
https://doi.org/10.1007/s10664-018-9659-9
https://doi.org/10.1007/s10664-018-9659-9


Empirical Software Engineering
https://doi.org/10.1007/s10664-018-9659-9

Discovering community patterns in open-source:
a systematic approach and its evaluation

Damian A. Tamburri1 · Fabio Palomba2 · Alexander Serebrenik3 · Andy Zaidman4

© The Author(s) 2018

Abstract
“There can be no vulnerability without risk; there can be no community without
vulnerability; there can be no peace, and ultimately no life, without community.” -
[M. Scott Peck]

The open-source phenomenon has reached the point in which it is virtually impossible
to find large applications that do not rely on it. Such grand adoption may turn into a risk if
the community regulatory aspects behind open-source work (e.g., contribution guidelines or
release schemas) are left implicit and their effect untracked. We advocate the explicit study
and automated support of such aspects and propose YOSHI (Yielding Open-Source Health
Information), a tool able to map open-source communities onto community patterns, sets
of known organisational and social structure types and characteristics with measurable core
attributes. This mapping is beneficial since it allows, for example, (a) further investigation
of community health measuring established characteristics from organisations research, (b)
reuse of pattern-specific best-practices from the same literature, and (c) diagnosis of organ-
isational anti-patterns specific to open-source, if any. We evaluate the tool in a quantitative
empirical study involving 25 open-source communities from GitHub, finding that the tool
offers a valuable basis to monitor key community traits behind open-source development
and may form an effective combination with web-portals such as OpenHub or Bitergia. We
made the proposed tool open source and publicly available.

Keywords Community patterns · Community types · Open source systems and community
analysis · Empirical software engineering

1 Introduction

Modern software engineering heavily relies on open-source software (Raju 2007; Crowston
et al. 2012). Paraphrasing Crowston et al. (2012): “Over the past ten years, [open-source

Communicated by: Jeffrey C. Carver

� Damian A. Tamburri
d.a.tamburri@tue.nl

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9659-9&domain=pdf
http://orcid.org/0000-0003-1230-8961
mailto: d.a.tamburri@tue.nl


Empirical Software Engineering

software] has moved from an academic curiosity to a mainstream focus [...] there are now
[hundreds of] thousands of active communities, spanning a wide range of applications”.
Despite their high popularity, open-source communities themselves do not commonly
rely on governance insights from organisations research and/or tracking their organisa-
tional status using social networks analysis (SNA), e.g., to evaluate the current social and
organisational characteristics describing their community structure.

On one side, open-source communities mostly emerge and organise organically (Sad-
owski et al. 2008), following often fairly implicit governance structures (Capra et al. 2008;
Tullio and Staples 2014), and with little or no socio-technical tracking and monitoring. On
the other side, for those communities which are big enough to care for their own emerging
organisational and socio-technical processes and structure, there is very limited support. For
example, for these big communities, there is limited support to find out the degree to which
the community is capable of engaging more actively with newcomers or sponsoring organ-
isations, e.g., so that external parties may engage in shepherding (Tamburri et al. 2016) the
community with explicit and informed organisational decision-making.

Currently, online applications such as OpenHub1 or Bitergia2 do allow to grasp sev-
eral organisational and social aspects (Gamalielsson and Lundell 2013; Schweik 2013)
behind open-source organisational structures (e.g., amount of member activity), however
their approach would benefit from considering theories, models, types, characteristics, and
best practices from organisations and social-networks research (Tamburri et al. 2013a),
since these theories and insights may prove vital to avoid abandonware or failure of entire
open-source forges (e.g., there are several conjectured effects known for the failure of
SourceForge3 but not their root-cause). Moreover, recent studies in open-source organisa-
tions show the need to explore sustainable open-source communities (Hata et al. 2015),
that is, software communities with clear, explicit, and measurable governance structures
and characteristics. Similarly, the literature concerning open-source community failure
(Tsirakidis et al. 2009; Capiluppi et al. 2003), suggests a latent but increasing need for
(semi-)automated support of social, organisational, and socio-technical characteristics of
these communities.

With the aim of providing community shepherds and practitioners with such a
community-oriented dashboard, in this paper we built upon previous research made in an
industrial environment (Tamburri et al. 2013b) by proposing a novel automated tool, called
YOSHI (Yielding Open-Source Health Information). YOSHI is designed to support two
scenarios. First, it is able to measure the organisational status of an open-source commu-
nity using six key open-source community characteristics previously proposed in literature
(Tamburri et al. 2013a), i.e., community structure, geodispersion, longevity, engagement,
formality, and cohesion. Second, based on the previous measurements, YOSHI associates a
community pattern of organisational structure types (Tamburri et al. 2012, 2013a) matching
the characteristics of the community.

On the one hand, a community pattern is associated with multiple types since differ-
ent sub-communities of the target community work in a different way. On the other hand,
knowing the pattern and the parameters behind it, leads to diagnosing and resolving type-
specific problems using mitigation strategies from organisations research (Millen et al.
2002; Wenger 1998; Ala-Mutka 2009). For example, assume the Apache Spark community

1http://openhub.net/
2https://bitergia.com/
3https://www.quora.com/Is-SourceForge-dying-Why-or-why-not

http://openhub.net/
https://bitergia.com/
https://www.quora.com/Is-SourceForge-dying-Why-or-why-not


Empirical Software Engineering

features a pattern of three types, associated to three sub-communities—if there are types in
the pattern with opposite characteristics (e.g., an informal community type, versus a formal
community type), then there may exist organisational conflicts that need resolution. The
proposed tool YOSHI would allow to diagnose such conditions and act upon them using
measurable quantities. We made the proposed tool publicly available and open source on
GitHub.4

1.1 Research Questions

To assess the validity of the tool and the extent to which open-source practitioners may
benefit from its usage, we validate YOSHI by conducting an empirical investigation of 25
open-source software communities aiming at providing insights with respect to two main
objectives, i.e., accuracy and usefulness of the tool. On the one hand, we aim at understand-
ing the extent to which the tool can provide developers with meaningful metrics; on the
other hand, we aim at verifying whether the patterns extracted by the tool actually provide
a factual view of the community structure of a software system. Specifically, we answer the
following research questions:

– RQ1. Does YOSHI correctly measure the community aspects characterising different
software communities?

– RQ2. Does YOSHI provide a correct indication of the community structure of a software
system?

These research questions analyse the extent to which the output of YOSHI is reliable,
evaluating the validity of (i) the metrics computed to measure the community aspects char-
acterising a software community and (ii) the indication about the community structure of a
software system.

Evaluation results show that (i) the measures computed by YOSHI correctly characterise a
software community associating a pattern which reflects the community sub-structures and
their way of working and (ii) YOSHI is highly reliable when employed for understanding
the structure of a community. Moreover, in the context of our analyses we also discover how
different community design patterns correspond to different project quality parameters such
as number of stars and number of forks.

We conclude that: (1) YOSHI reliably predicts community patterns, thus allowing fur-
ther studies as well as the reuse of theories and measurable quantities from organisations
and social-networks research; (2) YOSHI effectively eases finding correlations between
community types and community-related metrics of an open-source community.

Summarising, this paper offers three major contributions beyond the state of the art:

1. YOSHI, a novel automated tool for open-source community design pattern detec-
tion, which we built based on previously known community types – we made the
tool publicly available and open source. The tool is designed to work jointly with
web-portals such as OpenHub and Bitergia, and reuses insights and theories from
organisations and social-networks research.

4The entire source code and running instructions are available online: https://github.com/maelstromdat/
YOSHI

https://github.com/maelstromdat/YOSHI
https://github.com/maelstromdat/YOSHI


Empirical Software Engineering

2. Results achieved on a large-scale empirical study on 25 open source communities,
where we empirically evaluated the actual validity of the proposed tool as a decision
support system for open source communities able to characterise their social aspects.

3. A comprehensive replication package, that is publicly available and contains all the
data used to evaluate the tool (Tamburri et al. 2017).

1.2 Motivations

Measuring and tracking the organisational structure type and characteristics of an observ-
able community is critical to achieve such quality for at least two reasons. First, the state of
the art in organisations research, social networks analysis, management information systems
and related disciplines provide many type-specific organisational problems that often recur
in software engineering. For example, an extraordinary number of recurrent issues reported
for overly formal organisational structures such as Formal Networks and Formal Groups
(Fredrickson 1986), these issues vary from lack of motivation or trust across employees at
all levels (Miles et al. 2015) to institutional isomorphism (Lai et al. 2006; DiMaggio and
Powell 1983), to name a few. As a matter of fact, these factors are still reported as causes for
several major software failures, e.g., in the context of global software development (Jiménez
and Piattini 2008). Similarly, the lack of centralised management or leadership in Infor-
mal Networks leads to organisational stagnation (Jeppesen et al. 2011; Kim 2007)—this is
suspected by many to be a cause behind open-source developer turnover (Homscheid and
Schaarschmidt 2016; Li et al. 2012). Moreover, several other studies have addressed the
relation between organisational structure types and characteristics with measurable software
quality outcomes focusing on factors such as organisational fit (Nielsen 1995) or organi-
sational culture difference (Siakas and Georgiadou 2002). We argue that the influence of
the above organisational circumstances has seen little or no automated support in software
engineering organisations as much as open-source forges - our research conjecture in the
scope of this article is that automated, transparent means to measure and quantify these
circumstances leads to avoiding some of the connected software friction (Avgeriou et al.
2016).

Second, software engineering research still lacks reference quality models for quantifi-
able organisational structures. Assuming that, as the state of the art in software engineering
research has already shown (Nagappan et al. 2008; Bird et al. 2009; Nguyen et al. 2008;
Pinzger et al. 2008), all software organisations and their qualities are inextricably and heav-
ily related to software qualities, we advocate the use of organisational structure types and
their measurable characteristics as means to research community quality models, that is,
sets of metrics and stability thresholds to track software engineering organisational health.
To the best of our knowledge, these instruments are still rudimentary (Jansen 2014), if not
completely lacking. In pursuit of such quality models, our previous work also defined and
partially evaluated a potential community quality model (Magnoni et al. 2017), systemati-
cally surveying software engineering literature as well as experienced practitioners. In the
scope of this article we investigate if and how the state of the art in organisations research,
as represented by known organisational structure types implemented in YOSHI can play a
role in defining and predicting software community quality.

1.3 Structure of The Article

The remainder of this paper is organised as follows. Section 2 provides an overview of the
background and theoretical foundations upon which YOSHI was built, as well as the research



Empirical Software Engineering

objectives behind this article. Section 3 provides a detailed technical overview of YOSHI and
the metrics it computes, while Section 4 reports the design and results of the empirical study
conducted to evaluate its effectiveness. Section 5 discusses the main findings of our study
and proposes new insights on the usefulness of YOSHI. Section 6 discusses the limitation of
the tool as well as the threats that might have influenced the empirical study. In Section 7
we outline the related literature, before concluding the paper in Section 8.

2 Background and Research Statement

This section outlines the background in organisational structures, providing a general
overview and definitions. Subsequently, the section discusses the background and general
objectives of organisational structure quality research and how it relates to software engi-
neering in general and our tool in particular. Given that the background section is dense
with concepts and definitions not strictly part of software engineering research but interdis-
ciplinary in nature, in the following we offer a nutshell summary—the interested reader can
find full details in the remainder of the section.

A software development community is a specific type of social network upon which cer-
tain properties constantly hold (e.g., informal communication across electronic channels of
open-source projects) (Tamburri et al. 2013a; Magnoni et al. 2017) across community mem-
bers, that is, the set of people who interact in any way, shape, or form with the practice
reflected by the community (e.g., a software product).

Across such development social networks and their many possible properties (e.g., infor-
mality, goals, membership selection, intercommunication protocols, etc.), communities can
develop sub-optimal conditions which we previously defined as community smells (Tam-
burri et al. 2015; Palomba et al. 2018) in analogy to code smells—the analogy signifies that,
on one hand, community smells identify unlikable circumstances (e.g., the lack of com-
munication across different modules of a software system) but, on the other hand, these
conditions do not necessarily stop or void the organisational behaviour across the commu-
nity, rather, they prove detrimental and cause additional project cost in several possible ways
(e.g., recurrent delays in communication, wrongful knowledge sharing).

Finally, with the term project, we identify the goal or shared practice that the community
maintains as its central endeavour, e.g., the Apache Spark community holds the delivery of
the Apache Spark product as its key project.

Background and Goals Digest. A community type is a social network where cer-
tain characteristics are constantly true, for example, an informal community is a social
network where all interactions are always informal. Disciplines such as organisations
research and social-networks analysis study community structures and types to mea-
sure and manage their salient characteristics to socially healthy and organisationally
performant levels. YOSHI is a tool that applies that intelligence and knowledge to detect
structural design patterns across open-source software engineering communities, and
is able to identify nine types using their unique identifying characteristics. Our ultimate
objective is using YOSHI and community patterns as instruments to assess open-source
organisational quality.



Empirical Software Engineering

2.1 Organisational Structures Explained

The literature in organisational structure research resides mostly in the following fields:

– Organisations research—in this field organisational structure types and characteristics
represent more or less effective consequences of organisational design, i.e., the man-
agement activity of planning a strategic organisational agenda around a pre-specified
organisational structure (Chatha 2003);

– Social-Network Analysis—in this field organisational structure types and characteris-
tics represent measurable quantities that can augment social-networks from any context
or domain (networks of people, communities of partners, networks of organisations,
etc.) (Kilduff and Tsai 2003; Otte and Rousseau 2002);

– Cognitive Ergonomics—in this field organisational structure types represent models
that allow reasoning on transactive-memory processes (Nevo and Wand 2005) (i.e., who
knows what, where, etc.), information representation, as well as information exchange
policies;

The following sections offer more precise definitions of organisational structures, their
types and characteristics as well as outline their role in the context of this study.

2.1.1 Organisational Types and Their Characteristics

Several seminal works address organisational types in the state of the art of software engi-
neering. For example, Mockus et al. (2002) investigate Mozilla and Apache, characterising
quantitatively and qualitatively their organisational structure, but without explicitly associ-
ating a type (i.e. a set of social and organisational characteristics) from the state of the art.
Conversely, for the benefit of software engineering research and practice, in our own pre-
vious work (Tamburri et al. 2013a) we strived to summarise the insights on organisational
structures from the fields above as well as others, into common themes or types of structures.
In layman terms, a structure type is a set of measurable or otherwise evident organisational
characteristics (e.g., the presence of informal communication channels across an organ-
isation). Based on how organisational characteristics influence the structure, the way of
working in the structure can change radically. For example, the way of working in a Commu-
nity of Practice (collocated, tightly knit, practice-focused) is different than that of a Formal
Network (formal, distributed, protocol-based). Also, if characteristic X has its highest man-
ifestation in a certain type, X can be used as an identifying indicator for that type, that is,
the primary characteristic which is a necessary condition for its identification (Tamburri
et al. 2013a). For example, Formality is a primary indicator for organisational structures
with well-defined rules and regulations, typically dictated by corporate governance. More
precisely:

Organisational Structure Type:

� = [�(C1)+, ..., +�(Cn)];
where � represents the organisational structure type as a “sum”, i.e., the combined effect
of organisational and social characteristics (C1,..., Cn). On the one hand, the characteristics
themselves are heterogeneous, for example, some refer to the community’s location (e.g.,
virtual, situated) and some refer to the closeness of community interactions (e.g., cohe-
sion, informality). On the other hand, all these characteristics can be quantified by means
of observability functions (�), i.e., sensing functions which assign a Likert-scale value



Empirical Software Engineering

based on the level of influence that each characteristic bears on the structure according to
its members/participants. For example, an Informal Network type is strongly indicative of
informal communications and might lead to engaged members (Tamburri et al. 2013a). Only
informality is necessary for the identification of Informal Networks, and hence, a unique
indicator for such types. If indeed in addition to informal communication a high degree of
engagement has been observed, then we consider this highly-engaged version of Informal
Networks as a distributed version of Informal Community. Fluctuation of engagement lev-
els in this instance, during the evolution of the organisational structure, can reflect changes
from Informal Community type to Informal Network or vice versa.

YOSHI Analysis Lens. YOSHI focuses on detecting community design patterns
using the characteristics and types evident across an observable community, hence
determining the pattern of types that the community exhibits across its organisational
structure.

As an example of the equation above for IC see the following:

Organisational Structure Type IC:

IC = [Informality(High) + Engagement(High)...];
Figure 1 visualises the point above, using the example pattern:

IN,WG = [Informality(High) + Cohesion(High)]; (1)

in the example, a likely scenario reflects a set of globally dispersed software practition-
ers working over the same open-source product (e.g., a video-game) constitute an Informal
Network which can show high cohesion (adding in the primary characteristic of Working

Time

Cohesion
Perception 

Fuzzy Curve

Informality 
Perception

Fuzzy Curve

...

...

Informality = Highest
 ==> IN Detected!

Cohesion = Highest
 ==> WG Detected!

Low

High

"Comicon" Event corresponds
 to multiple types

Fig. 1 An overview of the nature of organisational and social characteristics behind communities - our tool
predicts community design patterns by evaluating the trend of the perception curves for primary community
type indicators. The figure also reports (right-hand side) the “Comicon” event in correspondence to two
identified types, from our example



Empirical Software Engineering

Groups) when practitioners meet face-to-face (e.g., at comic conventions, “Comicons”, or
gaming tournaments). YOSHI would identify a single pattern including both types blended
together for the “Comicon” community snapshot. Nevertheless, these two types may diverge
into other types later on in the community lifetime, e.g., into a formal type during release.
YOSHI currently returns types whose identifiers remain the highest and over a certain thresh-
old for the entire duration of the observed 3-month snapshot. Consequently, considering
Fig. 1 YOSHI would return a pattern constituted by both types only in correspondence of
the point in time when both Informality and Cohesion are highest, and Informal Networks
otherwise.

In summary, a single organisation can exhibit the traits of multiple types at once and
even very different or conflicting types, over time—meaning that multiple, sometimes even
conflicting characteristics, often blend into the same organisational structure. Addressing
organisational conflict is a key objective of organisations and social-networks research
(Jeppesen et al. 2011; Fredrickson 1986), and, thus, is a fundamental part of our motivation
to support automated detection of community design patterns in open-source.

2.1.2 A Methodology to Discover Organisational Patterns in Software Engineering

In the recent past, a number of studies were aimed at understanding community types and
their role in software engineering as well as at finding ways to use community types as
reference patterns during software processes. Literature review reveals a total of more than
70 organisational and social structure characteristics (Tamburri et al. 2013a) to be mea-
sured for fully describing community structure types. Out of these characteristics a total of
13 characteristics were distilled, each individually reflecting a single type. In the scope of
this paper, we focus on detecting community design patterns which feature the six char-
acteristics that we were able to operationalise for open-source communities, namely, (1)
community structure,5 (2) formality, (3) engagement, (4) cohesion, (5) longevity and (6)
geodispersion. These aforementioned characteristics were operationalised in YOSHI as an
original contribution of this paper (see Section 3.3).

In fact, contrarily to literature in organisations research (Prandy 2000; Mislove et al.
2007; Ryynnen 2012) where organisational types and characteristics are studied qualita-
tively, as an original contribution of this paper, we measure the quantitative manifestations
of community characteristics, namely, we use quantitative, automatically measurable
indicators of the perception functions introduced previously. For example, to measure
engagement, we evaluate together the amount, frequency, and kinds of contributions of an
open-source community member with respect to its peers.

In our early exploratory experiments with community types and patterns while design-
ing YOSHI automations, we observed that (1) different levels of the same characteristics
correspond to different types and (2) measuring open-source communities reveals at least
two co-existing types. From this early experimentation, we made two observations. First,
YOSHI must be designed to detect design patterns composed of recurrent community char-
acteristics and their corrresponding types. Second, it is not sufficient to only measure the
six characteristics above. Automated detection of organisational design patterns demands a
way to identify the level of their highest manifestations above all remaining characteristics
such that the most prominent community types can be revealed and distilled into a pattern.

5The first characteristic, structure, is a necessary pre-condition to all of them; in fact, all communities
are social-networks (SNs) that exhibit a community structure across which certain characteristics remain
constant.



Empirical Software Engineering

Consequently, we engaged in and contributed to a highly active open-source commu-
nity along a 15-month ethnographical study of its organisational structure (di Nitto et al.
2013), for the purpose of determining empirical thresholds to all our primary community
indicators.

Table 1 provides an overview of the above results, briefly describing community types,
their indicators, as well as highlighting the empirical thresholds elicited as part of our ethno-
graphical research (di Nitto et al. 2013). The thresholds allow determining high or low
values for community indicators, thus allowing identification.6

In what remains of this subsection, we provide an overview of the thresholds that we
mention in Table 1. In particular, in previous work (di Nitto et al. 2013), we were inter-
ested in ways to measurably increase the awareness of open-source developers over known
organisational and socio-technical characteristics of communities from organisations and
social-networks research (see Table 1). For this reason, one of the co-authors of this study
along with two master students started contributing to Apache Allura, an open source com-
munity building the infrastructure behind SourceForge, a widely known open-source forge.
In this process of contribution, the following data was gathered for the first interaction by
the three observers: (a) guidelines of contribution; (b) code of conduct across the com-
munity; (c) expected contribution. Moreover, for the rest of our 15-month involvement,
every other interaction with the community was documented as follows: (a) type of inter-
action (direct/indirect); (b) involved actors (presence of communication intermediaries); (c)
means of communication (e.g., formal/informal means); (d) perception of “tone” of com-
munication (formal/informal); (e) location of the involved participants and organisations;
(f) explicit/implicit guidelines for contribution in question; (g) previous members’ relation
with observers or amongst themselves; (h) delay in response. Finally, the following data
was elaborated in a conclusive summary of the community: (a) skills profile of community
members; (b) roles and responsibilities; (c) organisational structure sociogram (Kilduff and
Tsai 2003).

Subsequently, we sought to associate a ground-truth set of community types and charac-
teristics corresponding to the data thus obtained. Hence, at the end of the 15-month study, we
asked 7 top-level contributors to Allura their perceived values over the characteristics from
Table 1 and their perceived open-source community type(s), if any. Through this process,
Allura was determined to be a Formal Network type blended with a Network of Practice—
this empirically defines two thresholds for the two primary characteristics that manifest for
those types: (1) Formality - the highest primary characteristics reflecting formality in Allura
would define our Formality threshold; (2) Geodispersion - the average geographical and
cultural distance between Allura members would define our Geodispersion threshold.

Concerning the remaining characteristics, we analysed our data on developer inter-
actions. First, we observed Informality manifesting itself among the four core Allura
maintainers. Focusing on the interactions among the four developers in question, we iso-
lated their commonalities (e.g., they all shared previous relations on other projects, they all
shared at least three background skills, etc.) and evaluated thresholds for resulting factors.

Similarly, we observed that Engagement and Cohesion of Allura developers were very
high when the community was closing in on a release of its platform. Consequently, we
measured Cohesion (represented by the well known social-network analysis metric (Kilduff

6The interested reader can find detailed information and full characterisation of each type in our previous
work (Tamburri et al. 2013a,b, 2016)



Empirical Software Engineering

Table 1 Organisational structure types, an overview from previous work

Name Description Indicator Empirical
Threshold

Communities
of practice
(CoP)

A CoP consists of collocated groups of people who
share a concern, a set of problems, or a passion about a
practice. Interactions are frequent, face-to-face, collab-
orative (to help each other) and constructive (to increase
mutual knowledge). This set of social processes and
conditions is called situatedness (Gallagher 2006). An
example is the SRII communitya which gathers multiple
CoPs (corporate and academic) into a single one, meet-
ing physically to informally exchange best practices in
services science.

Situatedness Global
Distance
< 4926
Kilometers

Informal
Networks
(IN)

INs are loose networks of ties between individuals
that happen to come informally in contact in the
same context. Primary indicator is the high strength
of informal member ties. Finally, IN do not use gov-
ernance practices (Cross et al. 2005). An example
in academia, is the informal and loosely coupled set
of research communities around a single topic (e.g.,
computer science) is a world-wide informal network.

Informality Formality
Levels <
0.1; Global
Distance >>
4926

Formal
Networks
(FN)

FNs rigorously select and prescribe memberships,
which are created and acknowledged by FN manage-
ment. Direction is carried out according to corporate
strategy and its mission is to follow this strategy
(Tamburri et al. 2013a). An example in software engi-
neering is the OMG (Object Management Group):
it is a formal network, since the interaction dynam-
ics and status of the members (i.e. the organizations
which are part of OMG) are formal; also, the meeting
participants (i.e. the people that corporations send as
representatives) are acknowledged formally by their
corporate sponsors.

Formality Formality
Levels >
20; Global
Distance >>
4926

Informal
Com-
munities
(IC)

ICs reflect sets of people part of highly-dispersed
organisation, with a common interest, often closely
dependent on their practice. They interact informally
across unbound distances, frequently over a com-
mon history or culture (e.g. shared ideas, experience
etc). The main difference they have with all com-
munities (with the exception of NoPs) is that their
localisation is necessarily dispersed (e.g., contrarily
to INs where networked interactions can also be in the
same timezone or physical location) so that the com-
munity can reach a wider audience (Tamburri et al.
2013a). Loosely-affiliated political movements (such
as green-peace) are examples of ICs: their members
disseminate their vision (based on a common idea,
which is the goal of the IC).

Engagement Engagement
Levels > 3.5

Networks
of Practice
(NoP)

A NoP is a networked system of communication and
collaboration that connects CoPs (which are localised).
In principle anyone can join it without selection of
candidates (e.g. Open-Source forges are an instance of
NoP). NoPs have the highest geodispersion. An unspoken
requirement is expected IT literacy (Ruikar et al. 2009).
For example, previous literature (Bird et al. 2009) dis-
cusses Socio-technical Networks in software engineering
using the exact terms with which NoPs are defined in
literature.

Geodispersion Global Dis-
tance >>
4926



Empirical Software Engineering

Table 1 (continued)

Name Description Indicator Empirical
Threshold

Workgroups
(WG)

WG are made of technical experts whose goals span
a specific business area. WGs are always accom-
panied by a number of organisational sponsors and
are expected to generate tangible assets and benefits
(i.e., Return-On-Investment). Fundamental attributes
of WGs are collocation and the highest cohesion
of their members (e.g., long-time collaborators). For
example, in software engineering, the IFIP WG 2.10
on software architectureb is obviously a WG, since
its effort is planned and steady, with highly cohesive
action of its members, as well as focused on pursuing
the benefits of certain organisational sponsors (e.g.
UNESCO for IFIP).

Cohesion Cohesion
Levels > 11;
Global Dis-
tance < 4926
Kilometers

Project-
Teams
(PT)

PTs are fixed-term, problem-specific aggregations of
people with complementary skills who work together
to achieve a common purpose for which they are
accountable. They are enforced by their organisa-
tion and follow specific strategies or organisational
guidelines (e.g. time-to-market, effectiveness, low-
cost, etc.). Their final goal is delivery of a product or
service (Tamburri et al. 2013a).

Time-Boxed
Longevity

Longevity <
93 Full-time
Equivalent
Man-days;
Global Dis-
tance < 4926
Kilometers

Formal
Groups
(FG)

FGs are comprised of people which are explicitly
grouped by corporations to act on (or by means of)
them (e.g. governing employees or ease their job or
practice by grouping them in areas of interest). Each
group has a single organisational goal, called mission
(governing boards are groups of executives whose
mission is to devise and apply governance practices
successfully). In comparison to Formal Networks,
they seldom rely on networking technologies, on the
contrary, they are local in nature and are less for-
mal since there are no explicit governance protocols
employed other than the grouping mechanism and the
common goal. Examples of formal groups in soft-
ware engineering are software taskforces, e.g. IEEE
Open-Source Software Task Forcec.

Explicit
Governance
Structure

Formality
Levels > 0.1
and <20;
Global Dis-
tance < 4926
Kilometers

Social
Net-
works
(SN)

SNs represent the emergent network of social ties
spontaneously arising between individuals who share,
either willingly or not, a practice or common inter-
est. Conversely, an unstructured network is (often
by-design) not constrained by any design or structural
tie (e.g., a common social practice) (Zich et al. 2008).
SNs act as a gateway to communicating communities
(Cross et al. 2005).

Community
Structure

Structured
Network =
True

The four types not identified by YOSHI are omitted for the sake of space
awww.theSrii.org
bhttp://www.softwarearchitectureportal.org/
chttp://ewh.ieee.org/cmte/psace/CAMS taskforce/index.htm

www.theSrii.org
http://www.softwarearchitectureportal.org/
http://ewh.ieee.org/cmte/psace/CAMS_taskforce/index.htm


Empirical Software Engineering

and Tsai 2003)) and Engagement levels (represented by summing all possible contributions
that members would make to the release of Allura and computing an average).

In the same study, to strengthen the validity of our thresholds, we measured and empir-
ically evaluated the metrics and thresholds for an additional four communities hosted on
SourceForge, seeking and successfully evaluating the agreement of those communities’
members with our type predictions.

In the scope of this article, we sought to operationalise the metrics defined and evaluated
in our previous work (di Nitto et al. 2013) offering three tool-specific contributions beyond
previous work:

1. a tool designed for large-scale use: in our previous study the measurements and empir-
ical analysis was conducted by hand, using crude statistical analysis and focused on
distilling the type of four communities only, while in this article we focus on offer-
ing an automated tool designed for large scale use and using GitHub data. Moreover,
the empirical evaluation in the scope of this article encompasses 25 randomly-sampled
open-source communities.

2. a tool designed for precision: in order to be actionable, a type prediction needs to be
accurate; in our previous study we used a single quantitative metric per every primary
characteristic, while with YOSHI we provide between 1 and 3 non-overlapping metrics
in the detection pattern of characteristics for which our prediction in previous work
was imprecise. Moreover, we offer an evaluation of YOSHI precision using null-model
analysis.

3. a tool intended for further replication and open-source release; our study of commu-
nity design patterns in open-source reflects the fundamental research of open-source
organisational structures and we want to encourage others to pursue the research path
we are currently exploring. In this study we offer a completely free and open-source
replication package to call for, and encourage verifiability.

As a result, the study reported in this article offers a more precise, scalable, replicable,
and verifiable tool along with its empirical evaluation results.

2.2 Organisational Structure Quality

Despite the fact that previous work on open- and closed-source software communities does
in fact offer relevant insights into the characteristics of the different organisational structure
types, it is important to note that: (i) there is still a lack of tools that provide automatic
identification of community characteristics and type; (ii) previous work has been mainly
oriented toward industrial environments, thus missing a detailed analysis in the context of
open-source teams, which are becoming ever more important for the development of both
academic and industrial software (Raju 2007; Crowston et al. 2012).

Such an analysis is of paramount importance to highlight commonalities and differ-
ences among the different organisational structures in different development contexts, and
to understand to what extent the management and evolution of open-source systems may
benefit from the usage of community-related information. Moreover, some organisational
types may work better than others for the purpose of software engineering and evolution;
this line of inquiry reflects organisational structure quality and can be assisted by the use of
tools such as YOSHI which map open-source communities onto known organisational types
and characteristics and their quality.

The quality of an organisational structure generally refers to the organisational structure’s
fitness for purpose, i.e., the measurable degree to which the structure is fitting with its



Empirical Software Engineering

objective (Espejo 1993; Afsar and Badir 2015; Oreja-Rodriguez and Yanes-Estevez 2006).
In our domain of software engineering, a quality organisational structure refers to better
software, which is of more sustainable and measurable technical qualities (Nielsen 1995).
For example, the Jet-Propulsion Laboratory at NASA can be said to have a high-quality
organisational structure since it produces and maintains software which is virtually error-
free7 through a combination of organisational as much as technical tools and approaches.

3 YOSHI: An Automatic Tool for Discovering Community Types

This section reports the implementation details behind YOSHI, as well as the details on
the architecture and the functionalities currently implemented in the tool. As previously
introduced in Section 2, all operationalisations and detection patterns follow the Goal-
Question-Metric approach (Basili et al. 1994) and use empirically-defined thresholds from
previous work (di Nitto et al. 2013).

3.1 The YOSHI Approach to Open-Source Community Design Patterns Detection:
General Overview

YOSHI is a social-networks analysis tool specifically designed for detecting open-source
community types. The tool focuses on determining the levels of the previously-mentioned
identifying characteristics, and combines specific version-control and committer activ-
ity data implemented in an information retrieval component (see bottom of Fig. 5). For
example, to determine how formal a community is, YOSHI looks at how many levels of con-
trol are assigned across repository contributors. Similarly, to evaluate engagement YOSHI

looks both at the technical (e.g., commits, pull requests) and social or organisational (e.g.,
comments, new watchers) activities.

Once all characteristics are determined, YOSHI runs Algorithm 1 to determine the com-
munity type a given repository refers to. It is important to remark again that the tool allows
to identify the existence of community types by looking at the existence of key community
characteristics as well as their combination. For this reason, YOSHI identifies a commu-
nity design pattern featuring multiple types within a certain repository; several possible
scenarios may exemplify this, e.g., multiple sub-teams working as different community
types or the community works with different types at different phases in its organisational
activity.

To precisely distinguish the types existing in the observed organisation, YOSHI iteratively
uses an algorithmic representation (see Section 3.2) of the decision-tree we previously eval-
uated in industry (Tamburri et al. 2013b). The decision-tree in question (reported in Fig. 2)
encodes the set of relations (e.g., implication or mutual-exclusion) across primary indicators
for community types from Table 1. This set of relations forms, by definition, a partial-order

7https://www.fastcompany.com/28121/they-write-right-stuff

https://www.fastcompany.com/28121/they-write-right-stuff


Empirical Software Engineering

Structure

Situatedness

Dispersion

Informality

Formality

Engagement

Cohesion

DurationGovernance

ROI-Tracking

Problem-Focus

Culture-Tracking

Visibility-Tracking

HighLow

!
Low

HighLow

HighLow

Low Low High

High

Low

Low

CoP

Highest

IN

Highest

FN

Highest

IC

Highest

NoP

Low

WG

Highest

SC

Low

PT

Lowest

FG

Highest

PSC

Low

KC

Highest

SN

Low

Fig. 2 A decision-tree for organisational structures - dotted nodes identify types not currently implemented
in YOSHI

function, i.e., a function that associates an ordering or sequencing to the elements of a set.
The decision-tree (see Fig. 2) is a representation of this partial-order function and is to be
visited top-to-bottom (most generic to most specific type) and right-to-left (most collocated
to most dispersed type).8 YOSHI iterates on the decision-tree until no new community types
are discovered over available data.

To exemplify the workings of the decision-tree, consider the tree-visit reflecting the
identification of FNs in Fig. 3.

Finally, YOSHI is able to visualise the software development network and its statistics
over a world map, reporting statistics in *.csv format—this feature is implemented in YOSHI

’s own visualisation component.
YOSHI does not offer any insights over the technical qualities of the artefacts worked

on by open-source communities under observation (e.g., software architecture, code, etc.),
since these aspects are covered by several other state-of-the-art tools, e.g., SonarQube,
CAST Software, or Titan (Xiao et al. 2014).

The above approach, can be easily replicated, generalised or further specialised at will.
For example, the key organisational and socio-technical characteristics from the state-of-
the-art (Tamburri et al. 2013a) may be observed through other, possibly more precise means
(e.g., Natural-Language Processing (Manning and Schütze 1999), Neuro-Linguistic Pro-
gramming (Molzberger 1986)). Similarly, specific tools (or YOSHI forks) can be designed to
address a more precise identification of one or two specific community types, e.g., focusing
on Communities and Networks of Practice.

8All relations and decision-tree functional demonstration by construction can be found online at http://tinyurl.
com/mzojyp2

http://tinyurl.com/mzojyp2
http://tinyurl.com/mzojyp2


Empirical Software Engineering

Fig. 3 A decision-tree for
organisational structures - YOSHI

’s visit to identify FNs

3.2 YOSHI : Algorithmic Representation

Algorithm 1 shows YOSHI’s measurement function measure() as applied to observable
open-source communities. To extract community types from observable data, Algorithm 1
is executed as follows.

– YOSHI establishes that there is in fact a high degree of community structure:
measure(structure) == high;

– YOSHI measures the indicators for the remaining five community characteristics:
m[] ← measure(GEO,LON,ENG,For, COH);

– YOSHI ascertains that characteristics are not null:
Assume(m! = ∅);

– YOSHI applies empirical thresholds (di Nitto et al. 2013) and returns a certain commu-
nity type if and only if its identifier has been found as “Highest”:
Tx ← True ⇐⇒ Value(mx) = Highest ∧ Attribute(mx) = Tidentif ier ;

The 5 characteristics (besides community structure) computed by YOSHI (GEO, LON,
ENG, For, COH in Algorithm 1) are, intuitively: (GEO) geodispersion; (LON) longevity;
(ENG) engagement; (For) formality; (COH) cohesion. The characteristics are opera-
tionalised in the tool as detailed in the following subsections.



Empirical Software Engineering

3.2.1 Community Structure

As operationalised within YOSHI, this characteristic represents the ability to distinguish a
non-trivial organisational and social structure within the observed set of people working
on a project. Establishing this characteristic is paramount to identify any community type,
since, by definition, organisational structures are sets of constant properties acting across
social networks exhibiting community structure (Tamburri et al. 2013a; Newman and Gir-
van 2004; Newman 2003). The success of open-source projects crucially depends on the
voluntary contributions of a sufficiently large community of users. Apart from the size of
the community, Structure can be identified by looking at the evolution of structural fea-
tures (e.g., connection density) of collaborations between community members. To analyse
the social structure of communities, we collected data regarding user collaborations using
API requests to each analysed repository. A definition of “community” in the context of
social networks analysis is a subnetwork whose intra-community edges are denser than the
inter-community edges (Kilduff and Tsai 2003). YOSHI computes a network of nodes repre-
senting community members and edges representing any particular social or organisational
interaction between any two members.

3.2.2 Community Geodispersion

As operationalised within YOSHI, this characteristic represents the cultural and geograph-
ical dispersion between community members. Establishing this characteristic is key to
identifying either a Network of Practice (high geodispersion) or a Community of Prac-
tice (geodispersion low or none). For geographical dispersion (GeoDispersion class)
YOSHI retrieves community members’ specified location form their own profile and uses it
to compute the median and standard deviation of the distance between them and to create a
geographical distribution map (Li et al. 2010) and, for cultural dispersion, YOSHI computes
(CulturalDispersion class) Hofstede cultural distance metrics (Hofstede et al. 2010)
and their standard deviation.




































































	Discovering community patterns in open-source: a systematic approach and its evaluation
	Abstract
	Abstract


