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A rank-constrained reformulation of the blind deconvolution problem on images taken with coherent illumina-
tion is proposed. Since in the reformulation the rank constraint is imposed on a matrix that is affine in the
decision variables, we propose a novel convex heuristic for the blind deconvolution problem. The proposed heu-
ristic allows for easy incorporation of prior information on the decision variables and the use of the phase diversity
concept. The convex optimization problem can be iteratively re-parameterized to obtain better estimates. The

proposed methods are demonstrated on numerically illustrative examples.
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1. INTRODUCTION

In application areas such as coherent diffraction imaging (CDI)
[1], long-range horizontal imaging [2], imaging of layered
metamaterials [3], or ptychography [4], the image formation
process can be described using the expressions for imaging with
coherent illumination [5]

y = lg, * h%, U]

where y denotes the (noiseless) measurement (recorded discre-
tized image), and |-|*> denotes the element-wise squared
absolute value of the complex-valued argument, in this case
the complex field in the imaging plane. g, is the object-plane
complex amplitude, and h denotes the amplitude impulse re-
sponse. % is the (discrete) convolution operator. The amplitude
impulse response is sometimes called the coberent point spread
function (coherent PSF). In ptychography, for example, the
quantities of interest are the Fourier transforms of g, or h.

If either g, or h is known, and the other is to be estimated
based on the measurements y, then this problem is called a
phase retrieval problem. If both quantities are to be estimated
based on y, then the problem is called a blind deconvolution
problem. The method proposed in this paper can be seen as
an extension of a method we proposed in [6] for phase retrieval,
where that algorithm is compared to other standard phase
retrieval methods.

In this paper we consider the blind deconvolution problem
for images taken with coherent illumination, that is,

find g, h
subject to y = |g, * h|?,
g, €Ky h ey, (2
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where /C denotes a set of (convex) constraints on the variables
that encode the available prior information.

This blind deconvolution problem is different from what is
typically encountered in the literature, the blind deconvolution
problem for images taken with incoberent illumination [5]

find f,s
subject to y =f xs,
feKgsek,, (3)

where f = |g,|? is the (real and positive valued) intensity of the
object in the object plane, and s = |h|? is the intensity impulse
response, more often called the point spread function. For the
incoherent illumination case, there are several categories of
blind deconvolution methods in the literature. Classic iterative
projection methods [7-11] use alternating projections of the
estimates and their Fourier transforms on their respective con-
straints in the constraint sets. A second group is that of (non-
convex), gradient-based optimization approaches [12], includ-
ing Bayesian estimation approaches [13-15]. A downside of
gradient-based approaches is that the initial guess is often cru-
cial for performance. Recently, a third group of algorithms is
being developed based on convex optimization of a “lifted”
problem [16-19]. The “lifting” of the problem hinders the
use of phase diversity [20], a powerful type of prior information,
which can be described as a linear constraint on h for different
images with different phase diversities.

For the illumination blind deconvolution
problem, we can make the same classifications.

In the first category, there is [21,22], where the extended
Ptychographical Iterative Engine (ePIE) is proposed, an iterative
transform algorithm for ptychography. Other iterative Fourier
transform-based techniques are [23-29].

coherent
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In the second category, there are the methods proposed in
[30,31] for the estimation of wavefront errors in CDI and in
ptychography [32-34]. Reference [35] compares the perfor-
mance of several gradient descent schemes showing superior
robustness to noise for amplitude-based metrics. Refinement
of a guessed object and wavefront aberration in a maximum
likelihood context can be found in [36]. Related to this, gra-
dient-descent schemes are also popular in ptychography for
compensating for positioning errors [37].

A convex optimization-based approach has, to the best of
our knowledge, not been applied to the coherent blind decon-
volution problem in the literature. For example, in ptychogra-
phy, [38] only solves the deconvolution problem, not the blind
deconvolution problem, using convex optimization-based heu-
ristic methods.

In this paper we propose a blind deconvolution method for
the coherent illumination case based on a rank-constrained re-
formulation of Eq. (2). The reformulation is such that the use
of multiple images and phase diversity is easily incorporated
into the reformulation and subsequent optimization problem.
To attempt to find a solution with rank constraints satisfied, we
propose to use the nuclear norm as a convex heuristic for the
rank constraint. An iterative extension of the subsequent con-
vex optimization problem is proposed to possibly improve the
convex heuristic approximation. This iterative extension has
been shown in the validation studies to improve the results.
To anticipate the problem that the convex optimization prob-
lem results in an unsatisfactory solution, we propose an iterative
scheme of convex optimization problems that produces, in our
experience, iteratively improved results.

The organization of this paper is as follows. In Section 2
we formulate the blind deconvolution problem as a problem
to estimate a complex-valued object and the affinely parame-
terized pupil function of the optical system with unknown
phase aberration. Section 3 explains how to reformulate the
blind deconvolution into a rank-constraint problem with
constraints on matrices affinely parameterized in the object
and amplitude impulse response. Section 3.D describes the
convex heuristic for the problem, and Section 3.F describes
how to incorporate several types of prior information. In
Section 4 we demonstrate the algorithm on an illustrative
numerical example and compare our method to a gradient
descent scheme.

A. Notation

The operation x = vect(X) stacks the columns from the left to
right of matrix X on top of each other to obtain the vector x. ®
denotes the Kronecker product. 7, denotes an 7 x 7 identity
matrix. X = d(x) is the diagonal matrix with the values of
the vector x on its diagonal. The Hermitian transpose of X
is denoted by X*. The nuclear norm is denoted as || X],,
and the Frobenius norm as ||.X]|| .

2. PROBLEM DESCRIPTION

The generalized pupil function (GPF) characterizing an optical
system [5] is the complex-valued function

P(p,8) = A(p, 8) exp(jd(p, 6)), (4)

where (p, 8) are the radius and angle of the polar coordinates,
respectively. |p| < 1 and 8 €[0,21). A(p, B) is the amplitude
apodization function, and §(p, 8) € R is the phase aberration
function of the optical system.

To obtain more measurements of the same object g, with
different PSFs, a phase diversity ¢4 may be introduced into the
system by means of, for example, a deformable mirror. The
GPF then becomes

Py(p,0) = A(p, 6) exp(jd(p, 6)) exp(jba(p,0)).  (5)

In this paper we consider the problem in modal form: we as-
sume that the GPF can be well-approximated with a weighted
sum of basis functions. We use real-valued radial basis func-
tions and complex coefficients to approximate the GPF
[39]. Switching from polar coordinates (p,8) to Cartesian co-
ordinates (x,y), the radial basis functions and approximate
GPF are given by

G; = X(x69) exp(A((x = x)* + (= 3)%)s
P(x,y) = P(x,3,v) = v,Gi(x, ), ()
i=1
with (x;, y;) being the centers of the radial basis functions and
v; € C. X(x,y) is the aperture support function, A, is the spread
of the radial basis function, and v € C’ is the complex-valued
vector of coefficients v;. Including an introduced diversity
Gg(x,y), the approximate pupil function reads

v;Gi(x, ) exp(jda(x; y))- ()

i=1

ﬁd (x,9,v) =

The amplitude impulse response, also called the coberent
point spread function (coherent PSF), hy(u,v) is the (two-
dimensional) inverse Fourier transform of the GPF
>
hy(w,0) = v, FH{G(x,9) exp(ida(x. )}
i=1
>
= viBgi(u, ). @)
i=1
Here the coordinates (#, v) are the Cartesian coordinates in the
image plane of the optical system.
A complex amplitude in the object plane g,, imaged through
this optical system, in the case of coherent illumination, gives
the complex amplitude g; in the image plane [5] as follows:

g (u,v) = g, (u,v) * hy(u,v). 9)

In the noise-free case, the intensity of the complex field g; is
recorded to produce the measurements y as follows:

y(uv) = |g;(u, 0] (10)

We now drop the notation for the dependency on coordinates
and assume the signals y, g, g,, and h; are sampled on square
grids of sizes 7 x £, 7 x £, m x n, and p x g, respectively, such that
we obtain matrices of the corresponding size. Throughout this
paper we assume that the edges of g, and h, are zero padded,
which for the discrete two-dimensional convolution results in
the relation r =m+p-1,t=n+q-1.

With a slight abuse of notation, the blind deconvolution
problem in Eq. (2) has now turned into the problem to identify
g, and v from measurements y as follows:
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find g, v.h g,
subject to y = |g,|2,
g, =g, xh, h=By,

g, €N, heky (11)

Here the constraints y = |g;|> and g, =g, x h are non-
convex constraints. The prior information in Ky and Ky is

assumed to be a convex constraint on the decision variables.

3. BLIND DECONVOLUTION AS A RANK-
CONSTRAINED FEASIBILITY PROBLEM

The aim of this section is to rewrite Eq. (11) into a feasibility
problem with rank constraints: one rank constraint to replace
y = |g;|*, and one rank constraint to replace g, = g, * h.
In the following two subsections, we use the follow-
ing lemma:
Lemma 1 [40] Define the matrix

M(C,A,B,Q,X,Y, W, W5)

W, 0 C+AQY +XQB+XQY (A+X)Q
0 I QB+7Y) Q
W, 0 ’ 12)
0 I

where 7 is the identity matrix.

For any X of the same size as A, for any Y of the same size as
B, for any invertible matrices W, W, of a size corresponding
to the sizes of matrix C, and for nonzero Q, it holds that the
equality

rank(M(C,A,B, Q, X, Y, W, W,)) = rank(Q)
is equivalent to the equality
C =AQB. (13)

Note that variables 4 and B appear in a product in Eq. (13), but
they do not appear in a product in the matrix M in Eq. (12).

A. Convolution Constraint g, =g, x h

The two-dimensional (discrete) convolution of g, and Bv gives
the matrix g;. The elements of the matrix g; are given by the
summation of products of individual elements of g, with indi-
vidual elements of Bv. Lemma 2 states how this can be cast into
a bilinear matrix equality as follows:

Lemma 2 The constraint g, = g, * h is equivalent to the
bilinear equality

vect(g,) = (vect(g,)” ® 1,,)Vvect(Bv) (14)

for a matrix of zeros and ones V' & B""*#1,

Proof. See Appendix A.

In Eq. (14), the general bilinear form C = AQB of Lemma
1 shows through, with
A = (vect(g,)” ®1,,),

B = vect(Bv). (15)

C = vect(g,),
Q=Y,

We can therefore replace the constraint g; = g, % h with the
rank constraint

rank (M (vect(g;), vect(g,) T ® 1,,,vect(Bv), V. X, Y, W, W,))
= rank(V). (16)
The matrices X, Y, W, and W, are here further specified to
X = -vect(§) ® 1,,, Y = -vect(Bv),
w,=1, W,=1, (17)

where § and v are—for the moment—some guesses for g, and
v, respectively. The expression for the matrix-valued function
M we now abbreviate for notational convenience and call this
specific abbreviation M ;

M.(g,8,v. V. 8,V)

= M (vect(g;), vect(g,)” & 1,,,vect(Bv), V, X, Y, W, W,),
(18)

where M, € CUr+mmix(1+p9)

B. Measurement Constraint y = |g;|?

The treatment of the measurement constraints is similar to that
in [6]. The constraint y = |g,|? uses the element-wise operator
| - |. To obtain the relation between y and g; in matrix format,
we place the values on a matrix diagonal as follows:

y=lgl  divecly) = diveat(g,) d(vect(g)).  (19)
The related rank constraint is
rank (M (d(vect(y)), d(vect(g;))",
d(vect(g)), 1, X, Y, W, W,)) = rt. (20)
We further specify here that
X = ~d(vece®)”, ¥ = ~d(vect()),
W, =1, W, =1, (21)

where @ is a guess for g; Furthermore, we abbreviate the
arguments of M as

M, (y, g, 8) = M(d(veci(y)), d(vect(g;))",
d(vect(g)), 1, X, Y, W, W,), (22)
where M,, € C¥&2r,

C. Rank-Constrained Blind Deconvolution Problem

Using Eqgs. (16) and (20), the blind deconvolution problem in
Eq. (11) can be expressed as

find g,v, g, (23a)
subject to rank(M,,(y, g, 8)) = ¢, (23b)
rank(M (g, g, v, V., ®,v)) = rank(V), (23c)

g, €K, h=Bvek, (23d)

The caveat is that rank-constrained problems are in general NP-
hard, that is (informally), in general there do not exist algo-
rithms that can compute a guaranteed feasible solution within
a time that is bounded by a polynomial in the number of var-
iables. However, we can attempt to compute a solution
{gr,g",v*} and check whether the matrices M,,(y,g’, §)
and M, (gF, g* v, V,$®,v) have the correct rank.
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D. Convex Heuristic for Blind Deconvolution

Even though the reformulated problem with its rank con-
straints is still non-convex, we propose to use a convex heuris-
tic, the nuclear norm [41], to attempt to minimize the ranks of
the matrices involved. The nuclear norm of a matrix is defined
as the sum of the singular values of a matrix

XMl = 0:,X), (24)
where 0,;(X) is the 7th largest singular value of X. We can there-
fore use the nuclear norm as a convex heuristic for the blind
deconvolution problem to attempt to find a solution, but suc-

cess is not guaranteed. The convex optimization approach for
Eq. (23) is

min P[M,,(3, 8, @)l + 1M(g: 8, v V. 8, V)

g, € K, h = Bv € K, (25)

where the parameter 4 > 0 is a tuning parameter that weighs
the nuclear norm of matrix A,, with the nuclear norm of
matrix M.

The optimization problem in Eq. (25) is parameterized in
Egs. (17) and (21) by @, v, and §.. The interpretation is that,
given some guess {#,V, #.}, Eq. (25) produces a new estimate
{®7,v", § T} Motivated by [6,40], Eq. (25) can be used in an
iterative update scheme; see Algorithm 1.

Algorithm 1. Convex optimization-based blind deconvolution for
images taken with coherent illumination

1: procedure

2: E=0

3: while not converged do

4 Let {QHI,QHI,\?H]} be the arguments that minimize
Eq. (25).
k=lk+1

end while
end procedure

PR

Such an iterative scheme gives rise to three questions. First,
do the estimates converge to a fixed point? Second, are the re-
sulting estimates correct solutions to the blind deconvolution
problem? Third, if they converge, how fast do they converge?
Unfortunately, all three questions are very difficult to answer,
and we cannot provide a theoretical proof of convergence. We
do notice, however, that correct solutions of the blind decon-
volution problem are fixed points of Algorithm 1. For solutions
{gr,v*, g!} of the blind deconvolution problem, we verify that
by substitution

UM, (v, 87> 8Dl + 1M (8] 85 v* V., g), vl

0 0 0 0
=V o, T oo v

* *

= pre+ [Vl
(26)

which does not depend on any of the variables. So if
{®.v. 8} = {g' v g’} in Eq. (25), the optimal parameters
for Eq. (25) are {g,v*, g’}

The convergence speed properties and success rate of
Algorithm 1 depend on the initialization {§° v°,$°} and
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tuning of  and the matrices Wy, W, in Egs. (17) and (21). To
show the difference that tuning of W and W, in Egs. (17) and
(21) can make, we solve a small, one-dimensional blind decon-
volution problem with three different sets of tuning parameters
(see https://bitbucket.org/rdoelman/blinddeconvolution). We
set Wi = W, =m[l in Eq. 21), W =c¢I, Wy =¢,/ in
Eq. (17), and P = 1. The three sets of parameters (72, ¢}, ¢;)
are (1, 1, 1), (2, 1, 4), and (0.6, 1, 0.6). The different conver-
gence speeds can be seen in Fig. 1. It can be seen that the effect
of tuning on the convergence speed can be very large.
Unfortunately, we cannot provide general tuning rules that
optimize convergence speed.

E. Computational Complexity of Eq. (25)

The computational complexity of the nuclear norm minimiza-
tion in Eq. (25) can be estimated as follows. If we assume that
minimizing the nuclear norm of a matrix with 7 variables is of
approximately O(n°) when using a standard semidefinite pro-
gramming (SDP) solver [42], then solving Eq. (25) is of com-
plexity O((rt + mn + pq)®), which is very unfavorable for
practical applications. An alternating direction method of
muldpliers (ADMM, [43,44]) solution for Eq. (25) consists
of the singular value decomposition of the matrices M, €
Clrtmm<(+p9) and M,, € C¥>>" that are of O(r#(1 +
mn)(1 + pg)* + (1 + pq)°®) and O((r£)?), respectively.

Exploiting parallelization opportunities similar to [6], this
can be reduced to 7z singular value decompositions (SVDs)
with complexity O(max (mn, pq)?) and r¢ SVDs of matrices
of size 2 with complexity O(1), which can be computed in
parallel.

F. Including Prior Information and Regularization

The optimization in Eq. (25) is a convex optimization problem
in the decision parameters g;, g,, and v. This makes the addi-
tion of prior information and regularization very simple, if these
can be expressed as convex constraints or convex penalty func-
tions. The convex optimization-based blind deconvolution (for
incoherent illumination) techniques such as [17] are based on
directly estimating |g;|* and |h|?, making it difficult to apply
constraints on g, and h.

We here list some examples of prior information that can be

included.

s Measurement and convolution fit for three sets of weights
10 T T T T T

Measurement fit
. Convolution fit
100 e

10-5 k

Fit

10-10 k

10-15 k

10.20 1 1 1 1 1
10 20 30 40 50 60
Iteration

Fig. 1. Convergence of the constraint violations ||y = |§|*||% (mea-
surement fit) and ||, - § * BV|| (convolution fit) through updates
in Algorithm 1 for three different sets of tuning parameters.
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1. The imaged object has a known support (known
non-zero-valued pixels). This can be expressed as the constraint
Qvect(g,) = 0 for a selection matrix Q.

2. The imaged object is sparse, in the sense that many
pixels of g, have value 0. Tphis can be expressed through the
addition of a penalty term T ,|g,;| with regularization param-
eter T and 7 denoting the ith pixel.

3. The extension to the use of multiple images, taken with
different phase diversities, can be done by adding additional
terms to the objective function corresponding to the different
images and with addition of the constraints h, = B,v € K},
for the nth image.

4. In ptychography, overlapping parts of an object posi-
tioned in the pupil plane are imaged with the same “probe”
or amplitude transfer function. If we write the Fourier trans-
form as a linear mapping with a matrix F, vect(F{x}) =
F vect(x), then a shift in the position of the illuminated
object can be represented by the constraint F; vect(g,;) =
F, vect(g,,), where F| and F, are those parts of the Fourier
transform matrices that correspond to the overlapping part
of the object. This constraint addresses the problem that a
phase aberration of the probe can be attributed to the phase
of the object and the other way around.

4. NUMERICAL EXPERIMENTS

We implemented an ADMM algorithm in MATLAB to
compute the updates in Algorithm 1. Although this allows
for parallel computations of rtd SVDs with complexity
O(max (mn, pq)®), where d is the number of images taken,
and rzd SVDs with complexity O(1), we computed these in
series. Due to the computational complexity, we tested the al-
gorithm for two cases with small dimensions. Furthermore, the
ADMM algorithm that iteratively finds the optimal solution to
Eq. (25) is terminated after only 10 iterations.

For comparison, we implemented a gradient descent
method comparable to [30,31,36], but adapted to our formu-
lation with decision variables defined in the focal plane. An
accelerated gradient descent scheme, ADAM [45], is used to
speed up the procedure and automatically determine step
size. The step size I is tuned once up front to ensure conver-
gence. The settings are: B; = 0.8,B, = 0.999,€ =1-107%,
n=2-10"

The experiment models an unknown aberration consisting
of eight basis functions, as in Eq. (6), that approximate a small
defocus ¢ = 0.229, where Z9 is the defocus Zernike polyno-
mial. We take three images with phase diversities that are defoci
with coefficients #-2,0 and 2. Due to the computational
complexity, the aperture is undersampled when the amplitude
impulse response is computed, and the resulting matrix is cut to
a size of 5 x 5. The object g, is a complex-valued matrix of
dimensions 8 x 8, and the resulting measurements y are of size
12 x 12; see Figs. 2 and 3. The value of Y in Eq. (25) is tuned
to 0.55.

Both Algorithm 1 and the gradient descent method are
tested on a noiseless case and the same case where measurement
noise has been added with a signal-to-noise ratio (SNR) of
20 dB. Both algorithms in both cases are initialized with the
same initial guess, where the pixels of the initial object estimate
are randomly drawn from a Gaussian distribution and the
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Measurements, y
100%

Intensity impulse responses, |h|?

100%
— i i
0%
1 3 5 7 9 11 13 15

Fig. 2. Top: the three 12 x 12 (noiseless) measured intensities
y = |g, * h|>. Bottom: the three 5 x5 intensity impulse response
functions (point spread functions) s = |h|? corresponding to the three
different diversities that generate the different h.

i

w

ol

Object, [go| Object, Zg,

1 2
4[}]H 4Ii
05 0
8
0 8 2
4 8 4 8

Fig. 3. Left: the amplitude of the object. Right: the phase in radians
of the object.

initial guesses for the coefficients are those that best approxi-
mate zero aberration. The computation time for the proposed
method, implemented without taking advantage of parallel
computation of SVDs, is approximately 10 h for the 15,000
iterations as shown here. The computation time consists of
roughly 5 h for computation of SVDs, 40 min for solving
least-squares problems, and the rest is overhead. The gradient
descent method is much faster, with approximately 18 min for
1,00,000 iterations. The resulting norms of the residual be-
tween measurements and convolution of the estimated object
and amplitude impulse response are plotted in Fig. 4. As can be
seen in this figure, the gradient descent method gets stuck in
the noiseless case, whereas the proposed method converges to a
feasible solution.

The estimated values v and @, have an ambiguity, since for a
complex scalar ¢, cBv x § = Bv % cf). We can remove the
ambiguity from v, for example, when reporting the estimation
error by computing

min||cv = v||,. (27)
ceC

After removal of the ambiguity of the estimated values of g, and
v, we plot in Fig. 5 the norms of the residuals between the
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lly = g0 * h[*||»
T T T T T T T T T
100 B _———
\
\
\
| — — — COBBD, noiseless
| COBBD, noisy
\ — — —GD, noiseless
10°1 \ GD, noisy 7
o . . . . N N N
0 1 2 3 4 5 6 7 8 9 10
Iteration «10%

Fig. 4. Measurement fit generated by the two algorithms. Black:
Algorithm 1. Red: gradient descent. Solid lines show the case with
noisy measurements (SNR: 20 dB); dashed lines show the noiseless
case.

actual complex amplitude of the object g, and coefficients v
and their estimated values. As can be seen in this figure, the
proposed method converges in the noiseless case not just to
a feasible solution but to the correct solution, whereas the gra-
dient descent method stops progressing towards the solution. In
the noisy case, Algorithm 1 computes the solution with the best
estimated measurements (see Fig. 4) and with the best esti-
mated object (Fig. 5, top). The coefficients v have an estimate
that is further from the real coefficients than the estimate of the
gradient descent method, but given the measurement fit and fit
of g,, the effect of this error is small. The estimates resulting
from Algorithm 1 and from the gradient descent method of the
object g, are displayed in Fig. 6. From Fig. 6 it becomes clear
that even though in the noisy case the proposed method does
not converge to the exact solution, it converges to a solution
that resembles the original object quite well. Inspecting Fig. 5
shows that the gradient descent method provides estimates of

l1g0 = gollr
T

— S — T
wh—— ]

— — —COBBD, noiseless, g

COBBD, noisy, g

\ — — —GD, noiseless, g

GD, noisy, g
1

1 1 1
0 1 2 3 4 5 6 7 8 9 10
Iteration «10%

[lv—[lr
T

\ — — — COBBD, noiseless, v
COBBD, noisy, v

\ — — —GD, noiseless, v
10°F GD, noisy, v b
1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10
Iteration %104

Fig. 5. Frobenius norm of the residual between the true variables
g, the complex-valued object, and v, the radial basis function coef-
ficients, and the (ambiguity removed) estimated variables ¢, and v.
Top figure: residuals for g,. Bottom figure: residuals for v. Black:
Algorithm 1. Red: gradient descent. Solid lines show the case with
noisy measurements (SNR: 20 dB); dashed lines show the noiseless
case.

Noiseless case, magnitude Noiseless case, angle (on support)

COBBD

|0 [90] = 10

Noisy case, magnitude

COBBD COBBD

i

GD

|0 [9o] = 10

Fig.6. Estimates and residuals of g, using Algorithm 1 and gradient
descent with identical initialization. Top left: the estimated amplitude
of g, and the residual for the noiseless case. Top right: the estimated
angle of g, and the residual for the noiseless case. Bottom left: the
estimated amplitude of g, and the residual for the noisy case.
Bottom right: the estimated angle of g, and the residual for the noisy
case. Since estimates of very small complex values can have a radically
different complex angle, the angle is only plotted for the nonzero pixels

in the original object of Fig. 3.

Noiseless case
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0
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Fig. 7. Estimates of |h|. The maximum absolute value of b is scaled
to 1.

g, that are far from it. The resulting estimates of |h| are shown

in Fig. 7.

5. CONCLUSION AND FUTURE RESEARCH

We derived a convex heuristic for the blind deconvolution
problem for images taken with coherent illumination that is also
able to incorporate the concept of phase diversity. We suggested
an update scheme and demonstrated on a numerically illustra-
tive example that it is capable of retrieving the object and PSF
from a random initialization, thereby overcoming local minima.
At the moment, the method is computationally burdensome,
but we expect computational improvements similar to [6] by
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fully exploiting parallelization opportunities and the structure in
the optimization problems. Apart from the nuclear norm heu-
ristic, there are also other methods that attempt to find low rank
results, like the difference of convex programming (e.g., [46]) or
application of the truncated nuclear norm (e.g., [47]), but we
leave the evaluation of their performance for future research.
Several questions still remain open concerning optimal tuning
rules for the different parameters in the optimization, the per-
formance of other non-convex low-rank-inducing norms,
bounds on convergence speed, and the computational speed-
up by exploiting parallelization opportunities.

APPENDIX A: PROOF OF LEMMA 2

The vector z = vect(vect(g,)vect(Bv)T) lists all possible prod-
ucts between elements of g, and elements of Bv. Since the
elements of g;, the result of a discrete convolution, are sums
of specific elements of z, it is possible to construct a matrix
of zeros and ones L € B9 such that

vect(g,) = Lvect(vect(g,)vect(Bv)7). (A1)
Application of the identity [48]
vect(AXB) = (BT ® A)vect(X) (A2)
allows us to rewrite Eq. (Al) as
L(1,, ® vect(g,) Tvect(Bv). (A3)

Let /; be the ith row of L. Then, applying Eq. (A2) on the ith
row of Eq. (A3) gives

(1, ® vect(g,) Ty = vect(g,) " L;, (A4)

where /7 = vect(L;) and L; € B"”*1. Combining the expres-
sions for all rows, the result is

1
L

1
vect(g;) = (1, ® vect(g,) T)B gvect(Bv). (A5)
L

rt

Using a row reordering of the matrix with blocks Z; ([48],
Eq. 2.14) gives us V, the expression in Eq. (14).
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