (see Fig.�10).

The latter can, for instance, be helpful, when multiple 
competences modify the same variable. This so-called col-
lision can potentially cause problems such as inconsisten-
cies in the MDO system and, therefore, needs to be at least 
recognized by an MDO integrator. Note that the tree layout 
shown in Fig.�10 is not fully expanded to the last leaf nodes, 
the node sharedCoupling is collapsed, while it is indicated 

in the brackets that there are six leaf nodes contained here. 
This feature gives the user an idea on how many variables 
are contained in the layout, even when the tree is not fully 
expanded, and, therefore, keeps the layout clear, which is 
especially required for large data sets.

Each of the nodes in the tree layout can be further exam-
ined via right click. In the example given in Fig.�9, the 
selected node of interest is variable z2. Several options for 
examination exist, such as indication of general information 
about a node (name, type, dimension, or its current value), as 
can be seen in Fig.�9, overlay frame 2. Another option is to 
display the occurrence/usage of a node in the MDO system. 
This means that it can be highlighted, wherein the MDO 
system a node is processed from one competence to another 
by highlighting the respective edges (see Fig.�9, overlay 
frame 3). This option provides valuable information when 
setting up a problem solution, because the MDO integrator 
can easily examine how the competences are connected to 
each other and which of the processed variables are of most 
interest due to their occurrence in the system. Thus, an over-
view on whether the competences are connected correctly, or 
at least as expected, is given. Furthermore, it is possible to 
download the tree layout as an XML �le (including current 
values of leaf nodes) to, for example, manually adjust the 
data set or to simply extract the data from the visualization. 
These dynamic, interactive inspection possibilities are the 
major advantage of the presented visualization package and 

0, 9: Coordinator

1: A

2, 8-3: DOE

3, 6-4: Converger

4: D1

5: D2

7: F1

7: G1

7: G2

1 inp. 1 inp.

1 conn.

1 conn.

1 conn.

1 conn.

1 conn.

1 inp.

1 conn.

2 inp.

1 conn.

1 conn.

1 conn.

3 outp.

1 conn.

1 conn.

2 conn.

1 conn.

1 inp.

1 conn.

2 conn.

right click

right click

1
2

3

Fig. 9   VISTOMS XDSM for the Sellar problem with a converged Gauss�Seidel design of experiments (DOE)

Fig. 10   Tree layout according to node levels, Sellar problem DOE



703Graph-based algorithms and�data-driven documents for�formulation and�visualization of�large…

1 3

make it a convenient debugging tool for MDO systems of 
arbitrary size and complexity.

The above described techniques, developed in the course 
of this research, are quite similar for all three of the visu-
alizations (XDSM, Edge Bundling View, and Sankey Dia-
gram). Thereby, recurring visualization elements are estab-
lished, which facilitates the usability of the functions.

Edge Bundling View The so-called Edge Bundling view is 
a circular layout of interconnected elements and is adapted 
from an example by Bostock�[5]. The basic idea of this visu-
alization is given in Fig.�11 with the example of the Sellar 
problem RCG.

Each of the blue lines indicates a general dependence 
between two elements. The focus can be set on any ele-
ment by hovering over it with the cursor (c.f. element D1 
in Fig.�11). The red lines indicate input �ow to the element 
and the green lines indicate output �ow from the element. 
Further detailed inspections can be carried out via right 
click on the connecting lines or on the elements, similar 

to what has been described for the XDSM in the previous 
section.

In contrast to the XDSM view, the Edge Bundling view 
only provides data information, i.e., the interconnections 
of the competences and the data processed between them, 
whereas the work�ow process information cannot be dis-
played. On the other hand, it visualizes the connections 
among the competences more intuitively.

Sankey Diagram The Sankey Diagram was �rst intro-
duced by Henry Riall Sankey in 1896 for the visualization 
of energy �ows in steam engines�[24, 25]. A variation of the 
conventional layout is the bi-directional Sankey Diagram, 
which was used in a D3.js-based package by Atkinson in 
2015�[3]. While the conventional layout only considers one 
�ow direction, the bi-directional layout is able to account 
for feed-forward and feedback information �ow between 
the elements at the same time. The Sankey Diagram used 
in the presented research is based on the developments by 

Fig. 11   VISTOMS Edge Bundling view for the Sellar problem RCG​














	Graph-based algorithms and data-driven documents for formulation and visualization of large MDO systems
	Abstract
	1 Introduction


