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a b s t r a c t 

A new technique is proposed in this study to assess the erosive aggressiveness of cavitating flows from 
numerical flow simulations. The technique is based on the cavitation intensity approach by Leclercq et al. 
(2017), predicting the instantaneous surface impact power of collapsing cavities from the potential en- 
ergy hypothesis (see Hammitt, 1963; Vogel and Lauterborn, 1988). The cavitation intensity approach by 
Leclercq et al. (2017) is further developed and the amount of accumulated surface energy caused by the 
near wall collapse of idealized cavity types is verified against analytical predictions. Furthermore, two dif- 
ferent impact power functions are introduced to compute a weighted time average of the impact power 
distribution caused by the cavity collapses in cavitating flows. The extreme events are emphasized to an 
extent specified by a single model parameter. Thus, the impact power functions provide a physical mea- 
sure of the cavitating flow aggressiveness. This approach is applied to four idealized cavities, as well as to 
the cavitating flow around a NACA0015 hydrofoil. Areas subjected to aggressive cavity collapse events are 
identified and the results are compared against experimental paint test results by Van Rijsbergen et al. 
(2012) and the numerical erosion risk assessment by Li et al. (2014). The model is implemented as a run- 
time post-processing tool in the open source CFD environment OpenFOAM (2018), employing the inviscid 
Euler equations and mass transfer source terms to model the cavitating flow. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Cavitation erosion is a problem in a wide range of fluid machin-

ery involving liquid flows. Ship propellers, rudders, hydro pumps

and turbines or diesel injectors are some of the most common ex-

amples. Cavitation occurs at locations of high local flow velocity,

where pressure may drop as low as for the liquid phase to va-

porize. The violent collapse of cavitating structures in regions of

pressure recovery can result in high pressure loads and severe

damage of such devices. Consequently, there is a need for numeri-

cal tools that can predict the risk of cavitation erosion at an early

design stage. Cavitation erosion models are typically implemented

as runtime post-processing tools in numerical flow solvers. For this

reason, the capabilities and accuracy provided by the cavitating

flow solver should be taken into account in the design of these

models. When it comes to engineering applications, pressure based

methods are still predominantly used to simulate cavitating flows.
∗ Corresponding author. 
E-mail address: s.schenke@tudelft.nl (S. Schenke). 
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his is partially due to their robustness and rather low computa-

ional cost, but also because they can solve for (almost) incom-

ressible flow regimes in a straight forward fashion. If the pure

iquid and vapor phase of the flow can be considered as incom-

ressible, mass transfer source terms are widely used to model

avitation. Compressibility is then only mimicked in regions sub-

ected to phase transition. An overview of commonly used mass

ransfer models is found in the work by Frikha et al. (2009) and

n the work by Morgut and Nobile (2011) . It has been shown that

hese models are at least able to correctly reflect the inertia driven

inematics of cavitating flows. Model parameter independent re-

ults for the cavity collapse time (see Bhatt et al., 2015; Schenke

nd van Terwisga, 2017; 

hahramani and Bensow, 2018 ) and the frequency of cyclic cavi-

ation ( Schenke and van Terwigsa, 2017 ) are obtained in the limit

f large model coefficients in combination with sufficient temporal

esolution. In this limit, the mass transfer source terms always pro-

ide enough capacity to establish the equilibrium flow condition as

efined by Sezal (2009) , where the time scale of phase transition

s not important within the advective time scale of the flow. The

https://doi.org/10.1016/j.ijmultiphaseflow.2018.11.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2018.11.016&domain=pdf
mailto:s.schenke@tudelft.nl
https://doi.org/10.1016/j.ijmultiphaseflow.2018.11.016
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ensity-pressure trajectory then remains close to vapor pressure

uring phase transition and the behavior of more realistic thermo-

ynamic models is mimicked (see Koukouvinis and Gavaises, 2015;

chenke and van Terwigsa, 2017 ). The amplitudes of collapse pres-

ure loads, however, have been shown to strongly depend on nu-

erical settings for mass transfer model constants and time step

ize (see Schenke and van Terwisga, 2017; Ghahramani and Ben-

ow, 2018 ). In this case, the risk of cavitation erosion should prefer-

bly be assessed from kinematic features of the collapsing cavities.

he relevance of kinematic features of collapsing cavities for the

ow aggressiveness has been hypothesized by Bark et al. (2004) . 

The design of cavition erosion models is further driven by the

uestion what the most essential mechanism of cavitation erosion

ould be. An ongoing debate concerns the question whether cav-

tation erosion is predominantly caused by liquid micro-jets or by

ollapse induced shock waves impacting the solid surface. It is

ot straight forward to entirely separate both effects from each

ther, because the liquid jet induced impact pressure is for one

art formed by a water hammer at the moment of jet incidence.

he water hammer pressure is characterized by its large magni-

ude at very short impact duration ( Plesset and Chapman, 1971 )

nd goes along with the formation of a shock as well. For the other

art, the liquid jet is associated with the formation of a stagnation

ressure, which is of smaller amplitude but longer impact duration

 Plesset and Chapman, 1971 ). The liquid jet hypothesis on the one

and is motivated by the assumption that near wall bubbles col-

apse under the influence of shock waves caused by the collapse of

arger scale structures ( Dular et al., 2006 ). A liquid micro-jet forms

ue to bubble-wall interaction ( Plesset and Chapman, 1971 ) and

mpinges the solid surface. The jet is supposed to cause erosion pit

ormation if the liquid mass velocity exceeds a critical threshold

elocity ( Lush, 1983 ). An important foundation of the shock wave

ypothesis on the other hand is the potential energy hypothesis

nitiated by Hammitt (1963) . According to the later formulation by

ogel and Lauterborn (1988) , it states that the potential energy of

he spherical bubble is proportional with its initial volume and the

ifference between static ambient and vapor pressure. Vogel and

auterborn (1988) further support the potential energy hypothesis

y showing experimentally that the energy of a spherical acous-

ic transient as derived by Cole (1948) is proportional with the

nitial potential energy of a spherical bubble collapsing close to a

olid wall. Although this strict linear relation has been shown to

e valid for spherical bubbles only ( Vogel and Lauterborn, 1988 ),

e assume in this study that the collapse induced shock impact

s the main contributor to surface damage for cavitating structures

n the macroscopic scale. 

Early applications of the potential energy concept to cavitat-

ng flow problems are found in the work by Pereira et al. (1998) ,

ortes Patella and Reboud (1998) and Fortes Patella et al. (2004) .

hey explain how energy is transferred from the collapse of macro-

cale cavities to the solid surface in an energy cascade. As shown

y Vogel and Lauterborn (1988) and Kato et al. (1996) , the dis-

ance of imploding cavities from the impacted surface plays a

ajor role in this energy cascade. Two different integral ap-

roaches have evolved from this understanding. One approach at-

empts to identify isolated collapse events to assess their surface

mpact strength from the wall distance and kinematic parame-

ers. Mihatsch et al. (2015) partially assess the impact aggres-

iveness from the maximum local velocity divergence at the final

tage of the collapse. Based on the work by Bark et al. (2004) ,

rabnejad and Bensow (2017) assess the collapse aggressiveness

rom the maximum volume change of the entire isolated cavity,

hich occurs prior to the final stage of the collapse. Another fam-

ly of approaches rather attempts to assess the collapse strength

n a direct integral fashion without isolating individual collapse

vents. Different from the approaches by Mihatsch et al. (2015) and
rabnejad and Bensow (2017) , it is assumed that the collapsing

avities release their potential energy instantaneously during the

ollapse. Fortes Patella et al. (2012) integrate the locally released

otential power over an aggressiveness height derived from the

ork by Kato et al. (1996) . Leclercq et al. (2017) have derived a

iscrete surface impact power model from the solid angle projec-

ion of released power on a discrete surface element. 

We consider the latter approach, also referred to as the cavita-

ion intensity approach ( Leclercq et al., 2017 ), as a suitable model

or engineering purposes, because it is strongly linked to the cav-

ty collapse kinematics, which are rather accurately predicted by

ommonly used mass transfer models, and because it directly ac-

ounts for the effects of wall distance, volume change and surface

rientation relative to the imploding cavity. The cavitation inten-

ity model is rewritten in a fully continuous form ( Schenke and

an Terwisga, 2018 ), which directly gives the local surface specific

mpact power without the necessity to reconstruct the solid angle

s used by Leclercq et al. (2017) . This impact power is then used

o assess the risk of cavitation erosion. Common erosion risk indi-

ators are obtained from the accumulation or integration of local

mpact events over time, where the individual event is only taken

nto account if it exceeds a certain threshold level. Examples are

ound in the work by Li et al. (2014) and Leclercq et al. (2017) .

his means, however, that above the pre-defined threshold level,

he collapse rapidness is not further taken into account. A way

o account for the rapidness of collapse events by exponential

odel parameters rather than a threshold definition is proposed

y Nohmi et al. (2008) . The physical meaning of the model param-

ters, however, has not further been specified. For this reason, a

echnique is introduced in this study to compute a weighted aver-

ged impact power, where the extreme value of an impact signal

s approached to a degree specified by an intensity exponent. Two

lightly different impact power functions are derived to compute

he averaged impact power. The response behavior of the two im-

act power functions is first tested for a systematic variation of a

imple but representative manufactured signal. The approach is ap-

lied to the collapse of idealized cavities on a solid wall to investi-

ate the effect of cavity shape and surface orientation on the col-

apse aggressiveness. An analytical prediction on the total amount

f accumulated surface energy is derived from the cavitation in-

ensity model. The amount of accumulated energy obtained from

he numerical simulation is verified against the analytical predic-

ion. The new aggressiveness indicators are further employed to as-

ess the aggressiveness of the cavitating flow around a NACA0015

ydrofoil. Van Rijsbergen et al. (2012) have identified locations of

igh erosion risk for this configuration from experimental paint

ests. Numerical erosion risk assessment for this case has been car-

ied out by Li et al. (2014) . 

. Modeling of cavitation intensity 

.1. Cavitating flow modeling 

The flow model is a modified version of the flow solver in-

erPhaseChangeFOAM available in the open source CFD package

penFOAM (2018) . Since bubble collapse and sheet cavitation dy-

amics have been shown to be mostly inertia driven on the macro-

copic scale ( Schmidt et al., 2009 ) and since only the cavitation dy-

amics are of interest in this study, the flow is assumed to be in-

iscid and the Euler equations for momentum and mass continuity

re solved: 

� 
�t 

( �u ) + ∇ · ( �u � u ) = −∇ p (1) 

��
�t 

+ ∇ · ( �u ) = 0 (2) 
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In Eqs. (1) and (2) , u is the mixture flow velocity, p the total pres-

sure of the mixture and � the mixture density. The flow is as-

sumed to be incompressible in the pure liquid and vapor phase,

where � l and �v are the liquid and vapor density, respectively. The

mixture density � is expressed in terms of the liquid volume frac-

tion � by the linear mixture relation 

� = � �l + ( 1 − � ) �v , where 0 ≤ � ≤ 1 . (3)

With p v being the vapor pressure, the mass transfer model by

Merkle et al. (1998) is employed in a slightly modified form

( Schenke and van Terwisga, 2017 ) to model cavitation: 

∇ · u = − 1 

�

�
1 

�v 
− 1 

�l 

�
( p − p v ) 

�
C v � if p ≤ p v 
C c ( 1 − � ) if p > p v 

(4)

Different from the original implementation in OpenFOAM (2018) ,

the source term is divided by the mixture density � . C v and

C c are model coefficients to adjust the source term magnitude

for the evaporation and condensation process, respectively. In

its essence, the modified formulation helps to more efficiently

distribute the mass transfer magnitude over the phase tran-

sition regime ( Schenke and van Terwisga, 2017 ) and to keep

the density-pressure trajectories close to vapor pressure during

phase transition. Thereby, the conditions of more realistic ther-

modynamic equilibrium models are mimicked ( Koukouvinis and

Gavaises, 2015 ), even though unique equilibrium states cannot be

achieved with this approach ( Schenke and van Terwisga, 2017 ).

Substituting the mixture density given by Eq. (3) into Eq. (2) gives

the mass continuity equation expressed in terms of the liquid vol-

ume fraction: 

��
�t 

+ ∇� · u + � ∇ · u = −∇ · u 
�v 

�l − �v 
(5)

Substituting the divergence term ∇ · u on the right-hand side of

Eq. (5) by Eq. (4) yields the transport equation of � , which must

be solved to achieve phase transition: 

��
�t 

+ ∇ · ( � u ) = − 1 

��l 
( p − p v ) 

�
C v � if p ≤ p v 
C c ( 1 − � ) if p > p v 

(6)

2.2. Cavitation intensity model 

The potential energy of an isolated spherical bubble of initial

radius R 0 is given by the product of the initial bubble volume and

the driving pressure difference ( Vogel and Lauterborn, 1988 ), such

that 

E pot,b = 
4 

3 
�R 3 0 ( p d − p v ) , (7)

where, in this case, p d is the far away ambient pressure driving

the bubble collapse. Because of the linearity of equation (7) with

respect to the bubble volume 4 / 3 �R 3 
0 , the potential energy of an

arbitrarily shaped cavity can be approximated by a continuous dis-

tribution of the volume specific energy e pot , such that the total

potential energy of the cavity follows from the volume integra-

tion of that distribution. The volume specific energy is proportional

with the vapor volume fraction, such that e pot = ( 1 − � ) ( p d − p v )
( Flageul et al., 2012 ). The change of volume specific potential en-

ergy is given by the material derivative of e pot , written as 

De pot 

Dt 
= −( p d − p v ) 

D�
Dt 

+ ( 1 − � ) 
Dp d 
Dt 

, 

where 
D 

Dt 
≡ � 

�t 
+ u · ∇ . (8)

Careful interpretation of Eq. (8) is needed when deriving the power

radiated from a specific location. It is assumed that volume specific

energy is released instantaneously if and only if condensation takes

place. This implies that only the first term on the right-hand side
f Eq. (8) contributes to the radiated power, and only if the mate-

ial derivative of � is positive. With the positive material derivative

f � denoted by ( D� /Dt ) + , the radiated power is given by 

�e rad 
�t 

= 

�
D�
Dt 

�+ 

( p d − p v ) . (9)

rom the definition of the material derivative in Eq. (8) and from

q. (5) follows that ( Schenke and van Terwisga, 2018 ) 

D�
Dt 

�+ 
= max 

� 
−∇ · u 

�
� + 

�v 
�l − �v 

�
, 0 

� 
. (10)

n equivalent of Eq. (9) in terms of vapor volume fraction as well

s an equivalent of Eq. (10) in terms of density change is found

n the work by Flageul et al. (2012) . Since the change of potential

nergy resulting from the second term on the right-hand side of

q. (8) occurs at constant specific volume, it cannot contribute to

he conversion into radiated energy. However, the change of driv-

ng pressure throughout the cavity collapse is still reflected by the

hange of p d in the first term on the right-hand side of Eq. (8) . This

s explained by following an associated Lagrangian particle and by

xpanding p d in time using a first order Taylor series approxima-

ion in the Lagrangian reference frame, which is given by 

p L 
d ( t + �t ) = p d ( t ) + 

Dp d 
Dt 

���
t 
�t + O 

�
�t 2 

	

= p d ( t ) + 
� p d 
�t 

����
t 

�t + u · ∇ p d | t �t + O 
�
�t 2 

	
. (11)

he superscript L on the left-hand side of Eq. (11) indicates that

he Taylor series expansion is carried out in the Lagrangian refer-

nce frame. The second term on the right-hand side of Eq. (11) rep-

esents the change of driving pressure due to the unsteadiness of

he driving pressure field and the third term represents the change

f driving pressure experienced by an associated Lagrangian parti-

le as it moves along the driving pressure gradient. This interpre-

ation of the driving pressure reflects that it is thought of as an

mbient condition which the associated Lagrangian particle is sub-

ected to, rather than a material property transported by the par-

icle. A typical situation to further illustrate this interpretation is

iven by a vapor bubble collapsing towards the pressure recovery

egion around the trailing edge of a hydrofoil. As far as the change

f potential energy according to Eq. (8) is concerned, the increase

f driving pressure and the reduction of bubble volume counteract

ach other. Eq. (9) , however, suggests that the instantaneous power

adiation is only caused by the volume reduction at the instanta-

eous driving pressure difference p d − p v . As described by Eq. (11) ,

he pressure recovery then reflects in the increase of p d over time

xperienced by the moving bubble, and thus enhances the power

adiation from the collapsing bubble. 

It is assumed that the radiated energy propagates infinitely fast

n radial direction from each point source and that the energy flux

s not disturbed by the presence of other cavities. It is transformed

nto surface impact power such that the total amount of energy is

onserved. Leclercq et al. (2017) propose a discrete model that in-

olves the conversion of locally emitted energy into local surface

mpact power based on the solid angle projection on a triangular

urface element as derived by van Oosterom and Strackee (1983) .

o avoid the necessity to project the radiated power on triangu-

ar surface elements, a fully continuous form of the model is in-

roduced, which can then be applied to a finite grid in a more

traight forward fashion. The surface specific impact power accord-

ng to this formulation is given by 

�e S 
�t 

����
˙ �

= 
1 

4 �



x · n 

| x | 3 
�

�e rad 
�t 

(12)

or a point source, indicated by the subscript ˙ � . With x P being the

osition of the point source and x the impacted surface location,
S 
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Fig. 1. Terminology of energy time derivatives. 
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Fig. 2. Point source impacting a flat surface stretching to infinity. 
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he position of the point source x relative to the impacted surface

ocation as used in Eq. (12) is defined as x = x P − x S . Volume in-

egration of Eq. (12) over the continuous source distribution yields

he surface specific impact power resulting from a volume source

s depicted in Fig. 1 , indicated by the subscript ˙ V : 

�e S 
�t 

����
˙ V 

= 

� 

vol 

�e S 
�t 

����
˙ �
dV ≡ ˙ e S , where ˙ e S = ˙ e S ( t, x S ) (13) 

n the further course of the study, the simplified notation ˙ e S intro-

uced in Eq. (13) always refers to the instantaneous surface spe-

ific impact power at the surface location x S caused by a volume

ource. When applied to a finite grid, Eq. (13) can directly be eval-

ated at the associated surface face center, irrespective of the face

eometry. In spherical coordinates ( r, � , �), we get x · n = r sin �
nd surface integration of the bracket term in Eq. (12) gives 
 

surf 

x · n 

| x | 3 d S = 

� 

�� 

� 

��
sin �d �d � ≡ 	, (14)

hich is the solid angle 	 as used in the work by

eclercq et al. (2017) . By employing Eqs. (12) and (13) to di-

ectly evaluate the surface specific impact power at the face

enter, however, the reconstruction of the solid angle is not

eeded anymore. The instantaneous surface integrated impact

ower caused by a point source and volume source respectively is

iven by 

�E S 
�t 

����
˙ �

= 

� 

surf 

�e S 
�t 

����
˙ �
d S and 

�E S 
�t 

����
˙ V 

= 

� 

surf 

�e S 
�t 

����
˙ V 

d S, (15)

here again the subscript ˙ � indicates the impact from a local

oint source and the subscript ˙ V the impact from the integrated

olume source as shown in Fig. 1 . For a closed convex surface we

ave �� = �, �� = 2 � and hence 	 = 4 � . From Eq. (12) then fol-

ows that all the power released from the point source is impacting

he surface. For a point source impacting a flat surface stretched to

nfinity, the overall surface integrated impact rate can be expressed

n polar coordinates ( r s , �) as depicted in Fig. 2 . Let the source

e located at an arbitrary height h s above the surface such that

 · n = h s and | x | 2 = r 2 s + h 2 s . The local impact rate then becomes 

�e S 
�t 

����
˙ �

= 
1 

4 �
h s 

�
r 2 s + h 2 s 

	 3 
2 

�e rad 
�t 

. (16) 
urface integration of Eq. (16) gives 

�E S 
�t 

����
˙ �

= 

� ∞ 

0 

� 2 �

0 

�e S 
�t 

����
˙ �
r s d �d r s 

= 
h s 

2 

�e rad 
�t 

� ∞ 

0 

r 
�
r 2 s + h 2 s 

	 3 
2 

dr s = 
1 

2 

�e rad 
�t 

. (17) 

ince Eq. (17) holds for any arbitrary point source in the domain,

e get ( Schenke and van Terwisga, 2018 ) 
 

flat surf 

�E S 
�t 

����
˙ V 

dS = 
1 

2 

�E rad 
�t 

. (18) 

he intuitive result from Eq. (18) is that half of the emitted poten-

ial cavity energy is eventually distributed on the flat surface, irre-

pective of the cavity shape, orientation and initial distance from

he impacted surface. However, the latter three aspects may have

trong influence on how this same total amount of energy is dis-

ributed and focused on the surface, both in space and time. 

.3. Finite grid representation 

On a finite grid, all quantities in Eqs. (9) and (10) which are

eeded to compute the volume specific power radiated from a spe-

ific location are evaluated at the cell centers, except for the veloc-

ty divergence ∇ · u , which is reconstructed from the face fluxes.

he distance x between the source and the impact location in

q. (12) is given by the distance between the cell center of the

ource and the face center of the impacted surface face. The face

ormal vector n is given at the face center as well. The volume in-

egration over all sources contributing to one surface impact loca-

ion (see Eq. (13) ) is done by multiplying the locally radiated vol-

me specific energy by the corresponding cell volume V c and by

ummation over all contributing cells. It is noted that the emit-

ing grid cell of volume V c can be thought of as a sphere of the

ame volume, which gives an equivalent radius r eq = [ 3 V c / ( 4 �) ] 1 / 3 .
he radiated power is then given by a corresponding flux across

he sphere surface. It is assumed that the spatial resolution on

he final grid is limited by r eq . This means that near wall grid

ells are treated such that the distance | x | from the impact loca-

ion in Eq. (12) is substituted by the equivalent sphere radius if

 x | < r eq . The surface integrated impact power given by Eq. (15) is

btained by multiplying the local surface specific impact power

ith the corresponding face area and by summation over all sur-

ace faces. Further multiplying the instantaneous surface integrated

mpact power with the time step size �t and summing up over

ll time steps gives the accumulated surface energy E S . In case of

 flat surface large enough to be considered as infinite with re-

pect to the impacting cavity and further assuming that the driv-

ng pressure p d is constant throughout the cavity collapse, it fol-

ows from Eq. (18) that the amount of accumulated surface energy

ust be half of the initial potential cavity energy E pot , 0 , such that

 S = 1 / 2 E pot , 0 . The accumulated surface integrated energy E S ob-

ained from the numerical simulation can be verified against this

heoretical value. 
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Fig. 3. Manufactured signal with 0 ≤� ≤ 1 being a measure for the base signal am- 
plitude relative to the pulse signal amplitude and k being a measure for the base 
signal duration relative to the pulse duration. 

Fig. 4. Response surfaces to the manufactured signal in Fig. 3 obtained from the 
impact power function 〈 ̇ e S 〉 e S given by Eq. (21) for different values of the intensity 
exponent n . 

Fig. 5. Response surfaces to the manufactured signal in Fig. 3 obtained from the 
impact power function 〈 ̇ e S 〉 f given by Eq. (22) for different values of the intensity 
exponent n . 
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2.4. Weighted averaged impact power 

The collapse aggressiveness is assessed by weighted averages of

the local surface specific impact power obtained from the cavita-

tion intensity model. The technique amplifies the extreme events

to an extent specified by an intensity exponent n . It is first noted

that the accumulated surface specific energy e S at some surface lo-

cation x S and after some sample time t ∗ > 0 is given by 

e S ( t ∗, x S ) = 

� t ∗

0 
˙ e S ( t, x S ) dt. (19)

As another interim step, the impact intensity exponent n is intro-

duced to amplify the impact rate, which is then integrated over the

surface specific energy, such that 
� e S ( t ∗, x S ) 

e S ( 0 , x S ) 
{ ̇ e S ( t, x S ) } n d e S ( t, x S ) = 

� t ∗

0 
{ ̇ e S ( t, x S ) } n +1 

d t. (20)

Two weighted impact power functions are derived from Eq. (20) .

The first function is normalized by the accumulated surface spe-

cific energy: 

〈 ̇ e S 〉 e S = 


1 

e S ( t ∗, x S ) 

� t ∗

0 
{ ̇ e S ( t, x S ) } n +1 

dt 

� 1 
n 

(21)

The second function is obtained by normalizing Eq. (20) by the

sample time t ∗: 

〈 ̇ e S 〉 f = 


1 

t ∗

� t ∗

0 
{ ̇ e S ( t, x S ) } n +1 

dt 

� 1 
n +1 

(22)

The exponents 1/ n and 1 / ( n + 1 ) are introduced for the function

values to have the physical dimension of surface specific power.

The response behavior of the two functions given by Eqs. (21) and

(22) is inspected by means of a manufactured signal. A representa-

tive signal is constructed from two rectangular signals of different

amplitudes (also see Fig. 3 ), associated with a base signal of con-

tinuous energy intake and a short high amplitude pulse, respec-

tively: 

˙ e S = 

�
� ˙ e S if 0 ≤ t ≤ 
t ( pulse sign al ) 
�� ˙ e S if 
t < t ≤ k
t ( base sign al ) 

where k
t = t ∗, k ≥ 1 and 0 ≤ � ≤ 1 (23)

In this case, the two impact power functions given by Eqs. (21) and

(22) can be rewritten as 

〈 ̇ e S 〉 m 
e S = � ˙ e S 


1 + ( k − 1 ) �n +1 

1 + ( k − 1 ) �

� 1 
n 

(24)

and 

〈 ̇ e S 〉 m 
f = � ˙ e S 


1 + ( k − 1 ) �n +1 

k 

� 1 
n +1 

, (25)

respectively, where the superscript m refers to the manufactured

signal given by Eq. (23) . The parameter n is still the only model

parameter, whereas k and � only change the characteristics of the

manufactured signal. The manufactured signal can be thought of

as periodic, with t ∗ being the period. The pulse duration relative

to the base signal period decreases with increasing k and the am-

plitude ratio between the base and the pulse signal is given by �.

Figs. 4 and 5 depict response surfaces of the impact power func-

tions given by Eqs. (21) and (22) applied to the manufactured sig-

nal for a systematic variation of � and k and for different values

of the intensity exponent n . Both functions tend to return the peak

value of the power impact signal as the intensity exponent n in-

creases, given that the duration of the pulse relative to the char-

acteristic signal period is finite. If the relative pulse duration ap-
roaches 0 and n is finite, however, both functions return the am-

litude �� ˙ e S of the base signal. This regime is identified by equidis-

ant horizontal iso-lines of the response surfaces in Figs. 4 and

 . The most significant difference in response behavior occurs for

mall values of � in combination with small values of n . In this

ase, the function 〈 ̇ e S 〉 e S given by Eq. (21) generally tends to re-

urn larger values than the function 〈 ̇ e S 〉 f given by Eq. (22) . In the

imit n → 0, 〈 ̇ e S 〉 f represents the accumulated surface energy e S ( t 
∗)

er sample time t ∗, whereas 〈 ̇ e S 〉 e S still tends to return the pulse

mplitude of a signal as long as the energy accumulated by the

ulse is significantly larger than the energy accumulated from the

ow amplitudes. The same applies to the limit � → 0. The impact

ower function 〈 ̇ e S 〉 e given by Eq. (21) is specifically designed to

S 
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Fig. 6. Second finest grid in Table 1 with the 4 m × 4 m solid bottom plane. 

Fig. 7. Detail of the cubic inner domain of the second finest grid in Table 1 . 
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ssess the aggressiveness of individual events on the one hand,

ecause it does not change its function value over times where

o further energy is accumulated. The aggressiveness of periodic

avitating flows on the other hand can be assessed by both the

 ̇ e S 〉 e S function and the 〈 ̇ e S 〉 f function. Thus, the choice of the im-

act power function as well as the value of the intensity exponent

 depends on whether the aggressiveness of the flow is supposed

o be related to individual extreme events or rather the amount of

ccumulated energy at a specific surface location. 

.5. Effective driving pressure 

The largest uncertainty in the cavitation intensity approach con-

erns the modeling of the driving pressure p d effectively driving

he cavity collapse. This quantity is typically unknown in complex

ow situations. An example would be the cavitating flow around a

ydrofoil or any other obstacle, where pressure recovery gradients

long the obstacle are important for the dynamics of the cavitat-

ng flow. For a bubble collapsing close to a solid wall, the driving

ressure across its interface varies due to the effect of wall inter-

ction, leading to deformation of the bubble and, in last instance,

o the formation of a liquid jet impacting the wall ( Plesset and

hapman, 1971 ). Even for an isolated bubble, the presence of the

ydrostatic pressure gradient leads to deformation at a certain

tage of the collapse ( Obreschkow et al., 2011 ). Thus, the driv-

ng pressure is practically never exactly constant in space. The

ocal cell pressure p cannot be used as an estimate of the driv-

ng pressure, because the driving pressure must be computed at

he same locations x P where energy is radiated. Since the ra-

iated power is proportional with the negative velocity diver-

ence (see Eqs. (9) and (10) ), the corresponding pressure difference

p − p v would be nearly zero because the density-pressure trajec-

ory evolves very close to vapor pressure during phase transition.

n approach to determine the driving pressure in complex flow

ituations is suggested and implemented by Arabnejad and Ben-

ow (2017) . In their work, coherent cavition structures are iden-

ified and simplified to an equivalent isolated spherical bubble

f equivalent volume. Thus, the driving pressure can be deter-

ined from the Rayleigh–Plesset equation (see Rayleigh, 1917 and

lesset, 1949 ) and a set of kinematic parameters uniquely defining

he state of the collapse ( Bark et al., 2004 ), however at the cost

f not reflecting the exact shape of the collapsing structure and

ts orientation relative to the impacted surface. Since both cavity

hape and surface orientation were demonstrated to affect the col-

apse aggressiveness ( Van Rijsbergen et al., 2012 ), we take both ef-

ects into account by determining the energy release of the collaps-

ng cavity from the cell level. Since coherent structures are neither

solated nor simplified to spherical bubbles, however, the driving

mbient pressure cannot be derived from bubble dynamics consid-

rations in this case. In cyclic flows with steady state inflow con-

itions, the time averaged pressure distribution 

 p 〉 t = 
1 

t ∗

� t ∗

0 
p ( t, x P ) dt (26) 

rovides at least an approximation of the conditions which col-

apsing cavities meat on statistical average (see Schenke and van

erwisga, 2018 ; Melissaris et al., 2018 ). The time averaged pressure

nder cavitating flow conditions is employed as the driving pres-

ure field in the hydrofoil test case, in which the cavities are shed

nto a pronounced pressure recovery gradient towards the trailing

dge. This study is restricted to a steady driving pressure field at

teady inflow conditions, obtained from a sample time t ∗ that the-

retically approaches infinity. The driving pressure is calculated in

he entire domain prior to the application of the cavitation inten-

ity model and it is evaluated at the same locations x P , where also

he radiated power is computed. A more instantaneous approxima-
ion of the driving pressure field can be achieved by shorter sam-

le times, which must be small enough to reflect the characteristic

ow frequency, and large enough to filter out individual collapse

eak pressures. 

. Numerical test cases 

.1. Idealized cavities 

The first study serves as a verification study and concerns the

ollapse of idealized cavity types on a flat bottom surface as de-

icted in Fig. 8 . The wall surface area is 4 m by 4 m (see Fig. 6 ),

arge enough to verify whether 50% of the initial potential cavity

nergy is transmitted to the surface as predicted from Eq. (18) .

ext to the verification study, the effect of cavity shape on the col-

apse aggressivness is investigated. The investigated shapes are ba-

ically a bubble and a ring cavity. In one case, a bubble with a ra-

ius of R b = 3 . 84 mm collapses in near wall distance h = 0 . 5 mm

nd in another case the same bubble is cut in half such that it

orms a hemisphere directly collapsing on the solid surface. Sim-

larly, a ring cavity collapses parallel to the wall at the same dis-

ance h in one case. In the final case, the torus is cut in half and

otated by 90 degrees such that it forms a horseshoe type cavity

ith its legs perpendicular on the solid surface. The initial torus
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Table 1 
Grid densities of the inner domain (see Fig. 7 ) 
and the corresponding deviation of the finite 
grid horseshoe volume V h, grid from the theo- 
retically exact horseshoe volume V h, th = �2 r 2 t R t , 
measured by the error � = 

�
V h, grid − V h, th 

	
/V h, th . 

N cells /length N cells total Volume off-set 

65/0.02 m −1 802,750 −0.38% 
55/0.02 m −1 544,500 −0.46% 
45/0.02 m −1 344,250 −0.68% 
35/0.02 m −1 196,0 0 0 −1.06% 
25/0.02 m −1 93,750 −1.94% 
15/0.02 m −1 31,500 −5.15% 
5/0.02 m −1 3250 −38.79% 
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radius of the ring cavity is R t = 6 mm and the corresponding tube

radius is r t = 2 mm, such that the initial horsehsoe cavity vol-

ume is equal to the initial bubble volume. Consequently, the ini-

tial ring cavity volume is twice the initial bubble volume and the

initial hemisphere volume is half of the initial bubble volume. In

addition, an isolated bubble collapse without wall interaction pro-

vides a reference solution which is verified against the analytical

solution of the Rayleigh–Plesset equation (see Rayleigh, 1917 and

Plesset, 1949 ) in the absence of viscous and surface tension forces.

The solid wall of the hemisphere case is replaced by a symmetry

plane in this case. 

It is emphasized that the results of this study cannot directly

be compared to real world situations, where similar structures may

appear, however under different ambient conditions which are not

reflected in this study. Most significantly, all cavities are initialized

with the flow being at rest, whereas the dynamics of cavitating

ring structures are a result of circulation and vorticity in the flow

field (see Kawanami et al., 2002; van Terwisga et al., 2009; Du-

lar and Petkovšek, 2015 ). On the one hand, the vorticity in the

vicinity of a collapsing cavitating vortex ring has a damping ef-

fect on the driving pressure field ( Chahine and Genoux, 1983 ) and

hence on the collapse aggressiveness. On the other hand, cavitat-

ing horseshoe vortices typically occur under flow conditions that

cause a break-up of the cavitating horseshoe vortex at the top

( Kawanami et al., 2002 ). This break-up is supposed to enhance the

erosive aggressiveness because the horseshoe legs are then more

efficiently collapsed towards the surface (see van Terwisga et al.,

2009 ; Dular and Petkovšek, 2015 ). Both of the previous effects are

not present in the simulation and only the effect of initial shape

and surface orientation relative to the imploding ring cavity can

be studied. Furthermore, the initial vapor volume fraction of all

cavities is chosen to be 1, although the cavitating ring structures

are supposed to exhibit a lower fraction as they are presumably

formed by clusters of vapor bubbles ( van Terwisga et al., 2009 ). It

is argued that the choice of the initial volume fraction does not af-

fect the collapse time of the cavity as long as the associated bubble

density is large enough to not allow for any significant pressure re-

covery in the liquid phase between the bubbles. However, accord-

ing to the modeling approach presented in this study, the initial

potential cavity energy and hence the accumulated surface energy

is proportional with the initial vapor volume fraction. Therefore,

the study should be seen as an artificial numerical experiment, de-

signed to identify numerical error sources involved in the conver-

sion of potential energy into local impact power and to isolate the

effects of cavity shape and surface orientation relative to the im-

ploding cavity on the collapse aggressiveness. 

The mesh is block structured and the inner part of the domain

consists of cubic cells uniformly distributed in a cube. Just as in

the bubble cluster collapse simulation by Schmidt et al. (2011) , the

cube edge length is 0.02 m (see Fig. 7 ). A systematic variation of

time step size �t is carried out for the horseshoe cavity to identify
he temporal resolution at which the cavity collapse time becomes

ime step size independent. In order to carry out a grid sensitiv-

ty study, the grid density of the inner cubic part is varied from

 cells per 0.02 m for the coarsest grid to 65 cells per 0.02 m for

he finest grid (see Table 1 ). The number of cell layers connect-

ng the inner part with the far field boundaries is kept constant

t 25. The provided grid and time resolution resolves the collapse

ynamics on a macroscopic scale. The cavities are initialized such

hat � = 0 for those cells entirely located inside the cavities and

= 1 for those entirely located outside the cavity. The correspond-

ng densities of the vapor and the liquid phase are assumed to be

v = 0 . 02 kg/m 3 and �l = 10 0 0 kg/m 3 , respectively. The cut cell

olume fraction is then given by the fraction by which the cell is

ccupied by the liquid phase, determined from a sample algorithm

pplied to the corresponding cell. The presence of cut-cells leads

o inaccuracies in the representation of the initial cavity interface

nd also the initial cavity volume. Table 1 shows the initial volume

ff-set from the analytical correct value in percent for the seven

rid densities investigated in this study. Negative values represent

oo small initial volumes. Since the flow is assumed to be inviscid,

he slip wall boundary condition is applied to the velocity field

t the solid bottom plane. At the far field boundaries, the veloc-

ty field is constrained by the zero gradient boundary condition.

he zero gradient boundary condition is further applied to the liq-

id volume fraction field at all boundaries, whereas the pressure

eld is constrained by the zero gradient boundary condition at the

olid bottom plane only. At the far field boundaries, a fixed value

f p ∞ = 1 bar, associated with the driving pressure p d , is imposed.

he pressure field is initialized at p v = 2340 Pa inside the cavities

nd p ∞ = 1 bar outside the cavities, where the cut cell pressure is

btained from linear interpolation over the cut cell volume frac-

ion. With the flow being at rest initially, the pressure equation

volves into a Laplace equation for pressure, thereby providing a

olution of the Laplace equation of pressure. The pressure equa-

ion is solved first to avoid unrealistic behavior in the volume frac-

ion transport equation due to the sharp pressure jump at the cav-

ty interface. For the cavity collapse test case, the mass transfer

oefficients are chosen to be C c = C v = 10 0 0 kg ·s/m 5 . From pre-

ious studies, this value was found to be large enough to keep

he cavity interface sharp during the collapse ( Schenke and van

erwisga, 2017 ). Gravitational forces are neglected, because the in-

olved buoyancy effects act on a significantly larger time scale than

he cavity collapse time in this case. All idealized cavities are ini-

ialized with the flow being at rest, even though the horseshoe

avity is a vortical structure in reality. 

.2. NACA0015 hydrofoil 

The second test case involves the application of the aggressive-

ess indicators to the cavitating flow around a NACA0015 hydro-

oil. Cord length and span of the foil are 0.06 m and 0.04 m, re-

pectively. The dimensions of the tunnel cross section, the foil and

ts position and angle of attack are in line with an experimental

et-up by Van Rijsbergen et al. (2012) and a corresponding numer-

cal set-up by Li et al. (2014) . The tunnel width is w t = 0 . 04 m

nd equal to the foil span and the tunnel height is h t = 2 w t , with

he cord center of the foil located at half height. The tunnel length

s l t = 0 . 57 m (see Fig. 10 ). The study is carried out for a down-

tream ambient pressure of p ∞ = 302 . 3 kPa, a uniform horizon-

al inflow speed of 17.3 m/s and an angle of attack of  = 8 ◦ (see

ig. 13 ). The fixed value velocity boundary condition is specified

t the inlet and the fixed value pressure boundary condition at

he outlet as indicated in Fig. 10 . In order to get rid of pressure

uctuations at the outlet boundary, the flow is diffused in a dif-

user section, starting at 6.5 cord lengths downstream from the

oil’s leading edge. Since the flow is inviscid, mass continuity and
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Table 2 
Grid densities for the hydrofoil grid refinement 
study. 

Grid nr. �x (finest level) [mm] N cells total 

0 0.15625 1,794,140 
1 0.31250 919,944 
2 0.62500 393,096 
3 1.250 0 0 114,694 
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ernoulli’s equation can be used to determine the outlet pressure

uch that the aimed tunnel pressure p ∞ is obtained under wet-

ed flow conditions and, on time average, under cavitating flow

onditions ( Schenke and van Terwigsa, 2017 ). The liquid volume

raction � is constrained by a zero gradient boundary condition

t all boundaries except for the inflow boundary, where a fixed

alue of � = 1 is applied. The unstructured mesh as depicted in

ig. 12 includes four refinement levels. At each refinement level,

he cell length is reduced by factors of 2 −n against the base mesh,

here n = 0 on the base mesh level and n = 4 on the finest level.

ariation of grid density is achieved by changing the number of

ells in the base mesh. For all refinement levels and all grids,

he characteristic cell aspects are �x = �y = 0 . 5�z with respect

o the coordinate system depicted in Fig. 13 . By this means, geo-

etrically similar grids are obtained and a uniformly spaced grid

s achieved in the cavitating region. Table 2 lists the characteristic

ongitudinal cell lengths �x on the finest level for the four differ-

nt grid configurations investigated in this study. The grid depicted

n Fig. 12 corresponds to grid 1 from Table 2 . The time step size

t is systematically decreased until a physically converged solu-

ion is obtained. Since the dynamics of the larger scale cavitation

tructures are of primary interest in this study, the frequency of

arge pressure pulses, associated with the cyclic collapse of larger

cale structures and hence the shedding frequency, is employed as

 measure for physical convergence. The collapse frequency is ob-

ained from power spectral density analysis of the pressure sig-

als at two observation points upstream from the leading edge

nd two observation points downstream from the trailing edge.

he corresponding coordinates in Table 3 are given with respect

o the coordinate system depicted in Fig. 13 . The phase transi-

ion behavior is monitored at observation point P 0 in Table 3 , lo-

ated on the foil surface at half span and 20% cord length as in-

icated in Fig. 11 . From previous studies ( Schenke and van Ter-

igsa, 2017 ), the values C c = 50 0 0 kg ·c/m 5 and C v = C c / 2 for the

ass transfer coefficients have been found to be large enough to

btain model parameter independent results for the cavity shed-

ing frequency. Just as in the study by Li et al. (2014) , the vapor

ressure is p v = 1854 Pa and the densities of the vapor and the

iquid phase are �v = 0 . 014 kg/m 3 and �l = 998 . 85 kg/m 3 , re-

pectively. This corresponds to a downstream cavitation number of

= 2 . 01 . Gravitational forces are taken into account, although they

re presumably negligible. The temporal resolution needed to ob-

ain a physically converged result for the cavitating flow dynamics

as been found to be significantly larger than the temporal res-

lution needed to evaluate the instantaneous impact power from

q. (13) . For this reason, Eq. (13) as well as the impact power func-

ions given by Eqs. (21) and (22) are evaluated at 5 �t for this test

ase to reduce the overall computation time. 

.3. Iterative and discretization schemes 

A segregated pressure-based approach is applied to solve the

quations. Pressure-velocity coupling is achieved by solving a pres-

ure equation, involving a Laplacian term of the pressure field, fol-

owed by a correction of the velocity field which is directly ob-

ained by forward substitution of the previously computed pres-
ure field ( Jasak, 1996 ). The pressure equation and the velocity

orrection step provide a solution of the Euler equations given by

qs. (1) and (2) . Phase transition is achieved by solving the trans-

ort equation of liquid volume fraction given by Eq. (6) . In all

ases, the solver is run in a PISO mode as implemented in Open-

OAM (see Jasak, 1996; OpenFOAM, 2018 ), which means that the

iquid volume fraction transport equation, placed in the outer it-

ration loop, is solved once per time step only. Three inner itera-

ion loops over pressure equation and velocity correction are per-

ormed. The global residual of the equations to be solved is given

y the L 1 norm, involving normalization by the maximum coeffi-

ient of the corresponding matrix diagonal ( Moukalled et al., 2015 ).

he number of solution iterations for the � -transport equation is

hosen such that the final residual of the discretized � -transport

quation drops below 10 −13 . The final residual tolerance of the

ressure equation is 10 −11 . No relaxation is applied. The finite vol-

me method is employed for spatial discretization and a collocated

rid arrangement is used. For discretization of the convective terms

n the momentum equation and the liquid volume fraction trans-

ort equation, the upwind-biased linear scheme ( Warming and

eam, 1975 ) and the van Leer (1974) , respectively, is employed. The

aplacian term of pressure in the pressure equation is discretized

y using a linear scheme as described in Jasak (1996) . Time dis-

retization is linear implicit, where the mass transfer source term

s treated partially implicit in both the � -transport equation and

he pressure equation. 

. Results and discussion 

.1. Collapse of idealized cavities 

.1.1. Convergence study 

Both the grid sensitivity and the time step study are carried

ut for the horseshoe cavity collapse only. The horseshoe is cho-

en as a reference because it has a larger surface area to volume

atio than a sphere and therefore imposes higher demands on spa-

ial resolution. Fig. 14 depicts the evolution of dimensionless vapor

olume during the cavity collapse in red lines. Lines of the same

olour represent different time step sizes. Large time step sizes

ead to significant delays of the cavity collapse due to insufficient

emporal resolution of the event. As the time step size approaches

t = 10 −7 s, the horseshoe collapse time converges to a time step

ize independent value. 

Concerning the surface integrated energy, it was found that the

heoretical value of E S = 1 / 2 E pot is not always correctly predicted

rom the simulation results. Table 4 lists the deviation from the

heoretical value for nine configurations of time step size and grid

ensity, where a negative sign indicates underprediction of the

heoretically exact value. Interestingly, the deviation from the the-

retical value increases when the grid is refined and/or more tem-

oral resolution is provided, even if the cavity collapse time itself

as converged to a grid and time step size independent value. 

The source of this error was found to be the velocity divergence

erm ∇ · u . To isolate the error source, it is eliminated by correcting

he velocity divergence field by a constant factor c . The constant

 is determined such that the volume integrated rate of vapor de-

truction predicted from the material derivative ( D� /Dt ) + given by

q. (10) agrees with the rate of vapor destruction predicted from

he partial time derivative ( � � /� t ) + , such that 

 

� 

vol 

�
D�
Dt 

�+ 
d V = 

� 

vol 



��
�t 

�+ 

d V. (27)

he corrected velocity divergence field c ∇ · u is computed at each

ime step. This correction can be done in this particular case only

ecause it is based on the volume change of the entire cavity. As

here is only condensation involved during the cavity collapse, the
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Fig. 8. Idealized cavity types ( � = 0 . 5 iso-surface) with R b = 3 . 84 mm, h = 
0 . 5 mm, R t = 6 mm and r = 2 mm. 

Fig. 9. Second coarsest (left) and second finest (right) grid from Table 1 and a � = 
0 . 5 iso-surface of the initial horseshoe cavity. 
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volume change cannot be subject to the cancellation of compet-

ing condensation and evaporation processes at different locations

in the domain. For the same reason, the correction of the diver-

gence field is not applicable to the hydrofoil test case. 

The evolution of accumulated surface energy obtained from the

corrected divergence field is depicted in Fig. 14 for different time

step sizes. Now, the accumulated surface integrated energy con-

verges to the theoretical value of 50% initial potential energy. A

number of numerical error sources inherent with the mass trans-

fer modeling approach ( Ghahramani and Bensow, 2018 ) may con-

tribute to an inconsistent prediction of the velocity divergence

field, even if the velocity divergence is directly reconstructed from

the face fluxes as done in this study. One possible reason is that

the face values of u are the result of an interpolation from the cell

centers due to the collocated grid arrangement. It is further re-

called that the velocity divergence term on the right hand side of

the liquid volume fraction transport Eq. (5) is modeled by the mass

transfer source term. As shown by Ghahramani and Bensow (2018) ,

this term is not necessarily equal to the velocity divergence term

on the left-hand side. Ghahramani and Bensow (2018) explain this

mismatch by the fact that the liquid volume fraction transport

equation is solved in a separate step within the iterative numerical

algorithm. They could show that spurious numerical errors result-

ing from this inconsistency are significantly reduced for the simu-

lation of a single bubble collapse, if the volume fraction normally

obtained from the transport equation is replaced by the exact solu-

tion obtained from the Rayleigh–Plesset equation ( Ghahramani and

Bensow, 2018 ). Against this background, it may even be argued

that the partial time derivative of liquid volume fraction � � / � t
might give more accurate results for the energy release than the

conceptually correct material derivative D � / Dt reconstructed from

the velocity divergence field, at least in situations where poten-

tially aggressive events associated with rapid phase change occur. 

The same sensitivity study on evolution of dimensionless va-

por volume and accumulated surface energy is carried out for dif-

ferent grid densities. The evolution of vapor volume and accumu-

lated surface energy shown in Fig. 15 indicate a small sensitivity

of the cavity collapse time with respect to spatial resolution as

long as the initial cavity shape and its volume is at least roughly

resolved. This is just the case for a resolution of 15 cells/0.02 m.

For finer grids, the cavity collapse time hardly changes anymore,

even though the initial cavity volume for 15 cells/0.02 m deviates

from the theoretical value by 5.2% (see Table 1 ). The only signif-

icant deviation of collapse time is observed for the coarsest grid.

Due to the initialization algorithm, the lowest liquid volume frac-

tion is larger than 0.5 in this case. Since the initial pressure field

is determined from the initial volume fraction field by linear in-

terpolation, the minimum pressure obtained inside the cavity is

larger than 0.5 bar. This results in a significantly smaller driving

pressure difference p d − p v , explaining the pronounced delay in

collapse time despite the circumstance that the initial cavity vol-

ume is underestimated by 38.8%. The time step and grid sensitivity

is further investigated for the instantaneous energy impact rate ˙ e S 
on the surface. Fig. 16 depicts the evolution of the maximum im-

pact rate ˙ e S, max recorded on the solid surface for different time step

sizes. The location of the maximum value may vary over time. Very

similar results are obtained for small time steps. For the smallest

time step size �t = 10 −7 s, a very short peak pulse is observed at

the final collapse stage, which is not present for the larger time

steps. For very large time steps, the maximum impact is more and

more underestimated as the final stage of the cavity collapse is ap-

proached. A similar behavior is found for variation of the grid den-

sity. Fig. 17 shows that the evolution of the maximum impact rate

converges with increasing grid resolution, indicating grid indepen-

dent behavior. 
f  
.1.2. Physical analysis of the results 

The evolution of the dimensionless cavity volume V ( t )/ V 0 as

hown in Fig. 18 reveals pronounced differences in collapse

ime between the different cavity types. As a reference solu-

ion, Fig. 18 further depicts the vapor volume evolution of an

solated bubble collapsing in absence of a solid wall. The solu-

ion shows satisfactory agreement with the analytical solution ob-

ained from the Rayleigh–Plesset equation (see Rayleigh (1917) and

lesset (1949) ) under neglect of viscous and surface tension forces.

he dimensionless volume evolution of the isolated bubble exactly

oincides with the one of the hemisphere collapsing on the wall,

mplying that in this case the solid wall can be thought of as a

ymmetry plane of an isolated spherical bubble. In that sense, the

emisphere is not subjected to wall interaction action, at least not

t the macroscopic scale and in the absence of viscous and surface

ension forces. However, the effect of wall interaction causes the

ear wall bubble to collapse slower than the isolated bubble and

he hemisphere. Similarly, it causes the parallel ring to collapse sig-

ificantly slower than the horseshoe cavity, even though the initial

orus and tube radius of both cavities are the same. 

For the comparison of the impact aggressiveness, it is noted

hat the comparability of the results to real world situations is

imited by the simplifying boundary and initial conditions as dis-

ussed in Section 3.1 . It is only the effect of initial shape and sur-

ace orientation relative to the cavity in the absence of vorticity

s well as surface tension and viscous forces that is reflected by

he flow simulation. Fig. 20 shows the surface distribution of im-

act energy accumulated throughout the collapse of the horseshoe

avity, the near wall bubble, the parallel ring cavity and the hemi-

phere. The black solid line indicates the outline of the initial cav-

ty shape. In this specific situation, the near wall bubble exhibits

he largest efficiency to focus its potential energy on the surface,

ollowed by the hemisphere, the horseshoe cavity and the parallel
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Fig. 10. Computational domain with downstream diffuser section for grid 1 from Table 2 , the tunnel dimensions being w t = 0 . 04 m, h t = 2 w t l t = 0 . 57 m and the distance 
between leading edge and inlet 0.18 m. 
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Fig. 11. Refinement levels around the NACA0015 hydrofoil for grid 1 from Table 2 , 
where w t = 0 . 04 m, h t = 2 w t and the foil cord length and span being 0.06 m and 
0.04 m, respectively. 

Fig. 12. Refinement levels around the NACA0015 hydrofoil for grid 1 from 
Table 2 ( Schenke and van Terwisga, 2018 ). 

Fig. 13. Coordinate system and angle of attack  = 8 ◦ . 
ing cavity in order of decreasing maximum surface specific en-

rgy. The maximum values of accumulated surface specific energy

ppear to be close to each other for all cavities. However, the dif-

erence in initial cavity volume should be taken into account here.

lso the influence of the initial wall distance h on the footprint

aused by the near wall bubble and the parallel ring is not further

nvestigated in this study. 

A comparison of the averaged impact power distribution, mea-

ured by the averaged impact rate 〈 ̇ e S 〉 eS given by Eq. (21) for n =
 . 0 , is presented in Fig. 21 . This figure indicates the most focused

mpact distribution for the hemisphere, followed by the horseshoe

avity, the bubble and the parallel ring. The different ranking com-

ared to the distribution of accumulated surface energy is for one

art explained by the smaller collapse time of the hemisphere and

he horseshoe cavity and hence the larger maximum impact rate.

n case of the hemisphere, it is again important to note that its in-

erface evolves in exactly the same way as the interface of the iso-

ated spherical bubble. This implies that the power focal point on

he solid surface coincides with the center of a spherical bubble

f the same radius, explaining why the hemisphere is most effi-

ient in focusing its impact power on the surface. The parallel ring

avity distributes its averaged impact rate most gently on the sur-

ace. The effect of the intensity exponent n is seen from Fig. 19 ,

hich depicts the averaged impact power caused by the horse-

hoe cavity collapse for a variation of n . With increasing value of

 , the impact power function given by Eq. (21) tends to empha-

ize the peak value of the local impact signal. Thus, the averaged

mpact power gets closer to the maximum of the impact power

volution given in Figs. 16 and 17 . Furthermore, the impact distri-

ution of the horseshoe leg exhibits an asymmetry with the focal

oint being shifted towards the torus center. This is explained by

he horseshoe legs interacting with each other, such that the sur-

ounding pressure field drives the collapse more efficiently from

utside the torus. 

.2. Cavitating flow around the NACA0015 hydrofoil 

.2.1. Convergence study 

The density-pressure trajectory at the observation point in

ig. 12 (see P 0 in Table 3 ) is depicted in Fig. 22 . The trajectory stays

lose to vapor pressure during phase transition and only evolves

nto high amplitude pressure peaks at the final stage of the con-

ensation process. This confirms that the mass transfer coefficients

re large enough to mimic realistic flow states. The grid and time
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Fig. 14. Dimensionless vapor volume and surface energy accumulated over time measured from the horseshoe cavity collapse for different time step sizes, with the grid 
density being 55 cells/(0.02 m) (see Fig. 9 ). 

Fig. 15. Dimensionless vapor volume and surface energy accumulated over time measured from the horseshoe cavity collapse for different grid densities (see Table 1 ), with 
the time step size being �t = 10 −7 s. 
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step sensitivity of the flow around the NACA0015 hydrofoil is as-

sessed from the pressure fluctuations at the observation points

P 1 to P 4 in Table 3 , where the sample time is t ∗ = 0.18 s. Fig. 23

shows the corresponding power spectral density distributions for

�t = 7 . 5 · 10 −7 s and grid 1 from Table 2 . Since the interest is on

the dominating frequency only, the distributions are normalized

by the peak of the corresponding first harmonic. Each distribu-

tion is smoothed by subdividing the input signal into five equidis-

tant pieces and then calculating the mean of the so obtained Fast

Fourier Transforms (FFT). In order to make the individual input sig-
als consistent with the FFT model function, a Hanning window

s applied. The low frequency harmonic obtained as an artifact of

he Hanning window is not plotted. The normalized power spec-

ral density distributions show good correlation and can be inter-

reted as the result of the cyclic main cavity collapses. For each

nvestigated time step size and grid density, the mean distribution

averaged over the observation points P 1 to P 4 in Table 3 before

ormalization) is analyzed to identify the dominating frequency.

ig. 24 depicts the averaged power spectral density distributions

or different grid densities and �t =7 . 5 · 10 −7 s. It is observed that
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Fig. 16. Maximum surface specific impact power over time measured from the horseshoe cavity collapse for different time step sizes, with the grid density being 55 
cells/(0.02 m) (see Fig. 9 ). 

Fig. 17. Maximum surface specific impact power over time measured from the horseshoe cavity collapse for different grid densities (see Table 1 ), with the time step size 
being �t = 10 −7 s. 

Fig. 18. Dimensionless vapor volume and accumulated surface integrated energy over time for the different cavity types depicted in Fig. 8 , with the green line representing 
the solution obtained from the Rayleigh–Plesset equation (see Rayleigh, 1917 and Plesset, 1949 ). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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Fig. 19. Averaged surface specific impact power caused by the collapse of the 
horseshoe cavity depicted in Fig. 8 , obtained from the impact power function 〈 ̇ e S 〉 e S 
given by Eq. (21) and a variation of the intensity exponent n . 

Fig. 20. Accumulated surface specific energy caused by the collapse of the cavities 
depicted in Fig. 8 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21. Averaged surface specific impact power caused by the collapse of the cav- 
ities depicted in Fig. 8 , obtained from the impact power function 〈 ̇ e S 〉 e S given by 
Eq. (21) and n = 1 . 

Fig. 22. � − p trajectory on the foil surface at observation point P 0 in Table 3 (half 
span and 20% cord length, see Fig. 11 ) for �t =7 . 5 · 10 −7 s and grid 1 from Table 2 . 

Table 3 
Coordinates of the observation points (with respect 
to the coordinate system depicted in Fig. 13 ) for 
pressure and density probes. 

P 0 P 1 P 2 P 3 P 4 

x [mm] 12 −100 −30 90 190 
y [mm] 2.75 0 0 0 0 
z [mm] 0 0 0 0 0 
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coarse grids tend to result in rather low frequencies of the first

harmonic. The frequency of the first harmonic converges to a mesh

independent value with increasing grid resolution. The same anal-

ysis is carried out for grid 1 from Table 2 and different time step

sizes. For rather large time steps, the distribution in the frequency

domain tends to get smeared out into the low frequency regime.

The dominating frequencies are determined from a second order

polynomial fit through the indicated dominating frequency and

its left and right neighbor. The results for both the grid and the

time step sensitivity study are summarized in Table 5 . The smallest

time step size �t =7 . 5 · 10 −7 s in combination with grid 1 from

Table 2 is considered to provide a physically converged solution

for the further course of this study. The corresponding frequency of

192 Hz is in good agreement with the frequency of 188 Hz found

by Van Rijsbergen et al. (2012) in the experiment. It is assumed
hat the so obtained solution of the unsteady cavitating flow field

rovides a reasonable estimate of the flow conditions in the exper-

ment by Van Rijsbergen et al. (2012) , even though viscosity effects

uch as the viscous pressure drop along the tunnel section are not

resent in the numerical simulation. 

The convergence of the solution for the time averaged pres-

ure field 〈 p 〉 t , associated with the steady driving pressure field

 d , is assessed by means of the global L 1 norm of two sub-

equent time steps at time instances t j and t j−1 , given by
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Table 4 
Deviation of the accumulated surface energy 
measured from the horseshoe collapse simula- 
tion ( E S, simu ) from the theoretically exact value 
E S, th = 1 / 2 E pot ( t = 0 ) predicted from Eq. (18) 
for a flat surface stretched to infinity, with 
the error measure given in percent by � = �
E S, simu − E S, th 

	
/E S, th and negative signs indicat- 

ing underprediction and positive signs indicat- 
ing overprediction of accumulated surface en- 
ergy. 

�t 

N cells /length 10 −7 s 10 −6 s 10 −5 s 

55/0.02 m −1 −61% −49% + 18% 
35/0.02 m −1 −57% −47% + 11% 
15/0.02 m −1 −45% −39% + 5% 

Fig. 23. Normalized power spectral density distributions of the pressure signals ob- 
tained from the observation points P 1 to P 4 in Table 3 for �t =7 . 5 · 10 −7 s and grid 
1 from Table 2 . 

Fig. 24. Normalized distributions of the spectral power density of the pressure sig- 
nals for the different grid densities in Table 2 and �t =7 . 5 · 10 −7 s, averaged over 
the observation points P 1 to P 4 in Table 3 before normalization. 

Fig. 25. Normalized distributions of the spectral power density of the pressure sig- 
nals for different time step sizes and grid 1 in Table 2 , averaged over the observa- 
tion points P 1 to P 4 in Table 3 before normalization. 

Table 5 
Dominating frequencies identified from the 
spectra in Figs. 24 and 25 by second order 
polynomial interpolation of the peak val- 
ues and the corresponding neighbor values. 
The grid sensitivity study is carried out for 
�t =7 . 5 · 10 −7 s, while the time step sen- 
sitivity study is carried out for grid 1 in 
Table 2 . 

Grid no. f [ Hz ] �t [ s ] f [ Hz ] 

0 191 7 . 5 · 10 −7 192 
1 192 10 −6 184 
2 173 2 . 5 · 10 −6 195 
3 153 5 . 0 · 10 −6 181 

Fig. 26. Surface distribution of the time averaged pressure (see Eq. (26) ) computed 
from cavitating flow conditions (69 shedding cycles) and a 60 kPa iso-surface of the 
time averaged pressure; top view with the flow from right to left. 
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 1 (〈 p〉 t ) ≡ 1 / (p ∞ N cells ) 
� N cells 

i |〈 p〉 j 
t,i − 〈 p〉 j−1 

t,i | . After 48 shedding

ycles (0.25 s), the residual drops significantly below 10 −5 , which

s considered as a sufficiently accurate solution of the steady time

veraged pressure field. In the further course of the study, the so-

ution at 69 shedding cycles (0.36 s), is taken as a solution for the

riving pressure field p d . 

.2.2. Physical analysis of the results 

The distribution of the time averaged pressure on the foil sur-

ace and a 〈 p 〉 t -isosurface of 60 kPa is depicted by Fig. 26 . The

egion of maximum pressure recovery gradient is found between

0% and 50% cordlength. Cavities collapsing downstream from the

ressure recovery region are associated with a significantly larger

otential energy compared to cavities of the same size collapsing

urther upstream. The effect is clearly visible in the surface dis-

ribution of accumulated impact energy. Fig. 27 compares the ac-

umulated surface energy e S for the non-uniform pressure field

p d = 〈 p 〉 t (right) and for a uniform driving pressure field p d =
p ∞ = 302 . 3 kPa (left). In the uniform case, energy accumulation

ccurs at a larger magnitude because the presence of vapor cavities

owers the average pressure in the non-uniform case. Peak pres-

ures caused by cavity collapses tend to be filtered out by the time

veraging because of the small time intervals in which they occur.

he focal area in the non-uniform case is shifted further towards

he trailing edge due to the pressure recovery gradient. 

Fig. 28 depicts a typical sequence of a collapse event. It starts

ith a horseshoe cavity which developed from the break-up of

 sheet cavity. With its legs attached to the surface, the horse-

hoe cavity collapses as it travels further downstream towards the

railing edge of the foil and thereby releases its potential energy.

he instantaneous energy impact rate obtained from Eq. (13) is

hown on the foil surface. It exhibits large magnitudes close to

he horseshoe legs. The aggressiveness of the horseshoe cavity col-

apsing towards the trailing edge is enhanced by the driving pres-

ure at the trailing edge being significantly larger than at the lead-



214 S. Schenke and T.J.C. van Terwisga / International Journal of Multiphase Flow 111 (2019) 200–218 

Fig. 27. Accumulated surface energy per sample time for a uniform (left) and a 
non-uniform (right) driving pressure field; top view on the foil surface with the 
flow from right to left. 
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ing edge. The distribution of the time averaged pressure 〈 p 〉 t is

depicted at the side wall. As the horsehsoe cavity collapses, an-

other cavity is pinched off from the sheet cavity further upstream.

The cavity pinch-off is induced by the re-entrant jet phenomenon,

caused by the formation of a stagnation point at the sheet cav-

ity closure. The formation of the stagnation point leads to a pro-
0 1 2 3 4 5

t = t0 + 0 .00 ms

0

t = t0 + 1 .00 ms

Fig. 28. Sequence of a horseshoe cavity collapse with the instantaneous impact power ˙ e S 
(see Eq. (26) ) on the tunnel side wall. 
ounced adverse pressure gradient driving a thin liquid jet under-

eath the sheet in upstream direction. When the liquid jet looses

omentum, it cannot further penetrate the jet in upstream direc-

ion and is driven upward, thereby pinching of a partial cavity.

he primary partial cavity may then further break up into sec-

ndary cavitating vortical structures. The rapid collapse of those

econdary vortical structures is associated with a large erosive po-

ential. A more detailed hypothesis on the underlying mechanism

s found in the work by van Terwisga et al. (2009) . Van Rijsber-

en et al. confirm that the collapse of secondary cavitating vortical

tructures can lead to peak impacts ( Van Rijsbergen et al., 2012 ).

t is observed that even the primary cavities can already undergo

onsiderable and rapid volume changes, resulting in large surface

mpact powers. A detailed overview on theories concerning the re-

ntrant jet mechanism and how this is related to the erosive ag-

ressiveness of cavitating flows is found in the work by Dular and

etkovšek (2015) . In this work, the erosive aggressiveness of the

ow is assessed by means of the impact power functions given by

qs. (21) and (22) for different values of the intensity exponent n .

ig. 29 shows corresponding impact power distributions on the foil

urface for n = 0 . 5 , n = 1 . 0 and n = 2 . 0 , where all three distribu-

ions are depicted for the same data range of the impact power

 ̇ e S 〉 . Fig. 30 depicts the same distributions, however normalized

y the maximum values of each of the individual distributions.

he simulation has been run for 0.402 s, which corresponds to

7 shedding cycles at the identified shedding frequency of 192 Hz.
.0 0.1 0.2 0.3 0.4 0.5

t = t0 + 0 .50 ms

t = t0 + 1 .75 ms

(see Eq. (13) ) depicted on the foil surface and the time averaged pressure field 〈 p 〉 t 
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Fig. 29. Surface distributions of the averaged impact powers 〈 ̇ e S 〉 e S (left) and 〈 ̇ e S 〉 f 
(right) given by Eqs. (21) and (22) for different values of the intensity exponent n ; 
flow from right to left. 
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Fig. 30. Surface distributions of the averaged impact powers 〈 ̇ e S 〉 e S and 〈 ̇ e S 〉 f de- 
picted in Fig. 29 normalized by the maximum value of the corresponding individual 
distributions; flow from right to left. 

Fig. 31. Damage pattern on the NACA0015 hydrofoil surface obtained by Van Rijs- 
bergen et al. (2012) from experimental paint tests (left) and high erosion risk areas 
on the same foil identified by Li et al. (2014) from numerical modeling (right, the 
colored figure is found in Li (2012) ); results by Li et al. (2014) are obtained from 
the erosion risk indicator I Erosion = 1 /N 

� N 
i =1 I i , where I i = � p/� t if � p/� t ≤ threshold 

and I i = 0 otherwise; flow from right to left. 
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V  
oth Figs. 29 and 30 indicate two main impact areas. The first dis-

inct impact region is located close to the leading edge at approx-

mately 20% of the cord length from the leading edge, where cav-

ties are typically pinched off from the sheet cavity and shed into

he main flow. A large part of the shed vapor volume collapses

irectly downstream from the mean suction pressure peak, form-

ng a second and rather scattered impact area. Some cavities are

dvected towards the trailing edge of the foil, where the impact

attern is predominantly shaped by collapsing horseshoe cavities.

he dimensionless distributions in Fig. 30 show that the second

mpact area gets more scattered and stretches further out towards

he trailing edge as n increases. This is because the collapse events

t the trailing edge occur less frequently than the collapse events

urther upstream, but if they occur, they are more violent. For the

ame reason, the horseshoe footprint is also more pronounced in

he surface distribution obtained from the 〈 ̇ e S 〉 e S function given by

q. (21) than from the 〈 ̇ e S 〉 f function given by Eq. (22) , because the

 ̇ e S 〉 f function value steadily decreases over times in which no sig-

ificant impacts occur. The latter aspect also explains why the dis-

ribution predicted from Eq. (21) is of larger magnitude than the

istribution predicted from Eq. (22) , which is clearly visible from

ig. 29 . It is also noted that the result obtained from the 〈 ̇ e S 〉 f 
unction and n = 0 . 5 exhibits strong similarity with the distribu-

ion of accumulated surface energy per time in Fig. 27 (right). The

eason is that 〈 ̇ e S 〉 f tends to the accumulated surface energy e S ( t 
∗)

er sample time t ∗ as the intensity exponent n tends to 0, as it has

een shown from the analytical study on the impact power func-

ion response behavior. It is further observed that the intensity of

he second impact area relative to the first impact area further up-

tream increases with increasing values of n . As shown by Fig. 32 ,

his effect becomes even more noticeable in the 〈 ̇ e S 〉 e distribu-

S 
ion for n = 4 . 0 , which has been obtained from a physical simu-

ation time of 0.192 s, corresponding to 37 shedding cycles. In this

ase, the largest flow aggressiveness is observed close to the trail-

ng edge, whereas the distribution obtained from n = 1 . 0 for the

ame simulation predicts the most aggressive events rather close

o the leading edge. Again, this shows that the most violent col-

apse events occur close to the trailing edge, but also that those

vents occur less frequently such that the accumulation of energy

ssociated with them is still smaller than for the more frequent

ollapse events further upstream. For both impact power functions

 ̇ e S 〉 e S and 〈 ̇ e S 〉 f and all investigated values of the intensity expo-

ent n , the transition from the first to the second impact region

ppears to be very sharp. Both impact regions are interrupted by a

istinct low impact region. 

As seen from Fig. 31 (left), the damage pattern obtained by

an Rijsbergen et al. (2012) from experimental paint tests show
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Fig. 32. Surface distribution of the averaged impact power 〈 ̇ e S 〉 e S given by 
Eq. (21) for n = 4 . 0 (left) and n = 1 . 0 (right), where the impact footprints result- 
ing from the horseshoe cavity collapses at the trailing edge are more pronounced 
for n = 4 . 0 ; flow from right to left. 
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qualitative agreement with the numerical results. It is noted that

the comparison can be of qualitative nature only. It has been

shown by Mantzaris et al. (2015) that the reproducibility of paint

tests is limited because the painting procedure or other parameters

such as paint thickness can strongly affect the results. Distinct re-

gions of aggressive events are identified in the cavity pinch-off re-

gion and the main cavity collapse region further downstream. Sim-

ilar to the numerical results, both regions are interrupted by a re-

gion of low erosive aggressiveness. The second main impact region

is observed to stretch out close to the trailing edge as well. The

qualitative match of the numerically obtained impact power distri-

bution with the experimentally obtained damage pattern increases

as the intensity exponent is gradually increased from n = 0 . 5 to

n = 4 . 0 . The match improves in the sense that the power impact

distribution in the first impact zone close to the leading edge gets

less pronounced compared to the distribution in the second im-

pact zone close to the trailing edge, and that the second impact

zone stretches further towards the trailing edge as the intensity

exponent n increases. Different from the approach presented in

this study, Li et al. (2014) assumed the local partial pressure time

derivative � p / � t to be a measure for the impact aggressiveness.

They derived the erosion risk indicator I Erosion = 1 /N 
� N 

i =1 I i , where

I i = � p/� t if � p / � t exceeds a predefined threshold level and I i = 0

otherwise. As explained in Section 2.2 , the approach presented in

this study is based on the energy conservative conversion of po-

tential energy into local impact power. This requires to compute

the local impact from the volume change of all collapsing cavities,

where the involved pressure is interpreted as the driving pressure

according to the potential energy hypothesis ( Vogel and Lauter-

born, 1988 ). An impact distribution obtained by Li et al. (2014) for

the same test case is depicted in Fig. 31 (right), indicating the most

aggressive region right next to the leading edge. Even though the

close vicinity of the leading edge had to remain unpainted in the

experiment by Van Rijsbergen et al. (2012) due to the presence of

roughness grains, it is likely that Li et al. (2014) overpredict the

flow aggressiveness at the leading edge relative to the flow ag-

gressiveness further downstream. The most important difference,

however, is that the relative flow aggressiveness predicted from the

pressure time derivative does not seem to shift towards the trail-

ing edge when the threshold level is increased. The impacts asso-

ciated with the collapse of horseshoe cavities even disappeared in

the study by Li et al. (2014) when exceeding a certain threshold,

whereas the leading edge impacts were still captured. This sug-

gests that the pressure time derivative criterion fails to predict the

violent cavity collapses downstream from the pressure recovery re-

gion, at least when applied in the context of unsteady RaNS equa-

tions and the mass transfer modeling approach. 
. Summary & conclusion 

A new method to assess the erosive aggressiveness of cavitat-

ng flows is introduced in this study. To this end, an aggressiveness

ndicator is derived which is applicable to cavitating flow simula-

ions involving mass transfer modeling as typically used for en-

ineering problems. The indicator is derived in two steps. Start-

ng from the potential energy hypothesis by Hammitt (1963) and

ogel and Lauterborn (1988) , the first step involves an energy con-

ervative conversion of locally radiated power into local surface

mpact power. A modified formulation of the cavitation intensity

pproach proposed by Leclercq et al. (2017) is employed in this

tep. Leclercq et al. (2017) have formulated a discrete energy cas-

ade model in the sense that it involves the solid angle projection

f potential energy released from the cavity collapse on triangu-

ar surface elements. In this study, a fully continuous form of the

odel is derived, allowing for the evaluation of the surface specific

mpact power on a surface point. This again facilitates the applica-

ion of the model to a finite grid. The second step concerns the as-

essment of the aggressiveness of the cavitating flow. Two impact

ower functions are proposed to compute a weighted average of

he local impact power. In both functions, the peak amplitudes of

n impact signal are given increasing weight with increasing val-

es of the intensity exponent n . For moderate and small values of

 , the two impact power functions exhibit different behavior. The

unction 〈 ̇ e S 〉 f given by Eq. (22) on the one hand returns the ac-

umulated surface energy per sample time as n → 0 and always

emains active. The function given by Eq. (21) on the other hand

s only active when energy intake takes place and is hence well

uited to assess the aggressiveness of individual collapse events. 

Grid and time step studies have been performed on idealized

acroscopic cavities imploding close to a solid wall to verify the

pproach. The cavity collapse time has been found to be much

ore sensitive to time resolution than to grid resolution. Wall in-

eraction turned out to strongly influence the rapidness of the cav-

ty collapse. It has been shown in this study that a ring cavity par-

llel to a solid wall collapses much less violently than a horseshoe

avity of identical torus diameter and tube diameter. Whether a

etached bubble is more aggressive than a hemispherical attached

ubble of the same diameter depends on whether the focusing of

ccumulated energy or the focusing of impact power is taken as a

easure for the flow aggressiveness. The focusing of accumulated

mpact energy on the one hand predicts the detached bubble to

e more aggressive. The averaged impact power on the other pre-

icts the hemisphere to be more aggressiveness. This is explained

y the symmetry of the hemisphere collapse as also hypothesized

y Bark et al. (2004) . The collapse symmetry, however, may also

artially be a result of the absence of viscous and surface tension

orces in the flow simulation. A general comparison between the

pherical and the toroidal shapes cannot be drawn from this study,

ecause the flow conditions under which both cavity types typi-

ally occur in reality are very different. 

The erosion risk assessment method has further been evaluated

or the cavitating flow around a NACA0015 hydrofoil. A good match

f the numerically obtained cavity shedding frequency with the

hedding frequency identified by Van Rijsbergen et al. (2012) from

he experiment is achieved. Also the break up of the shed cavities

nto secondary vortical cavitating structures is captured well by the

nviscid flow simulation (see Schenke and van Terwigsa, 2017 and

chmidt et al., 2009 ). The surface impact distribution has been

omputed for a variation of the intensity exponent n . For n = 0 . 5 ,
requently impacted locations are emphasized and the obtained

istribution shows strong similarity to the distribution of accu-

ulated surface energy per sample time. For larger values up to

 = 4 . 0 , the impact power peaks are given more weight. This al-

ows for the identification of locations of less frequent but high
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ower impacts and identifies the horseshoe cavity collapsing to-

ards the trailing edge as a particularly violent cavity type. This

nding agrees with the experimental observations by Van Rijsber-

en et al. (2012) . In this particular case, a good qualitative match of

he impact distribution with the experimentally obtained damage

attern is achieved for rather large values of the intensity expo-

ent n . This indicates that the removal of paint in the experiment

s partially related to the aggressiveness of a few extreme situa-

ions and not purely to the accumulation of energy over time. It

s concluded from both the idealized cavity collapse study and the

ydrofoil test case, that it is important to know whether it is rather

he accumulation of impact energy over time or the impact power

agnitude of the individual collapse event that is responsible for

urface erosion. Presumably, it is a combination of both, where the

ppropriate weight on either mechanism is hypothesized to be ma-

erial dependent. The intensity exponent n proposed in this study

llows us to impose a corresponding weight on the averaged im-

act power, where further research is needed to link the intensity

xponent n to material properties. If the material is rather sensi-

ive to the accumulation of surface energy, low values of n in the

rder of 1 or lower would be appropriate, whereas a strong depen-

ency on a few isolated extreme events would be reflected by large

alues of n. Regardless of what the appropriate value for a specific

aterial would be, a variation of the intensity exponent n is always

elpful to clearly distinguish surface locations of high frequent but

ather low power amplitude impacts from such surface locations

hat are impacted less frequently but at higher power amplitudes. 

The largest numerical error source in the cavitation intensity

pproach stems from the reconstruction of the velocity divergence

eld, needed to compute the instantaneous release of potential en-

rgy from the individual grid cell. Compared to the uncertainty

nvolved in the prediction of peak pressure loads from the mass

ransfer approach ( Schenke and van Terwisga, 2017 ), the cavita-

ion intensity approach still turns out to be more reliable. From

he modeling point of view, the computation of the instantaneous

mpact power mainly suffers from two inconsistencies. One con-

erns the driving pressure p d , which is typically unknown in com-

lex flow situations. This is a problem because the driving pres-

ure difference p d − p v is needed to compute the potential cav-

ty energy and hence the instantaneous power radiation from an

mploding cavity. It is proposed that the driving pressure field p d 
an be approximated by the steady time averaged pressure field

nder cavitating flow conditions, thereby providing an estimate of

he ambient conditions driving the cavity collapse on statistical av-

rage ( Schenke and van Terwisga, 2018 ). If the inflow condition

s unsteady, a moving average with an appropriate time window

orresponding to the time scale of the unsteady inflow might be

onsidered. Even for cyclic flows with steady state inflow condi-

ions, a moving time window adjusted to the characteristic pe-

iod of cavity shedding might help to obtain a better estimate of

he pressure field instantaneously driving the cavity collapses. The

econd inconsistency concerns the assumption on how the poten-

ial cavity energy is released. It is assumed that the energy release

akes place instantaneously as the cavities collapse, whereas in re-

lity the wave energy is transported by the shock wave emitted

rom the collapse event. It is also assumed that the energy propa-

ates at infinite speed and not at the speed of the associated shock

ave. The effect of these simplifications on the impact location

s supposed to be small. This is because both the cavity collapse

peed and the shock wave propagation speed can be assumed to

e much larger than the advective transport in any collapse situ-

tion that is rapid enough to be potentially aggressive. However,

urther validation studies are needed to learn to what extent the

nstantaneous surface impact power obtained from the cavitation

ntensity approach agrees with the power signal of realistic shock

aves. A more detailed comparison between signals obtained from
he cavitation intensity approach and acoustic emission sensor sig-

als ( Boorsma and Fitzsimmons, 2009 ) obtained by Van Rijsbergen

t al. (2012) for the NACA0015 hydrofoil test case investigated in

his study might be of special interest. 
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