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Summary

For controlling systems and more particularly rejecting a disturbance, a classical
approach consists of designing an observer either from data or solving a Riccati
equation. Although system identification has developed since the sixties and is
nowadays a well-established area, identifying from data the spatial and temporal
dynamics for large-scale systems with thousands of inputs and outputs remains
challenging from the computational point of view. There is a similar curse of
dimensionality when solving the discrete algebraic Riccati equation. In order to
reduce the memory storage and the computational requirements, prior knowledge
on how the sensors are spatially distributed is commonly translated into structural
assumptions on the system matrices. When the sensors are regularly spread on a two-
dimensional grid, and the underlying function that describes the spatial dynamics is
separable in its horizontal and vertical coordinates, a particular matrix representation
is studied. This assumption differs from the spatial invariance, Bamieh et al. (2002).

Adaptive Optics (AO) is one example of an application. AO is a control
methodology that allows high-resolution imaging of an object emitting little light
through an heterogeneous and time-varying medium. The algorithms are implemented
in ground-based telescopes to cope with the distorted phase of the light emitted from
a reference star and having travelled through a turbulent atmosphere. A deformable
mirror is used to reshape the incoming light and reject the atmosphere-induced
disturbances flowing over the telescope aperture. The performance of an AO system
is improved when the spatial-temporal correlations of the turbulence are used to
derive a prediction at the next time instant, thereby reducing the temporal error.
A next generation of large telescopes featuring 104 actuators and sensors demands
scalable predictive algorithms, both for deriving a Kalman filter and for online
computations.

We propose in this thesis a dense though data-sparse representation of the
matrices for linear time-invariant and so-called multi-dimensional systems, yielding
scalable algorithms for identification and paving the way for solving the DARE. The
system matrices are parametrized as a sum of Kronecker products of factor matrices.
When the number of summands r is small compared to the size of the actuator/sensor
array, the matrix belong to the class of low-Kronecker rank matrices. The parameter
r allows to make a trade-off between between the accuracy of the representation
maximized in an unstructured setting and the scalability of the developed algorithms.
This structure is a fortiori competitive with respect to the sparse multi-banded
structure when the matrix to be approximated is dense. Such a parametrization is
multi-linear, does not require sparsity in the entries and its storage scales linearly
with the number of nodes in the array instead of quadratically.

The first contribution of this thesis deals with the identification of large-scale
Vector Auto-Regressive models, [Chapter 2 ]. For an array of size N �N , the sensor
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viii Summary

data at each time instant is reshuffled into a matrix rather than a vector such that we
formulate a bilinear least-squares with rN 2 variables instead of N 4. Regularization
to enforce temporal stability or a decay in the factor matrices was incorporated
without altering the convergence to the global minimum of the Alternating Least
Squares. The computational complexity reduces from O(N 6) to O(N 3N t ), where
N t is the number of time samples used in the identification.

Second, the identification of state-space models is investigated, [Chapter 3 ].
When the state-space matrices are written with a single Kronecker product, a class
of matrix state-space models is introduced and a subspace-like algorithm is proposed.
The latter consists of three steps, two of which were shown to converge to the
global minimum (as observed empirically). Although its computational performances
allowed to handle much larger dimensions than the standard algorithms, it nonetheless
implies a decrease in accuracy due to the non-globally convergent block-coordinate
algorithm used to minimize the rank of a block-Hankel matrix subject to bilinear
constraints.

For all standard linear algebra operations, assuming a decomposition of the
factor matrices with a single Kronecker product of two terms implies a lower-bound
on the achievable computational complexity, equal to O(N 3) for an array of size
N � N . A linear computational complexity with respect to the number of nodes as
e.g would be obtained when the nodes are decoupled can not be reached this way,
and a parametrization with a product of more Kronecker products than only two was
studied. Its close relationship with tensors allowed to derive more efficient algorithms
reaching asymptotically with the tensor order O(N 2) complexity, [Chapter 4 ]. The
first tensor orders provide already with most of the computational improvements
without losing much accuracy as demonstrated in laboratory experiments dedicated
to large-scale AO described in [Chapter 6 ].

In some applications such as AO where the state has a physical meaning and
can be estimated - the wavefront-, it is common to derive the system matrices
using first principles, i.e without resorting to subspace identification. When these
can be decomposed as low-Kronecker rank matrices, natural questions are first,
whether the solution of the discrete algebraic Riccati equation can itself be written
(or approximated) as a sum of a few Kronecker terms, and second, whether it can
be solved efficiently using structure-preserving iterations. As a first step toward
answering these two questions, we solve the Kronecker-structured discrete Lyapunov
equation with O(N 3) complexity instead of O(N 6), [Chapter 5 ].

In addition to the fundamental new contributions, a validation study was
proposed based on an optical breadboard in the Smart Optics Lab of TU Delft,
[Chapter 6 ]. The use of tensor autoregressive models for modeling the spatial
dynamics of open-loop turbulence data and its applicability to closed-loop operation
for large-scale AO systems was demonstrated. Especially, we have shown that in
spite of losing performance because of structuring the coefficient matrices, it reduces
significantly the temporal error for large Greenwood per sample frequency ratio
compared to the non-predictive methods.

This PhD thesis draws pros and cons of a multi-linear parametrization of large
matrices of LTI systems, especially from an identification perspective. Besides, its
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close connection with tensors raised new fundamental questions in the analysis of
such structured systems.





Samenvatting

Voor het regelen van systemen en meer specifiek het afwijzen van een stochastische
verstoring bestaat een klassieke benadering uit het ontwerpen van een observer, hetzij
uit data, hetzij uit het oplossen van een Riccati vergelijking. Hoewel systeemidentifi-
catie sinds de jaren zestig onderzocht wordt en tegenwoordig een goed ontwikkeld
gebied is, blijft het vanuit rekenkundig oogpunt uitdagend de ruimtelijke en tijde-
lijke dynamica van grootschalige systemen met duizenden ingangen en uitgangen
te identificeren. Er is een soortgelijke vloek van dimensionaliteit bij het oplossen
van de discrete algebraïsche Riccati vergelijking. Teneinde de geheugenopslag en de
rekenvereisten te verminderen wordt voorkennis over hoe de actuatoren en senso-
ren gekoppeld worden gewoonlijk in structurele aannamen op de systeemmatrices
vertaald.

Toepassingen van tweedimensionale arrays van actuatoren en sensoren omvatten
Adaptive Optics (AO) voor extreem grote telescopen. AO is een besturingsmethode
die beeldvorming met hoge resolutie mogelijk maakt van een voorwerp dat weinig licht
door een heterogeen en in de tijd variërend medium emitteert. De algoritmen worden
geïmplementeerd in telescopen op de grond om de vervormde fase van het licht, dat
door een referentie ster uitgestraald wordt, te verwerken en door een turbulente
atmosfeer hebben gereisd. Een vervormbare spiegel word gebruikt om het invallende
licht opnieuw vorm te geven en door de atmosfeer veroorzaakte verstoringen die
over de telescoop opening lopen te verwerpen. De prestaties van een AO systeem
worden verbeterd wanneer de ruimtelijk-temporele correlaties van de turbulentie
worden gebruikt om een voorspelling af te leiden voor de volgende tijdstap, waardoor
de temporele fout wordt verminderd. Deze volgende generatie grote telescopen
met 104 actuatoren en sensoren werkt op kilohertz snelheden en vereist schaalbare
voorspellende algoritmen.

In dit proefschrift, stellen we een dichte maar gegevens-schaarse representatie
voor van de matrices voor lineaire tijd invariante en meerdimensionale systemen die
schaalbare identificatiealgoritmen opleveren. De systeem matrices worden gepara-
metriseerd als een som van Kronecker producten van factor matrices. Wanneer het
aantal summands r klein is in vergelijking met de grootte van de actuatoren/sensoren
array, dan behoort de matrix tot de klasse van laag Kronecker rang matrixen. De
parameter r maakt het mogelijk om een afweging te maken tussen de nauwkeurigheid
van de vertegenwoordiging gemaximaliseerd in een ongestructureerde instelling en
de schaalbarheid van de ontwikkelde algoritmen. Deze structuur is a fortiori concur-
rerend met betrekking tot de schaars multi-bandstructuur wanneer de te benaderen
matrix dicht is. Een dergelijke parametrisatie is multi-lineair, vereist geen sparsiteit
in de ingangen, en is opslagschalen lineair met het aantal knooppunten in de reeks
in plaats van kwadratisch.

De eerste bijdrage van dit proefschrift handelt over de identificatie van groot-
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xii Samenvatting

schalige Vector Auto-Regressieve modellen, [Hoofdstuk 2 ]. Voor een array van
N �N worden de sensorgegevens op elk tijdstip in een matrix herschikt in plaats van
een vector die een bilineaire least squares oplevert met rN 2 variabelen in plaats van
N 4. Regularisatie om temporele stabiliteit of een verval in de factor matrices af te
dwingen werd opgenomen zonder de convergentie naar het globale minimum van de
afwisselende least squares te veranderen. De rekenkundige complexiteit neemt af van
O(N 6) naar O(N 3N t ), waarbij N t het aantal tijdsamples is dat in de identificatie
gebruikt wordt.

Ten tweede wordt de identificatie van toestands modellen onderzocht,
[Hoofdstuk 3 ]. Wanneer de toestand matrices met een enkel Kronecker-product ge-
schreven worden, dan wordt een klasse van matrix toestand modellen geïntroduceerd
en wordt een subspace-achtig algoritme voorgesteld. Dit laatste bestaat uit drie
stappen, waarvan er wordt getoond dat twee convergeren naar het globale minimum
(zoals empirisch waargenomen wordt). Hoewel de rekenkost veel grotere dimensies
kunnen verwerken dan de standaardalgoritmen, impliceert dit niettemin een afname
in nauwkeurigheid vanwege het niet-globaal convergente blokcoördinatenalgoritme
dat gebruikt wordt om de rank van een blok-Hankel-matrix die onderhevig aan
bilineaire beperkingen is te minimaliseren.

Voor alle standaard lineaire algebra-bewerkingen impliceert een decompositie
van de factor-matrices met een enkel Kronecker-product van twee termen een on-
dergrens voor de bereikbare rekenkundige complexiteit, gelijk aan O(N 3) voor een
array van maat N �N . Een lineaire computationele complexiteit met betrekking tot
het aantal knooppunten zoals b.v. zou worden verkregen wanneer de knooppunten
worden ontkoppeld, kan niet op deze manier worden bereikt, en een parametrisering
met een product van meer Kronecker-producten dan slechts twee werd bestudeerd.
Door de nauwe relatie met tensoren konden efficiëntere algoritmen asymptotisch
worden afgeleid met de complexiteit van de tensororder O(N 2), [Hoofdstuk 4 ].
De eerste tensororders bieden al de meeste reken technische verbeteringen zonder
veel nauwkeurigheid te verliezen, zoals aangetoond in laboratoriumexperimenten die
gewijd zijn aan grootschalige AO beschreven in [Hoofdstuk 6 ].

In sommige toepassingen zoals AO, waar de toestand een fysieke betekenis heeft
en kan worden geschat - het wavefront -, is het gebruikelijk om de systeemmatrices
af te leiden met behulp van de first principles, d.w.z. zonder toevlucht te nemen
tot subspace identificatie. Wanneer deze als laag-Kronecker rang matrices kunnen
worden ontbonden, is natuurlijk de eerste vraag of de oplossing van de discrete
algebraïsche Riccati-vergelijking zelf kan worden geschreven (of benaderd) als een
som van een paar Kronecker-termen, en ten tweede of het efficiënt opgelost kan
worden met behulp van structuurbehoudende iteraties. Als een eerste stap naar
het beantwoorden van deze twee vragen lossen we de Kronecker-gestructureerde
discrete Lyapunov-vergelijking op met O(N 3) complexiteit in plaats van O(N 6),
[Hoofdstuk 5 ]. Het eerste algoritme dat voorgesteld wordt, is afhankelijk van de
Smith’s iteratie, terwijl de tweede gebruik maakt van Alternate Direction Implicit
methode, waarbij elk van deze laatste een Sylvester vergelijking van veel kleinere
omvang oplost.

Naast de fundamentele nieuwe bijdragen, werd een validatiestudie voorge-
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steld op basis van een optische breadboard in het Smart Optics Lab van de TU
Delft, [Hoofdstuck 6 ]. Het gebruik van tensor autoregressieve modellen voor het
modelleren van de ruimtelijke dynamiek van open-loop turbulentiegegevens en de
toepasbaarheid ervan in gesloten-lus bedrijf voor grootschalige AO-systemen werd
gedemonstreerd. In het bijzonder hebben we aangetoond dat, ondanks het verliezen
van prestaties door het structureren van de coëfficiëntmatrices, de temporele fout
aanzienlijk wordt gereduceerd voor grote Greenwood per samplefrequentie verhouding
vergeleken met de niet-voorspellende methoden.

Dit proefschrift beschrijft de voor- en nadelen van een multilineaire parametri-
satie van grote matrices van LTI-systemen, vooral vanuit een identificatieperspectief.
Bovendien leverde de nauwe band met tensoren nieuwe fundamentele vragen op bij
de analyse van dergelijke gestructureerde systemen.





Contents

Acknowledgements v

Summary vii

Samenvatting xi

Acronyms 1

Notations 3

1 Introduction 5
1.1 Large and spatially distributed systems . . . . . . . . . . . . . . . . . 6

1.1.1 System identification . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Examples of multi-dimensional sensor grids . . . . . . . . . . . 8
1.1.3 The spatio-temporal impulse response. . . . . . . . . . . . . . 11

1.2 Describing the set of model candidates . . . . . . . . . . . . . . . . . 13
1.2.1 A local description of the spatial-temporal dynamics . . . . . . 15
1.2.2 A modal analysis of large-scale systems . . . . . . . . . . . . . 17
1.2.3 On the importance of preserving the structure in standard

linear algebra operations . . . . . . . . . . . . . . . . . . . . . 19
1.2.4 Roesser models in image processing . . . . . . . . . . . . . . . 24

1.3 Research question. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4 Controlling large-scale adaptive optics systems . . . . . . . . . . . . . 27

1.4.1 Seeing-limited and diffraction-limited imaging systems . . . . . 28
1.4.2 Adaptive optics systems . . . . . . . . . . . . . . . . . . . . . 29
1.4.3 Control for large-scale AO . . . . . . . . . . . . . . . . . . . . 34
1.4.4 Turbulence prediction . . . . . . . . . . . . . . . . . . . . . . 35
1.4.5 Research question. . . . . . . . . . . . . . . . . . . . . . . . . 39

1.5 Research direction and main contributions . . . . . . . . . . . . . . . 40
1.6 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Identifying Kronecker-structured auto-regressive models 45
2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.1 QUARKS models . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.2 The identification problem of QUARKS models . . . . . . . . 53

2.4 Regularization inducing stability and sparsity . . . . . . . . . . . . . 55
2.4.1 Stability of VAR models . . . . . . . . . . . . . . . . . . . . . 55
2.4.2 Spatial sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4.3 Structured factor matrices . . . . . . . . . . . . . . . . . . . . 56
2.4.4 The regularized cost function for QUARKS identification . . . 57

xv



xvi Contents

2.5 A bi-convex cost function . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.1 An Alternating Least Squares approach . . . . . . . . . . . . . 57
2.5.2 Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5.3 Computational complexity . . . . . . . . . . . . . . . . . . . . 62

2.6 Numerical examples: batches of data . . . . . . . . . . . . . . . . . . 63
2.6.1 Illustrating convergence . . . . . . . . . . . . . . . . . . . . . 63
2.6.2 Case study: Adaptive optics . . . . . . . . . . . . . . . . . . . 65

2.7 Recursive updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.7.1 RLS for updating unstructured VAR models . . . . . . . . . . 70
2.7.2 RLS for QUARKS models . . . . . . . . . . . . . . . . . . . . 71
2.7.3 Computational complexity . . . . . . . . . . . . . . . . . . . . 73

2.8 Numerical examples: recursive updates . . . . . . . . . . . . . . . . . 73
2.8.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.8.2 Laboratory validation . . . . . . . . . . . . . . . . . . . . . . 76

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3 Identifying Kronecker-structured state-space models 83
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3 High-order FIR estimation . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.1 A QUARKS model . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.2 Computational complexity . . . . . . . . . . . . . . . . . . . . 92

3.4 Estimation of the impulse responses up to a scaling factor . . . . . . . 92
3.4.1 A low-rank block-Hankel matrix. . . . . . . . . . . . . . . . . 93
3.4.2 A bilinear constrained low-rank optimization . . . . . . . . . . 97
3.4.3 Computational complexity . . . . . . . . . . . . . . . . . . . . 98

3.5 Estimating the state-space matrices . . . . . . . . . . . . . . . . . . . 99
3.5.1 A data-equation in matrix form . . . . . . . . . . . . . . . . . 99
3.5.2 Estimating the tensor . . . . . . . . . . . . . . . . . . . . . . 101
3.5.3 Computational complexity . . . . . . . . . . . . . . . . . . . . 105

3.6 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.6.1 The model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.6.2 Analyzing the prediction-error . . . . . . . . . . . . . . . . . . 107
3.6.3 Storage complexity . . . . . . . . . . . . . . . . . . . . . . . . 108
3.6.4 Timing experiments . . . . . . . . . . . . . . . . . . . . . . . 108

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4 Scaling up 111
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2 State-space models for multi-dimensional systems . . . . . . . . . . . 114
4.3 Subspace-like algorithm, SEP-T4SID . . . . . . . . . . . . . . . . . . 118

4.3.1 Identification of tensor auto-regressive models . . . . . . . . . 118
4.3.2 Low-rank optimization subject to multi-linear equality con-

straints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.3.3 Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



Contents xvii

4.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5 Solving Kronecker-structured discrete Lyapunov equations 131
5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3 The squared Smith’s method. . . . . . . . . . . . . . . . . . . . . . . 134

5.3.1 Structure-preserving operations . . . . . . . . . . . . . . . . . 135
5.3.2 Adding, multiplying and transposing . . . . . . . . . . . . . . 135
5.3.3 Truncating the Kronecker rank of matrices . . . . . . . . . . . 136
5.3.4 Pitfalls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.4 Using a factored Alternating Direction Implicit method . . . . . . . . 141
5.5 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.5.1 Sufficient conditions for a low-Kronecker rank solution. . . . . 144
5.5.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Tensor-based predictive control for large-scale SCAO 147
6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.2 Predictive control in the time domain for adaptive optics . . . . . . . 148
6.3 Tensorizing the sensor data . . . . . . . . . . . . . . . . . . . . . . . 150
6.4 Computational gains . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.5 The experimental testbed . . . . . . . . . . . . . . . . . . . . . . . . 153

6.5.1 Description of the system . . . . . . . . . . . . . . . . . . . . 153
6.5.2 Control approach used for comparison. . . . . . . . . . . . . . 156
6.5.3 Calibrating the system . . . . . . . . . . . . . . . . . . . . . . 157

6.6 Analysis of predictive algorithms using open-loop data. . . . . . . . . 158
6.7 Closed-loop performances . . . . . . . . . . . . . . . . . . . . . . . . 162
6.8 Two disks rotating in conjugated planes. . . . . . . . . . . . . . . . . 163
6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Conclusions and recommendations 167
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.2.1 The question of circular apertures . . . . . . . . . . . . . . . . 172
7.2.2 Identification algorithms for state-space models . . . . . . . . 173
7.2.3 The Kronecker-structured DARE . . . . . . . . . . . . . . . . 173
7.2.4 Parametrizing the factors . . . . . . . . . . . . . . . . . . . . 174
7.2.5 Assuming another tensor decomposition of the reshuffled ma-

trix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.2.6 Communication scheme and the implementation . . . . . . . . 176

Appendices 177

A The Kronecker product 179

B Fundaments on tensors 181

Bibliography 187



xviii Contents

List of Publications 199

Curriculum Vitæ 201



Acronyms

ADI Alternate Direction Implicit
ADMM Alternating Direction Method of Multipliers
AIC Akaike Information Criteria
ALS Alternating Least Squares
AO Adaptive Optics
BCU Block-Coordinate Update
CCD Charged-Coupled Device
CPD Canonical Polyadic Decomposition
CPU Central Processing Unit
DARE Discrete Algebraic Riccati Equation
DM Deformable Mirror
EE Encircled Energy
ELT Extremely Large Telescope
FIR Finite-Impulse Response
GPU Graphical Processing Units
IEEE Institute of Electrical and Electronics Engineers
K4SID Kronecker-Structured large-Scale SubSpace IDentification
LQG Linear Quadratic Gaussian
LTI Linear Time Invariant
MLDS Multi Linear Dynamical System
MOESP Multivariable Output Error State sPace
MSSM Matrix State Space Model
MVM Matrix Vector Multiplication
N4SID Numerical algorithms for Subspace State Space System IDentification
PBSID Predictor Based Subspace IDentification
PSF Point Spread Function
QUARKS Kronecker-based Vector AutoRegressive with eXogenous inputs (KVARX)
RMSE Root Mean Square Error
SCAO Single Conjugate Adaptive Optics
SH Shack-Hartmann
SNR Signal to Noise Ratio
SOK Sums Of Kronecker
SSARX SubSpace identification method that uses an ARX estimation
SSS Sequentially Semi-Separable
SVD Singular Value Decomposition
TSSM Tensor State-Space Model
VAF Variance Accounted For
VARX Vector AutoRegressive with eXogeneous inputs
WFS Wavefront sensor

1





Notations

The notations commonly used throughout the dissertation are introduced here. Other
chapter-specific notations are introduced in the respective chapter.

The set of real number is denoted with R. The set of positive integers is denoted
with N. For a set 
 , card(
) denotes the number of elements in 
 .

Scalars are denoted by lower or uppercase letters or symbols. The floor of the
real number x denoted with bxc and the remainder after division of x by y with
mod(x; y).

Vectors are written as boldface lower-case letters such as x . The boldface is
used to make a distinction between indexing a set of vectors, such as x1; x2, and
referring to the elements of a single vector x 2 Rn , such as x1; : : : ; xn . The null
vector and the vector of ones are denoted by 0 and 1 respectively, where an index
can be used to explicitly show the size e.g 1n 2 Rn . The Euclidean norm of a vector
x is written as kxk2 =

p
x2

1 + : : : + x2
n =

p
hx; xi. The sum in absolute value for

the elements in x 2 Rn is denoted with kxk1 =
P n

i =1 jx i j. The covariance for two
zero-mean vectors x and y is written as E

�
xy T

�
.

Matrices are represented by boldface uppercase letters such has X . The element
located at the i -th row and j -th column of the matrix X is written as x i;j , or x?i;j

when the matrix has a subscript ?. Matlab-like notations are used to denote
columns and rows of matrices, e.g X (:; i ) refers to the i -th column of X , X (i ; :) the
i -th row. The matrix X (a:i:b,c:j:d ) selects a submatrix from X composed of
all entries with row index a + ki (until it reaches b) and column index c + kj (until
d) where k is an integer starting at 0. The trace, transpose and inverse (if it exists)
of X are written respectively with Trace(X ); X T and X � 1. The Frobenius norm for
a matrix X 2 Rm � n is denoted with kX kF =

q P m
i =1

P n
j =1 x2

i;j =
p
Trace(X T X ).

The nuclear norm for a matrix X is equal to the sum of its singular values and
is written with kX k?. The vectorization operator applied on X is written with
vec(X ) =

�
x1;1 x2;1 : : : xm;n

� T . The Kronecker product between two matrices
X and Y is denoted by X 
Y . The Khatri-Rao product is the column-wise Kronecker
product and is denoted with �. The outer product between two vectors x; y of
length N is a matrix x � y of size N � N with the (i; j )-th element equal to x i yj .

Tensors are denoted with calligraphic letters. For a tensor X 2 RJ 1 � ::: � J d , the
entry at position j 1; : : : ; j d is denoted with x j 1 ;:::;j d . Matlab-like notations are used
to denote parts of a tensor. For example, for a tensor of size J1 � J2 � J3; vec(X i; :;j )
is equal to

�
x i; 1;j : : : x i;J 2 ;j

�
. A tensor X is vectorized using the vec operator

such that vec(X ) =
�
x1;:::; 1 x2;1;:::; : : : x1;2;1;::: : : : xJ 1 ;:::;J d

�
.

The big-O notation is used for describing computational complexities and indi-
cates the asymptotic growth rate of the computational cost for a given mathematical
operation. For example, an operation costing O(n) floating-point operations (flops)
finishes in at most c � n flops, for some constant c.
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1
Introduction

For controlling systems and more particularly rejecting a disturbance, a classical
approach consists of designing an observer either from data or solving a Riccati
equation. Although system identification has developed since the sixties and is
nowadays a well-established area, identifying from data the spatial and temporal
dynamics for large-scale systems with thousands of inputs and outputs remains
challenging from the computational point of view. There is a similar curse of
dimensionality when solving the discrete algebraic Riccati equation. In order to
reduce the memory storage and the computational requirements, prior knowledge on
how the sensors are spatially distributed and how they communicate with each other
is commonly translated into structural assumptions on the system matrices. When
the sensors and actuators are regularly distributed on a regular multi-dimensional
grid, a particular matrix parametrization may be exploited. The main objective of the
thesis is to propose a dense though data-sparse representation of the system matrices
in the particular case of a distributed sensing array, and derive scalable algorithms
to design an observer.
Applications of large-scale stochastic systems with a multi-dimensional grid of sensors
include Adaptive Optics (AO) for extremely large telescopes. AO is a control method-
ology that allows high-resolution imaging of an object emitting little light through
an heterogeneous and time-varying medium. The algorithms are implemented in
ground-based telescopes to cope with the distorted phase of the light emitted from a
reference star and having travelled through a turbulent atmosphere. A deformable
mirror is used to reshape the incoming light and reject the atmosphere-induced dis-
turbances flowing over the telescope aperture. The performance of an AO system is
improved when the spatial-temporal correlations of the turbulence are used to derive
a prediction at the next time instant, thereby reducing the temporal error.
In this chapter, the dissertation title is analysed and situated in the context of
existing literature. System identification is used as a starting point to propose a
state-of-the-art for the matrix parametrizations introduced in the control community.
The research direction and main contributions are highlighted and the outline of the
remaining chapters is presented last.

5
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1.1. Large and spatially distributed systems
1.1.1. System identification
Signals, systems and models
A system is an object in which variables of different kind interact and produce
observable signals, Ljung (1999). Engineering systems are often equipped with
sensors and actuators. The signals measured by the sensors are called outputs, and
the signals sent to the actuators are the inputs. Stochastic disturbances may enter
the system and their influence be measured on the output only. In adaptive optics,
sensor noise is one example of endogenous disturbance while exogenous disturbances
are due to the atmospheric turbulence. Both deteriorate the system performance.
The system is controlled by applying input commands to the actuators based on
the sensor outputs in order to achieve a performance criteria while ensuring that
the closed-loop system is stable. For example, the input may be used to stir some
user-defined variable toward a desired value, or to minimize the influence of the
disturbance in a closed-loop setting. The disturbance evolves while processing the
measurements to compute the control inputs, and without prediction, the correction is
often outdated. Such temporal error is intrinsic to the control loop. A mathematical
model is used to relate the temporal evolutions of the disturbance, the input and
output signals, and allows the prediction of the future value of the disturbance in
order to apply an updated correction at each time instant. Controlling a system
such that it meets the user requirements strongly relies on how accurate the model
represents the reality.

The mathematical relation between the inputs and the outputs may be known
up to a certain extent using laws from physics such as the conservation of energy
and mass, Newton’s laws of movement or Partial Differential Equations (PDE). For
example, the Euler-Bernoulli beam equation describes the spatial-temporal behaviour
of a flexible beam subject to some external excitation. One of the shortcomings of
this approach is that some coefficients in the PDE are unknown and estimating them
may be either too complex or it may not represent accurately the dynamics due to
inhomogeneities in the material or measurement errors. In adaptive optics, prior
knowledge on the disturbance flowing over the telescope aperture is either very rough
or modelled with non-linear equations. A simplified model consists of assuming
that the flow is frozen and propagates at constant windspeed in a known direction
whereas the Navier-Stokes equations are highly non-linear and difficult to solve. It
illustrates the need for alternative methods to model the disturbance dynamics.

The system identi�cation procedure
System identification is of great interest for expressing mathematically the dynamics
of systems with exogenous stochastic disturbances whose temporal behaviour cannot
be reliably modelled with first principles. Input and output datasets are collected to
identify a model. It has developed since the sixties and is nowadays a well-established
area, Ljung (1999). The identification procedure consists of three steps.

First, an input signal is applied to the system to sufficiently excite the system
such that its main dynamics are revealed on the output signal. If the system at
hand is a beam which is locally distorted by actuators regularly placed beneath the
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beam, both the voltage inputs and the beam deformation are measured over time
and stored into a dataset.

Second, a set of model candidates is defined according to some assumptions
on the system dynamics. For example, assuming that the system is linear, time-
invariant, and that prior knowledge on the statistical properties of the noise is
available. Standard model representations for linear time-invariant systems are
AutoRegressive with eXogenous inputs (ARX), AutoRegressive Moving Average
with eXogenous inputs (ARMAX), Finite-Impulse Response (FIR), Output-Error
(OE) and Box-Jenkins, Ljung (1999). When all the coefficients in the model set are
unknown, the system is a black-box. In grey-box modeling, a matrix parametrization
such as tri-diagonal, Toeplitz or sparse may be assumed on the system matrices
to shrink the set of model candidates and derive tailored algorithms with reduced
computational complexity in the upcoming third step. This second step which
consists of choosing the matrix parametrization, also called matrix structure, is of
prime importance for system identification of large-scale stochastic systems. If the
model structure chosen is not included within the set of candidates that accurately
represents the true system, the estimates are biased however large the dataset may
be.

Third, the best possible approximate model in the set of candidates is searched.
A subset of algorithms requires a cost function that balances between maximizing
the data fit and reducing the complexity of the model to avoid over-fitting. On
the contrary, identifying state-space models with subspace methods as described
in Verhaegen and Verdult (2007) does not rely on a quality criteria but exploits
mathematical properties to estimate the system matrices in a non-iterative manner.
Whether the estimated model is of sufficient quality is assessed by evaluating the
least squares fit on a dataset different from the one used for identification. The
model may not be validated because either the dataset is not informative enough,
the model set does not contain a good parametrization, the cost function (if needed)
is not well-chosen, or the algorithm does not converge to a global minimum of the
cost function.

Scalability for systems with a large number of inputs and outputs
When the disturbance is two- or three-dimensional in space, a sensor distributed over
a regular array is used to provide measurements. A node (equivalently, subsystem)
in a regular grid is defined by its location in that grid. A d-dimensional sensor array
is a collection of nodes organized on a regular d-dimensional grid and such that each
node outputs a signal which is a local information over the quantity of interest, like
e.g. the turbulence field. Another terminology used for denoting such collection of
nodes is a network.

De�nition 1.1. Let d 2 N. A system is said to be d-dimensional when both the
sensors and actuators are regularly distributed on a d-dimensional spatial array.

For a sensor array of size N � N with N large, system identification might
be infeasible even as calibration step without constraints of control bandwidth, let
alone an efficient implementation of closed-loop operations such as state updates
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necessary for computing a prediction using matrix-vector multiplications. Heavy
computations include the number of floating-points operations which scales with N 6

for system identification and the amount of required memory scaling with N 4. The
required memory bandwidth to transfer data back and forth from the central unit to
the computational units located on the device is rather dealt with by choosing the
appropriate computing platform.

The system identification of linear time-invariant dynamic systems in open-
and closed-loop with a moderate number of inputs and outputs is well understood,
see e.g the textbooks Ljung (1999), Verhaegen and Verdult (2007) and Van den Hof
(2018). However, state-of-the-art system identification methods handle in reasonable
time and with limited computing resources only a moderate number of inputs and
outputs. The algorithms either use a whole data batch of temporal samples to
estimate the system matrices as presented in Verhaegen and Verdult (2007), or
update recursively the estimates whenever a new measurement becomes available.
Starting from an initial guess possibly random, the current estimate for the matrices
of an autoregressive model is fused with the new available data using recursive
least-squares techniques, Sayed and Kailath (1998). The latter option especially
reduces the memory required for identifying autoregressive or state-space models
as there is no need to store past data batches which is a real asset to scale to large
systems. Chiuso et al. (2008) use a recursive version of the Predictor-Based Subspace
IDentification for identifying mirror and turbulence dynamics for large-scale AO
systems. For updating unstructured matrices of size N 2 � N 2, the required storage
and complexity for matrix-vector multiplications scale with O(N 4) which may be
detrimental for systems with high control bandwidth.

1.1.2. Examples of multi-dimensional sensor grids
Systems with a large-scale multi-dimensional sensor and/or actuator array are used
in engineering for various applications ranging from optics to flow control.

Data-driven predictive control for large-scale adaptive optics
Measuring a stochastic disturbance with spatial and temporal evolution and mini-
mizing its effects occurs for example in AO systems. This application is described
thoroughly in Section 1.4 and we stick for now to the analysis of the challenges with
a mere input-output description of the plant. Figure 1.1 illustrates the turbulence
fields flowing over the telescope aperture.

A combination of a sensor and a deformable mirror reshapes the distorted
light wavefront to increase the resolving power of the telescope. The sensor is a
two-dimensional array of size N � N as depicted in Figure 1.2 and provides at
each sampling time in closed-loop a measure of the residual disturbance, i.e the
atmosphere-induced disturbance minus the correction applied with the deformable
mirror. A grid of actuators is located beneath the mirror whose shape is modified to
minimize the influence of the atmosphere on the image.
Many instruments such as spectrographs and coronographs would benefit from
increased scalability of large-scale adaptive optics algorithms. Examples include
HARMONI (High Angular Resolution Monolithic Optical and Near-infrared Integral
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Figure 1.1: Two layers of turbulence �owing over a telescope. With the terminology developed in
Section 1.4 of this introduction, each layer represent a wavefront. The isoplanatic angle between
the star and the object of interest is not depicted. The disturbance sensed on the ground is the sum
of both distortions introduced by each layer. The latter may be �owing at di�erent wind speeds.
Courtesy for the telescope schematic: http://www.mpia.de/ .

Figure 1.2: Example of a turbulence �eld consisting of the sum of two frozen layers propagating
a di�erent speed at (left) t = t0 , (right) t = t1 > t 0 . The sensor array is of size 10 � 10 and the
nodes are represented with black dots. The data displayed in colour consists of actual disturbance
screens used in the laboratory testbed in Chapter 6 and shifting one layer with respect to the
other for simulating a non-zero wind speed. The spatial shift is set such that the rate at which the
disturbance evolves between two sampling times corresponds to standard values. The correlations
are not only spatial but also temporal.

field spectrograph), Neichel et al. (2016), for the European telescope and NFIRAOS
(Narrow Field InfraRed Adaptive Optics System), Ellerbroek (2011), for the Thirty
Meter Telescope. The latter system integrates seven 60�60wavefront sensors to map
the turbulence in the volume and over a wide field of view, and operates at 800Hz,
Ellerbroek (2011). Predictive control for large-scale AO systems is also required for
instruments such as GPI (Gemini Planet Imager), Poyneer et al. (2016), or SPHERE
(Spectro-Polarimetric High-contrast Exoplanet REsearch), Petit et al. (2014).

http://www.mpia.de/
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System identi�cation in wind farm control using wind speed measure-
ments
Another example shown in Figure 1.3 is in the area of offshore wind farms, Gebraad
(2014). Controlling the orientation of all the turbines to direct the downstream wake
is essential for maximizing the overall power. It has been shown in Crespo et al.
(1999) that orienting each turbine in the farm independently of its neighbours does
not yield optimal performances for maximizing the overall power.

Figure 1.3: 3 � 2 wind plant rotated 10� w.r.t wind direction. Hub-height wind �eld at 800s
simulated time as calculated by the software SOWFA. The black lines indicate the rotor positions
and yaw orientation of each turbine. Courtesy: Gebraad (2014).

Although the control frequency is about one hertz, which is relatively slow
compared to the AO application, the model describing the dynamics of the flow
should be computationnaly efficient. One approach consists of discretizing the
Navier-Stokes equation, Boersma et al. (2018), and deriving e.g ensemble Kalman
filtering techniques, Doekemeijer et al. (2018). If we assume that the wind velocity
measurements are available at each time sample on a regular three-dimensional grid, a
model could be identified from data for predicting how the flow propagates. Although
the practicality of this assumption needs to be evaluated, a compact data-driven
model which could be handled online by the local processing units in each turbine
would provide an alternative to the current state-of-the-art techniques relying on
first principles.

Controlling the boundary layer between �uids and wings
Fluid control aims at reducing the drag and stabilize flows to delay the transition
from laminarity to turbulence. In particular, when a flow propagates in a long
pipe and is driven by differences of pressure, the Navier-Stokes equation boil down
to a linear PDE for small variations around a steady-state. The near-wall flow is
measured by pressure sensors and reshaped using blowing/suction distributed over
the surface to avoid flow instabilities and sustain a laminated flow, Joshi et al. (1997).
We may think of the arrangement of actuators and sensors in a two-dimensional
plane as shown in Figure 1.4. The trade-off in fluid control (and similarly for wind
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farms in the previous example) is to capture the essential dynamics for the speed
and vorticity as required for feedback control without discretising the spatial domain
with a high resolution grid as required for accurate numerical simulations. It has
stirred off interest to compress the models and derive identification and controller
synthesis methods, see for example Kim and Bewley (2007) and Inigo (2015).

Figure 1.4: Schematic of a possible set of sensors and actuators for controlling a boundary layer �ow.
Actuators are in green, the sensors are in red and the �ow is symbolized with the blue arrows. The
actuators and sensors are arranged in a checkerboard pattern which reminds of the Fried geometry
in AO applications.

Varied applications ranging from weather prediction to sociology
Even without actuators to control, some datasets can be recast as multi-dimensional,
for example in weather prediction, Tsiligkaridis and Hero (2013). The area of
statistics is likewise proficient with data that can be recast as multi-dimensional for
example in sociology and the study of relational networks, Hoff (2015), although it
does not feature a grid with actuators/sensors. The intensity of relations between
two countries during a time span is scaled between 0 and 1. The definition of a
dimension is less obvious than with sensor grids, but countries may be grouped ac-
cording to some criteria such as the Gross Domestic Product or geographic proximity.

Adaptive optics systems, wind farms and flow control all rely on large-scale
sensor measurements and are potential applications of the system identification
and observer design methods that are studied in this thesis. The computational
limitations of system identification algorithms to handle large sensor arrays have
spurred the analysis of alternatives for deriving algorithms with linear computational
complexity with respect to the number of sensor measurements.

1.1.3. The spatio-temporal impulse response
These three examples all relate to a propagation of a fluid whose shape we would
like to control. For particular type of waves including the heat conduction or optical
waves propagation in an empty medium, the behaviour is governed by a linear PDE
featuring both spatial and temporal derivatives. A distributed parameter system is
a system whose state-space is infinite-dimensional, Curtain and Zwart (1995). We
illustrate with an example on heat conduction. A thin metal plate with homogeneous
material density has a known temperature map, T0(� ), over the field � at t = t0.
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Let the spatial boundaries be denoted with 
 . The heat propagates in the next
time instants t > t 0 according to thermal conduction principles and subject to
homogeneous Dirichlet boundary conditions,

8
<

:

@
@tT(t; � ) = �cr2T(t; � ) + u(t; � )
T(t0; � ) = T0(� )
T(t; 
) = 0

(1.1)

where c is a positive constant, r2 is the Laplacian operator and u(t; � ) some input
applied at position � . Although a unique closed-form expression is derived assuming
a separable solution in the spatial and time coordinates, an analysis of such systems
for engineering applications relies on the discretised PDE obtained with finite-
difference, hence giving rise to lumped parameter systems. We assume a uniform
two-dimensional spatial grid of size N � N , and discretize the set of equations (1.1)
with,
8
<

:

Ti 1 ;i 2 (k + 1) = (1 + 4 � )Ti 1 ;i 2 (k) � �
P

(�i 1 ;�i 2 )2N ( i 1 ;i 2 )
T�i 1 ;�i 2

(k) + � tu i 1 ;i 2 (k)
Ti 1 ;i 2 (0) = T0(i 1; i 2)
T
 (k) = 0

(1.2)
where � = c � t

� � 2 , � t; � � the temporal and spatial discretisation steps and N( i 1 ;i 2 )

is the neighbourhood of node (i 1; i 2) that includes the nodes f(i 1 � 1; i 2); (i 1 +
1; i 2); (i 1; i 2 � 1); (i 1; i 2 + 1) g. At time instant k + 1 , each node of the spatial grid
acts as a subsystem and updates its own temperature with the knowledge of the
temperature from its four closest neighbours. More generally, there is a wider class
of systems that can be recast as multi-dimensional: vibrating plates also have a
spatial-temporal behaviour governed by a PDE. A significant difference for system
identification with the examples mentioned in 1.1.2 is that these lumped parameter
systems are deterministic: there is no additional disturbance that perturbs the state
of the system, and as a consequence, the knowledge of its neighbourhood is known
whereas it is not the case when designing observers for large-scale stochastic systems.

A finite impulse response approximation of the model (1.2) highlights that the
influence of the neighbourhood widens with increasing past temporal window. The
less spatially damped the system is, the further away a subsystem impacts a given
temperature. Both spatial and temporal dimensions are coupled. The coefficients
of a spatio-temporal impulse response are depicted in Figure 1.5 (restricting the
heat diffusion in (1.2) to a single spatial-dimension for simplifying the illustrations).
Let us assume a rod discretized with 100 spatial positions and with non-zero initial
condition in the middle. This impulse is propagated in both time and space and it
illustrates how fast the information travels from one subsystem to the other, and how
much they influence each other. The funnel causality for a spatially-invariant system,
as introduced in Bamieh and Voulgaris (2005), is a function defined for every possible
distance between two nodes, and equal to the first time at which a node is affected by
a change of another one located at a distance x. It is fixed for the discretized PDE
(1.2) but is on the contrary unknown for the applications such as adaptive optics,
all the more as coupling between nodes can also be expressed with the covariance
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matrix of the process noise in a stochastic state-space model. This notion of funnel
causality is closely related to the parametrization of the system matrices, some of
which are detailed in the next section. Bamieh and Voulgaris (2005) show that if
the controller communicates faster than the plant, the optimization problem for
designing a stabilizing quadratically optimal feedback gain is convex and a globally
optimal solution is achieved. The subsystems of the controller exchange quicker
information than the ones of the plant: its funnel causality can be approximated
with good accuracy as slightly (depending on the decay rate) larger than the one of
the plant and the feedback gain is denser than the system matrices. When the size of
the discretization domain N is infinite, and the dynamics are spatially invariant as in
(1.2), Bamieh (1997) shows that the optimal controller minimizing a global quadratic
objective is also spatially invariant and is inherently localized. The infiniteness
assumption does not hold in practice, but is motivated by the fact that the systems
dynamics do not exceed the spatial range of the sensor array. The closest neighbours
have the largest impact on the controlled input, and their influence when located
further away decay at a rate which depends on the system parameters. These first
considerations paved the way for further investigations of structured matrices in the
context of observer/controller design.

Figure 1.5: Spatio-temporal map for a one-dimensional string of subsystems, for the heat di�usion
in (1.2) for � = � 0:22 (left) and for a case with no spatial delay when propagating the state (right).
The entries are in log10. The larger the value in the map, the more the state of the neighbour
(possibly in the past) contributes to the temperature of the 50-th subsystem of the heat rod. The
furthest away in both time and space, the less it matters. The furthest away in time, the more the
neighborhood spreads as more subsystems contributes to the value of the current state. The white
lines de�ning a triangle, and that represent how fast information is shared within the subsystems of
the controller, should contain the spatio-temporal impulse response of the plant for the optimization
problem of deriving a structured controller in a convex manner.

1.2. Describing the set of model candidates
We step back from the notion of multi-dimensional grid for a moment to analyze
the matrix structures that have been studied for alleviating the computations when
identifying large LTI systems. The index N now refers to the total number of
subsystems in the network. Each subsystem is associated with m inputs and p
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outputs. Let (u(k); y(k)) 2 RmN � RpN .
Two model structures are investigated in this thesis for data-driven control.

Vector AutoRegressive with eXogeneous inputs models with user-chosen temporal
orders (nu ; ny ) relate the input u(k) to the output y(k),

y(k) =
n yX

i =1

~A i y(k � i ) +
n uX

i =0

~B i u(k � i ) + � (k) (1.3)

for matrices ~A i ; ~B i of compatible sizes and where � (k) is a zero-mean white Gaus-
sian noise with covariance matrix ~C � . When there is no input, u(k) = 0 for all
time samples, the equation (1.3) is an AutoRegressive model. The second structure
we consider is the state-space model, which more generally represents infinite im-
pulse responses via a state information x(k), and is presented here in the mixed
deterministic-stochastic form,

�
x (k + 1) = �Ax (k) + �Bu (k) + w(k)
y(k) = �Cx (k) + �Du (k) + v(k)

;
�
w(k)
v(k)

�
� N

�
0;

�
Q S
ST � 2

v I J

� �
(1.4)

for �A with spectral radius strictly smaller than one, and where w(k); v(k) are respec-
tively process and measurement zero mean white Gaussian noise. The innovation
form associated to the model (1.4) may be used in formulating the system identifica-
tion problem. Introducing the Kalman gain �K and the state at time k + 1 using all
the information up to time k with x(k + 1 jk), the innovation form reads,

x(k + 1 jk) =
� �A � �K �C

�
x(kjk) +

� �B � �K �D
�
u(k) + �Ky (k) (1.5)

Identifying the matrices in (1.3) or (1.5) scales at least with O(N 3) which seriously
hampers its applicability for large systems. Although dealing with general models
without structural assumptions on the matrices ~A i ; ~B i ; ~C � , or �A ; �B ; �K ; �C; �D , yields
the most accurate representation, a compact representation of these matrices (in
the sense that few parameters are needed to represent them) is key in identification,
controller synthesis and real-time implementation.

Because we are mainly interested in the identification of stochastic systems,
the innovation form of state-space models allows an identification algorithm un-
changed with respect to the deterministic case. Let S denote an operator (not
necessarily linear) mapping some set of parameters � X to the matrix X . It is
assumed that, if

�
S(� �A );S(� �B );S(� �C );S(� �D );S(� �Q );S(� �S)

�
� ( �A ; �B ; �C; �D ; �Q; �S),

then
�
S(� �A � �K �C );S(� �B � �K �D );S(� �K )

�
� ( �A � �K �C; �B � �K �D ; �K ). The importance

of preserving the structure of the system matrices in the Kalman gain, at least
approximately, will be discussed in the subsection 1.2.3.

Deriving scalable algorithms with O(N ) complexity may however be at the
expense of performance loss depending on how close to reality the structural as-
sumptions are. We are looking for a trade-off between data-sparsity of the model
representation (what is the most concise way of expressing mathematically the
behaviour of the system) and the bias between the true and approximated model
structure (how far away the model is from the actual dynamics), the latter being
responsible for performance loss in the prediction.
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The remaining of this section is as follows. We first present different model
structures that have been proposed for handling particular large-scale system iden-
tification. We then delve into the structure-preserving properties that a model
set should have in order to derive efficient and scalable algorithms and which will
guide the research in forthcoming chapters. Last, we discuss the Roesser model
commonly used in image processing. This model structure stands apart from the
rest of the patterns for structured modeling although it has been the standard for
multi-dimensional state-space for long.

1.2.1. A local description of the spatial-temporal dynamics
Identifying the matrices in the state-space model (1.4) from standard subspace
methods such as N4SID and MOESP, Verhaegen and Verdult (2007), is not feasible
as these methods scale at the very least with O(N 3). The difficulties for the
centralized methods to handle large-scale two-dimensional sensor arrays have already
been noticed in Hinnen (2007) and stem from both the number of temporal samples
to be measured and stored larger than N , and a QR decomposition or an SVD on
matrices of size in the order of N � N . A detailed explanation of the computational
cost for SSARX is found in Chapter 3. Assumptions have been made in the literature
on the system matrices in (1.3) and (1.4) to restrict the set of model candidates
and propose efficient algorithms with the underlying idea of establishing a trade-off
amongst the compactness of the model, the computational efficiency and the accuracy
of the estimated representation for a given application.

A decentralized approach
The simplest state-space model which ignores all coupling between the subsystems
assumes that each of them evolves independently from its neighbours. The matrices
�A ; �B ; �K ; �C; �D are block-diagonal leading to the local representation for the subsystem
� i ,

f� i gi =1 ::N :
�

x i (k + 1) = A i x i (k) + B i u i (k) + K i ei (k)
y i (k) = C i x i (k) + D i u i (k) + ei (k)

(1.6)

The state x i (k) is local and of small size with respect to the total number of
subsystems N . This state-space model (1.6) is a linear time-invariant system with a
small number of inputs and outputs. Identification and control is performed in a
decentralized (equivalently, parallel) manner using standard textbook algorithms and
with linear computational complexity with respect to the number of nodes. The set
of subsystems is said to be homogeneous if and only if all subsystems are identical,
i.e such that �A = I N 
 A , and similarly for the other state-space matrices. The set
of subsystems is otherwise heterogeneous.

The interconnected string of subsystems
Without parametrizing any structure on the controller, Bamieh (1997) and sub-
sequently Bamieh et al. (2002) show that quadratically optimal controllers for
spatially-invariant systems are localized in the sense that state feedback and observer
gains decay exponentially with the distance. Motee and Jadbabaie (2008) extend the
analysis dealing with possibly heterogeneous systems and introduce spatially decaying
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operators to derive structure-preserving results on the solution of the Lyapunov and
Riccati equation.

Therefore, instead of ignoring all coupling as in the previous paragraph, a first
approach directly related to the lumped systems in 1.1.3 consists of assuming a
sparse and localized Kalman gain. It translates into the following state-equation for
subsytems interconnected along a string,

f� i gi =1 ::N :
�

x i (k + 1) =
P i +1

j = i � 1 A i;j x j (k) + B i u i (k) +
P i +1

j = i � 1 K i;j ej (k)
y i (k) = C i x i (k) + D i u i (k) + ei (k)

(1.7)
where x0(k) and xN +1 (k) are 0, for all k. The inputs u i (k) enter the subsystem � i

which receives unknown state information from its neighbours, x i � 1(k) and x i +1 (k).
This representation originates from the discrete one-dimensional PDEs in distributed
parameter systems.

The only quantities measured are u i (k) and y i (k), for all subsystems in the
string, i 2 f1; : : : ; N g. A challenge for system identification is that the states leaking
into the local subsystems are often not measurable. If these interconnection signals
would be known, the identification of each subsystem would be decentralized by
recasting x i � 1(k) and x i +1 (k) as inputs. Without knowledge of these signals, the
methods that have been proposed rely on approximating the local state x i (k) such
that estimating the matrices in (1.7) given the state, input and output data for
many temporal samples boils down to a least-squares. The state x i (k) is written as
a linear combination of known signals, the collection of these signals being called a
dictionary.

Approximating x i � 1(k) and x i +1 (k) with a well-chosen set of input and output
data was initially investigated in Haber (2014). Haber (2014) estimates the state
x i (k) of a local subsystem as a linear combination of the input-output data of local
subsystems, which are in its neighbourhood. It is shown that the size of the neigh-
bourhood is directly related to the condition number of the finite-time observability
Gramian, and hence, communication with all subsystems in the string is not necessary
for estimating the local state. The exact knowledge of this neighbourhood for state
estimation has been derived in Yu and Verhaegen (2018a). Yu et al. (2018a) and
Yu and Verhaegen (2018a) propose a local identification of the systems relying on
the following observation. Lifting the states of a small set of subsystems (or cluster)
and then lifting in time to form the data equation creates a particular data-equation
whose low-rank properties are used to isolate the cluster from the rest of the string.

Exploiting sparsity in autoregressive models
Rather than state-space models, Chiuso (2007) addresses the identification of au-
toregressive models within the Bayesian framework under the assumption that each
sensor is related to a localized neighbourhood. Kernel regularization is used for in-
ducing temporal stability and spatial sparsity. When moreover a few latent variables
can explain the dynamic behaviour of the global system, the sparse plus low rank
structure is studied in Zorzi and Chiuso (2015). One of the drawback for this specific
representation is the inability to cope with large datasets and sensor arrays. A related
work for the local identification of spatial-temporal dynamics of deterministic only



1.2. Describing the set of model candidates

1

17

systems is Ali et al. (2011). It exploits sparsity to derive an Instrumental Variable
method for identifying two-dimensional systems modelled with a transfer function
having a Box-Jenkins structure.

None of these methods is exclusively limited to the analysis of a one-dimensional
string and all extend to systems with more spatial dimensions d by connecting the
subsystems to its 2� d closest neighbours. In this case, the number of neighbours
grows linearly with the dimension.

Shortcomings for identi�cation of multi-dimensional stochastic systems
A difficulty that arises for identifying spatial-temporal dynamics of stochastic systems
is the knowledge of the neighborhood, and especially its size: which subsystems
matter for computing a nearly optimal prediction for the state x i (k + 1 jk) of each
subsystem � i ? The number of neighbours should remain limited with respect to the
total number of subsystems to enable efficient calculations.

Most importantly, these identification methods search for a local model estima-
tion and have difficulties in assuming and/or imposing global properties such as the
observability, controllability and stability of the overall system.

1.2.2. A modal analysis of large-scale systems
A modal view of interconnected subsystems stands in opposition to the sparsely
interconnected set of subsystems by the global properties such as observability or
controllability that can be guaranteed.

Decomposable systems
Massioni and Verhaegen (2009a) introduce decomposable systems to model a set of
interconnected subsystems. It assumes that the interconnection pattern between the
subsystems is known: to each collection of interconnected subsystems is associated a
weighted adjacency matrix P that describes how the nodes are connected. Let Ni

denote the set of indices associated with the neighbouring nodes of node i . Let �
denote the number of neighbours. The entry pi;j is equal to 1=� if the nodes i and j
are connected, and 0 else.

Lemma 1.1. (Massioni and Verhaegen (2009a)) Let n 2 N. Let X and X N

belong to Rn � n . Assume that the matrix P 2 RN � N is diagonalizable (i.e there
exists an invertible S such that S� 1PS is diagonal). For a matrix �X written as
�X = I N 
X + P 
X N , then the matrix X := ( S
 I n ) � 1 �X (S
 I n ) is block-diagonal.

The reverse implication is however not true in general. The set of all matrices �X
such that �X = I N 
 X + P 
 X N where X ; X N 2 Rp� q is denoted with DP ;p;q .

De�nition 1.2. (Massioni and Verhaegen (2009a)) Assume that the matrix P 2
RN � N is diagonalizable. A state-space system (1.4) is said to be decomposable when
the matrices �A 2 DP ;n;n ; �B 2 DP ;n;m ; �C 2 DP ;p;n ; �D 2 DP ;p;m .
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Such model assumption assumes that the subsystems are homogeneous and that the
interconnection defined with P with all the neighbours is through the same matrix
A N . The state-space model (1.4) is then rewritten with:

�
xS (k) = AxS (k) + BuS (k) + wS (k)
yS (k) = CxS (k) + DuS (k) + vS (k)

(1.8)

where xS (k) = ( S
 I n ) � 1x(k); uS (k) = ( S
 I m ) � 1u(k); wS (k) = ( S
 I n ) � 1w(k),
yS (k) = ( S 
 I p) � 1y(k); vS (k) = ( S 
 I p) � 1v(k). The matrices in calligraphic
letters in (1.8) are block-diagonal, hence allowing to rewrite the state-space with
decoupled equations each representing a so-called mode of the global system. System
identification for handling the deterministic case of (1.8) is proposed in Massioni
and Verhaegen (2009b) and Yu and Verhaegen (2017).

Circulant systems
Circulant systems are related to spatially-invariant ones as defined in Bamieh et al.
(2002) where the sensor array is assumed infinite. The latter work introduced the
decoupled control operations in the frequency domain resulting in parallel and
inexpensive computations in the frequency domain. The class of circulant systems
was introduced in Massioni and Verhaegen (2008) as a subclass of the decomposable
systems. A modification to the string modelling discussed in (1.7) consists of
connecting the first subsystem of the string to the last and form a circulant system
assuming x0(k) = xN (k); xN +1 (k) = x1(k). Lifting the state equation in the spatial
domain yields a global set of equations:

�
x (k + 1) = Cn;n (fA i gi =1 ::N )x (k) + Cn;m (fB i gi =1 ::N )u(k) + w(k)
y(k) = Cp;n (fC i gi =1 ::N )x (k) + Cp;m (fD i gi =1 ::N )u(k) + v(k)

(1.9)

where the operator Ca;b (fX i gi =1 ::N ) is a block circulant matrix defined from blocks
equal to X i of size a� b. Any circulant matrix is diagonalized using the Fourier
matrix and the inverse transformation holds as well. By applying a block-Fourier
transformation to the input and output vectors, the system matrices in (1.12) are
block-diagonalized which opens the way for decentralized algorithms dealing with a
set of N decoupled modal systems of small sizes. More precisely, when the matrix
S in Lemma 1.1 is the Fourier transform, then the reverse implication holds, thus
the optimal controller for a circulant system is circulant. This property of circulant
matrices is also essential for deriving an identification algorithm for deterministic
systems in Massioni and Verhaegen (2008). The key benefit is that algorithms may
now be carried out on the modal systems independently using standard methods
derived for one-dimensional systems of moderate size. The overall computational cost
boils down to the cost of the core operation of interest for one single modal system
times the number of systems in the network, hence a linear computational complexity
with respect to the number of nodes, N . This approach is very similar to what
was proposed in Bamieh et al. (2002) for the class of spatially-invariant distributed
parameter systems, and where observability, stability and optimal quadratic control
were studied in the frequency domain.
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Toward handling heterogeneous systems
Although the decoupling is very appealing for deriving efficient algorithms, the
systems need to be homogeneous. Moreover, the network may include many inter-
connections contrary to the local approach where the neighbourhood shall be limited
to avoid any curse of dimensionality when increasing the dimension. Massioni (2014)
generalizes to the case where few heterogeneous systems are allowed to connect and
exchange information and derives distributed control synthesis methods.

1.2.3. On the importance of preserving the structure in stan-
dard linear algebra operations

Stepping back from the identification, a number of matrix structures have shown
interesting properties for deriving scalable algorithms e.g for control.

A first option for enforcing structure on a controller is to formulate an opti-
mization problem whose cost function is the norm of a closed-loop transfer function
from external disturbance to the regulated output, and with constraints of stabilizing
the plant and satisfying information sharing specifications. When the subspace of
authorized communication patterns between the subsystems of the controller is a
subspace, this minimization problem is convex in the Youla domain if and only if a
property called Quadratic Invariance holds. We refer the reader to Rotkowitz and
Lall (2006) and Lessard and Lall (2016) for more details. However sparse the system
matrices may be, such as multi-banded when lifting the local states in a temperature
vector for the whole plate in (1.2), the open-loop transfer matrices are nonetheless
dense. Thus, a set of admissible transfer functions for computing a sparse controller
is not quadratic invariant. Wang et al. (2018) circumvent this limitation introducing
the framework of System Level Approach, and assuming both localizability and
separability of the cost function.

An alternative consists of deriving structured solutions to the DARE using
iterative algorithms.

Examples of algorithms where it matters
Performing even standard linear algebra operations such as addition, multiplication
or inversion on certain type of matrices may destroy the original matrix structure.
For example, the product of a Toeplitz matrix with another Toeplitz matrix (with
finite sizes) is not necessarily Toeplitz. Similarly, the product of a sparse matrix with
another sparse matrix having a potentially different non-zero pattern may be full, or
is at least denser. In general, the inverse of sparse matrices destroys sparsity. Such
structure-preserving properties matter in deriving scalable algorithms, and these
considerations are not limited to system identification but have further reaching
implications for solving controller synthesis problems such as based on large-scale
Lyapunov and Riccati equations.

Preserving the structure was already illustrated at the beginning of Section 1.2:
the Kalman gain as computed from the Riccati equation should be approximated
with good accuracy with the same structure as the matrices �A ; �C; �Q; �R . For example,
Yu et al. (2018a) propose a method for identifying deterministic state-space systems
interconnected along a string. Using the algorithm for stochastic systems requires



1

20 1. Introduction

that the matrix �A � �K �C is block tri-diagonal. It is not specific to this particular
structure and similar observations will be made in Chapter 3.

The matrix sign provides another motivation as this operator allows to check
stability and solve Lyapunov and Riccati equations, Kenney and Laub (1995). One
way for calculating the matrix sign of a square matrix having no eigenvalue on
the imaginary axis is the Newton sign iteration. It is an iterative algorithm that,
starting from an initial matrix Z0 proceeds with Z � +1 = 1

2 (Z � + Z � 1
� ), where � is the

iteration counter. It is all the more relevant when these iterations can be performed
efficiently, and consequently, when the addition and the inversion do not ruin the
structure that Z0 may initially possess such that Z � is approximated with S(� Z � ).

Sequentially Semi-Separable matrices
This algorithm was successfully used in Rice (2010) when modelling the matrices in
(1.4) as Sequentially Semi-Separable (SSS). To understand how such matrices help
to carry out sums, multiplications and inversions efficiently, the SSS matrices are
related to a set of state-space models that represent the spatial-temporal dynamics
of an interconnected string of subsystems. Each of the subsystem is modelled
with a mixed causal anti-causal linear time-invariant model and shares unknown
interconnections with all the neighbours. It does not rely on a short-range interaction
of the subsystems with its environment but rather on a limited set of matrix generators
that model the spatial-temporal dynamics. Denoting the input disturbance with
w i (k), the performance measure zi (k) and the left and right interconnection signals
with v `

i (k); v r
i (k), the dynamics of a subsystem � i are written with,

f� i gi =1 ::N :

2

6
6
6
6
4

x i (k + 1)
v r

i � 1(k)
v `

i +1 (k)
zi (k)
y i (k)

3

7
7
7
7
5

=

2

6
6
6
6
4

A i B r
i B `

i B 1
i B 2

i
C r

i W r
i 0 L r

i V r
i

C `
i 0 W `

i L `
i V `

i
C1

i J r
i J `

i D 11
i D 12

i
C2

i H r
i H `

i D 21
i D 22

i

3

7
7
7
7
5

2

6
6
6
6
4

x i (k)
v r

i (k)
v `

i (k)
w i (k)
u i (k)

3

7
7
7
7
5

(1.10)

When concatenating column-wise the local state �x (k) =
�
x1(k)T : : : xN (k)

� T ,
the global model is obtained,

2

4
�x(k + 1)

�z(k)
�y(k)

3

5 =

2

4
�A �B 1

�B 2
�C1

�D 11
�D 12

�C2
�D 21

�D 22

3

5

2

4
�x(k)
�w(k)
�u(k)

3

5 (1.11)

where all matrices �A ; �B 1; �B 2; �C1; �D 11; �D 12; �C2; �D 21; �D 22 have a SSS structure. A
SSS matrix is defined from a linear number of generators with respect to the string’s
size. For example, �A is defined with,

�A =

2

6
6
6
6
6
4

A 1 C r
1B r

2 C r
1W r

2B r
3 : : :

C `
2B `

1 A 2 C r
2B r

3 : : :
C `

3W `
2B `

1 C `
3B `

2 A 3 : : :
:::

: : :
: : :

: : :
A N

3

7
7
7
7
7
5

(1.12)
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Figure 1.6: Left: 100 � 100 SSS matrix, �A . The absolute value of the entries are represented in
log10. The decay of the values away from the main diagonal can be more or less quicker depending
on the spectral radius of W `

i ; W r
i . Right: Schematic representation of the low-rank o�-diagonal

blocks. Each rectangle formed by two dashed lines of the same color and the two borders of the
matrix is low-rank.

An example of such a matrix with strictly stable W `
i ; W r

i is shown in Figure 1.7,
which also highlights the essential low-rank off-diagonal blocks of �A . Summing,
multiplying, or inverting efficiently such matrices can be done if the sizes of the
matrices W `

i ; W r
i are much smaller than the number of interconnected subsystems

along the string, N . As an illustration that the SSS structure is preserved while
inverting, Figure 1.7 displays the singular values of one off-diagonal matrix and the
one of the same submatrix in the inverted matrix. When adding or multiplying
SSS matrices, the structure is kept as new generators are formed although the size
of W `

i ; W r
i increases. The SSS structure is maintained throughout the Newton

iterations provided the order of the matrices W `
i ; W r

i are truncated at each iteration,
Rice (2010). Most importantly, the Kalman gain derived has a SSS structure which
guarantees efficient state-feedback control.

This framework deals in a scalable manner with large strings of subsystems:
both linear algebra operations and control to achieve global H2 performance were
shown to be achievable within linear computational complexity in the string’s size,
Rice (2010). Identification algorithms are found in Rice and Verhaegen (2011) using
the extended Kalman filter and Torres et al. (2015) with output-error methods. It
is well-known that such type of algorithm requires a good initial guess to provide
accurate estimates.

SSS matrices are closely related to the 1D string of interconnected systems
that has been considered in (1.7). When setting the matrices B 1

i , W r
i , W `

i , L r
i ,

L `
i , V r

i , V `
i , H r

i , H `
i to zero, and C r

i ,C `
i to the identity, the state-space (1.12) is

identical to the simplified model (1.7). When the subsystems are interconnected in
two dimensions, the matrix �A in (1.12) is similarly built with the only difference
that now A 1; C `

2; B `
1; etc. are also SSS. The product of two SSS being SSS, the

matrix �A is then a block-matrix with SSS structure with blocks themselves SSS.
The number of generators is however much larger as it scales exponentially with the
dimension, i.e 7d generators are required to form a d-level SSS matrix.
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Figure 1.7: Singular values for one low-rank o�-diagonal matrix, �A (50 : 100; 1 : 49) for the SSS
matrix and its inverse. An example of such submatrix is shown in Figure 1.7. The rank of these
submatrices is equal to two. Although it can not be deduced from this plot only, the rank of the
o�-diagonal blocks are not increased when inverting a SSS matrix.

The extension of the 1D SSS methods to higher spatial dimensions gives rise to
multi-level SSS problems, for which up till now no efficient solution for identification
and control exist. The Hierarchical Semi-Separable structure represents a large
matrix with a set of generators following a pattern of low-rank matrices as shown in
Figure 1.8. It presents structure-preserving properties for standard matrix operations
although it has not been studied in the context of LTI dynamical systems and it is
not clear which network structure it would model.

Figure 1.8: Pattern of low-rank matrices (in blue) within a Hierarchical Semi-Separable matrix.

Localized systems
Still dealing with the string of interconnected systems, the review in Benzi et al.
(2017) has put forward another class of matrices maintaining the structure for matrix
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Figure 1.9: Inverse of I 
 M + M 
 I where M is tri-diagonal, symmetric and positive de�nite
(m i;i = 2 ; m i;i � 1 = 1 ; m i � 1;i = 1 ). The absolute values of the entries are plotted in a logarithmic
scale.

multiplication and inverses.

A key property in the derivations in Haber (2014) is the decaying pattern of
the observability and controllability Gramians, which are positive-definite matrices
whose inverse is also decaying away from the main diagonal. This work relies on the
property that the inverse of banded positive-definite matrices belong to the class
of off-diagonally decaying matrices, that are such that their elements in absolute
value decay as moving away from the main diagonal, Benzi et al. (2017). Computing
an approximate inverse of a banded positive-definite matrix is achieved with a
complexity that grows linearly with the string’s size. Moreover, Canuto et al. (2014)
study the decay rate of multi-level matrices of the form I 
M + M 
 I , where M is
tri-diagonal symmetric and positive definite, as seen in Figure 1.9.

Using the approximate inverse is not limited to identification but is also relevant
for solving large-scale Lyapunov equations, Haber and Verhaegen (2016), and optimal
control problems, Haber and Verhaegen (2018). In these works, the target is to derive
a sparse feedback matrix for systems whose state update matrix �A is symmetric
negative definite with a banded pattern (as obtained from the discretisation of PDEs).
The Newton iterations consist of solving the Riccati equation through a sequence
of Lyapunov equations and inverses, Benner et al. (2008). As a first step, Haber
and Verhaegen (2016) show that the solution of the Lyapunov equation is spatially
localized and computes efficiently an approximation with a sparse banded matrix.

Maintaining the same structures for standard linear algebra operations such
as addition, multiplication and inversion is crucial for deriving efficient algorithms
suited to the large dimensions of the problem at hand. The SSS matrix and the
banded positive-definite matrix are two examples of parametrizations with favourable
properties.
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1.2.4. Roesser models in image processing
This paragraph stands very much apart from the previous ones particularly because
of the manner the time dimension is being integrated into the state equations. The
class of multi-dimensional systems was originally introduced in Givone and Roesser
(1972). It is used for modelling the dynamics of an array of identical cells that are
connected in a regular pattern. Each cell acts as a subsystem (or node) with its
own state, input and output. In a two-dimensional setting, a cell is influenced by
the states from the left and upper cells: the state information flows horizontally
and vertically in a single direction. Roesser (1975) focuses on image processing
and introduces a partition of the global state into horizontal and vertical states,
respectively denoted with x1 and x2. These states are coupled together with the
discrete state-space equation:

8
>><

>>:

�
x1(i 1 + 1 ; i 2)
x2(i 1; i 2 + 1)

�
=

�
A 11 A 12

A 21 A 22

� �
x1(i 1; i 2)
x2(i 1; i 2)

�
+

�
B 1

B 2

�
u(i 1; i 2) +

�
K 1

K 2

�
e(i 1; i 2)

y(i 1; i 2) =
�
C1 C2

�
�
x1(i 1; i 2)
x2(i 1; i 2)

�
+ Du (i 1; i 2) + e(i 1; i 2)

(1.13)
The state-space model (1.13) is a quarter-plane causal filter: computing the output
at position �i 1; �i 2 uses the input data for i 1 � �i 1; i 2 � �i 2. Therefore, i 1 or i 2 may
represent time. If the time dimension is left out as commonly done in image
processing, the state-space representation (1.13) models the spatial dynamics by
introducing horizontal and vertical states that are coupled together through some
unknown interconnection.

The applications of the quarter-plane causal Roesser model (1.13) include
mainly image processing, and especially what concerns image restoration and de-
blurring. When an image is corrupted by additive white Gaussian noise, its resolution
decreases. The general idea is to consider the stochastic form of the model (1.13),
associate a state to each RGB pixel and estimate the system matrices including the
Kalman gain from intensity values in order to retrieve an image with as little blur
as possible. Research on deriving a Kalman filter with the Roesser modelling in
its stochastic version includes Wu (1985) and the recent contribution Ramos and
Mercère (2018) who derive a subspace identification algorithm.

However, the Roesser model suffers from at least two drawbacks. The first
one is that it handles specifically homogeneous systems although images may be
spatially non-stationary. The second is related to causality. As seen in (1.2), the
temperature of a single node at time instant k + 1 depends on the neighbourhood
and spatial causality is not required. Such assumption appears to be destructive for
e.g modelling the spatial dynamics of deformable mirrors as pointed out in Voorsluys
(2015). Lele and Mendel (1987) describe a full plane non-causal filter that is the
linear combination of four quarter-plane RSD models (1.13) although the extension
to larger dimension does not result in compact models. In essence, a finite-impulse
response for the output y(i 1; i 2) is decomposed into four non-overlapping quadrants
(for uniqueness purposes).
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1.3. Research question
As can be seen from the literature review in Section 1.2, many structures have been
assumed on the system matrices of state-space or auto-regressive models to overcome
the computational issues that arise when the number of inputs and outputs is large.
When a disturbance enters a large-scale system, the underlying question to derive
tailored algorithms for prediction is: what is the best approximate structure of
the Kalman gain �K and thereafter, of the matrix �A � �K �C , for multi-dimensional
systems?

The spatial dynamics are embedded within the structure of the matrices. For
example, the spatial invariance is represented with a block-Toeplitz pattern, the
spatial invariance and infinitely large dimensions with a circulant matrix (of finite
size). Because of the finite size of the sensor array and the edges, the optimal
controller is not spatially-invariant in spite of the regular grid. Deriving a Kalman
gain assuming spatial invariance in the middle of the aperture only would require
to invert a particular structured matrix when solving the DARE. Such an hybrid
approach was proposed in Rice (2010) with the Almost-Toeplitz SSS structure:
only the local dynamics at the edges are spatially-varying. However much the SSS
structure efficiently deals with dense though data-sparse matrices stemming from
an heterogeneous string of subsystems, its extension for block-matrices is unclear.
Parametrizing multi-dimensional systems with SSS matrices embedded into SSS
matrices as explained in Section 1.2.3 is such that the number of matrices needed
for writing the state-space model scales exponentially with the dimension of the
grid. In general, the results in Rice (2010) are limited to the systems in one spatial
dimension.

The only current alternative to the assumption of spatial invariance is sparsity.
In adaptive optics, although the matrix A is sparse (multi-)banded, the noise
covariance matrix is R diagonal, and the sensor measures local information about
the disturbance, it is not true in general that the Kalman gain is sparse. Similarly,
the identification of stochastic models following the guidelines in Yu and Verhaegen
(2018a) laid for deterministic systems requires to assume that the Kalman gain is
block tri-diagonal (or, with eight non-zero block-diagonals when dealing with two
spatial dimensions) and is therefore too restrictive.

In this thesis, the main research question is formulated as follows:

What is a dense, data-sparse and structure-preserving representation for iden-
tifying from data and in a scalable manner the spatial and temporal dynamics of
multi-dimensional stochastic systems?

The capabilities of the model structure will be nuanced: the data-sparse or
structure-preserving properties might be valid up to a certain extent that we will
evaluate.
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Analysis of research question We have so far discussed the multi-dimensional
systems as systems that feature a sensor (and actuator) array but there is no adequate
literature dealing with a tailored representation of LTI models. Let (i; d) 2 N2 such
that 1 � i � d and a tuple of integers (J1; : : : ; Jd). Let J be the total number of
output signals in the array such that J =

Q d
i =1 J i . Each node provides p outputs

where p� min(fJ i gi =1 ::d ).

De�nition 1.3. Let d 2 N and (J1; : : : ; Jd) 2 Nd. A real-valued tensor of order d
is defined as belonging to RJ 1 � ::: � J d .

For example, a tensor of order one is a vector, and of order two is a matrix.
Importantly, the integer d may be equal -but not necessarily- to the dimension
the sensor array. In Definition 1.4, we precise the class of multi-dimensional models.

We remind the reader of the definition of a system as introduced in the
beginning of this chapter: it relates to the physical objects like a sensor array and it
differs from a model which is the mathematical relation which relates the input and
output. Some examples of models were introduced when describing the second step
of the identification procedure in Section 1.2. The model is typically a state-space
representation, while the system is the physical object.

De�nition 1.4. Let d 2 N. Let (I 1; : : : ; I d) and (J1; : : : ; Jd) two sequences of
integers and (I; J ) 2 N2 such that I =

Q d
i =1 I i and J =

Q d
i =1 J i . Let

�
u(k); y(k)

�
2

RI � RJ represent respectively the input and output data at time instant k.
A model for a system is said to be d-dimensional when writing the input-output
relationship involves the tensor representation of order d for u(k); y(k), i.e the
tensors U(k) 2 RI 1 � ::: � I d and Y (k) 2 RJ 1 � ::: � J d are such that vec

�
U(k)

�
= u(k)

and vec
�
Y (k)

�
= y(k).

This definition allows a lot of freedom in choosing the dimension of the model based
only on how the data is stored: there are many ways to reshuffle the input and
output vectors into tensors. For example, a system with 4 inputs and 4 outputs
may be written with a one or two-dimensional model. This non-uniqueness will be
discussed in Chapter 4 and 6.

To summarize, the dimensions of a tensor are the J i whereas the order is d.
The dimension of a system is the number of spatial dimensions in the sensor array,
and the dimension of a model is the order of the associated tensor representation.
The dimension of a model representation is not necessarily equal to the dimension of
the sensor array.

The definition 1.4 writes the input and output with tensors rather than with
vectors. How to write a compact state-space model when the input-output data are
tensors? A way to derive closed-form solutions for a multi-dimensional PDE is to
assume that the set of candidate functions are separable in the spatial and temporal
dimensions, i.e for a function f , we have f (x; y; t ) = f x (x)f y (y)f t (t). Figure 1.10
illustrates. Is there a relationship between the separability of an underlying function
and a compact representation of multi-dimensional dynamical systems? If we assume
in the simplest case that f x ; f y and f t are linear in the parameters, the function f
is multi-linear in the sense that fixing all variables but one yields a linear function.
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Are multi-linear parametrization of the system matrices related to multi-dimensional
dynamical systems? If we assume that such a multi-linear parametrization of the
system matrices compresses the system data, can we formulate optimization problems
with fewer variables maybe at the expense of convexity rather than large-scale convex
ones? Particularly, how would the trade-off between model accuracy, computational
complexity, and memory storage be modified when instead parametrizing the system
matrices with multi-linear operators?

Figure 1.10: Schematic illustrating the separability of a two-dimensional function into its horizontal
and vertical coordinates. The one-dimensional functions need not to be Gaussian as shown above.

These questions are answered in the Chapters 2 to 5. The framework we
introduce in this thesis does neither rely on spatial-invariance nor on sparsity, and
we will shed new light in the analysis of spatial-temporal systems.

1.4. Controlling large-scale adaptive optics systems
Adaptive optics has been briefly mentioned in 1.1.2 as an illustration of multi-
dimensional stochastic systems and is used as a case study to validate the new
methods developed in this thesis in simulations and in a laboratory experiment.
This section is organized as follows. The propagation of light to the telescope
is first presented, then the AO closed-loop is discussed. A third part introduces
first principles and data-driven models for the spatial-temporal dynamics of the
disturbance. Last, we review the scalability of these methods as a function of the
size of the sensor.
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1.4.1. Seeing-limited and diffraction-limited imaging systems
Let � 2 R2 represent the spatial coordinates (x; y) in a two-dimensional plane
orthogonal to the direction of propagation of the light, and j the complex number
satisfying j 2 = �1. The monochromatic light can be modelled by the electromagnetic
field,

u(� ; t) = a(� )Re
�
ej (wt � � ( � )) �

(1.14)

where a(� ) is the (real) amplitude, w = 2 �� the temporal pulsation associated to
the frequency � , and � (� ) is the phase expressed in radians. While propagating
through atmospheric turbulence, it is generally assumed that the amplitude is
constant, a(� ) = a. The term U(� ) = ae� j� ( � ) is the complex amplitude of the wave.
Assuming a propagation according to the Fraunhofer diffraction, the intensity I in
the focal plane of the telescope is derived from the squared modulus of the Fourier
transform of the complex amplitude U(� ),

I (x; y) / j
ZZ

x 0 ;y 0 2 

e� j� (x 0 ;y 0 ) e� j 2 �

�f (xx 0 + yy 0 ) dx0dy0j2 (1.15)

where 
 is a circular aperture of diameter D , and f is the focal length of the imaging
lens. If the phase � (x0; y0) is independent of the spatial coordinates, (1.15) reduces
to,

I (x; y) / j
ZZ

x 0 ;y 0 2 

e� j 2 �

�f (xx 0 + yy 0 ) dx0dy0j2 (1.16)

After integrating (1.16), and introducing � the angular coordinate in the focal plane
equal to

p
x2 + y2=f for small angles, the image of a point source is expressed with

the Point Spread Function, or Airy pattern,

p0(� ) =
�D 2

4� 2

� 2J1(�D j� j=� )
�D j� j=�

� 2
(1.17)

where J1 is the Bessel function of the first kind. The first dark ring occurs at,

sin(� ) � 1:22
�
D

(1.18)

The light is altered by the telescope aperture if D is finite and the image of a star
through an optical system even if there would be no atmosphere is a bright spot
surrounded with alternating dark and bright rings. An imaging system with pupil
size D cannot distinguish objects separated with angular distances smaller than
� . Widening the pupil increases the resolving power of the telescope as much as it
increases the signal-to-noise ratio by collecting more photons within the pupil.

The wavefront is defined as a surface of equal phase. For example, imagine a
parabola with constant phase value � 0. The wavefront is the surface defined from
the set of coordinates (x; y; 2�

� � ) where � =
p

x2 + y2. The distance � is denoted in
optics as the difference of path length.

In astronomy, the star is assumed infinitely far away and therefore the wavefront
is approximated as plane before crossing the atmosphere layer, i.e it is independent
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of the spatial coordinates � . When the wave propagates through an heterogeneous
and possibly time-varying medium, the wavefront is no longer planar and the PSF
does not resemble the Airy disk anymore: the intensity is rather spread out. The
imaging system is then said to be seeing-limited rather than diffraction-limited.

1.4.2. Adaptive optics systems
When a single star is used as a reference, the optical system is said to be single
conjugated. Multiple reference stars may be used to widen the field of view but
are not explored further in this thesis. Figure 1.11 illustrates a single-conjugate
adaptive optics system, and Figure 1.12 the difference it makes for imaging through
turbulence.

Figure 1.11: Schematic of an AO system. The plane wavefront is distorted by the atmospheric
turbulence whose temporal dynamics are partially wind-driven. The telescope's largest mirrors (not
represented) fold the light beam that is directed toward the AO system. It is then reshaped using
the tip-tilt mirror and the deformable mirror (DM) which both reshape the wavefront based on the
sensor signals fed back by the wavefront sensor (WFS). The reference star is imaged on the Point
Spread Function (PSF) camera.

Atmospheric turbulence
The wavefront aberrations on the ground are caused by inhomogeneities in the
refraction index caused by local variations of temperature, densities and water vapor
content and are essentially driven by the wind. Kolmogorov (1991) proposed to
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Figure 1.12: Simulated PSFs for an 8 meter telescope with a wavelength in near-infrared. (a)
Di�raction-limited PSF in the absence of wavefront aberrations. (b) Short-exposure image showing
di�raction-limited speckles. (c) Long-exposure seeing-limited image. (d-f) AO-corrected images.
Courtesy: Guyon (2018).

model the dynamics of the turbulence as large eddies that collapse one onto another
into smaller structures which do not sustain but rather dissipate by viscous friction.

Travelling through a medium with spatially heterogeneous refraction index
creates optical path differences. Let z denote the height coordinate along the line of
sight (which corresponds to the vertical altitude for sources located azimuthal at
z = h). The phase difference is a linear function of the refraction index integrated
over the line of sight,

� (� ) � � =
2�
�

Z h

0
n(� ; z)dz

| {z }
� ( � )

(1.19)

for � a constant. Even though the path difference � (� ) is assumed independent of the
wavelength, this is not the case for the phase difference incurred and as a consequence,
for the image quality. The larger the wavelength, the smaller the wavefront distortions
in Euclidean norm, and the larger the diffraction-limited angular resolution as seen
in 1.4.1. AO operates for light within a narrow range of wavelength, and a good
correction is more easily achieved in the infra-red spectrum.

The volume crossed by the lightwave is generally modelled mathematically with
a linear combination of infinitely thin layers, independent, stationary, each driven
by a wind blowing at a specific speed and direction. Each of these layers, or phase
screens, is assumed to be a zero-mean Gaussian signal with a covariance function
depending on few physical parameters related to the size of the eddies,

C� (r ) =
� L 0

r 0

� 5=3 �
2

� 2�r
L 0

� 5=6
K 5=6

� 2�r
L 0

�
(1.20)
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where r is the distance between two phase points � 1 = ( x1; y1) and � 2 = ( x2; y2),
K 5=6 is the modified Bessel function of the third type and � a constant such that:

� =
21=6�(11 =6)

� 8=3

� 24
5

�(6 =5)
� 5=6

(1.21)

The parameter L 0 is known as the outer scale: the larger L 0, the more coupling
between far away wavefront values, i.e the denser the wavefront covariance matrix.
The Fried parameter r 0 is defined as the diameter of a circular area over which
the root-mean-square of the wavefront is equal to 1 radian. The smaller r 0, the
stronger the turbulence. Realistic values for L 0 and r 0 are 20m and 5 � 20cm
respectively. The equation (1.20) reflects the isotropic property of the turbulence
as the spatial statistical properties reduce to a one-dimensional function. For a
wavefront discretized on a regular square grid and lifted into a vector, its covariance
matrix C � ;0 is Toeplitz with Toeplitz blocks and cannot be approximated with good
accuracy as sparse.

Noll (1976) quantifies the wavefront root mean square error for Kolmogorov
turbulence associated with each of the wavefront modes. Without AO, the residual
phase variance is equal to 1:029

�
D=r 0

� 5=3 compared to 0:134
�
D=r 0

� 5=3 when cor-
recting the tip and tilt modes only. Therefore, instead of representing the wavefront
on a zonal basis as in the previous paragraph, it may be decomposed into a modal
basis to reduce the dimensionality for control to a given number of modes. A modal
approach also allows to reconstruct and predict only modes that can be corrected
with the DM. The lowest order modes such as tip and tilt contribute the most to the
turbulence, let alone when considering vibrations and wind-shake on the mechanical
structure of the telescope which increase all the more the discrepancy with the other
modes. A drawback of modal representations of the phase however, is that they are
not suited to exploit in a distributed or sparse manner the localized properties of
the sensor and deformable mirror.

The deformable mirror
The control is usually applied with two deformable mirrors, a first one with large
stroke and few actuators to correct the tip-tilt modes and a second one with many
degrees of freedom although lower stroke to correct higher spatial frequencies.

Membrane mirrors with continuous face sheets are a common choice for in-
tegrating a large number of actuators. Each actuator is coupled to its closest
neighbours: the interaction is limited to its close neighbourhood and is modelled
with a two-dimensional Gaussian influence function identical for each actuator. Typ-
ical configurations are such that the values for the four closest neighbours of the i -th
actuator reach 15� 20% of the value set on the i -th actuator. Mirrors relying on the
micro-electromechanical technology have their first resonant frequency much larger
than usual sampling frequencies of the sensor, and hence settle sufficiently fast to its
steady state to neglect its temporal dynamics.

Between two consecutive sampling times, the input is maintained to the same
value using a zero-th order hold. A one-step delay is assumed between the time at
which the control inputs are applied and the time at which the wavefront is actually
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induced. When applying u(k) at time instant kTs, the relationship between the
control inputs and the wavefront induced by the mirror only � m

t is,

� m
t = Hu (k); for all t 2 [kTs; (k + 1) Ts] (1.22)

The matrix H is sparse and two-level Toeplitz with an adequate choice of the phase
sampling points and without failing actuators.

The mirror cannot take any arbitrary shape, and therefore there remains a
residual error between the reconstructed wavefront on a zonal basis and the applied
correction. The variance of the fitting error is evaluated as follows, Hardy (1998),

� 2
�t = � f

� dt

r 0

� 5=3
(1.23)

where dt is the inter-actuator spacing projected on the primary aperture, and
� f = 0 :28 for membrane mirrors.

The wavefront sensor
A commonly used sensor is the Shack-Hartmann sensor. It is composed of a two-
dimensional array of micro-lenses, each of which focuses the wavefront located over
its aperture on a camera placed at the back focal point. When the pitch of the array
is large enough, the pattern observed on the camera is a set of independent Airy
patterns that are located on a regular grid if the wavefront is flat. The center of
gravity of each Airy pattern is first computed and the position of these centroids is
used for reference. Local tilts of the wavefront deviate the point where light rays
focus on the CCD plane. A schematic is presented in Figure 1.13.

Figure 1.13: Left: schematic representation of a SH two-dimensional array projecting the wavefront
onto a CCD plane. The crosses indicate the reference location of centroids. The dots correspond
to the measured centroids when the wavefront is not �at. Middle: one-dimensional view of an
abberrated wavefront with lenslets focusing the local wavefront on their back focal plane. The local
displacements are measured with respect to the reference obtained when the wavefront is plane.
Right: reading of a medium-size Shack-Hartmann sensor used in the laboratory testbed. Each
white dot represents a reference position for the centroids.

The SH sensor measures the local gradients averaged over the respective subaperture
which is defined by corner coordinates f(x i ; yi ); (x i +1 ; yi ); (x i ; yi +1 ); (x i +1 ; yi +1 )g in
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the horizontal and vertical directions,
8
<

:

sx i;j (k) = 1
Ts

R(k+1) Ts

kT s
� x

� Ry i +1

y i
� t x i ;y dy�

Ry i +1

y i
� t x i +1 ;y dy

�
dt + � x i;j (k)

sy i;j (k) = 1
Ts

R(k+1) Ts

kT s
� y

� Rx i +1

x i
� t x;y i

dx �
Rx i +1

x i
� t x;y i +1

dx
�

dt + � y i;j (k)

(1.24)
where � x ; � y are geometrical properties and � x ; � y such that � (k) =

�
� x (k)T � y (k)T

� T

is a zero-mean white noise with covariance matrix � 2
� I . The measurements are

integrated over the sampling period Ts (assumed equal to the exposure time). The
additive noise � on the wavefront sensor accounts for Poisson noise due to the
arrival of photons on the camera, the read-out and thermal noise, non-linearities
in the sensor among which the spatial discretization of the CCD with pixels and
discretization of CCD intensity values. It is however approximated as zero-mean
white, Gaussian and stationnary. All channels are uncorrelated.

The equation (1.24) is rewritten between the discretized wavefront � (k) and
s(k) as follows,

s(k + 1) = G� (k) + � (k) (1.25)

A delay of one step is assumed in (1.25) to account for the time required for collecting
photons and reading out the frames from the camera. The measurement matrix G is
rank-deficient due to the presence of unseen modes by the sensor such as the piston
and waffle modes. The piston mode does not affect the image quality on the PSF
and the waffle mode corresponds to a very large spatial frequency, Roddier (2004).
The Shack-Hartmann is blind to the frequencies above the Nyquist limit, although
the power spectral density of the wavefront decreases as a function of the spatial
frequency.

Performance measures
AO systems strive to recover an image of a faint star as close to diffraction limit as
possible which occurs when the wavefront is constant over the telescope aperture as
shown in (1.15). In closed-loop, the residual wavefront � t is,

� t (� ) = � tur
t (� ) + � m

t (� ) (1.26)

where the wavefront induced by the turbulence only is denoted with � tur
t . The

variance of the residual wavefront over the pupil aperture and averaged over infinitely
long exposures is then,

� 2
� = lim

Ts !1

1
Ts

Z Ts

0

� ZZ

� 2 

� t (� )2d� �

� ZZ

� 2 

� t (� )d�

� 2�
dt (1.27)

The quality of the imaging system is also evaluated in terms of sharpness of the
long-exposure PSF. As the optical flux that reaches the PSF camera is identical
whatever the aberration, the more concentrated over a central core the intensities
are, the better. The Strehl ratio S is defined as the maximum intensity of the PSF
divided by the one of the diffraction-limited PSF. It is shown in Herrmann (1992)
that maximizing S is equivalent to minimizing the Euclidean norm of the residual
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wavefront. When the total variance of the wavefront � 2
� is smaller than 1 rad2, the

Maréchal approximation relates both quantities with S = e� � 2
� .

The normalized encircled energy measures the flux that enters within a circle of
radius r centered around the position of the maximum value, p0, in the PSF image
I ,

EE (r ) =
lim Ts !1

1
Ts

RTs

0

RR
� 2B r (p 0 ) I (� ; t)d� dt

lim Ts !1
1

Ts

RTs

0

RR
� 2I I (� ; t)d� dt

(1.28)

where Br (p0) = fp 2 I : kp �p0k2 < r g and I is the set of coordinates in the image.
Other measures include full-width at half-maximum and also the Power Spec-

trum Density of the residual PSF (and its Euclidean norm).

1.4.3. Control for large-scale AO
The wavefronts reaching both the PSF and SH cameras are theoretically identical. In
practice, however, optical alignment errors are such that there exists a time-invariant
difference between both of them and that are called non-common path aberrations.
These are assumed negligible. Removing the spatial mean of the residual wavefront,
we isolate the contribution that does not depend on the control input in � 2

� ,

� 2
� = lim

Ts !1

1
Ts

Z Ts

0
k� tur

t k
2
2+ lim

K !1

1
K

K � 1X

k=0

�
kHu (k)k2

2+ � tur (k + 1)
T

Hu (k)
�
(1.29)

where � tur (k + 1) = 1
Ts

R(k+1) Ts

kT s
� tur

t dt. The performance criterion in continuous
time is rewritten into a discrete version by discarding the first term on the right
hand side of (1.29) which does not depend on the input and adding the discrete
counterpart, Kulcsár et al. (2012),

� 2
�;d = lim

K !1

1
K

K � 1X

k=0

k� tur (k + 1) + Hu (k)k2
2 (1.30)

An additional error appears because of the zero-th order hold for sending the mirror
inputs: the commands are set to a fixed voltage while the turbulence keeps on evolving
during a sampling period. This error is called inter-sample variance. Increasing the
sampling frequency to infinity sets the inter-sample variance to 0.

Minimum variance control in AO boils down to first, deriving a prediction for
the future wavefront and second, projecting the latter onto the actuator space, as
written first in Roux et al. (2004), then in Kulcsár et al. (2006). The separation
principle states that the two stages for a disturbance rejection problem can be
performed independently. We first focus on the Linear-Quadratic Regulator (LQR)
problem for which solving a Riccati equation is not necessary thanks to the linear
static model in (1.22). The cost function makes a trade-off between minimizing the
residual wavefront and the control effort,

min
u (k )

k d� tur (k + 1 jk) + Hu (k)k2
2 + u(k)T Qu (k) (1.31)
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where Q is a semi-positive definite matrix, and d� tur (k + 1 jk) is the estimate of
� tur (k + 1) which is derived using all the data up to time k. The least-squares may
include bound inequalities to constraint the input within the linear range of the
DM such that all the actuators are not penalized with the quadratic term in (1.31).
When the coupling between actuators is localized such that the matrix H is sparse
and the matrix Q is diagonal, solving (1.31) is a large though sparse least-squares.

The temporal error and the frozen �ow assumption
The temporal error is related to the time delay between measuring the slopes and
actually applying the control inputs. The turbulence layers above the telescope are
driven by the wind and therefore, the control commands become quickly outdated if
the wavefront aberrations have significantly evolved during a sampling period. The
mean-square wavefront distortion due to the time delay evolves with,

� 2
temp =

� �v
r 0f S

� 5=3
(1.32)

where the control frequency is f S , and the overall windspeed of the screen is defined
as,

�v =
� R

C2
n (z)jv(z)j5=3dz
R

C2
n (z)dz

� 3=5
(1.33)

Cn (z) is the refractive index structure coefficient characterizing the turbulence
strength at height z, Hardy (1998). The faster the turbulence moves over the
telescope aperture, the larger the temporal error with a standard Proportional-
Integral controller. Fried (1990) introduces the Greenwood frequency to quantify
the wavefront errors as a function of key characteristics of the turbulence,

f G = 0 :427
�v
r 0

(1.34)

Plugging (1.34) into (1.32) is such that the mean-square wavefront distorition, � 2
temp ,

is proportional to (f G =f S )5=3. More accurate models for estimating � tur (k + 1) are
needed for large Greenwood per sample frequency ratio and are motivated by this
relation. These are discussed in a next paragraph.

As a summary, the errors in the AO system are due to the sensor noise (including
photon noise), the temporal dynamics of the turbulence, the aliasing error related to
the WFS, the non-common path aberrations, the fitting error and the intersampling
error. The latter is considered negligible for systems running at frequencies larger
than 100Hz, Kulcsár et al. (2012).

1.4.4. Turbulence prediction
Motivation and challenges
The temporal error has two main sources, namely the dynamics of the turbulence
and the vibrations of the telescope. This thesis studies more particularly the former.

When there are few actuators and sensors and the deformable mirror is such
that the first resonance frequencies appears well above the kilohertz, practitioners
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usually increase the control bandwidth as much as the WFS camera allows. The
drawback is nonetheless that less photons are collected and the signal to noise ratio
decreases especially if the guide star is not bright enough. Moreover, the design of
the mirror M4 in the ELT with about 8000 actuators and a first resonant frequency
at 600Hz does not permit to lessen the nefarious effect of the temporal error this way
and predictive control algorithms should be used in combination with an efficient
implementation.

We denote stur (k) the so-called pseudo open-loop measurements obtained
by subtracting the influence of the previous input on the residual disturbance,
stur (k) = s(k) � Bu (k � 1). The most general form for modelling the open-loop
temporal dynamics of the disturbance is a stochastic state-space model,

8
<

:

x(k + 1) = �Ax (k) + w(k)
� tur (k) = Cdx(k) + v(k)
stur (k + 1) = �C sx(k) + � (k)

(1.35)

where w(k); v(k); � (k) are zero-mean white Gaussian noises, and with covariance
matrix respectively Cw ; C v ; C � . The latter is assumed diagonal.

When the state is assumed equal to the open-loop wavefront, prior knowledge
of the system matrices such as the measurement matrix G can be used. Equation
(1.35) is then rewritten into,

�
� tur (k + 1) = A � tur (k) + w(k)
y tur (k) = G� tur (k) + � (k)

(1.36)

where the shifted output y tur (k) = stur (k + 1) is introduced to take into account
the time delay in (1.25). Once the matrices A and Cw are estimated, there remains
to solve in a scalable manner the Riccati equation.

The main challenges are twofold. First, deriving offline (i.e not being constrained
by the control frequency imposed for real-time operation of the system) though
efficiently the Kalman gain �K either from data or solving the Riccati equation and,
second, in a structured manner to pave the way for efficient online computations.
The methods derived in the literature mainly depend on the temporal order chosen
for the wavefront update and the parametrization chosen for the matrix A .

Unstructured approaches for medium-size AO
When the sampling time of the AO loop is much smaller than the lifetime of the
wind-blown inhomogeneities, it is common to assume a frozen flow propagation over
the telescope such that the future wavefront is merely a shifted version of the current
one, Roddier (2004),

� tur
t + Ts

(� ) = � tur
t (� � �vTs) (1.37)

Under the frozen-flow assumption, Gavel and Wiberg (2003) introduced the near-
Markov approximation to carry out the time update, the conditional expectation
for the wavefront at a time instant requires only the knowledge of the previous
instance when only a small fraction of the telescope aperture is crossed during a
sampling period. The matrix A is estimated using the phase covariance matrix
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C� ;0 = E
�
� (k)� (k)T

�
and C� ;1 = E

�
� (k)� (k � 1)T

�
, computed from the piston-

removed Kolomogorov turbulence in Gavel and Wiberg (2003) and Piatrou and
Roggemann (2007) in (1.20) via A = C � ;1C � 1

� ;0. The near-Markov assumption was
used in Piatrou and Roggemann (2007) to highlight the increased performances of a
Kalman filter-based control algorithm with respect to the static reconstruction.

Data-driven methods were studied in Beghi et al. (2008), Hinnen et al. (2007)
and Guyon and Males (2017). In Hinnen et al. (2007), a H2-optimal control was
proposed and the full spatial-temporal dynamics in (1.36) were identified from
open-loop data in the most general state-space form using a subspace algorithm.
This approach moreover removes the unobservable wavefront modes in the sensor
measurements in order to decrease the output dimension although it is not sufficient
to scale to larger arrays. While the temporal error follows the trend in (1.32),
a data-driven H2 optimal control improves the performances all the more as the
Greenwood per sample frequency ratio is large, see Figure 1.14.

Figure 1.14: The plot corresponds to laboratory experiments presented in Hinnen (2007) and
represents the mean-square phase error as a function of the Greenwood per sample frequency ratio.

The blue curve assumes d� tur (k + 1 jk) = � tur (k) whereas the optimal control in red predicts the
wavefront using a data-driven approach identifying a stochastic state-space model.

Instead of coping with the full generality of an infinite impulse response as in
Hinnen et al. (2007), Guyon and Males (2017) assume an autoregressive model for
modeling the temporal dynamics of the wavefront data and estimate the coefficient
matrices with a truncated Singular Value Decomposition.

Although reaching promising performances in terms of disturbance rejection,
neither of these methods is able to handle the large number of actuators and sensors
in the next generation of extremely large telescopes. With a sampling grid of size
N � N , the identification algorithms in Hinnen et al. (2007) and Guyon and Males
(2017) scale with an order of N 6 when estimating for the former the state space
matrices including the Kalman gain, and for the latter, the coefficient matrices of
the AR model. This restriction stems from the high computational cost associated
with system identification methods for large N when no a priori information on the
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spatial-temporal behaviour of the disturbance is available (or postulated).

Toward prediction for large-scale AO
Solving the discrete algebraic Riccati equation Although dealing with gen-
eral unstructured coefficient-matrices in the state-space model (1.36) yields the most
accurate representation, it does not enable to derive efficient control algorithms
when the sensor grid is large and was therefore simplified for scalability purposes
in a number of works that we now revisit. The simplest model for describing the
temporal dynamics of the turbulence is the random-walk,

� tur (k + 1) = � tur (k) + w(k) (1.38)

The predicted wavefront at time instant k + 1 is then equal to the wavefront at
time instant k, the latter being efficiently reconstructed from sensor measurements
solving a stochastic least squares and exploiting the sparse pattern of the inverse
covariance matrix of the wavefront, Ellerbroek (2002). Diagonal autoregressive model
of temporal order one have been widely used, either in a zonal or Zernike basis,

� tur (k + 1) = A � tur (k) + w(k) (1.39)

When the matrix A is diagonal, it is through the full covariances of the wavefront
that the spatial correlations are taken into account. The assumption A = aI has
been used in few works as a first step to solve in a scalable manner the DARE. The
coefficient a, usually determined from the wind speed and the control frequency, plays
the role of a forgetting factor, a coefficient equal to one reflects a frozen turbulence
whereas the closer to zero, the more temporally varying the wavefront is between
two time samples.

Such model for apprehending the temporal correlations of large systems is
considered in Correia et al. (2010) which exploits sparsity and in Massioni et al.
(2011) where a distributed control approach is investigated. The latter approximates
the phase screen over the aperture as a cropped version of an infinitely long screen,
so that the state equation is diagonal in the Fourier domain. The DARE is then
solved in parallel for all frequencies, and transformed back into the real domain using
the inverse Fourier transform. The online control does thus not involve any Fourier
transform. Following Bamieh et al. (2002), the influence of the neighbours decays with
the distance and the Kalman filter is localized, however to an extent that has not been
quantified. This limitation is essentially revealed with the finite-size of the sensor, and
the edges in the telescope aperture. This method is reminiscent of the developments
on decomposable and circulant systems mentioned in the paragraph 1.2.2. The
optimal Kalman filter is nonetheless spatially varying because of the finite size of
the sensor. Gilles et al. (2013) compare the distributed Kalman filtering approach
in Massioni et al. (2011) with a Fourier-based tomographic reconstruction in Multi-
Conjugate AO and show its improved performances when the wind speed and
direction are known. The latter are estimated in Massioni et al. (2015) and used for
updating the Kalman filter.

This Fourier-based approach differs from the one in Poyneer et al. (2007) where
the control relies on a wavefront reconstruction from a Fourier-transformed vector of
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measurements (or more precisely, the extension of the latter on a square periodic
grid rather than circular). The restrictive assumption in modelling the VAR model
with a diagonal matrix has been released, e.g in Gilles et al. (2013) where a shift
matrix is used, and a VAR with a second order in time is used in Sivo et al. (2014)
along with a representation of the wavefront in a Zernike basis.

As a summary, the shortcomings of the autoregressive models that have been
postulated for predicting the future wavefront in large-scale AO are first, the restricted
spatio-temporal coupling assumed, and second, the use of first principles to determine
the coefficients. Deriving the models from data would allow to overcome the problem
of estimating prior information such as wind speed, Fried parameter, etc, which
are likely to evolve during an observing run, and to strive for more accuracy in
expressing the spatio-temporal dynamics.

When the control frequency is fast enough with respect to the frequency at which
the turbulence evolves, assuming a sparse structure on the coefficient matrices of the
AR model is relevant and has been investigated in the works we now mention. Yu
and Verhaegen (2018b) bridge a gap by parametrizing A in (1.36) with a Kronecker
product of banded matrices, which is then used for deriving a sparse dynamical
controller. The SSS structure, discussed in the paragraph 1.2.3, is used in Fraanje
et al. (2010) and uses a model derived from Beghi et al. (2008) which strongly relies
on the frozen flow assumption. The phase screen is decomposed into columns that
are shifted in subsequent time samples. The two-dimensional disturbance is recast
as one-dimensional when the wind speed and direction is known.

Data-driven approaches One data-driven approach for large-scale AO which
does not rely on solving a Riccati equation is Piscaer (2016). This method identifies
a sparse banded VARX model from open-loop slopes data and random mirror
inputs. It is however still unknown how simulatenously identifying in open-loop the
turbulence and the mirror dynamics would translate in closed-loop on real systems.
The approach in Yu and Verhaegen (2018a) has not been applied to AO but is a
potential candidate for deriving a sparse Kalman gain from data (the grid of lenslets
is partitioned into a set of subsystems). The state observer then only receive the
output information from its four closest neighbours.

Online updates
The turbulence dynamics are stationary over relatively short time period. It holds
as an approximation only for longer exposures and are very much likely to evolve
during the observation run, and the control law (and in this case, the model used
for prediction) should adapt to the different turbulence scenarios flowing over the
telescope aperture. Ellerbroek and Rhoadarmer (2001) derive a recursive least-
squares algorithm for medium-size AO. Updating the prediction model from data
has not been studied in the context of large-scale adaptive optics.

1.4.5. Research question
The only data-driven and scalable algorithm that has been proposed so far is proposed
in Piscaer (2016). One shortcoming is that the coefficient matrices are not necessarily
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banded for various values of the Greenwood per sample frequency ratio, especially for
varying wind conditions for which the fixed bandwidth pattern for the non-zero entries
should vary to adapt. This makes such sparse pattern unpractical for updating online
the model from data. Moreover, solving the Riccati equation corresponding to the
stochastic model (1.36) when A is unstructured is untractable and the alternatives
have assumed a diagonal parametrization. Is it possible to handle more general
patterns of A with minor impact on the computational cost? What is a dense
data-sparse parametrization A and such that the structure is preserved when e.g
solving the DARE with the Newton’s iterations?

We propose the following question,

To what extent do the identification algorithms proposed in addressing the
research question of Section 1.3 handles the balance between computational complexity
and data storage, and minimizing the temporal error?

We validate the algorithms derived in this thesis by applying them on the basis of
numerical simulations and laboratory experiments. In other words, we would like
to place another point in the plot accuracy versus scalability by studying another
matrix structure suited to the two-dimensional sensor array.

1.5. Research direction and main contributions
In this dissertation, we introduce the class of low-Kronecker rank matrices Kd;r

defined as the set containing all the matrices X 2 RJ � I , such that

X =
rX

j =1

X d;j 
 : : :
 X 1;j ; r � min(fJ i ; I i gi =1 ::d )g (1.40)

where X i;j 2 RJ i � I i and J =
Q d

i =1 J i ; I =
Q d

i =1 I i . The parametrization is not
affine in the matrices fX i;j gi =1 ::d;j =1 ::r also known as factor parameters. Such data-
sparse representation for possibly dense large matrices relies on a certain separability
approximation for the underlying multi-dimensional function describing the spatial
dynamics. A main idea that is carried out throughout the thesis is that a large-scale
convex problem is transformed into a multi-convex optimization with a reduced
number of variables. An optimization is said to be multi-convex when the variables
can be partitioned into sets, each of them such that the cost function is convex when
all other variables are fixed. Three methods for computing a prediction are studied
under the light of this new parametrization: identifying Vector AutoRegressive
models, identifying stochastic state-space models, and computing a Kalman gain
from the DARE.

For sensor arrays distributed on a grid of size N � N , the coefficient matrices
of AutoRegressive models are parametrized with low-Kronecker rank matrices, and
are identified with O(N 3N t ) computational complexity, where N t is the number
of temporal samples, instead of O(N 6) in the unstructured case. An Alternating
Least Squares is proposed which was empirically shown to converge to a global
minimum. The global convergence is essential in the thesis as it guarantees that the
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residual error is implied by a discrepancy between the actual model structure and
the Kronecker decomposition, and not by the optimization itself. Such data-sparse
representation is moreover not only useful for more scalable linear algebra but also
for reducing the length of the data batch used for identification as the number of
unknowns now scales linearly with the number of sensor outputs. Regularization on
the factor matrices is proposed to handle noisy and short data-batches. A recursive
algorithm is derived to update the factor matrices in order to first, account for
possibly time-varying disturbances and second, to further decrease the memory
storage compared to the case when batches of data are stored.

We introduce state-space models with matrices in K2;1 and formulate a matrix
state-space model where the states, input and output are matrices rather than vectors.
Results on stability, observability and controllability are derived to characterize this
class of system. This formulation allows the derivation of an identification algorithm
of state-space matrices with O(N 3N t ). The non-uniqueness of the estimates obtained
from ALS on a Finite-Impulse Response model hampers the direct use of standard
realization theory, and as a consequence, we have formulated a low-rank optimization
subject to bilinear constraints as a step toward the identification of the state-sequence.
This method has shown significant improvements in the computational complexity
at the expense of lower accuracy due to a non-globally convergent behaviour of
the proposed Block-Coordinate Update algorithm. The algorithm is derived for
deterministic only state-space systems although a numerical experiment carried
out on a stochastic system highlights the applicability to models in innovation
form under certain conditions. Whereas most of these results are first presented
with a product of two matrices with a single Kronecker product, the framework is
extended to account for more spatial dimensions or to further compress the data
(for fixed I; J , less parameters are stored in the factor matrices for increasing d).
State-space models where the input, state and output are tensors are introduced.
The algorithm previously proposed is simplified and importantly, a subclass of Kd;1 is
introduced. This subclass is composed of systems whose factored Markov parameters
are strictly positive element-wise. Such assumption allows to significantly improve
the performances both in terms of accuracy and computational cost.

Inspired by the structure-preserving iterations for deriving efficient (and struc-
tured) solutions for the Lyapunov and Riccati equation in Rice (2010), we show
that standard linear algebra operations can be computed with O(N 3) complexity
instead of O(N 6) for matrices written as sums of Kronecker products between two
matrices. This paves the way for e.g doubling algorithms used for computing the
solution of discrete-time Lyapunov equations while maintaining the low-Kronecker
rank structure throughout the iterations hence allowing efficient computations. An
alternative is derived in close connection with the well-studied case where the semi-
positive definite matrix in the right-hand side is low-rank implying (as observed
empirically) a low-rank solution. We adapt a state-of-the-art factored Alternating
Direction Implicit method to the case when the matrices are Kronecker-structured.

The tensor models are used in the context of adaptive optics to derive a
minimum-variance unbiased estimate of the turbulence-induced slopes. We formulate
a tensor-based autoregressive model on the slopes data which are identified in open-
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loop and with an algorithm that approaches linear complexity with respect to the
number of Shack-Hartmann lenslets. It is shown on a validation dataset collected
in open-loop as well as in closed-loop the improved performances with respect
to e.g the diagonal or sparse banded assumptions especially for large Greenwood
per sample frequency ratio. Although the coefficient matrices are allowed to be
dense, computational rules relative to tensors enable to compute the prediction with
O(N

2( d +1)
d ). The approach is validated on a laboratory testbed and it demonstrates

the decrease of the temporal error over standard non-predictive methods.

1.6. Outline of the thesis
The remaining chapters of the thesis are structured as follows. Recommendations
for future work are written at the end of each chapter when specific and presented
in the concluding Chapter 7 for broader aspects.

Part I. Chapter 2 - Identifying Kronecker-structured AutoRegressive
models
In this chapter, we introduce autoregressive models with low-Kronecker rank coeffi-
cient matrices and propose scalable identification algorithms, one for dealing with
batches of stationnary data, and a recursive variant for handling non-stationarities.
I acknowledge Guido Monchen for his contribution on the recursive algorithm. The
material in this chapter stems from,

B. Sinquin, M. Verhaegen, "QUARKS, Identification of Kronecker Vector Au-
toRegressive models", in IEEE Transactions on Automatic Control, vol. 64, no. 2,
pp.448-463, 2019.

G. Monchen, B. Sinquin, M. Verhaegen, "Recursive Kronecker-Based Vector
Autoregressive Identification for Large-Scale Adaptive Optics", in IEEE Transactions
on Control Systems Technology, 2018.

Part I. Chapter 3 - Identifying Kronecker-structured state-space models
In this chapter is considered the identification of deterministic state-space models
when the state-space matrices are parametrized with a single Kronecker product. It
is published in,

B. Sinquin, M. Verhaegen, "K4SID, Large-Scale Subspace Identification with
Kronecker modeling", in IEEE Transactions on Automatic Control, vol. 64, no. 3,
pp. 960-975, 2019.

Part I. Chapter 4 - Scaling up
The results derived in the chapters 2 and 3 are generalized to more spatial dimensions
and tensor state-space models are introduced. The state is no longer a vector but a
tensor. We focus on the particular case where the systems have a strictly externally
positive impulse response for improved performances. This assumption was suggested
by Prof. Hansson. This work has not been previously published and appears for the
first time in this thesis.
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Part I. Chapter 5 - Kronecker-structured discrete Lyapunov equation
Whether the low-Kronecker rank structure is preserved when adding, multiplying
and truncating low-Kronecker rank matrices is of prime importance for deriving
scalable iterative algorithms (e.g for solving the DARE). It is investigated in this
chapter. Moreover, we propose to compute the discrete-time Lyapunov equation using
iterative algorithms without forming the large-scale matrices but rather exploiting
the low-Kronecker rank structure, which alleviates the computational load. This
work appears for the first time in this thesis.

Part II. Chapter 6 - Tensor-based predictive control for large-scale AO
and experimental validation
An auto-regressive model with a low-Kronecker rank parametrization is used for
deriving a prediction of the disturbance. The approach is validated on a laboratory
testbed dedicated for large-scale AO.

I acknowledge Maarten Griffioen and Will van Geest for writing the software
to drive from C the turbulence disks, the cameras, and deformable mirror; and a
GPU code for computing the sensor outputs from the raw images, and Dr. Oleg
Soloviev for the interesting discussions.
Parts of this chapter were published in,

B. Sinquin, M. Verhaegen, "Tensor-based predictive control for extremely
large-scale adaptive optics", in J. Opt. Soc. Am. A 35, 1612-1626 (2018).

Chapter 7 - Conclusion and recommendations
In this concluding chapter are summarized the main findings along with further
research questions to deepen the understanding of the class of low-Kronecker rank
structures for controlling multi-dimensional linear dynamical systems.

Appendix
We review the most important properties of the Kronecker product in Appendix A
and the fundaments on tensors in Appendix B.

Matlab toolbox
The Matlab codes related to the algorithms presented in the chapters 2, 3, 4 and 5
are available in a toolbox on the Bitbucket repository,

https://bitbucket.org/csi-dcsc/t4sid.git

It contains moreover Matlab code written by Guido Monchen and Peter Varnai
while studying their MSc thesis. I acknowledge Guido Monchen for writing the
code related to the Recursive Least Squares using a QUARKS modeling and the
CUDA code for solving the QUARKS with a sum-of-Kronecker parametrization.
Peter Varnai contributed by writing the Matlab code for approximating the inverse
of low-Kronecker rank matrices and solving large box-constrained least squares
exploiting this same structure.

https://bitbucket.org/csi-dcsc/t4sid.git
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The layout of the thesis is presented in the flow chart below. The reader most
interested in the theoretical developments should follow the paths with solid lines
whereas the dashed part focuses on the application to AO.

Chapter 1
Introduction

Chapter 2
Identifying Kronecker-
structured AutoRegres-
sive models

Chapter 3
Identifying Kronecker-
structured state-space
models

Chapter 4
Scaling up

Chapter 5
Kronecker-structured
discrete Lyapunov equation

Chapter 6
Tensor-based predictive
control for large-scale
AO and experimental
validation
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Identifying Kronecker-structured
auto-regressive models

In this chapter, we address the identification of two-dimensional spatial-temporal
dynamical systems described by the Vector Auto-Regressive (VAR) form. The coeffi-
cient matrices of the VAR model are parametrized as sums of Kronecker products.
When the number of terms in the sum is small compared to the size of the matrices,
such a Kronecker representation efficiently models large-scale VAR models.
Estimating the coefficient matrices in least-squares sense gives rise to a bilinear esti-
mation problem which is tackled using an Alternating Least Squares (ALS) algorithm.
Regularization or parameter constraints on the coefficient matrices allows inducing
temporal properties such as stability as well as spatial ones such as sparsity or e.g
Toeplitz structure. The estimates of a particular formulation of ALS which features
some normalization converge to a fixed point. A numerical example demonstrates the
advantages of the new modeling paradigm. It leads to comparable variance of the pre-
diction error with the unstructured least-squares estimation of VAR models. However,
the number of parameters grows only linearly with respect to the number of nodes
in the 2D sensor network instead of quadratically in the case of fully unstructured
coefficient matrices.
A recursive variant of the Kronecker-structured autoregressive models is then proposed.
A validation on non-stationary atmospheric turbulence data, both synthetic and
experimental, is shown for an adaptive optics application. Significant improvements
in accuracy over batch identification methods that assume stationarity are observed
while both the computational complexity and the required storage are reduced.

Section 2.1 to 2.5 and 2.7 have been published in:
B. Sinquin and M. Verhaegen, "QUARKS: Identi�cation of Large-Scale Kronecker Vector-
AutoRegressive Models," in IEEE Transactions on Automatic Control , vol. 64, no. 2, pp.448-463,
2019.
Sections 2.6 and 2.8 have previously appeared in:
G. Monchen, B. Sinquin, M. Verhaegen, "Recursive Kronecker-Based Vector Autoregressive Identi�-
cation for Large-Scale Adaptive Optics", as a brief paper in IEEE Transactions on Control Systems
Technology , 2018.
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2.1. Introduction
A novel modeling paradigm is introduced to identify 2D spatial systems with temporal
dynamics. As a fundament of this new approach, we restrict to temporal Vector
Auto-Regressive models of temporal order p with the spatial structure imposed on
the coefficient matrices. Let the sensor measurements be distributed on a grid of size
N � N . The spatial structure is embedded into the coefficient matrices fA i gi =1 ::p ,
parametrized with a finite sum of a Kronecker product between low dimensional
matrices:

A i =
rX

i =1

U i 
 V i (2.1)

where r is called the Kronecker rank and U i ; V i 2 RN � N are the factor matrices.
Such representation of large matrices was studied in van Loan and Pitsianis (1993) in
which the equivalence between expressing a matrix as a sum of r Kronecker products
and a rank-r approximation of a reshuffled matrix was established. Therefore, any
matrix admits such a decomposition by just fixing r to the adequate value. We are
especially interested in the case where r is much smaller than N .

More than only enjoying the storage of 2rN 2 entries instead of N 4, such a
structure enables fast computations thanks to the very pleasant algebra of the
Kronecker product, see e.g van Loan (2000). Using Kronecker structures for solving
Partial Differential Equations stemming from multi-dimensional problems is well-
known, Grasedyck et al. (2013). Besides, Kronecker structures have been applied
efficiently for computing second moments in multi-dimensional processes, Tsiligkaridis
and Hero (2013), for analyzing EEG signals, Bijma et al. (2005), and for image
deblurring, Hansen et al. (2006). The latter example enables to relate the Kronecker
rank-one modeling with physical properties of the system. Denoting an object O
imaged with a static optical system, the resulting blurred image B undergoes the
linear blurring operation,

vec(B ) = A vec(O) (2.2)

The equation (2.2) represents the 2D convolution operation between the PSF and
the object O . The structure in A is related to the separability of the PSF in both
horizontal and vertical directions which implies the following Kronecker structure
for the coefficient matrix A :

A = A r 
 A c (2.3)

where A r and A c represent respectively the 1D convolution with the rows and
columns. A large-scale static input-output map in (2.2) is represented by a matrix
parametrized with a Kronecker product, (2.3). In a more general context, separation-
of-variable techniques have been applied in Doostan and Iaccarino (2009) and the
references therein to break down the curse of dimensionality when modeling high-
dimensional partial differential equations.

Although tensor-based algorithms for handling large datasets receive a growing
interest, system identification of multi-dimensional systems is however in its infancy.
An overview of data-driven algorithms that handle large datasets using the tensor
representation is provided in Cichocki et al. (2017) and includes a multi-linear tensor
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regression for relational longitudinal data, Hoff (2015). The approach proposed in
Hoff (2015) handles the estimation of factor matrices from an input-output tensor
model and using Alternating Least Squares. However, it embeds temporal dynamics
in a higher-order tensor whereas the parametrization we propose follows the control
engineering approach to combine the temporal dynamics linearly while modeling
independently each coefficient matrix with a sum of Kronecker matrices. Besides,
we allow the Kronecker rank to be strictly larger than one for more generality and
applicability for identification and control of systems such as adaptive optics. These
two points are crucial to achieve good accuracy estimations in e.g a laboratory
environment and hence, enable its effective use for control. Third, regularization to
estimate stable and sparse models is proposed.

Another work related to the framework we propose deals with blind source
separation using tensor representations, Boussé et al. (2017a) and Boussé et al.
(2017b). The approach consists in estimating two matrices M and S from the
measurements stored in X given the relationship:

X = MS (2.4)

where M represents the mixing matrix and S 2 Rn � K the n source signals for K
time samples. Boussé et al. (2017a) rely on a low-rank decomposition of a certain
reshaping for the rows of the mixing matrix and the source channels in order to
achieve a trade-off between data compression and accuracy of the data fit.

The present chapter and Boussé et al. (2017a) reshuffle respectively the coeffi-
cient matrices and the rows of the mixing matrix both in order to exhibit a low-rank
matrix and subsequently, reduce the number of modeling parameters. Nonethe-
less, our modeling assumptions differ in three ways. We do not make restrictive
assumptions on the signals rather than being obtained from a regular grid and being
persistently exciting. We focus on the specific case where the sources signals S are
known which allows getting rid of the ambiguity transformation inherent to blind
source separation and to formulate spatial and temporal stability constraints on
the coefficient matrices A i . Last, we exploit the 2D structure of the network and
separability of the modeled functions in order to reduce the number of parameters.
This point is detailed in Section 2.5. The different modeling assumptions lead to
distinct optimization procedures.

In the following, the class of low-Kronecker rank matrices is studied with a focus
on modeling 2D spatial-temporal dynamical systems of the VAR form. The Kronecker
tool as presented in this chapter is meant to break down the curse of dimensionality
when working with arrays of higher dimensions and without necessarily enforcing a
priori a sparsity pattern in the network, hence allowing to discover both spatially
varying dynamics and an unknown topology from the data. It also serves as the
basis for other identification approaches such as subspace identification, as we will
see in Chapter 3. As such, it will establish the fundamentals of a new modeling
framework for the identification and analysis of large-scale 2D dynamical systems.

The challenge lies in deriving algorithms that are, on the one hand, scalable in
terms of data storage as well as in terms of computational complexity in identifying
and using these models, e.g in subsequent control design, and on the other hand,
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that still ensures similar prediction performances compared to the unstructured
least-squares estimates. The main contributions of this chapter are the definition
of a new class of dynamical systems -of low Kronecker rank-, the formulation of a
regularized cost function for identification and the formulation of an Alternating
Least Squares algorithm with O(N 3N t ) computational complexity, where N t is the
number of temporal samples.

The chapter has the following outline. Section 2.2 describes the class of low-
Kronecker rank matrices, whereas Section 2.3 associates a VAR model associated
with the sensor data. In Section 2.4, we describe regularization methods to emphasize
the identification of stable models both in time and space. We study in Section 2.5
the Alternating Least Squares algorithm with a focus on the conditions to ensure
global convergence. The methods are then illustrated in Section 2.6 on a randomly
generated VARX model (with coefficient matrices sums of Kronecker) and a practical
scenario dealing with open-loop identification of the atmospheric turbulence for
adaptive optics purposes. Recursive updates to allow accurate identification of
non-stationary data is presented in Section 2.7.
Notations. Let i 2 f0; : : : ; N � 1g. For a matrix X 2 RN � N , we denote with
diag(X ; i ) the i -th diagonal above the main diagonal and with diag(X ;�i ) the i -th
diagonal below the main diagonal. These vectors are then concatenated into a vector
d i defined with:

d i =
�
diag(X ; i )T diag(X ;�i )T

� T

We reshape the elements of a square matrix diagonal-wise starting by the main
diagonal with the operator D:

D(X ) =
�
diag(X ; 0)T dT

1 : : : dT
N � 1

� T

which belongs to RN 2
. The notation BDiag(X i ; i = 1 ::N ) forms a block-diagonal

matrix with X 1 to X N located on the block-diagonal.

2.2. Preliminaries
The main computational rules related to the Kronecker product are described in the
appendix A of this dissertation. In this section, we review some of the most important
properties related to the decomposition of matrices with a sum of Kronecker products.
Such a decomposition relies on the existence of block-matrices of equal size and that
allows for a re-organization of the entries into a low-rank reshuffled matrix.

De�nition 2.1. van Loan and Pitsianis (1993) Let m1; n1; m2; n2 2 R. Let X 2
Rm 1 m 2 � n 1 n 2 and X i;j 2 Rm 2 � n 2 such that:

X =

2

6
4

X 1;1 � � � X 1;n 1

:::
: : :

:::
X m 1 ;1 � � � X m 1 ;n 1

3

7
5 (2.5)

then the re-shuffle operator R(X ) 2 Rm 1 n 1 � m 2 n 2 is defined as:

R(X ) =
�
vec

�
X 1;1

�
: : : vec

�
X m 1 ;1

�
vec

�
X 1;2

�
: : : vec

�
X m 1 ;n 1

� � T (2.6)
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There exists a permutation matrix P in the set Rm 1 n 1 m 2 n 2 � m 1 n 1 m 2 n 2 such that:

vec(R(X )) = Pvec(X ) (2.7)

Lemma 2.1. van Loan (2000) Let X = F 
 G , with F; G 2 Rm 1 � n 1 � Rm 2 � n 2 .
Then:

R(X ) = vec( F)vec(G)T (2.8)

The operation in Lemma 2.1 can also be reversed by the definition of the inverse vec
operator ivec(:).

Lemma 2.2. van Loan and Pitsianis (1993) Let X be defined as in Definition 2.1
and let an SVD of R(X ) be given as:

R(X ) =
rX

` =1

� ` u ` vT
` (2.9)

and let ivec
�
u `

�
= U ` , ivec

�
v `

�
= V ` , then:

X =
rX

` =1

� ` U ` 
 V ` (2.10)

The integer r is called the Kronecker rank of X with respect to the chosen block
partitioning of X as given in Definition 2.1. When r is much smaller than N , X
is said to have low-Kronecker rank. From Lemma 2.2, looking for a low-Kronecker
rank approximation of a matrix is equivalent to finding a low-rank approximation
of the reshuffled matrix. The operator R as defined in Definition 2.1 that forms a
reshuffled matrix of minimal rank r is not unique: reshuffling the block-matrices
row-wise rather than column-wise would yield the same Kronecker rank for X . It
then corresponds to the transpose of R(X ). The sizes of the blocks should be chosen
such that the Kronecker rank is minimal. These are usually infered in engineering
applications to the dimensions of the sensor array.

Let a real function from R2 to R, and separable in both coordinates. If this
function describes the static behaviour of a particular mode of a system, a basis may
be retrieved concatening columnwise the vectorized maps for all modes into a matrix.
Figure 2.1 illustrates when the function is a Gaussian function. The matrix in the
right may represent the influence that the actuators has on the wavefront in adaptive
optics. Figure 2.2 depicts the reshuffled matrix and a single non-zero singular values.

De�nition 2.2. (� -decomposable matrices, Massioni (2014))
Let us consider a network of subsystems such that the latter belong to � different
classes, themselves composed of ` i subsystems. Let P 2 RL � L be an adjacency matrix.
Define � j =

P j
i =1 ` i (with � 0 = 0 ) and I [a1 :a2 ] as an L � L diagonal matrix which

contains 1 in the diagonal entries of indices from a1 to a2 (included) and 0 elsewhere,
then an � -decomposable matrix (for a given � ) is a matrix of the following kind:

M =
�X

i =1

�
I [� i � 1 +1: � i ] 
 L ( i ) + I [� i � 1 +1: � i ]P 
 N ( i ) � (2.11)
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(a) (b)

Figure 2.1: On the left is depicted a Gaussian function, whose discretized values on a regular grid
are lifted into a column of the matrix on the right-hand-side. This matrix concatenates columnwise
such vectorized maps, which have been obtained for all other positions for the peak value of the
Gaussian.

(a) (b)

Figure 2.2: The matrix on the left-hand side is the reshu�ed version of the one in Figure 2.1. Its
�rst singular values are shown on the right-hand-side.
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The matrices L ( i ) are the diagonal blocks of M that model the local dynamics, while
the influence from the neighborhood is represented by the matrices N ( i ) , according to
the structure of P.

When a state-transition matrix of a state-space model belongs to the class of
� -decomposable matrices, the associated network has a known interconnection
pattern whose adjacency matrix is P where � represents the number of non-identical
subsystems in the network. For � = 1 (and � 1 = L ), these matrices are simply called
decomposable matrices.

As a generalization of this class of structured matrices, we define next the class
of sums-of-Kronecker product matrices.

De�nition 2.3. The class of sums-of-Kronecker product matrices contains matrices
of the following kind:

M =
rX

i =1

M ( i )
a 
M ( i )

b (2.12)

with M ( i )
a 2 Rm 1 � n 1 and M ( i )

b 2 Rm 2 � n 2 . This class is denoted with K2;r . The
matrices M ( i )

a ; M ( i )
b are called factor matrices.

With this class of sums-of-Kronecker matrices, it is not necessary to have knowledge
of the adjacency matrix P as with decomposable matrices. Therefore, the topology
of the network need not to be known in advance. Moreover, the network may be
composed of heterogeneous subsystems without any further specifications on the
structure of the factor matrices. When describing large-scale networks, this structure
is advantageous for its high compression capabilities. We now set (m1; n1; m2; n2)
all equal to N . While N 4 entries are necessary to describe M in the unstructured
case, only 2rN 2 elements are required in the low Kronecker rank framework.

The next lemma provides insight on the benefits of using the class of Kronecker
matrices to speed up simple linear algebra operations.

Lemma 2.3. van Loan and Pitsianis (1993) Let x 2 RN 2
. Then, the orders of

magnitude of the computational complexity for matrix-vector multiplication, matrix-
matrix multiplication and matrix inversion is as follows:

A ; B 2 RN 2 � N 2
A ; B 2 K2;r

Ax O(N 4) O(rN 3)
AB O(N 6) O(r 2N 3)
A � 1 (case r = 1 ) O(N 6) O(N 3)

The complexity obtained with the Kronecker parametrization considers the operations
required for forming the factor matrices only.

Proof. The matrix vector multiplication Ax =
� P r

i =1 A `;i 
A r;i
�
x is rewritten intoP r

i =1 A r;i ivec(X )A T
`;i . The complexity in the matrix format is 2rN 3 compared to

N 4 without exploiting the sums-of-Kronecker structure. When computing the matrix-
matrix multiplication, only the products between factor matrices are computed
yielding a cost of r 2N 3. The inverse for A is determined via A � 1 = A � 1

`; 1 
 A � 1
r; 1 .
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Computing A � 1
`; 1 and A � 1

r; 1 costs O(N 3). �

Remark 2.1. Approximating the inverse of large-scale low-Kronecker rank matrices
A 2 K2;r when the Kronecker rank is larger than one is an on-going research topic
which Beylkin and Mohlenkamp (2005), Giraldi et al. (2014) and more recently
Varnai (2017) have investigated.

From Lemma 2.3, efficient linear algebra operations are possible when r is much
smaller than N which is the class of Kronecker models we are interested in.

2.3. Problem formulation
Low-Kronecker rank matrices are now used to model the input-output relationship
of 2D networked systems.

2.3.1. QUARKS models
Let us consider a regular grid with N � N nodes, with N larger than one, and each
node is associated with a scalar sensor signal. Although the framework that we
present here extends straightforwardly to arrays with nodes having multiple outputs,
we only dwell on this case in Section 2.6. The sensor readings at the time instant k
are stored in the matrix S(k) 2 RN � N as:

S(k) =

2

6
6
6
4

s1;1(k) s1;2(k) � � � s1;N (k)
s2;1(k) s2;2(k) s2;N (k)

:::
:::

: : :
:::

sN; 1(k) sN; 2(k) � � � sN;N (k)

3

7
7
7
5

(2.13)

In this chapter, we will consider that the temporal dynamics of this array of sensors
are governed by the following VAR model:

vec
�
S(k)

�
=

pX

i =1

A i vec
�
S(k � i )

�
+ vec

�
E(k)

�
(2.14)

where vec
�
E(k)

�
is a zero-mean white noise with identity covariance matrix. Covari-

ance estimation for low-Kronecker rank matrices has been addressed in Tsiligkaridis
and Hero (2013) and is not the subject of further investigations in this chapter. The
spatial dynamics are embedded within the structure of the matrices. For example,
the spatial invariance is represented with a block-Toeplitz pattern for A , the spatial
invariance and infinitely large dimensions with a circulant matrix (of finite size), the
separability of a certain function with a Kronecker product. The latter decomposition
is introduced to recast a two-dimensional problem into two coupled one-dimensional
problems. The coefficient matrices A i in the VAR model (2.14) are assumed to
belong to the set K2;r . To address an identification problem, we parametrize these
coefficient matrices as:

A i =
r iX

j =1

A ( j )
i ; A ( j )

i = M (b ( j )
i )T 
M (a( j )

i ) (2.15)
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with the vectors a( j )
i and b ( j )

i parametrizing the matrices M (a( j )
i ) and M (b ( j )

i ) in an
affine manner1. If no additional structure is enforced on M (a( j )

i ), then a( j )
i;` denotes

the `-th column. With the notation vec
�
S(k)

�
= s(k), the VAR model (2.14) can be

rewritten as,

s(k) =
pX

i =1

� r iX

j =1

M (b ( j )
i )T 
M (a( j )

i )
�
s(k � i ) + e(k) (2.16)

We can also write the VAR model (2.16) as,

S(k) =
pX

i =1

� r iX

j =1

M (a( j )
i )S(k � i )M (b ( j )

i )
�

+ E(k) (2.17)

The VAR(X) models (2.16) or (2.17) are called Kronecker VARX network models
and abbreviated with QUARKS models.

2.3.2. The identification problem of QUARKS models
Given the model structure of the QUARKS models, the problem of identifying these
models from measurement sequences fS(k)gk=1 ::N t is fourfold:

1. The temporal order index p.

2. The spatial order index r i for each coefficient matrix.

3. The parametrization of the matrices M (a( j )
i ) and M (b ( j )

i ). An example of a
parametrization of the matrices M (a( j )

i ) and M (b ( j )
i ) is (block) Toeplitz, or

banded.

4. The estimation of the parameter vectors a( j )
i , b ( j )

i up to an ambiguity trans-
formation. This requires the specification of a cost function. An example of
such a cost function using the model (2.17) is the following least squares cost
function, for data batches with N t points:

min
a ( j )

i ;b ( j )
i

N tX

k= p+1

kS(k) �
pX

i =1

� r iX

j =1

M (a( j )
i )S(k � i )M (b ( j )

i )
�
k2

F (2.18)

By the selection of the parameter p and the particular choices of the parametrization
in step 3 above, various special cases of restricting the coefficient matrices A i in
(2.14) to particular sets such as K2;r i can be considered. Further constraints to the
least-squares cost function (2.18) might be introduced to look for sparsity in the
parametrization vectors a( j )

i and b ( j )
i .

1For now, we do not precise the size of a( j )
i and b ( j )

i as it depends on the chosen parametrization
of the factor matrices. For example, if these are unstructured, they are composed of N 2 elements
each.
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The non-uniqueness of the optimal solution for the cost function (2.18) is
highlighted next. One way to solve this estimation problem is via:

min
A i ;a ( j )

i ;b ( j )
i

N tX

k= p+1

ks(k) �
pX

i =1

A i s(k � i )k2
2 (2.19)

s.t A i =
r iX

j =1

M (b ( j )
i )T 
M (a( j )

i )

From (2.7), the reshuffling operator R is bijective in RN 2 � N 2
, therefore the above

minimization problem is equivalent to:

min
A i ;U i ;V i

N tX

k= p+1

ks(k) �
pX

i =1

A i s(k � i )k2
2

s.t R(A i ) = U i V T
i (2.20)

where:

U i =
h
vec

�
M (a(1)

i )
�

: : : vec
�
M (a( r i )

i )
� i

V i =
h
vec

�
M (b (1)

i )
�

: : : vec
�
M (b ( r i )

i )
� i

For a non-singular matrix T i 2 Rr i � r i , the constraint (2.20) can be equivalently
written as:

R(A i ) =
�
U i

�
V

T

i (2.21)

where:
�
U i = U i T i and

�
V

T

i = T � 1
i V T

i . The matrix T i is called the ambiguity
transformation. The non-uniqueness of the factor matrices is not an issue for
practical use of QUARKS models as it does not affect the prediction-error.

Remark 2.2. Let m 2 f1; ::; N 2g. Blind source separation (2.4) as described in
Boussé et al. (2017b) reshapes either (or both) the mixing vectors M (m; :) and sources
S(m; :) in (2.4) to form low-rank matrices. Then, there exists different left and
right matrices for each mixing vector M (m; :) such that R(M (m; :)) = um vT

m , or
equivalently,

M (m; :) =
rX

j =1

um (:; j )T 
 vm (:; j )T (2.22)

where um 2 RI � r ; vm 2 RJ � r for two scalars I; J . The parameters I; J are user-
defined contrary to the QUARKS modeling, where I; J = N . Hence, all mixing
vectors are decoupled independently contrary to the description for the QUARKS
model (2.15) which assumes that the reshuffling into a matrix of both the rows and
columns of the mixing matrix M is low-rank.
We illustrate in the case where p = 1 and M = A 1. If rank(R(M )) = r , then
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rank(R(M (m; :))) = r and rank(R(M (:; m))) = r . Fixing I; J to N and considering
N 2 sources, there are 2rN 3 unknown coefficients to estimate whereas the modeling
(2.15) represents the coefficient matrices with 2rN 2 entries. The QUARKS modeling
decreases the data storage requirements by an order of magnitude.

An important challenge in solving the parameter estimation problem (2.18) is the
computational efficiency for the case when the size N of the array is assumed to be
large.

2.4. Regularization inducing stability and sparsity
We aim at regularizing the least-squares (2.18) to favour stable VAR models and
that are such that the spatial correlations decay with the distance. We propose two
additional costs which add up to (2.18) without altering the convergence properties.

The Kronecker rank is assumed equal for all i , i.e r i = r , without constraining
the insights in this section. We introduce the notations:

M a i =
h
M (a(1)

i )T � � � M (a( r i )
i )T

i T
; M a =

�
M T

a1
: : : M T

ap

� T

The matrix M b is similarly defined.

2.4.1. Stability of VAR models
The stability for VAR models is guaranteed in Chiuso and Pillonetto (2012) by
modeling the impulse response from one node to all the other ones in the network as a
zero-mean Gaussian process and with an adequately chosen covariance matrix, which
ensures that the parameters of the impulse response are decaying with increasing
temporal index. We refer to Chen et al. (2012) and Pillonetto et al. (2014) for kernel
methods applied to system identification. In this paragraph, we integrate these results
as an additional regularization to the cost function (2.18). A Diagonal-Correlated
kernel is used and the associated positive definite matrix P t is defined with:

pt i;j = �
i + j

2 � j i � j j (2.23)

for i; j = 1 ::p, and where the parameters �; � are such that �1� � � 1 and 0� � < 1.
The optimal ones are determined either by grid search or within the framework
of Bayesian optimization and tune both the decay rate and the smoothness of the
impulse response. T Let W t be a square root of P � 1

t . As there is no prior information
nor physical meaning to distinguish between the different factor matrices, these are
regularized independently with the additional cost:

r t (M a ; M b ) =
rX

j =1

kQ t

2

6
4

U 1(:; j )V 1(:; j )T

:::
U p(:; j )V p(:; j )T

3

7
5 k2

F (2.24)

where Q t = W t 
 I N 2 . Such a regularization r t is bilinear in the unknowns.
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2.4.2. Spatial sparsity
Real graphs or the regular networks from discretized Partial Differential Equations
are such that each node is connected to a very limited number of other nodes with
respect to the network’s size. In the latter case, the neighborhood is localized which
gives rise to a multi-banded structure of the full coefficient matrices, equivalent
to a banded structure of each factor matrix. In case of high spatial coupling, we
rather tune the decay of the parameters away from the main diagonal rather than
minimizing the number of non-zero entries. It will become clear in the next section
that we would like to avoid all non-differentiable functions in the cost function, hence
the focus is laid on kernel methods rather than on minimizing the `1-norm of the
factor matrices. An exponentially decreasing sequence has been studied in Chiuso
and Pillonetto (2012) for sparse network identification. Following the same line of
thoughts, we introduce a diagonal matrix K s 2 RN 2 � N 2

such that:

K s =

2

6
6
6
6
4

I N k1 0 : : : 0

0 I 2(N � 1) k2
: : :

:::
:::

: : :
: : : 0

0 : : : 0 I 2kN

3

7
7
7
7
5

(2.25)

where the scalars ki are such that 0 < k i < k i +1 . For example, a valid choice of such
scalars is ki = e�i with � > 0. An additional cost which favours factor matrices with
values decaying away from the main diagonal reads,

r s(M a ; M b ) =
pX

i =1

rX

j =1

kK sD
�
M (a( j )

i )
�
D

�
M (b ( j )

i )
� T

K T
s k

2
F (2.26)

2.4.3. Structured factor matrices
The parametrization of the factor matrices based on prior knowledge of the network
may help either to further reduce the computational complexity of the model
identification step, or to cast the model into a structure useful for control. The first
category include banded, symmetric, Toeplitz and circulant patterns. Exploring
such structures on the factor matrices is very attractive numerically as the number
of parameters to be estimated reduces further. The block-Toeplitz Toeplitz-blocks
structure arises e.g when modeling 2D homogeneous spatially-invariant phenomena
on a rectangular grid. Many functions in optics are isotropic, for example the Airy
function, or the wavefront covariance matrix C �; 0, and can be modeled with a sum of
few Kronecker terms. The Kronecker and block-Toeplitz Toeplitz-blocks structures
are related, but not equivalent.

Lemma 2.4. Let X 2 RN 2 � N 2
.

If X is symmetric block-Toeplitz, then X has a Kronecker rank at most equal to N .
If X has a Kronecker rank of one, it does not in general imply neither that X is
block-Toeplitz nor has Toeplitz-blocks.

Proof. The first proposition is proved by using the reshuffling operator R. It is then
observed that the Toeplitz-blocks are not used in reducing further the Kronecker
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rank. For the second point, the factor matrices may be for example randomly
generated. �
The second category contains for example the sparse (with unknown pattern of
non-zero entries) or SSS structure. The SSS structure is more general than the
Toeplitz, especially when it comes to model spatially-varying systems. As mentioned
in Chapter 1, the efficient use of SSS matrices has been thoroughly studied in Rice
and Verhaegen (2009) although the extension to Multi-Level structures is an on-
going research question. Modeling each factor matrix of the model as SSS enables
significant improvements in the computational cost for future simple linear algebra
operations. For example, the cost for standard matrix computations scales linearly
with respect to the matrix size. For example, inverting a matrix M belonging to
RN 2 � N 2

written as M = M 1 
M 2 in which both M 1, M 2 have a SSS structure
requires O(N ) operations instead of O(N 6). For identifying factors with a SSS
structure, the factors are first identified without any particular parametrization, and
second, the SSS generators are extracted from the low-rank off-diagonal submatrices.
This two-step procedure is proposed because such a parametrization for the matrices
M (a( j )

i ); M (b ( j )
i ) is not affine in the parameters a( j )

i ; b ( j )
i .

2.4.4. The regularized cost function for QUARKS identifica-
tion

The cost function for the identification of sparse stable QUARKS models reads:

min
a ( j )

i ;b ( j )
i

N tX

k= p+1

kS(k) �
pX

i =1

� r iX

j =1

M (a( j )
i )S(k � i )M (b ( j )

i )
�
k2

F

+ � � r t (M a ; M b ) + � � r s(M a ; M b ) (2.27)

where �; � are regularization parameters. The cost function (2.27) belongs to the
class of multi-convex problems in which fixing one set of variables yields a convex
problem. Adding regularization to the cost function aims at decreasing the prediction
error of the estimated VAR model when dealing with noisy and short data batches
rather than speeding up the convergence as done in Li et al. (2013).

Remark 2.3. The regularization in (2.27) is bilinear contrary to the one analyzed
in Udell et al. (2016), Baldi and Hornik (1989) within the framework of Principal
Component Analysis (PCA). Based on Udell et al. (2016), a regularization for (2.20)
would minimize a (weighted) sum of the Frobenius norm of the factor matrices.

2.5. A bi-convex cost function
The factor matrices are assumed unstructured in the upcoming sections.

2.5.1. An Alternating Least Squares approach
The regularized least-squares representation (2.27) is bilinear in its unknowns but
features factor matrices of size N � N only. It has moreover the advantage that
constraints on the parametrization of the matrices M (a( j )

i ) and M (b ( j )
i ) can be more
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easily taken into consideration than via a low-rank minimization on the large-scale
reshuffled matrix, R(A i ). A couple of optimization routines are candidates. A non-
linear optimization scheme such as the separable least-squares in Bruls et al. (1999)
proceeds with two steps, one of which however consists of non-linear optimization.
Iterative hierarchical algorithms have been derived as a generalization of the linear
Gauss-Seidel iterations for solving coupled Sylvester matrix equations in Ding and
Chen (2005). Similarly as in Hoff (2015), we propose to address (2.19) by solving a
sequence of linear least-squares and using ALS, which is a special case of the block
non-linear Gauss-Seidel method as highlighted in Li et al. (2013).
We now rewrite the cost function (2.27) into two updates, (2.30) and (2.31), which
are solved iteratively until convergence to a stationary point. The data-fitting term
for updating M b is,

min
M b

k
�
S� X aM b k2

F (2.28)

where:

�
S =

2

6
6
4

�
S1;1 : : :

�
S1;N

:::
:::

�
SN; 1 : : :

�
SN;N

3

7
7
5 ;

�
Si;j =

2

6
4

si;j (p + 1)
:::

si;j (N t )

3

7
5

X a =
�
X a;1 : : : X a;p

�
; X a;i =

�
X a;i; 1 : : : X a;i;r

�

X a;i;j = ( I N 

�
U i )

2

6
6
4

a( j )
i; 1 
 I N

:::
a( j )

i;N 
 I N

3

7
7
5

�
U i =

2

6
4

S(p + 1 � i )(1; :) : : : S(p + 1 � i )(N; :)
:::

:::
S(N t � i )(1; :) : : : S(N t � i )(N; :)

3

7
5

The term � � r t (M a ; M b ) is rewritten as kFb(M a )M b k2
F , where Fb(M a ) contains

p� p block-matrices. The block at position (i; j ) is equal to:

p
�w t; ( i;j )BDiag(I N 
 vec(M (a(m )

i )) ; m = 1 ::r )

Moreover, a matrix G b(M a ) is derived such that the regularization for spatial sparsity
reads:

� � r s(M a ; M b ) = kG b(M a )vec(M b )k2
2 (2.29)

where:

G b(M a ) =
p

� P r;s BDiag(G b;j (M a ); j = 1 ::r )P c;s

G b;j (M a ) = BDiag((K s 
 K s)D(M (a( j )
i ); i = 1 ::p)

The matrices P r;s and P c;s permute respectively the rows and columns such that
G b(M a ) is block-diagonal. We denote the i -th block in the main block-diagonal with
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G b(M a ) [i ]. The cost function (2.27) is then separable for each column of M b :

min
M b

NX

i =1

k

2

6
4

�
S
0
0

3

7
5

| {z }
Y

�

2

4
X a

Fb(M a )
G b(M a ) [i ]

3

5

| {z }
F b i

M b (:,i )k2
F (2.30)

Similarly, the least-squares for updating M a is:

min
M a

NX

i =1

kY �

2

4
X b

Fa(M b )
G a(M b ) [i ]

3

5

| {z }
F a i

M a (:,i )k2
F (2.31)

where:

X b =
�
X b;1;1 : : : X b;1;r : : : X b;p;r

�

X b;i;j = ( I N 

�
U i )

2

6
6
4

I N 
 b ( j )
i; 1

:::
I N 
 b ( j )

i;N

3

7
7
5

The least-squares (2.30) and (2.31) are iteratively solved starting with some random
initial guess for M a until some stopping criterion is reached. The iterations are
stopped when the decrease between two consecutive values of the cost function is
lower than a given threshold. Algorithm 2.1 summarizes the steps.

2.5.2. Convergence
The musings in Mohlenkamp (2013) detail properties about ALS and multilinear
fittings in general. The cost function is monotonically decreasing during the iterations
and the rate of convergence is at most linear. The convergence of the global matrices
fA i gi =1 ::p is a necessary condition but not sufficient for stopping the iterations.
Again because of the non-uniqueness, the factor matrices might still change and
compensate each other without modifying the value of the cost function. Whether
the entries of the factor matrices converge is a more adequate question. We answer
this question after defining a true value for the factors. Although all of the ones
that minimize the cost function are equivalent, we assume that the factors with
a particular norm of the columns represent the true value we would like to see
converge. To do this, we consider a normalized version of Algorithm 2.1 and prove
that the iterations converge to a fixed point of a particular functional. We assume the
temporal order p and spatial order r to be both equal to one, that both regularization
parameters equal to zero, and that the norm of M b (:; i ) is known (which is rarely
the case in practice). The two following modifications to the ALS are introduced.
First, the columns M b

( � ) (:; i ) for i in the set f1; ::; N g, are normalized after line 8,

M b
( � )
1 (:; i )  M b

( � )
1 (:; i )

kM b 1(:; i )k2

kM b
( � )
1 (:; i )k2

(2.32)
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Algorithm 2.1: ALS for QUARKS identification
Input : fS(k)gk=1 ::N t ; r; p; fkM b j (:; i )k2gi =1 ::N;j =1 ::p

Output : fdM a j ; dM b j gj =1 ::p

/* Default values */
1 � = 1 ; � max = 50; � = 1; � min = 10 � 3

/* Initial guesses */
2 M a

(0) = randn(Nrp,N)
/* Start ALS */

3 while � < � max and � > � min do
/* Optimize over M b */

4 Compute FT
0 F0 where: F0  

"
X

( � � 1)
a

Fb(M a
( � � 1) )

#

5 for i = 1 ::N do
6 Form Fb i from G b(M a ) [i ]
7 M b

( � ) (:; i )  (Fb
T
i Fb i ) � 1Fb

T
i Y (:; i )

8 end
/* Optimize over M a */

9 Compute FT
0 F0 where F0  

"
X

( � )
b

Fa(M b
( � ) )

#

10 for i = 1 ::N do
11 Form Fa i

12 M a
( � ) (:; i )  (Fa

T
i Fa i ) � 1Fa

T
i Y (:; i )

13 end
/* Check stopping criterion */

14 c( � )  k
�
S� X

( � )
b M a

( � )k2
F

15 �  jc( � ) � c( � � 1) j
16 �  � + 1
17 end
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Second, and after convergence to a stationary point, the sign ambiguities are dealt
with by multiplying both factors with the sign of the known element,

dM b 1  M b
( � � 1)
1 sign(b( � � 1)

1;1 ); dM a 1  M a
( � � 1)
1 sign(b( � � 1)

1;1 ) (2.33)

such that the first (non-zero) entry of dM b 1 is strictly positive. We denote the
i -th column a(1)

1;i in short with ai , and the vector concatenating all of them with
a. A functional representation of the three steps in Algorithm 2.1 (including the
aforementioned normalization) reads:

bb ( � ) = F1(ba( � � 1) ); cbn
( � )

= F2(bb ( � ) ); ba( � ) = F3( cbn
( � )

) (2.34)

These equations can be expressed using a single operator F mapping the estimate
ba( � � 1) to ba( � ) :

ba( � ) = F3(F2(F1(ba( � � 1) ))) = F(ba( � � 1) ) (2.35)

Lemma 2.5. [The Contraction Mapping Theorem, Granas and Dugundji (2001)]
Let (X; D ) be a non-empty complete metric space where D is a metric on X . Let
F : X ! X be a contraction mapping on X , i.e., there is a non-negative real
number Q < 1 such that D(F(x);F(y)) � QD (x; y), for all x; y 2 X . Then the
map F admits one and only one fixed point x? 2 X which means x? � F(x?) = 0 .
Furthermore, this fixed point can be found from the convergence of an iterative
sequence defined by x ( � +1) = F

�
x ( � )

�
for � = 1 ; 2; ::: with an arbitrary starting point

x (0) in X .

If a is a fixed point of F , then the gradient with respect to a of the cost function
(2.27) (simplified from the assumptions made in this section) is zero. If a is not
changed during one full cycle of the algorithm, then the gradient with respect to b of
the cost function (2.27) is also zero. Consequently, the gradient of the cost function
with respect to both a and b is zero. A fixed point of F is a stationary point of the
cost function in the minimization (2.27). The reverse implication is not necessarily
true: there are many other stationary points that are discarded from the analysis
when normalizing. If the fixed point is unique as we show in this very particular
case of ALS, it corresponds to the targeted factor matrices for which the norm of
the columns is assumed to be known. We refer to these as the true values. We now
define a set associated to the true value a:

Xa = fba 2 RN 2
j8i 2 f1; :::; N g; k bai k2 � kai k2g

Theorem 2.1. Let p = 1 ; r = 1 and (�; � ) = (0 ; 0).
If the following statements are true:

� A1 : the noise components are independent identically distributed with zero-
mean and finite variance.

� A2 : the matrix
�
U 1 is full column rank.
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� A3 : either kb i k2 or kai k2 is known for all i and the first non-zero entry of b
or a is strictly positive.

� A4 : the initial guess ba(0) is non-zero.

Then, the map F : Xa ! Xa is a contraction on Xa when N t !1 and has a unique
fixed point which corresponds to the true parameters a.

Proof. The convergence proof relies on the work in Li et al. (2015) where the
result is established when the unknowns are vectors. The non-trivial extensions are
reported in the appendix of this chapter. �
The assumption A2 corresponds to the persistency of excitation from the data and is
a key ingredient in the convergence. Theorem 2.1 proves that whatever the non-zero
initial conditions the iterations (2.34) converge to a fixed point asymptotically when
N t approaches infinity. When the temporal order is strictly larger than one, the
solution to an update in line 7 or 12 in Algorithm 2.1 is unique if and only if the
matrix �X b (or �X a) is full rank. This condition provides indications on how to
choose the initial guess. In practice, we choose randomly generated initial guesses
independent for each factor matrix such that �X (0)

a is full rank.

2.5.3. Computational complexity
Lemma 2.6. The computational cost for estimating the QUARKS scales with
O(N 4N t ) compared to O(N 6) in the unstructured case. If the regularization parame-
ter � is zero, the cost reduces to O(N 3N t ).

Proof. Using (2.14) with temporal data within the range f1; :::; N t g with N t � N 2p
to recover a unique solution, we write:

�
s(p + 1) : : : s(N t )

�

| {z }
Sf

=
�
A 1 : : : A p

�

2

6
4

s(p) : : : s(N t � 1)
:::

:::
s(1) : : : s(N t � p)

3

7
5

| {z }
Sp

+ Ep (2.36)

The least-squares estimation for the coefficient matrices is hence equal to:
h

bA 1 : : : bA p

i
= Sf Sp

T �
Sp Sp

T � � 1 (2.37)

The dependency on the number of temporal samples is kept: a correct identifica-
tion in noisy conditions often requires N t � N 2p. The complexity for estimating
unstructured VAR is O(N 4N t ).

We assume that the Kronecker rank and the number of iterations to reach
convergence are independent of N . In practice, larger arrays require a larger number
of temporal samples and therefore, N t is included in the computational count. The
lines 4, 7, 9, and 12 are the most computationally costly of Algorithm 2.1.

If � = 0 : forming �X ( � � 1)
a requires (N t � p)rp matrix-matrix multiplications

of size N � N . The number of temporal samples is such that N (N t � p) � Nrp
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to guarantee a unique solution of each subproblem without regularization. The
complexity is O(N 3N t ) flops. Computing its inverse requires O(N 3) whereas right-
multiplying the latter with Fb

T
i reaches O(N 3N t ). The total cost for Algorithm 2.1

with � = 0 reaches O(N 3N t ) where N t � rp.
If � 6= 0 : the cost for computing Fb i boils down to computing FT

0 F0 because
G b(M a

( � � 1) ) [i ] is sparse. Computing the inverse of Fb
T
i Fb i requires O(N 3) flops

whereas multiplying the inverted matrix with Fb
T
i costs O(N 3N t ). These two

operations need to be repeated N times, although it should be performed in parallel.
The cost for computing the lines 9 and 12 is similar to the above discussion.

Operation Flops
Unstructured estimation
Sp Sp

T O(N 4N t )
(Sp Sp

T ) � 1 O(N 6)
Sf Sp

T O(N 4N t )
QUARKS estimation
Lines 4 and 9 O(N 3N t )
Lines 7 and 12 (for each i ) O(N 3N t )
Lines 7 and 12 (total for all i ) O(N 4N t )
Total (with � 6= 0) O(N 4N t )
Total (with � = 0) O(N 3N t )

Table 2.1: Computational complexity.

�

2.6. Numerical examples: batches of data
The identification method is first illustrated with a randomly generated QUARKS
model and then with an application to AO.

2.6.1. Illustrating convergence
We first illustrate the convergence of Algorithm 2.1 with different normalizations for
a randomly generated QUARKS model whose temporal order and Kronecker rank is
known,

S(k) =
pX

i =1

rX

j =1

M (a( j )
i )U (k � i )M (b ( j )

i ) (2.38)

where S(k) 2 R10� 10. The factor matrices M (a( j )
i ) and M (b ( j )

i ) have random entries
following a uniform distribution. The entry in the first row and column is strictly
positive. The input is a white Gaussian noise with unit variance. The number of
temporal samples N t is set to 103. Both �; � are set to 0. Two scenarios were tested
to analyze the influence of the temporal and spatial order (p; r) on the convergence.

In Figure 2.3-(a) and Figure 2.4-(a), the pair (p; r) is set to (2; 1). Figure 2.3-
(a) plots the residual of the QUARKS cost function as a function of the iteration
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(a) (b)

Figure 2.3: Evolution of the cost function as a function of the number of iterations with two
normalizations (no normalization, normalization as explained in 2.5.2). (a): the pair (p; r ) is set to
(2; 1). (b): the pair (p; r ) is set to (1; 2).

(a) (b)

Figure 2.4: Evolution of the least squares between the true value M (a( j )
i ) and its estimate as a

function of the number of iterations with two normalizations (no normalization, normalization as
explained in 2.5.2). (a): the pair (p; r ) is set to (2; 1). (b): the pair (p; r ) is set to (1; 2).
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number for both normalized and non-normalized algorithms. Convergence to a
global minimum is observed for both cases. The convergence towards a unique
fixed point is shown with Figure 2.4-(a) which displays the least-squares residual
between the true value M (a( j )

i ) and its estimate. When normalizing the columns
of the factor matrix, the factor matrices converge to their true values whereas it
is not the case for the non-normalized version. Although both algorithms reach a
global minimum, the solution to the QUARKS identification problem is not unique
as highlighted with Figure 2.4-(b), and both solutions are equivalent as they provide
a similar output-error (up to machine precision). The case (p; r) = (1 ; 2) is analyzed
in Figure 2.3-(a) and Figure 2.4-(b). Normalizing may affect the convergence speed
to a global minimum. The convergence of the estimates to a fixed point when r is
larger than one cannot be guaranteed especially because of the ambiguity transform.

2.6.2. Case study: Adaptive optics
The turbulence is generated according to the Multiscale Phase Screen Synthesis
approach detailed in Beghi et al. (2011). More specifically, only the low resolution
process is used here based on the Fast Fourier Transform Moving Average (FFT-MA)
generator. In short, the phase screen x with dimensions m �m can be represented
as a MA model:

xu;v =
X

ku ;k v

� ku ;k v � u� ku ;v � k v (2.39)

with � a zero-mean white noise process with unit variance and � the MA coeffi-
cients. To determine the MA coefficients � , the spatial covariance matrix C � of the
atmospheric turbulence based on the Von Karman theory is considered, such that:

c� u;v =
X

ku ;k v

� ku ;k v � u+ ku ;v + k v (2.40)

The coefficients � can now be calculated from the spatial covariance matrix C � using
the FFT-MA generator. Since c� u;v tends to zero for large u; v, the index terms
ku ; kv can be seen as finite and are assumed to be ku = ��; : : : ; � and kv = ��; : : : ; � .
The wind speed is simulated by generating an over-sized turbulence phase screen
and moving a smaller aperture over this phase screen, see Fig. 2.5.

Figure 2.5: Generating an over-sized phase screen over which a smaller square aperture will move.
By varying the speed vu at which this aperture will move, the simulated wind speed is changed.
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Two layers of turbulence with different statistics and windspeed are located on
conjugated planes and added up to form the wavefront measured by the sensor. The
atmospheric turbulence is a stochastic process, therefore 50 realizations are carried
out. The default parameters for AO simulations are listed in Table 2.2.

Model
N � N WFS sensor points 10� 10
SNR sensor noise 15 dB
D aperture diameter 1 m
Turbulence
Number of layers 2
m �m turbulence phase screen 31� 31
r 0 Fried parameter f0:2; 0:4g m
L 0 outer scale 10 m
� MA neighborhood 50
Horizontal wind speed f1; 2g pixels/sample
Vertical wind speed 0 pixels/sample

Table 2.2: Parameters for the numerical simulation - QUARKS

Three methods for identification are compared:

1. an unstructured least squares,

min
A i

N tX

k= p+1

ks(k) �
pX

i =1

A i s(k � i )k2
2 (2.41)

2. a regularized sparse least-squares, Kim et al. (2008),

min
A i

N tX

k= p+1

ks(k) �
pX

i =1

A i s(k � i )k2
2 + �

pX

i =1

kvec(A i )k1 (2.42)

where � makes a trade-off between the sparsity of the coefficient matrices and
the fit to the data.

3. QUARKS identification (2.27) with Algorithm 2.1. Algorithm 2.1 is initialized
only once, randomly. The stopping criterion parameter � is set respectively to
10� 5. The maximum number of iterations � max is 100. The hyperparameters
were randomly searched within the bounds mentioned in Section 2.5 and within
the range [0; 5] for (�; � ): the set of hyperparameters over 20 realizations that
yields the lowest prediction-error is selected. The curse of dimensionality that
appears when choosing hyperparameters with grid search is bypassed with
random search, Bergstra and Bengio (2012). Bayesian optimization or online
non-linear optimization for hyperparameter estimation are outside the scope
of this chapter.
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The performance is checked on a validation dataset containing 5�103 temporal points.
The results are discussed based on the Variance Accounted For (VAF) between the
signals s(k + 1) and bs(k + 1) =

P p
i =1

cA i s(k � i ):

VAF(s(k);bs(k)) = max
�
0;

�
1�

1
N t

P N t
k= p+1 ks(k) � bs(k)k2

2

1
N t

P N t
k= p+1 ks(k)k2

2

�
� 100

�
(2.43)

The VAF between two identical signals s(k) and bs(k) reaches 100%. The experiments
are carried out on MatlabR2016b using a desktop computer with a CPU Intel Xeon
E5-2609.

Illustration of QUARKS identi�cation
The identification set contains 5� 103 temporal measurements. The temporal order
of the VAR model is set to 2. We first choose a Kronecker rank within f1; :::; 5g.
The parameters � and � in (2.27) are set to 0. The minimization (2.42) is solved for
� in the range logspace(0; 4; 8).

We define a measure that we call model complexity as the number of non-zero
entries needed to construct the p coefficient matrices. For example, the complexity
of a QUARKS model is at most 2prN 2 (only the non-zero elements of the factor
matrices) whereas it reaches a total of pN 4 for the full least squares estimation. It
is illustrated in Figure 2.6 that displays the VAF with respect to the number of
non-zero elements (with truncated entries at 1% of the maximum value) needed
to construct the full coefficient matrix A 1. The prediction error is computed on
a validation dataset after truncation. We emphasize that no truncation on the
elements of the factor matrices is done for the Kronecker model.

Figure 2.6: Variance Accounted For ( %) versus complexity of model. A blue cross corresponds to
an estimate with given Kronecker rank. Each red cross corresponds to a regularization parameter �

on the sparsity prior in (2.42). Two points are not visible on the plot:
(�; %non-zero values; VAF ) 2 f (1:5849 � 103 ; 389; 45:3); (104 ; 124; 0)g.
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For example, a total of 500non-zero values are necessary to build the Kronecker
factors associated to A 1 and reaches 85:54% accuracy. The VAF obtained with the
sparse identification decreases with increasing regularization parameter � as expected
while the number of non-zero entries decreases for a high prior on sparsity. This
trade-off between the complexity of the model and the accuracy of the prediction
error is present in the QUARKS modeling as well. While the estimated matrix
with `1 minimization tries to reduce the number of non-zero entries, the matrix
obtained with QUARKS modeling does not exhibit sparse patterns but a prominent
multi-level structure. The lower the spatial order r , the lower the model complexity
and the higher the prediction error is.

In�uence of the hyperparameters
The regularization with r s and r t in (2.19) is the most beneficial with short data
batches or in noisy environments. The difference with the case (�; � ) = (0 ; 0) is all
the more significant when the ratio N t

Nrp is low. The temporal order is set to 4 and
the Kronecker rank to 2. There are 500 points in the identification batch. Figure 2.7
displays the VAF on validation data with and without regularization.

Figure 2.7: Variance Accounted For ( %) versus the signal-to-noise ratio. Red: without regularization
nor normalization. Blue: with both regularization and normalization.

Regularizing the cost function in noisy situations and with relatively few data samples
leads to substantial improvements over the non-regularized QUARKS identification.
It especially reduces the variance of the prediction error while the performance of
the non-regularized version with few temporal samples is very unreliable. Random
search has interesting performances as it exploits the fact that some hyperparameters
may not contribute a lot for obtaining good solutions in the example at hand.

Scalability
One advantage of the new modeling paradigm is to reduce the computational
complexity for estimating large-scale VARXmodels. No regularization is considered in
this section in order to analyze whether the QUARKS identification in Algorithm 2.1
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scales with O(N 3N t ). The number of time samples for QUARKS identification is such
that N t = 10prN whereas it is N t = 50N 2 in the unstructured case. These values
were fixed such that the prediction-error is similar for both methods. The reduction
in the regression coefficient in the linear plots log10(Time) = a� log10(N ) + b as
shown in Figure 2.8 is significant using the QUARKS.

Figure 2.8: Evolution of the computational time with respect to the size of the 2D array. The linear
model �tted with the QUARKS method is: log10(Time ) = 2 :55 � log10(N ) � 3:10, � = 0 :34 while
it is: log10(Time ) = 5 :03 � log10(N ) � 5:68, � = 0 :27 with the unstructured least-squares.
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2.7. Recursive updates
The computational complexity can be alleviated using recursive algorithms. The
temporal order is equal to one in this section only (without loss of generality as later
illustrated in numerical experiments).

2.7.1. RLS for updating unstructured VAR models
We now have an estimate of the parameter matrix A 1 at time instant k, denoted
with cA 1(k). The variables âj (k) for all j = 1 : : : N 2 denote the rows of the matrix
cA 1. Whenever a new measurement s(k + 1) becomes available, these estimates are
updated. Such an update is the fusion of the prior information and the information
about A 1 derived from the new measurements. This fusion can be interpreted as
optimizing the following cost function for all the rows aj of A 1:

min
a j

� [aj � âj (k)]P j (k) � 1[aj � âj (k)]T + ( sj (k + 1) � s(k)T aT
j )2

(2.44)

where � is a forgetting factor in the interval ]0; 1] and P j (k) represents the covariance
matrix defined as:

P j (k) = E[(aj � âj (k))T (aj � âj (k))]

The equation (2.44) is equivalently written as:

min
a j

� T � subject to:
�

sj (k + 1)
âT

j (k)

�
=

�
s(k)T

I N

�
aT

j +
�

1 0
0 � � 1=2P j (k)1=2

�
� (k)

(2.45)

where � (k) is a Gaussian noise with mean zero and identity covariance matrix. The
solution to this least squares problem is given by the following recursive equations:

âj (k + 1) T = âj (k)T + gj (k + 1)[ sj (k + 1) T � s(k)T âj (k)T ]

gj (k + 1) = � � 1P j (k)s(k)[1 + � � 1s(k)T P j (k)s(k)] � 1

P j (k + 1) = � � 1[P j (k) � gj (k + 1) s(k)T P j (k)]

(2.46)

If P j (0) is chosen identical for all j , then gj (k) and P j (k) are independent of j
and can be written as g(k) and P(k). We summarize the algorithm updating the
estimates of aj (k) and P(k) in a computationally efficient manner in Algorithm 2.2.
Transposing the scalar value sj (k + 1) on line 4 has no effect here, in the following
section this value will be a vector which makes the transposition necessary. The
initial estimate for A 1 can be determined by doing an initial offline identification step
or can be set to a random matrix. The initial value for the matrix P is usually set
to � I N 2 where � is a design parameter. Choosing � depends on how much confidence
is placed in the initial guess of A 1, e.g a low value for � means that a high amount
of confidence in the initial guess.
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Algorithm 2.2: RLS

Input : s(k + 1) ; s(k); cA 1(k � 1); P(k � 1); �; N
Output : cA 1(k); P(k)

1 g(k) = � � 1P(k � 1)s(k)[1 + � � 1s(k)T P(k � 1)s(k)] � 1

2 P(k) = � � 1[P(k � 1)� g(k)s(k)T P(k � 1)]
3 for j = 1 : : : N do
4 âj (k)T = âj (k � 1)T + g(k)[sj (k + 1) T � s(k)T âj (k � 1)T ]
5 end

2.7.2. RLS for QUARKS models
We now address the question whether this scheme can be adapted to recursively
update a QUARKS model. Let a QUARKS model with both p and r equal to
one: S(k) = CS(k � 1)B + E(k). The particularity here is that there are two
matrices that need to be updated, thus creating a bilinear least-squares problem with
no closed-form solution. A similar problem was tackled for estimating recursively
bilinear systems in the case where B and C are vectors in Wang et al. (2016). The
initial estimate of the matrix C , denoted as bC(k), is used to update the estimate
of B , denoted as bB (k + 1) . The factor C is then updated by fixing the previously
obtained estimate for B , resulting in one ALS update. For each time step k, the
factor matrices B and C are updated once. A schematic is presented in Fig. 2.9.

Figure 2.9: Showing a time line of the QUARKS-RLS algorithm. Every time step k, we calculate
estimates bC (k) and bB (k) using two alternating steps.

Similar to the previous section, we partition bB (k); bC(k) and S(k) as follows:

bC(k) =

2

6
4

ĉ1(k)
:::

ĉN (k)

3

7
5 bB (k) =

�
b̂1(k) � � � b̂N (k)

�
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S(k) =
�

s1(k) � � � sN (k)
�

=

2

6
4

s1(k)
:::

sN (k)

3

7
5

The variables sj (k) and sj (k) are now vectors instead of scalars as in the previous
subsection. We moreover introduce the new variable U c(k) as U c(k) = bC(k)S(k),
and consider the following problem for updating the estimate of the columns b j (k)
of the matrix B (k) using bC(k) inspired by the solution of the previous section:

min
b j

� � 1[b j � b̂ j (k)]T P � 1
b (k)[b j � b̂ j (k)] + jjsj (k + 1) � U c(k)b j jj22 (2.47)

The solution to (2.47) is provided by Algorithm 2.2 and can be written as:

[ bB (k); P b(k)] = RLS (S(k + 1) ; U c(k); bB (k � 1); P b(k � 1); �; N )

The second step of the Alternating Least Squares consists of updating C(k) based
on the estimate bB (k):

min
c j

� � 1[cj � ĉj (k)]P � 1
c (k)[cj � ĉj (k)]T + jjsj (k + 1) T � U b(k)cT

j ]jj22
(2.48)

where U b(k) = bB (k)T S(k)T . The solution to (2.48) is obtained by running Algo-
rithm 2.2 with the following parameters:

[ bC(k)T ; P c(k)] = RLS (S(k + 1) T ; U b(k); bC(k � 1)T ; P c(k � 1); �; N )

Applying the ALS algorithm for updating the matrices bB (k) and bC(k) in the
minimization problems in (2.47) and (2.48) results in the RLS algorithm for QUARKS
models as defined in Algorithm 2.3.

Algorithm 2.3: QUARKS-RLS Algorithm

1 P b(0) = � I N ; P c(0) = � I N

2 for 1� k < N t do
3 U c(k) = bC(k)S(k)
4 [ bB (k); P b(k)] = RLS (S(k + 1) ; U c(k); bB (k � 1); P b(k � 1); �; N )

5 U b(k) = bB (k)T S(k)T

6 [ bC(k)T ; P c(k)] = RLS (S(k + 1) T ; U b(k); bC(k � 1)T ; P c(k � 1); �; N )
7 end

By performing these steps at each new time step k, we obtain a recursive least
squares algorithm for low-Kronecker rank structured models. The initial guess for
the coefficient matrices bB (0); bC(0) is obtained using the QUARKS.
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2.7.3. Computational complexity
Recursive algorithms do not store the whole data batch but only the last measurement
and the matrices P b; P c. This makes them attractive even for offline use on large-
scale stationary data. The online computational complexity to update the model is
constrained by the frequency of operation of the system and reducing it is the main
target.

Lemma 2.7. The computational complexity for updating recursively a QUARKS
model is O(N 3) compared to O(N 4) in the unstructured case.

Proof. When considering the RLS equations in Algorithm 2.2 without the Kro-
necker structure, the most computationally complex operation is a matrix-vector-
multiplication P(k)s(k). The complexity is O(N 4). For the RLS equations using
the Kronecker structured matrices in Algorithm 2.3, the most complex operation is
a matrix-matrix-multiplication P b(k)S(k) scaling with O(N 3). �

2.8. Numerical examples: recursive updates
The algorithm is validated using an application to AO using synthetic and validation
data.

2.8.1. Synthetic data
The wind speed is simulated by generating an over-sized turbulence phase screen and
moving a smaller aperture over this phase screen, see Fig. 2.5. In order to create non-
stationary turbulence, the wind speed varies by moving the aperture over the phase
screen at a piece-wise constant speed vu . More specifically, we divide the simulation
in a number of time sections of equal length, each of which has constant wind
speed in each section. In this simulation, we use the piece-wise constant wind speed
distribution in the horizontal direction: [4 1 3 9 5]pixels/sample with a simulation
duration of 20 � 103 samples. Each piece-wise constant section consists of 4 � 103

samples such that an over-sized phase screen of size (4 �103 �(4+1+3+9+5)+ m)�m
is generated.

Two datasets are generated under the same atmospheric conditions, see Ta-
ble 2.3. For the non-recursive methods, one dataset is used for offline identification
and the other one is used for validation. The first dataset is used to generate a
starting value for the recursive identification methods. We perform 100 Monte-Carlo
simulations. The number of iterations needed for ALS to achieve a difference in
residual less than 10� 3 is determined with and without normalization over 100
simulations. The average number of iterations needed with normalization is 8.53 and
without normalization 7.16.
In Figure 2.10, the accuracy of the estimates of the coefficient matrices over an entire
simulation duration is shown. The VAF is computed for each simulation. The mean
and standard deviation over all Monte-Carlo simulations are then calculated and
represented with the shaded area. In red, the accuracy of the recursive QUARKS
algorithm can be seen, compared to the accuracy of the non-recursive QUARKS
algorithm (blue) when the identification is performed on the whole dataset assuming
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Model
N � N WFS sensor points 9� 9
SNR sensor noise 20 dB
D aperture diameter 1 m
Turbulence
m �m turbulence phase screen 28� 28
r 0 Fried parameter 0.2 m
L 0 outer scale 10 m
� MA neighborhood 50
Horizontal wind speed [4 1 3 9 5]pixels/sample
Vertical wind speed 0 pixels/sample
Identi�cation data set
N t phase samples 10� 103

Na ALS iterations 20
Simulation data set
N t phase samples 20� 103

� forgetting parameter 0.9988
P(1) initial value I N

Table 2.3: Parameters for the numerical simulation - recursive QUARKS

the latter is stationary. The recursive estimation with the scalable method proposed
in subsection 2.7.2 reaches higher performances when the temporal dynamics have
reached stationarity. In green, the VAF is plotted for a QUARKS fixed sliding
window (FSW) model. This is obtained by estimating a QUARKS model at each
new time sample, with the regression data within a fixed sliding window containing
the last 200 time samples. This last method is an upper bound on the accuracy
that can be achieved with the QUARKS method for non-stationary modelling at
the expense of a much higher computational cost as a new ALS is solved at each
time sample. The number of ALS iterations to meet the stopping criterion however,
is very small when the atmospheric conditions are slowly time-varying. In purple,
the recursive QUARKS algorithm is shown where normalization is applied to one of
the factor matrices during recursive estimation. It shows that using normalization
with recursive QUARKS decreases the rate of convergence and slightly decreases the
overall accuracy of the algorithm.
We now investigate the online computational complexity in Figure 2.11 with timing
experiments on different sizes of sensor. Online, 2pr matrix-matrix multiplications
(MMM) are required for the QUARKS; Algorithm 2.3 and 2pr MMM are required
for QUARKS-RLS; solving the QUARKS and 2pr MMM are required for QUARKS-
FSW. A linear model log10(T ime) = a � log10(N ) + b was fitted to the timing
data and we are particularly interested in the parameter a as it indicates how well
the method scales with increasing size of the sensor. The lower a, the better the
scalability. The online computational complexity for QUARKS, QUARKS-RLS
and QUARKS-FSW scale theoretically with O(N 3), and regression coefficients a of
respectively 1:56; 1:54; 2:33 are obtained. Although the size of the temporal window
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Figure 2.10: Comparing the spatial VAF for QUARKS-RLS (red), �xed sliding window (FSW) for
QUARKS (green) and non-recursive QUARKS model over the entire simulation duration assuming
non-stationary turbulence (blue). The standard deviation for each of the three method is shaded.

Figure 2.11: Timings experiments for QUARKS (blue), recursive QUARKS (red), QUARKS
with a �xed sliding window (green) and unstructured VARX-RLS (purple) for di�erent sensor
sizes. The coe�cients of the models are: for QUARKS, (a; b) = (1 :56; � 6:88); for QUARKS-RLS,
(a; b) = (1 :54; � 5:83); for QUARKS-FSW with length of sliding window 200, (a; b) = (2 :33; � 4:99)
and for VARX-RLS, (a; b) = (4 :90; � 8:33).

for QUARKS-FSW is constant over N , it still shows lower scalability than QUARKS
and QUARKS-RLS. Furthermore, the regression coefficient for the unstructured
RLS is 4:90 and hence, a relative difference of 3:36 with QUARKS-RLS.
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2.8.2. Laboratory validation
We now consider the AO laboratory setup used to test the proposed identification
approach. A schematic is shown in Figure 2.12.

Figure 2.12: Schematic of the laboratory testbed. The light emitted from the laser goes through
the pupil P1 and the lens L1. It is collimated when reaching the turbulence plate TS, that is placed
at the focal plane of the lens L2. The lens L3 conjugates TS with the sensor SH+C1.

The light is emitted from a laser source (� = 635nm) and is then collimated into a
beam of size D = 9mm using the lens L1. The atmospheric turbulence for a single
frozen layer is generated using a pseudo-random phase plate TS machined by Lexitek,
Inc. The optical path difference is defined as follows. A phase design that follows
the spatial Kolmogorov distribution is generated and is then multiplied by a factor
that varies with angle from the center of the array equal to (1 + 1=5sin� ) � 5=6. The
effect is to produce a phase design where the local value of the Fried parameter r 0

varies as (1 + 1=5 � sin� ). Different wind speed conditions are simulated by rotating
the disk. The speed changes every 50 time samples, as the speed in Rounds Per
Minute (RPM) is set with,

RPM(k) =
1
2

+
T
6

sin
�

2�
N t

50bk=50c
�

(2.49)

for T 2 f1; 1:5; 2; 2:5; 3g.
The beam goes through the turbulence disk that is placed at the focal plane of the
lens L2, f 1 = 10cm. The lens L3 has a focal length of 10cm and forms a telescope
with L2. An OKOtech Shack-Hartmann wavefront sensor SH+C1, 1-inch optical
format, with a lenslet array pitch of 300� m and focal length 18:6mm, is placed
perpendicular to the optical beam path at the focal point of L3. The turbulence
phase profile and the grid of lenslets are in conjugated planes. An array of 28� 28
lenslets is selected among which 566 are illuminated and considered as active. The
Kronecker structure does not adapt well to circular apertures and we consider the
rectangular aperture of the active lenslets. The slopes signals corresponding to the
non-active lenslets are set to 0. Such an approximation implies larger prediction
errors at the boundary of the pupil, although this effect is all the more mitigated if
the factor matrices are sparse. At each time sample, the non-zero values predicted
outside the circular aperture are set to 0. The sampling frequency is f S = 12:5Hz.
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The Greenwood per sample frequency ratio (1.34) is upper-bounded with 0:14, which
is well below the Nyquist criteria, and hence no temporal aliasing occurs.

We collect N t = 3 � 103 samples for each value of T . A number of 0:5� 103

samples is used for a batch-wise identification of a QUARKS model, which serves
as an initial guess for obtaining temporally varying estimates on the next 2:5� 103

samples.
The Kronecker rank and the temporal order both take values within the set

f1; 3g. The accuracy is measured by calculating for each lenslet the VAF (averaged in
both the horizontal and vertical direction of the slopes signal) between the true signal
and the reconstructed signal. Such a measurement is different from the previous
subsection in which the VAF was computed spatially for each time sample. We
compare the accuracy of the QUARKS algorithm with the recursive QUARKS-
RLS algorithm for varying conditions of non-stationarity in Table 2.4. The relative
improvement between the VAF for the QUARKS-RLS and the VAF for the QUARKS
with p = 3 is indicated as Ratio in Table 2.4.

QUARKS-RLS QUARKS Diag-RLS Ratio

T , r = 1 p = 1 p = 3 p = 1 p = 3 p = 1 (%)
1 81.15 84.41 79.06 78.10 51.98 8.08
1.5 81.26 84.18 78.36 77.16 52.45 9.09
2 80.04 82.86 73.48 72.09 52.75 14.9
2.5 79.77 81.18 71.10 70.48 52.32 15.2
3 79.76 81.01 65.76 64.53 50.51 25.5
T , r = 3
1 82.23 84.42 80.02 78.65 7.34
1.5 82.08 84.50 80.84 77.87 8.51
2 80.85 83.54 73.10 72.53 15.1
2.5 80.22 83.12 71.47 71.05 17.0
3 80.91 80.83 65.66 65.76 22.9

Table 2.4: Laboratory testbed experiment: VAF ( %)

In this AO configuration with one turbulence disk and at relatively low Greenwood
per sample frequency ratio, increasing the temporal order or the Kronecker rank of
the model leads to little improvements. Moreover, when increasing the amplitude
T of the sine function, and hence the non-stationarity, the recursive algorithm is
better equipped to handle the large changes induced by the varying rotational speed
of the turbulence disk. The accuracy does decrease relatively less compared to the
non-recursive case.
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2.9. Conclusion
Each coefficient matrix of the VAR model is parametrized with a sum of few Kronecker
matrices which offers high data compression for large sensor grids. Estimating in least-
squares sense the data matrices gives rise to a bilinear problem which is addressed
using Alternating Least Squares. The convergence of the estimates to a fixed point
was proven in very particular conditions and assuming persistency of excitation and
non-zero initial guesses.

The QUARKS may also be identified in a recursive fashion to deal with non-
stationary data or simply to reduce the memory complexity. Importantly, it alleviates
the memory burden on QUARKS in so far as only the left and right covariance
matrices along with the last measurement sample need to be stored, as opposed to
the whole dataset. A numerical validation for adaptive optics purposes was proposed
on synthetic and laboratory testbed data. Although the discussion has dealt with
a temporal order and a Kronecker rank equal to one, the algorithms generalise as
shown in the experimental section.

The algorithm has been presented for 2D dynamical systems and can be
generalized to higher dimensions by using a Kronecker product of multiple matrices
instead of only two matrices in which case larger compression rates are achieved.
Such higher order modeling for 2D arrays is obtained by tensorizing the sensor data
S(k) and allows to establish a new trade-off between accuracy and computational
complexity. It will be described further in Chapter 4 and 6.

Appendix. Proof for Theorem 2.1
In this appendix, we derive the proof of convergence for the ALS with a very
particular normalization. The proof builds on Li et al. (2015) and only the main
changes compared to the vector form are highlighted.
Notations. The noise term

�
E is defined similarly as

�
S from the noise components

e(k). Moreover, �
s = vec(

�
S);

�
e = vec(

�
E);

�
U =

�
U 1; M = I N 


�
U . The iteration

counter � is left out. The notation � max (X ) is used for the spectral radius of the
matrix X .

First, an inner product for matrices in R(N (N t � 1)+ N 3 ) � N is defined.

De�nition 2.4. Let X ; Y 2 RN � N and denote their columns with x i ; y i . For two
matrices X ; Y such that:

X = M

2

6
4

I N 
 x1
:::

I N 
 xN

3

7
5

and similarly for Y , the inner product on R(N (N t � 1)+ N 3 ) � N is defined with:

hX ; Y i = � max (
�
U

T �
U )vec(X )T vec(Y )
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Lemma 2.8. For the matrix X 2 R(N (N t � 1)+ N 3 ) � N and the inner product in
Definition 2.4, the quantity kX k2 =

q
hX ; X i is a norm.

Proof. The proof contains four points.

1. kX k2 is positive because the spectral radius and the Euclidean norm are both
positive.

2. If kX k2 = 0 , and with
�
U

T �
U 6= 0 , then kxk2 = 0 and x = 0 . This implies that

X = 0 .

3. Let � 2 R. k� X k2
2 = � max

�
� 2(

�
U

T �
U )

�
kxk2

2 = j� jkX k2
2

4. The triangular inequality reads:

kX + Y k2 =

r

� max (
�
U

T �
U )kx + yk2 � kX k2 + kY k2

using the triangular inequality on the Euclidean norm. �

For example, the matrix X b has the structure of X in Definition 2.4. We define two
sets associated to the true values a and b:

Xa = fba 2 RN 2
j8i 2 f1; :::; N g; k bai k2 � kai k2g (2.50)

Xb = fbb 2 RN 2
j8i 2 f1; :::; N g; k bb i k2 = kb i k2;bb1 > 0g (2.51)

Let ba 2 Xa ; bb 2 Xb .

F maps Xa to Xa
The solution of one least-squares update is written with:

ba = F3(bb)

=
�
I N 
 (X bb

T
Xbb) � 1X

T
bb

� �
s

=
�
I N 
 (X

T
bb Xbb) � 1X

T
bb

��
(I N 
 X b)a +

�
e

�
(2.52)

Using the partition of a into the N vectors ai of size N , we write (2.52):

ba i = ( X
T
bb Xbb) � 1X

T
bb X ba i + ei (2.53)

which corresponds to the vector form studied in Li et al. (2015). We assumed the
noise has a finite variance when N t goes to infinity which implies:

lim
N t !1

k(X T
bb Xbb) � 1X

T
bb k2kei k2 = 0 (2.54)

Therefore, the Euclidean norm of ba i is upper-bounded as follows:

lim
N t !1

kba i k2 � lim
N t !1

k(X T
bb Xbb) � 1X

T
bb X bk2ka i k2 (2.55)
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� lim
N t !1

kX T
bb X bk2

kXbbXbbk2
ka i k2

� lim
N t !1

kbbT bk2

kbbT bbk2

ka i k2 (2.56)

The last inequality is obtained using the definition of the inner product in Lemma 2.8.
We conclude with the following lemma.

Lemma 2.9. Let b; bb 2 RN . If kbbk2 = kbk2, then kbb
T

bk2 � kbb
T bbk2. The inequality

is strict if bb 6= � b for � 2 f�1; 1g.

bb 2 Xb implies kbbk2 = kbk2 and therefore, kba i k2 � ka i k2 when N t goes to infinity.
The functional F maps Xa to Xa .

Upper bound on Q
We now introduce the Lispchitz constant2 Q = k dF

dba k2. From ba ( � +1) = F3(F2(F1(ba ( � ) ))) ,
we decompose:

Q =












dF
dbb

dbb

dbbn

dbbn

dba












2

�









dF3

dbb










2










dF2

dbbn










2










dF1

dba










2
(2.57)

We further detail each norm in (2.57) and start the analysis with k dF 3

dbb
k2.

Lemma 2.10. (Li et al. (2015))Let f (:) be defined with f (bb) := I N 
 (X
T
bb Xbb) � 1X

T
bb .

Under Assumption A2 , the magnitude of the directional derivative of f (bb) along a
vector u attains its maximum when u is in the same direction as bb.

When taking the derivative of f with respect to bb, the maximum norm is obtained
when the gradient is taken along the direction of bb, i.e a deviation from b, denoted
with � b, is in the same direction as bb. Using the derivations from the previous
section and introducing a normalized deviation

�!
b equal to � b

k� b k2
:










dF3

dbb










2
�
k
�!
b T bk2

kbb
T bbk2

kak2 (2.58)

From the definition of the unit vector
�!
b , it can be expressed as a function of bb with

kbb
T

bk2 = k
�!
b T bk2kbk2. Then, (2.58) is written as:










dF3

dbb










2
�
kbb

T
bk2

kbb
T bbk2

kak2

kbk2
(2.59)

2We recall that for a function f : R ! R continuous and di�erentiable, if jf 0(x)j � M , then f is
Lipschitz with Lipschitz constant M . The derivative form for Q that we present here di�ers from
the inequality presented in Lemma 2.5.



2.9. Conclusion

2

81

Now evaluating the derivative of F2 related to the normalization step, we write:









dF2

dbbn










2

=












dbb

dbbn












2

�
kbk2

kbbn k2

(2.60)

We need to relate kbk2 and kbbn k2.

Lemma 2.11. For all i 2 f1; :::; N g; kba i k2 = ka i k2 and kcbn i k2 = kbi k2.

Proof. Asymptotically,

ba =
�
I N 
 (X

T
bb Xbb) � 1X

T
bb X b

�
a

and therefore, for all i 2 f1; : : : ; N g:

ba i = ( X
T
bb Xbb) � 1X

T
bb X ba i

Multiplying by Xbb on both left sides and using similar arguments as in Li et al.
(2015), Xbb

�
ba1 : : : baN

�
= X b

�
a1 : : : aN

�
. The right-hand side term reads:

X b
�
a1 : : : aN

�
= M

2

6
4

I N 
 b1
:::

I N 
 bN

3

7
5

�
a1 : : : aN

�

and hence, for all i; j 2 f1; : : : ; N g2:

M (I N 
 b i )aj = M (I N 
 bb i )baj

The matrix M is full column rank, it follows:

(I N 
 b i )aj = ( I N 
 bb i )baj

b i aj k = bb i baj k

Therefore, since aj k 2 R and b 2 X b, it follows: kb i k2jaj k j = kbb i k2jbaj k j and then,
jaj k j = jbaj k j, for all k in the set f1; :::; N g. Finally, it comes kaj k2 = kbaj k2. A similar
reasoning starting from the relation between cbn and b yields kcbn i k2 = kbi k2. �
We can conclude: 









dF2

dbbn










2

� 1 (2.61)

Therefore, we use (2.59) and (2.61) to upper-bound the constant Q with:

Q �
k
�!
b T bk2

kbb
T bbk2

kak2
k�!a T ak2

kbaT bak2
kbk2 �

kbb
T

bk2

kbb
T bbk2

kbaT ak2

kbaT bak2
(2.62)

We conclude that Q < 1 using Lemma 2.9.





3
Identifying Kronecker-structured
state-space models

We consider the identification of deterministic matrix state-space models (MSSM) of
the following form:

X (k + 1) = A 1X (k)A T
2 + B 1U (k)B T

2

Y (k) = C1X (k)CT
2 + E(k)

for all time dependent quantities and matrices of appropriate dimensions. Due to the
large size of these matrices, vectorization does not allow the use of standard subspace
methods such as N4SID or MOESP. The resulting Kronecker structure that appears
in the system matrices due to vectorization is exploited for developing a scalable
subspace-like identification approach. This approach consists of first estimating the
Markov parameters associated to the MSSM via the solution of a regularized bilinear
least-squares problem that is solved in a globally convergent manner. Second, a low-
rank minimization problem subject to bilinear constraints is tackled which optimized
variables are subsequently used to form a third order tensor and eventually, to estimate
the state-sequence and the lower-dimensional matrices A 1; A 2; B 1; B 2; C1; C2. A
numerical example on a large-scale adaptive optics system demonstrates the ability
of the algorithm to handle the identification of Kronecker-structured stochastic state-
space models in a scalable manner, which results in more compact models.

This chapter is published in:
B. Sinquin and M. Verhaegen, "K4SID: Large-Scale Subspace Identi�cation with Kronecker model-
ing," in IEEE Transactions on Automatic Control , vol. 64, no. 3, pp. 960-975, 2019.
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3.1. Introduction
Let a regular grid be composed of N �N subsystems, each of which has m inputs and
p outputs, and interacting with each other. A new modeling paradigm is introduced
to model the state-space matrices which builds on the previous chapter where the
class of low-Kronecker rank matrices has been described. The system matrices are
assumed to have a Kronecker rank equal to one:

�
x (k + 1) =

�
A 2 
 A 1

�
x (k) +

�
B 2 
 B 1

�
u(k)

y(k) =
�
C2 
 C1

�
x (k) + e(k)

(3.1)

When rewriting (3.1) into the matrix state-space model stated in the abstract, the
separability assumption is shown more clearly: the products such as A 1X (k)A T

2
require separability of the column operations of the matrix X (k) from those of the
row.

The main contributions of this chapter are the formulation of a new class
of 2D spatial-temporal models within the state-space framework and a tailored
subspace-like algorithm. For N t the number of temporal samples used, we present an
algorithm to estimate the system matrices with O(N 3N t ) computational complexity
rather than O(N 6). The QUARKS presented in the previous chapter now serve
as a first step (out of three) in the identification of state-space models when the
matrices are of Kronecker rank one. This algorithm is abbreviated with K4SID
standing for Kronecker-Structured large-Scale SubSpace IDentification. Moreover,
we highlight the performances in terms of data compression and prediction-error
with an application to turbulence prediction for large-scale adaptive optics systems.
K4SID is compared with SSARX, Hinnen (2007).

A class of multi-linear dynamical systems (MLDS) is introduced in Rogers et al.
(2013) for modeling tensor-time series and an expectation-maximization algorithm is
presented for estimating parameters. The well-known drawbacks of such methods
are the a priori selection of the order and the high computational cost which reaches
at least O(N 6) per iteration. They are often used in combination with subspace
methods which provide them with initial estimates. The estimates of K4SID are
refined with MLDS for small sizes of the sensor.

The chapter has the following outline. Section 3.2 formulates the identification
problem and introduces theoretical results related to the Kronecker state-space
model. Section 3.3 summarizes the identification of QUARKS models for estimating
a high-order FIR filter in Kronecker form. The estimates feature two sequences of
impulse response -with terms of size pN �mN - that are related via a bilinear equa-
tion. Section 3.4 analyzes the question why realizing the state-space matrices from
these estimates requires to first solve a bilinear low-rank optimization. A method
is proposed in Section 3.5 to estimate the factor matrices A 1; A 2; B 1; B 2; C1; C2

using two consecutive SVD. A realistic numerical example for predicting large-scale
wavefront aberrations in an adaptive optics setting is presented in Section 3.6.

Notations. Let x 2 Rs. The Hankel matrix of dimension b(s + 1) =2c � b(s + 1) =2c
built from the vector x is written with H(x i ). The notation extends to block-Hankel
matrices.
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Nomenclature. A matrix X written as X = X 1 
 X 2 is said to have Kronecker rank
one. The matrices X 1 and X 2 are called the factor matrices. The matrices A i ; B i ; C i

are called the factored state-space matrices. The terms CA i B = C2A i
2B 2
C1A i

1B 1

are the Markov parameters while C j A i
j B j are called the factored Markov parameters.

3.2. Problem Formulation
We consider a 2D array with N � N nodes, and each of which is associated with m
inputs and p outputs. The input data is collected at time instant k into the matrix
U (k) 2 RmN � N :

U (k) =

2

6
4

u1;1(k) : : : u1;N (k)
:::

:::
uN; 1(k) : : : uN;N (k)

3

7
5

where, for i; j = 1 ::N; u i;j (k) 2 Rm . The output matrix Y (k) is defined similarly
from local signals y i;j (k) 2 Rp. Denote the lifted quantities with u(k) = vec(U (k)) .
The temporal dynamics of the system are modeled with the state-space model (3.1)
in which the state-space matrices have a Kronecker rank equal to one:

A = A 2 
 A 1; B = B 2 
 B 1; C = C2 
 C1 (3.2)

with,
A 2 2 Rn 2 � n 2 ; B 2 2 Rn 2 � N ; C2 2 RN � n 2

A 1 2 Rn 1 � n 1 ; B 1 2 Rn 1 � mN ; C1 2 RpN � n 1
(3.3)

It is equivalently written in a matrix form which we introduce as
�

X (k + 1) = A 1X (k)A T
2 + B 1U (k)B T

2
Y (k) = C1X (k)CT

2 + E(k)
(3.4)

De�nition 3.1. The set of generators S for the Kronecker MSSM (3.4) is defined
from the factored state-space matrices as follows:

S = fA 1; A 2; B 1; B 2; C1; C2g

where the dimensions of the corresponding matrices are given in (3.3).

In Lemma 3.1, Lemma 3.2 and Corollary 3.1, we relate the stability, the observability
and the minimal realization associated to the large-scale matrices (A ; B ; C) to the
sets defined from (A 1; B 1; C1) and (A 2; B 2; C2). First, we establish a relationship
between the spectral radius of A 2 
 A 1 and the one of the factor matrices A 1; A 2.

Lemma 3.1. If the systems associated with (A 2; B 2; C2) and (A 1; B 1; C1) are both
stable, then the system associated with (A 2 
 A 1; B 2 
 B 1; C2 
 C1) is stable.
The reverse is not true in general.

Proof. Let (i; j ) 2 f1; :::; n2g�f1; :::; n1g. Assume that A 2 and A 1 have eigenvalues,
respectively � 2;i and � 1;j , lying strictly within the unit circle. The eigenvalues of
A 2 
 A 1 are � 2;i � 1;j . If j� 2;i j < 1 and j� 1;j j < 1, then j� 2;i � 1;j j < 1. However, if
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j� 2;i � 1;j j < 1, it does not guarantee that both j� 2;i j < 1 and j� 1;j j < 1. �
Let s1 denote an integer such that s1N min(p; m) > max(n2; n1) and s equal to
2s1 � 1. Such choices are explained in Section 3.4. Let the observability matrix built
from two matrices C i ; A i be denoted with O i;s such that:

O i;s =

2

6
6
6
4

C i

C i A i
:::

C i A s� 1
i

3

7
7
7
5

; O s =

2

6
6
6
4

C
CA

:::
CA s� 1

3

7
7
7
5

=

2

6
6
6
4

C2 
 C1

C2A 2 
 C1A 1
:::

C2A s� 1
2 
 C1A s� 1

1

3

7
7
7
5

(3.5)

The extended controllability matrix built from B i ; A i is similarly denoted with Ci;s :

Ci;s =
�
B i A i B i : : : A s� 1

i B i
�

Cs =
�
B AB : : : A s� 1B

�

Lemma 3.2. If (A 2 
 A 1; C2 
 C1) is observable, then each of the pairs (A 2; C2)
and (A 1; C1) is observable.
The reverse is not true in general.

Proof. Let n = n1n2. We start by partitioning the columns of O n block-wise:

O n =
�
L 1 : : : L n 2

�
(3.6)

where L j 2 RnpN 2 � n 1 for j = 1 ::n2. Each block-matrix L j is such that:

L j =

2

6
6
6
6
6
6
4

m01;j W 0
:::

m0N;j W 0
:::

mn � 1N;j W n � 1

3

7
7
7
7
7
7
5

(3.7)

where M n � 1 = C2A n � 1
2 ; W n � 1 = C1A n � 1

1 . If O n is full column rank, so is L j . It
yields the following equalities for the column ranks:

rank(L j ) = rank(O 1;n ) (3.8)

Therefore, rank(O 1;n ) = n1. A similar reasoning on the submatrix
O n (1 : pN : pnN 2; 1 : n1 : n) holds to prove that rank(O 2;n ) = n2.
We provide with a counter-example for the reverse side:

C1 =
�
1 1

�
; A 1 =

�
0:4 0
0 0:6

�
; C2 =

�
1 1

�
; A 2 =

�
0:6 0
0 0:4

�

Both O 1;n and O 2;n are full column rank which is not the case for O n . �
Controllability is the dual notion from observability, and therefore, a similar statement
can be made for the pairs (A 2; B 2) and (A 1; B 1) to be controllable.
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De�nition 3.2. A minimal realization of (3.4) corresponds to a set S such that the
extended observability and controllability matrices built respectively from the pairs
(A 2 
 A 1; C2 
 C1) and (A 2 
 A 1; B 2 
 B 1) are of minimal rank n2n1.

Corollary 3.1. If the set of generators S = fA 1; A 2; B 1; B 2; C1; C2g corresponds
to a minimal realization of the MSSM (3.4), then both sets fA 1; B 1; C1g and
fA 2; B 2; C2g correspond to a minimal realization.
The reverse is not true in general.

Proof. The proof follows from Lemma 3.2. �
As shown in van Loan (2000) for standard matrix properties and in the above results,
a particularity of the Kronecker product is that the properties relating the global
matrices to the factors are often one-sided. Especially, we pointed out in Chapter 1
that modal approaches for system identification are able to guarantee global criteria
contrary to the local modeling as e.g in the model of the interconnected string.
When deriving algorithms using the factor matrices, we will not be able to guarantee
observability nor controllability of the global system but only of the pairs formed
from factor matrices.

We now investigate the state-space (3.4) from the input-output relationship,
which matrix form reads:

Y (k) = C1A k � 1
1 X (1)A k � 1

2
T

CT
2 +

k � 1X

i =1

C1A k � i � 1
1 B 1U (i )B T

2 A k � i � 1
2

T
CT

2 + E(k)

(3.9)

De�nition 3.3. Let N t be the number of temporal samples. For i 2 f1; 2g, denote:

Si = fA ( i )
1 ; A ( i )

2 ; B ( i )
1 ; B ( i )

2 ; C ( i )
1 ; C ( i )

2 g

The two sets of generators S1 and S2 are said to be equivalent if the input-output
behaviour of the associated state-space model (3.4) is identical for all k = 1 ::N t .

It is well-known that the state-space matrices A ; B ; C in (3.1) modeling the input-
output relationship are not unique because of the existence of a non-singular similarity
transformation T 2 Rn 2 n 1 � n 2 n 1 . Reshuffling (3.1) yields (3.4) if and only if the
state-space matrices are all of Kronecker rank one. It is not the case when allowing
similarity transformations not written as T = T 2
T 1. We characterize the similarity
transformation in the case of Kronecker state-space models and relate equivalent
sets of generators in the next lemma.

Lemma 3.3. The sets of generators S1 and S2 for the Kronecker MSSM equivalently
model (3.4) if and only if there exist T 1 2 Rn 1 � n 1 ; T 2 2 Rn 2 � n 2 non-singular,
P 1 2 RmN � mN ; P 2 2 RN � N and non-zero scalars �; c t that satisfy:

8k 2 f1; :::; N t g; P 1U (k)P T
2 = U (k) (3.10)

8
><

>:

A (1)
2 = � T � 1

2 A (2)
2 T 2

B (1)
2 = T � 1

2 B (2)
2 P 2

C (1)
2 = ct C

(2)
2 T 2

(3.11)
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8
><

>:

A (1)
1 = 1

� T � 1
1 A (2)

1 T 1

B (1)
1 = T � 1

1 B (2)
1 P 1

C (1)
1 = 1

ct
C (2)

1 T 1

(3.12)

Proof. (Sufficiency) With such parametrization, the state-space model built from
S1 is equivalent to the model built from S2:

8
<

:

~X (k + 1) = T � 1
1

�
1
� A (2)

1 T 1 ~X (k)T T
2 � A (2)

2

T
+ B (2)

1 P 1U (k)P T
2 B (2)

2

T �
T � T

2

Y (k) = 1
ct

C (2)
1 T 1 ~X (k)T T

2 ct C
(2)
2

T
)

(3.13)
where ~X (k) = T � 1

1 X (k)T � T
2 . This model yields the same input-output behaviour

provided that:
P 1U (k)P T

2 = U (k) (3.14)

Vectorizing (3.13) yields:
(

vec(X (k + 1)) =
�
A (2)

2 
 A (2)
1

�
vec(X (k)) +

�
B (2)

2 
 B (2)
1

�
u(k)

y(k) =
�
C (2)

2 
 C (2)
1

�
vec(X (k))

(Necessity) We now prove that the similarity transformation T is necessarily of
Kronecker rank one such that both global matrices A (1) and A T := T � 1A (1) T are
of Kronecker rank one. Let T =

P n
i =1 T i;` 
 T i;r such that

rank(
�
vec(T 1;` ) : : : vec(T n;` )

�
2

4
vec(T 1;r )T

: : :
vec(T n;r )T

3

5) = n (3.15)

for n > 1. For simplicity, we assume n = 2 although the reasoning still holds for
larger values. The matrix A T is parametrized with a Kronecker rank-one structure
and it will be shown that it implies T i;` = T j;` for all i; j , hence a contradiction with
(3.15) and therefore T is of Kronecker rank one. We start by writing TA T = A (1) T
with a sum of Kroneckers and reshuffle it into U 1V T

1 = U 2V T
2 , where, for i 2 f1; 2g:

�
U 1(:; i ) = vec(A (1)

2 T i;` ); V 1(:; i ) = vec(A (1)
1 T i;r )

U 2(:; i ) = vec(T i;` A T;2); V 2(:; i ) = vec(T i;r A T;1)
(3.16)

There exist a non-singular matrix P =
�
p11 p12

p21 p22

�
such that U 1 = U 2P . Rewriting

the above equation yields:
(
�p11T 1;` A T;2 + A (1)

2 T 1;` = p21T 2;` A T;2

�p22T 2;` A T;2 + A (1)
2 T 2;` = p12T 1;` A T;2

(3.17)

This can be transformed into:
(

A (1)
2 (p12T 1;` � p11T 2;` ) = ( p12p21 � p11p22)T 2;` A T;2

A (1)
2 (p21T 2;` � p22T 1;` ) = ( p12p21 � p11p22)T 1;` A T;2

(3.18)
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The matrices A (1)
2 and A T;2 are similarly equivalent, which means that:

�
p12T 1;` = ( p12p21 � p11p22 + p11)T 2;`

p21T 2;` = ( p12p21 � p11p22 + p22)T 1;`
(3.19)

As vec(T 2;` ) and vec(T 1;` ) are linearly independent, the first equation implies p12 = 0
and p11(p22 � 1) = 0 whereas the second equation gives p21 = 0 and p22(p11 � 1) = 0 .
If either p11 or p22 is zero, then P is singular which is a contradiction. If both are
equal to one, P = I , thus T 2;` is equal to T 1;` using (3.18). We conclude that T is
of Kronecker rank one. �
The matrices P 2; P 1 in Lemma 3.3 can be further characterized. For all temporal
samples until N t , we form the matrix ~U 2 RmN 2 � N t from concatenated input data
with: ~U =

�
vec(U (1)) : : : vec(U (N t ))

�
. Let us assume N t � mN 2 and that the

matrix ~U is full row rank. Then, the equation (3.14) is equivalently written with:

(P 2 
 P 1 � I mN 2 )vec(U (k)) = 0 (3.20)

Concatenating data for all k in f1; :::; N t g, it follows:

(P 2 
 P 1 � I mN 2 ) ~U = 0 (3.21)

Under the assumption that the matrix ~U is full row rank, P 2
P 1 = I mN 2 . It implies
that both P 2 and P 1 are diagonal, and, for all i = 1 ::mN; j = 1 ::N , p1;( i;i ) p2;( j;j ) = 1 .
Hence, P 2 = bt I N and P 1 = 1

bt
I mN for some non-zero scalar bt .

In other words, when the similarity transformation T is unstructured, the
Kronecker rank one structure in the vectorized state-space model is lost for the
matrix T � 1AT . Therefore, the vector state-space model with matrices (T � 1(A 2 

A 1)T ; T � 1(B 2 
 B 1); (C2 
 C1)T ) cannot be rewritten in general with a matrix
state-space model as in (3.4). It is of particular interest as the identification algorithm
we propose relies on the matrix state-space model (3.4) and the global matrices are
never formed. The global similarity transformation is not involved.

In order to derive a scalable identification algorithm, the following assumptions
on the data and system matrices in (3.4) are made:

� A1: The pair (A 2 
 A 1; C2 
 C1) is observable.

� A2: The pair (A 2 
 A 1; B 2 
 B 1) is controllable.

� A3: The eigenvalues of both A 2 and A 1 are strictly within the unit circle.

� A4: The matrix ~U is full row rank.

� A5: The measurement noise is zero-mean white noise with unknown covariance
matrix.

� A6: The measurement noise is uncorrelated with all past inputs:

for all k � j , E
�
u(k)e(j )T �

= 0
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The assumptions A1 to A4 and A6 are related to the global system properties and
are commonly used in subspace identification, Verhaegen and Verdult (2007). The
assumption A6 is also made in Yu et al. (2018a), Yu and Verhaegen (2018a) in order
to focus on the essential building of the subspace identification method(s) like VARX
modeling and the state sequence approximation. The generality of the method is
illustrated in Section 3.6 in which a model in innovation form is identified.

Problem Formulation: Assuming A1 to A6 , and given the input-output data
U (k); Y (k) from the state-space model in (3.4) for k = f1; :::; N t g, estimate, up
to the similarities transformation T 1; T 2 and the ambiguity scaling factors �; c t ; bt

defined in Lemma 3.3, the matrices A 1; A 2; B 1; B 2; C1; C2 that correspond to a
minimal realization. The challenge lies on deriving an algorithm with O(N 3N t )
computational complexity.

Such requirements on the computational cost exclude an identification of the
unstructured state-space model with standard subspace methods such as MOESP
or SSARX. These methods fail for three main reasons. First, they rely on a QR
decomposition of the concatenated block-Hankel matrix built from the input-output
sequence, whose size is (p + m)sN 2 � (N t � s + 1) , for some scalar s. A square
lower-triangular Gram-Schmidt matrix is only obtained when N t � psN2 which
requires storing huge data samples. Second, with a global system order of n2n1,
computing the QR decomposition and the SVD of N 2 � N 2 matrices is very costly,
O(N 6) flops. If a prior knowledge of the system order is available, then a rank-n2n1

SVD can be computed at a cost of O(n2n1N 4). More efficient methods as in Halko
et al. (2011) for computing SVD do not break the curse of dimensionality that
appears with multi-dimensional systems and still require O(log(n2n1)N 4) flops.
Last, forming the global matrices is a drawback for storage and e.g subsequent
control design for real-time applications. For example, computing a matrix-vector
multiplication with the dense unstructured matrix requires O(N 4) instead of O(N 3)
in the matrix form.

The algorithm PBSID provides an alternative route that estimates first a
high-order VARX and then computes the SVD of a large-matrix, Chiuso (2007). The
computational cost associated with the latter operation along with the estimation of
unstructured and dense estimates of the state-space matrices reaches O(N 6) and
is reduced in this work by working rather with the factored Markov parameters
C2A i

2B 2 and C1A i
1B 1.

In the three following sections, we describe the subspace-like method which is
decomposed in three major steps. We first identify the factored Markov parameters
using a globally convergent algorithm. Such parameters are however estimated up to
an unknown scaling factor. Second, a low-rank optimization problem with bilinear
constraints is formulated to pave the way for the third step in Section 3.5 where we
identify the factored state-space matrices by estimating the state-sequence.
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3.3. High-order FIR estimation
3.3.1. A QUARKS model
Based on Assumption A3 , the output y(k) can be approximated with a high-order
Finite Impulse Response model for all k > s :

y(k) �
sX

i =1

CA i � 1Bu (k � i ) + e(k)

�
sX

i =1

�
C2A i � 1

2 B 2 
 C1A i � 1
1 B 1

�
u(k � i ) + e(k) (3.22)

Denote M i;` := C2A i � 1
2 B 2 2 RN � N and M i;r := C1A i � 1

1 B 1 2 RpN � mN . The
matrix M ` =

�
M 1;` : : : M s;`

�
is denoted as the left-factor impulse response.

Similarly, the matrix M r is built from the factor matrices M i;r and called the
right-factor impulse response.

By appropriately selecting the parameters as standardly done in the subspace
identification literature, Verhaegen and Verdult (2007), the approximation error can
be made arbitrarily small, Knudsen (2001).

A computationally efficient and globally convergent algorithm has been derived
in Chapter 2 to estimate structured large-scale VARX models when the coefficient-
matrices have large dimensions but low-Kronecker rank. In the FIR approximation
(3.22), each Markov parameter M i has Kronecker rank equal to one, and hence the
equation (3.22) can be recast into a minimization on the factor matrices M i;` ; M i;r

only. The stability of the impulse responses built from factored matrices is imposed by
using kernel regularization methods. The kernel matrix P t 2 Rs� s is here introduced
along with the decomposition of its inverse with a square-root matrix K t . Adding
the following cost as regularization to a cost function induces stable VARX models:

r t (M i;` ; M i;r ) = kQ t

2

6
4

vec(M 1;` )vec(M 1;r )T

:::
vec(M p;` )vec(M p;r )T

3

7
5 k2

F (3.23)

where Q t = W t
I N 2 . The factor matrices M i;` ; M i;r are estimated using Alternating
Least Squares on the following least-squares bilinear minimization problem:

min
M i;r ;M i;`

N tX

k= s+1

kY (k) �
sX

i =1

M i;r U (k � i )M T
i;` k

2
F + � ALS r t (M i;` ; M i;r ) (3.24)

where � ALS is a regularization parameter. An Alternating Least Squares algorithm
is proposed and described in Algorithm 3.1. The notation LM r (M ` ) is introduced
and refers to the the cost function in (3.24) when the optimization variables are only
M i;` for all i while M i;r is fixed. The solution to (3.24) is not unique as summarized
in the following Lemma.

Lemma 3.4. Let N t tend towards infinity. Let i 2 f1; :::; sg and t i 2 Rnf0g. Denote
a solution to (3.24) with the parameters M i;` ; M i;r .
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The set of all solutions cM i;` ; cM i;r that yield the same optimal value of the cost
function (3.24) is such that:

vec(cM i;` ) = vec(M i;` )t i ; vec(cM i;r ) =
1
t i
vec(M i;r )

Denote the estimates from (3.24) with cM i;` ; cM i;r . They are related to the non-scaled
parameters M i;` ; M i;r with:

cM i;` � t i M i;` ; cM i;r � vi M i;r (3.25)

where t i vi � 1. The non-zero ambiguity constants t i are however unknowns and
different for each i .

Algorithm 3.1: Summary of QUARKS estimation
Input : fu(k)g1:N t ; fy(k)g1:N t ; s; � ALS ; � max ; � min

Output : cM r ; cM `

1 �  0; � = 1
2 foreach i � s do
3 M ( � )

i;`  randn(N,N)
4 end
5 while � � � max and � > � min do
6 M ( � +1)

r  argmin LM ( � )
`

(M r ).

7 M ( � +1)
`  argmin LM ( � +1)

r
(M ` ).

8 Evaluate the residual c( � )

9 �  jc( � ) � c( � � 1) j
10 �  � + 1
11 end

12 cM r  M ( � � 1)
r

13 cM `  M ( � � 1)
`

3.3.2. Computational complexity
The computational complexity for the QUARKS was studied in Chapter 2. We
assume that the number of iterations � max are independent of N , which is however
not the case for the number of temporal samples N t . The algorithm scales with
O(N 3N t ).

3.4. Estimation of the impulse responses up to a scal-
ing factor

In this section, we assume that the matrices M i;` and M i;r are estimated up to
a different non-zero scaling factor as highlighted in Lemma 3.4. This relationship
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between the matrices estimated with QUARKS in (3.24) and their true variants
hold in an asymptotic consistent manner. We now study how to estimate the
factored Markov parameters wC2(� A 2) i � 1B 2 (for w; � non-zero scalars). Although
the forthcoming analysis is performed on the left factor matrices M i;` , it is equally
valid for the right factor matrices M i;r .

3.4.1. A low-rank block-Hankel matrix.
From the matrices fM i;` gi =1 ::s , the realization theory consists in forming a block-
Hankel low-rank matrix that is equal to O 2;s1 C2;s1 for some integer s1 � n2. A
SVD is then computed to estimate the range space of the observability matrix O 2;s1 .
In the analysis from this section, the approximations in (3.25) are considered as
equalities. Because the unknowns t i are dependent on the index i , the block-Hankel
matrix built from the estimated matrices fcM i;` gi =1 ::s is in general not low-rank.
Each of the factored Markov parameters need to be multiplied with a scalar on which
we formulate conditions such that the resulting block-Hankel matrix has rank equal
to n2. We describe this statement in Theorem 3.1 for which Lemma 3.5 is needed.

Lemma 3.5. (Partial Realization Problem) Gragg and Lindquist (1983). Let � 2 N.
Let s = 2s1� 1 with s1 an integer strictly larger than � . For i = 1 ::s, let x i 2 R such
that rank

�
H(x i )

�
= � .

Then, there exists a realization (a; b; c) of minimal degree � with a 2 R� � � ; b 2
R� � 1; c 2 R1� � such that for i = 1 ::s; xi = cai � 1b. This decomposition is unique up
to a similarity transformation.

The triplet (a; b; c) defines a partial realization on the finite sequence fx i gi =1 ::s .

Theorem 3.1. Let s = 2 s1 � 1 with s1 an integer such that s1N min(p; m) �
max(n2; n1). For i 2 f1; ::; sg, let (� i ; t i ) be non-zero scalars and let the matrices
cM i;` satisfy:

cM i;` = t i M i;` (3.26)

with rank(H(M i;` )) = n2.

� If rank
�
H(� i

cM i;` )
�

= n2, then rank
�
H(� i t i )

�
= 1 .

� If � i t i = � i � 1 for a non-zero scalar � , then:

rank
�
H(� i

cM i;` )
�

= n2 (3.27)

Proof. We derive the proof using the contraposition. In the sequel we denote
x i = � i t i and X i = M i;` . Let � 2 N such that 1 < � � s1 and suppose that:

rank
�
H(x i )

�
= � (3.28)

From Lemma 3.5, there exists a realization (a; b; c) of minimal degree � with
a 2 R� � � ; b 2 R� � 1; c 2 R1� � such that for i = 1 ::s; xi = cai � 1b . If every eigenvalue
of a is 0, then a is nilpotent (via Cayley-Hamilton) which is forbidden by the



3

94 3. Identifying Kronecker-structured state-space models

assumption x i 6= 0 for all i . Therefore, the matrix a has at least one non-zero
eigenvalue.

We divide the proof in two cases. If a is diagonalizable, there exists an
invertible matrix P such that a = PDP � 1 where D is a diagonal matrix containing
the eigenvalues. All eigenvalues � i are distinct. Let k 2 N. We have:

cak bCA k B = C(cak b)A k B (3.29)
= CcPD k P � 1bA k B

Denote ~c = cP , ~b = P � 1b and r i = ~ci ~b i 6= 0 . We write:

cak bCA k B = C~cD k ~bA k B

= C
�X

i =1

~ci � k
i
~b i A k B (3.30)

=
�X

i =1

r i C(� i A )k B

Then, without loss of generality, consider � = 2 . These Markov parameters are
associated with the state-space matrices:

~A =
�
� 1A 0

0 � 2A

�
; ~B =

�
B
B

�
; ~C =

�
r 1C r 2C

�
(3.31)

Let W i be an eigenvector of A . Then both
�
W i

0

�
and

�
0

W i

�
are eigenvectors of ~A .

The condition ~C
�
W i

0

�
= 0 or ~C

�
0

W i

�
= 0 is equivalently written with:

r i CW i = 0 (3.32)

for i 2 f1; 2g. Using the Popov-Belevitch-Hautus (PBH) test and with the assumption
that the pair (A ; C) is observable, it implies that W i = 0. Therefore the pair ( ~A ; ~C)
is observable following the PBH test. It follows that the rank of H(x i X i ) is strictly
larger than n2 and we have a contradiction.

Suppose now that the matrix a is not diagonalizable. There exists an invertible
matrix P such that a = PJP � 1, where J is the Jordan matrix. The latter matrix is
block-diagonal: each of the so-called Jordan blocks has a size equal to the algebraic
multiplicity of the associated eigenvalue. Let q denote the number of blocks (also
equal to the number of different eigenvalues) and hi the multiplicity of the i -th
eigenvalue.

Without loss of generality, we assume that � i has multiplicity 2. The Jordan
blocks J i have then the following form:

J i =
�
� i 1
0 � i

�
(3.33)
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It can be proven (using e.g induction) that Jk
i is expressed as:

Jk
i =

�
� k

i k� k � 1
i

0 � k
i

�
(3.34)

The expression in (3.30) reads:

cak bCA k B = C
qX

i =1

~ci

�
� k

i k� k � 1
i

0 � k
i

�
~b i A k B (3.35)

=
qX

i =1

~C i ~A k
i

~B i

where,

~A i =
�
� i A A

0 � i A

�
; ~B i =

� ~bi; 1B
~bi; 2B

�
; ~C i =

�
~ci; 1C ~ci; 2C

�
(3.36)

The matrix a has at least one non-zero eigenvalue from the assumption that all x i

are different from 0. The following therefore assumes � i 6= 0 .
The observability matrix associated to the triplet ( ~A i ; ~B i ; ~C i ) is written as:

Vn;i =

2

6
4

~ci; 1C ~ci; 2C
~ci; 1C(� i A ) ~ci; 1CA + ~ci; 2C(� i A )

:::
:::

3

7
5 (3.37)

whose rank is equal to the rank of 1
~ci; 1

V n for � i 6= 0 ; ~ci; 1 6= 0 :

1
~ci; 1

V n;i =

2

6
6
6
4

C 0
C(� i A ) C(� i A )
C(� i A)2 2C(� i A )2

:::
:::

3

7
7
7
5

"
I ~ci; 2

~ci; 1
I

0 1
� i

I

#

(3.38)

From Sylvester’s inequality, the rank of 1
~ci; 1

V n;i is equal to the rank of the following
matrix: 2

6
6
6
4

C 0
C(� i A ) C(� i A )
C(� i A )2 2C(� i A )2

:::
:::

3

7
7
7
5

(3.39)

If the pair (C; � i A ) is observable, then the matrices:
2

6
6
6
4

C
C(� i A )
C(� i A )2

:::

3

7
7
7
5

;

2

6
6
6
4

I
2I

: : :
(s� 1)I

3

7
7
7
5

2

6
6
6
4

C
C(� i A )
C(� i A )2

:::

3

7
7
7
5

(3.40)
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are both full column rank. Owing to the zero-block in the upper right part of
the matrix (3.39), the rank of V n;i is strictly larger than n2 and we again have a
contradiction.
The proof for the second bullet is as follows. If � i t i = � i � 1 for all i , then:

H(� i
cM i;` ) = H(C2(� A 1) i � 1B 2) (3.41)

= O 2;s1 C2;s1

where O 2;s1 and C2;s1 are respectively the observability and controllability matrices
associated with the pairs (C2; � A 2) and (� A 2; B 2). From Sylvester’s inequality, the
rank of O 2;s1 C2;s1 is equal to n2 which proves that the rank of H(� i

cM i;` ) is n2

under the conditions specified in the theorem. �

Corollary 3.2. With the notations introduced in Theorem 3.1. If rank
�
H(� i

cM i;` )
�

=

n2, then there exist non-zero scalars (a� ; b� ; c� ) such that � i = c� a i � 1
� b�

t i
.

Proof. It follows from Theorem 3.1 by using x i = � i t i . �

Corollary 3.3. With the notations introduced in Theorem 3.1. If rank
�
H(� i

cM i;r )
�

=
n1, then there exist (a� ; b� ; c� ) non-zero scalars such that � i = c� ai � 1

� b� t i .

Proof. It follows from Theorem 3.1 adapted to H(� i
cM i;r ) and by using x i = � i

t i
. �

To summarize, the matrix H(cM i;` ) is in general not low-rank as indicated in The-
orem 3.1 because the scaling factor t i is different for each factor matrix. The
properties of the block-Hankel H(� i

cM i;` ) have then been studied. If the rank of
the latter matrix is minimal, then rank

�
H(� i t i )

�
= 1 . There are however an infinite

number of sequences � for which such a condition is valid. In the next theorem, we
analyze a rank minimization problem featuring both low-rank block-Hankel matrices
H(� i

cM i;` ) and H(� i
cM i;r ) and study the uniqueness when the scalings � i ; � i are

related with a bilinear constraint.

Theorem 3.2. The solution to the multi-criteria feasibility problem:

find (� ; � ) (3.42)

s.t frank
�
H(� i

cM i;` )
�

= n2; rank
�
H(� i

cM i;r )
�

= n1g
8i 2 f1; :::; sg; � i � i = 1

is not unique and feasible values for (3.42) are obtained for all �; � as described in
Corollary 3.2 and 3.3 with the additional conditions that a� a� = 1 and c� c� b� b� = 1 .

Proof. Using Corollary 3.2 and 3.3, the above rank conditions are satisfied for all
i = 1 ::s:

� i =
c� ai � 1

� b�

t i
; � i = c� ai � 1

� b� t i (3.43)

Replacing these expressions inside the bilinear constraint (3.42) yields:

� i � i = c� c� (a� a� ) i � 1b� b� = 1 (3.44)

which implies a� a� = 1 and c� c� b� b� = 1 . �
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Remark 3.1. With the bilinear constraint � i � i = 1 , both � i and � i cannot be 0.
Moreover, the scalars t i ; vi are related with t i vi = 1 using Lemma 3.4. Therefore,
both sequences � i t i and � i

t i
are non-zero which fulfills the condition expressed in

Theorem 3.2.

3.4.2. A bilinear constrained low-rank optimization
We now propose a method to estimate a set of vectors � ; � using the constraints that
have been derived in the previous paragraph and the estimates cM i;` ; cM i;r that have
been obtained with the QUARKS identification. From (3.42), and without knowing a
priori the system orders (n2; n1), we formulate a bilinear rank optimization problem:

min
� ;�

rank
�
H(� i

cM i;` )
�

+ rank
�
H(� i

cM i;r )
�

(3.45)

s.t 8i 2 f1; :::; sg; � i � i = 1

where � is a regularization parameter that trades between the low-rank priors and
the stability constraint. The minimization problem (3.45) is bilinear and features
the rank operator which is non-convex. When convexifying the rank operator with
the nuclear norm, it belongs to the class of multi-convex optimization problems
as described in Nocedal and Wright (2006). The works in Xu and Yin (2013) and
Doelman and Verhaegen (2016) both propose an iterative algorithm. Use is made
of a Block-Coordinate Update algorithm (BCU) with slack variables, Xu and Yin
(2013). The slack variables are used to relax the bilinear constraints and are denoted
with qi for i 2 f1; :::; sg. The optimization (3.45) is transformed into:

min
� ;� ;q

kH(� i
cM i;` )k? + kH(� i

cM i;r )k? + �
sX

i =1

q2
i (3.46)

s.t 8i 2 f1; :::; sg; � i � i � 1 = qi

where � is a regularization parameter. The higher � is, the more weight is laid
on setting q to 0. The optimization problem is solved iteratively with non-zero
initial guesses and with a low value for � , hence without necessarily requiring the
bilinear equality to hold. At each iteration, the optimization successively solves over
(� ; q) and then (� ; q). The number of variables is moreover only 2s. Algorithm 3.2
details the steps. The notation BbM r ;� ;�

(� ; q) is introduced for the cost function
in (3.46) when the optimization variables are � ; q only while � is fixed, and with
the regularization parameter � . The regularization parameter � shall be gradually
increased throughout the iterations to ensure that the bilinear constraint (3.46) is
met, Xu and Yin (2013). We highlight the prominent role of the initial value � (0) for
� . If it is set too large when optimizing over (� ; q), respectively (� ; q), the variable
� i is fixed to 1=� i by the constraint. If it is set too low, � i goes to 0 and qi to �1.
In that respect, � (0) plays the role of a regularization parameter whose optimal value
is determined by grid search.

Standard ADMM techniques apply here and a detailed analysis of the opti-
mization updates are inspired from Verhaegen and Hansson (2016) using the linear
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operator framework to enforce the block-Hankel structure. The nuclear norm mini-
mization is performed via singular value soft-thresholding. The details are however
not reproduced here to focus on the subspace algorithm and the implementation is
found online.

Algorithm 3.2: Summary of BCU

Input : cM ` ; cM r ; � (0)

Output : b� ; b�

/* Default values */
1 d = 5 ; � = 5 ; � max = 40; � min = 10 � 3

2 �  0
3 foreach i � s do
4 � ( � )

i  1
5 end
6 while � � � max and � > � min do
7 � ( � +1)  argmin BbM r ;� ( � ) ;� ( � ) (� ; q).
8 � ( � +1)  argmin BbM ` ;� ( � +1) ;� ( � ) (� ; q).
9 if mod(�; d ) = 0 then

10 � ( � +1)  � � ( � )

11 end
12 �  

P s
i =1 (� i � i � 1)2

13 �  � + 1
14 end

15 b� = � ( � � 1) ; b� = � ( � � 1)

3.4.3. Computational complexity

The complexity of Algorithm 3.2 is essentially to solve each ADMM problem. We
assume that the number of iterations is independent from N . Prior to perform-
ing the ADMM updates, a Gramian matrix is computed based on the sequences
fcM i;r g; fcM i;` g with O(N 2) flops. Two operations that appear in each of the above
ADMM algorithm are detailed below. The number of unknowns is only 2s and
hence, the cost of the primal variable update in each of the ADMM algorithm is
not dominated by the matrix inversion but rather forming the matrices prior to
solving the least squares, which scales with O(N 2) only. However, at each iteration
of the ADMM algorithm, a SVD of the block-Hankel matrix H(� ( � )

i
cM i;` ) (respec-

tively, H(� ( � )
i

cM i;r )) is computed with a singular-value soft-thresholding, which is
the bottleneck in Algorithm 3.2 as this operation scales with O(N 3).
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3.5. Estimating the state-space matrices
3.5.1. A data-equation in matrix form
In this section, we estimate the state-sequence and then perform a bilinear least-
squares optimization on the MSSM model (3.4). Similarly to standard subspace
identification methods, a data equation is first written in the form:

Y = V + Tu + E (3.47)

where the block-Hankel matrix Y 2 RpNs � NM is as follows:

Y =

2

6
6
6
6
4

Y (1) Y (2) : : : Y (M )

Y (2)
: : :

:::
:::

: : :
:::

Y (s) Y (s + 1) : : : Y (N t )

3

7
7
7
7
5

(3.48)

with M = N t � s + 1 . The block-Hankel matrix E is similarly built from the noise
matrices E(k). The matrix V is defined with:

V =

2

6
6
6
6
4

C r X (1)CT
` : : : C r X (M )CT

`

C r A r X (1)(C ` A ` )T : : :
:::

::: : : :
:::

C r A s� 1
r X (1)(C ` A s� 1

` )T : : : C r A s� 1
r X (M )(C ` A s� 1

` )T

3

7
7
7
7
5

(3.49)

and Tu with:
2

6
6
6
6
6
6
4

0 : : : 0
M 1;r U (1)M T

1;` : : : M 1;r U (M )M T
1;`

P 1
i =0 M i +1 ;r U (2� i )M T

i +1 ;`

:::
:::

: : :
:::P s� 2

i =0 M i +1 ;r U (s� 1� i )M T
i +1 ;` : : :

P s� 2
i =0 M i +1 ;r U (N t � i )M T

i +1 ;`

3

7
7
7
7
7
7
5

(3.50)

The data equation in matrix form (3.47) features matrices of sizes of the order N
rather than N 2 but with no key structural properties like low-rank as is exploited in
standard subspace identification, Verhaegen and Verdult (2007). For example, the
matrix V is in general not low-rank, hence the estimation of the state sequence is
not straightforward.

The terms in V are now embedded into a structured third order tensor denoted
with A . Let ' 2 N such that 'pN > n 1 and 'N > n 2. For all k = 1 ::M , a slice
A (:; :; k) 2 Rp'N � 'N is described with:

2

6
4

C1X (k)CT
2 : : : C1X (k)(C2A ' � 1

2 )T

:::
:::

C1A ' � 1
1 X (k)CT

2 : : : C1A ' � 1
1 X (k)(C2A ' � 1

2 )T

3

7
5 (3.51)

We first justify the use of the tensor A before focusing on estimating its entries. The
rank properties are related to its matricizations.
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De�nition 3.4. Let A 2 Rp'N � 'N � M be a third order tensor. The unfolding A (1)

is defined with:

A (1) =
�
A (:; :; 1) : : : A (:; :; M )

�
2 Rp'N � 'NM (3.52)

Consequently, using (3.51) along with Definition 3.4:

A (1) =

2

6
6
6
4

C1

C1A 1
:::

C1A ' � 1
1

3

7
7
7
5

�
X (1)CT

2 : : : X (M )(C2A ' � 1
2 )T

�
(3.53)

The rank of the tensor unfolding A (1) is equal to n1:

rank(A (1) ) = n1 < p'N (3.54)

Computing an SVD of A (1) yields:

A (1) = U 1V 1 (3.55)
U 1 = O '; 1T 1

V 1 = T � 1
1

�
X (1)CT

2 : : : X (M )(C2A ' � 1
2 )T

�

for a non-singular T 1. From (3.55) and more precisely from U 1, the matrices A 1

and C1 are estimated. By reshaping the matrix V 1, we can write:

H =

2

6
4

T � 1
1 X (1)CT

2 : : : T � 1
1 X (1)(C2A ' � 1

2 )T

:::
:::

T � 1
1 X (M )CT

2 : : : T � 1
1 X (M )(C2A ' � 1

2 )T

3

7
5

=

2

6
4

T � 1
1 X (1)

:::
T � 1

1 X (M )

3

7
5

�
CT

2 : : : (C2A ' � 1
2 )T

�
(3.56)

The following rank equality holds:

rank(H ) = n2 < 'N (3.57)

An SVD on the low-rank matrix H gives:

H = U 2V 2 (3.58)

U 2 =

2

6
4

T � 1
1 X (1)T 2

:::
T � 1

1 X (M )T 2

3

7
5

V 2 = T � 1
2

�
CT

2 : : : (C2A ' � 1
2 )T

�

Hence, U 2 provides with an estimate for the state-sequence up to two similarity
transformations as presented initially in the proof of Lemma 3.3. The matrix V 2 is
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equal to the extended observability matrix O '; 2 up to a similarity transformation
T 2, and the matrices A 2 and C2 can then be estimated. From both rank equalities
(3.54) and (3.57), we conclude that two consecutive SVDs on respectively A (1) and
H enable to estimate the state-sequence.

Remark 3.2. The first SVD (3.55) is performed on the unfolded tensor A (1) while
the second one (3.58) deals with a reduced size matrix H obtained from the right
singular vectors in (3.55). A CPD of A does not allow to estimate the state-sequence:
it would provide sets of matrices of size p'N �r , 'N �r , and one of size M �r (instead
of Mr � r ). It thus does not capture the full state.

Remark 3.3. The feasibility problem (3.42), and similarly the rank minimization
(3.45), can lead to unstable factored models. For � i as described in Corollary 3.3,
the sequence � i

cM i;` becomes:

� i
cM i;` = c� � i � 1b� C2A i � 1

2 B 2

= c� C2(� A 2) i � 1b� B 2

The stability of � A 1 is not guaranteed depending on the value for � . Although this
does not affect the estimation of � ; � , we wish to recover two stable impulses built
from the factor matrices. It is suggested to compute an eigenvalue decomposition of
both matrices bA 1 and bA 2 and divide the entries of the matrix with the largest spectral
radius with e.g 1:05 �max(� max (fA i gi =1 ::2)) while counter-scaling the other matrix.

3.5.2. Estimating the tensor
In the noise-free case E = 0 , the terms C1A i

1X (k)(C2A j
2)T for i = j and located on

the main block-diagonal of A (:; :; k) are available from:

V � Y � cTu (3.59)

where cTu is obtained from Tu by replacing all M i;` ; M i;r with cM i;` ; cM i;r .
Furthermore, the block-entries away from the main block-diagonal of A (:; :; k)

feature cross-terms such as C1A i
1X (k)(C2A j

2)T for i 6= j . To cope with both the
measurement noise and the estimation of cross-terms, we introduce so-called virtual
outputs, denoted with Y ] , as follows:

(
X (k + 1) = A 1X (k)A T

2 + B 1U (k)B T
2

Y ]
g;h (k) = C ]

1;g X (k)C ]
2;h

T (3.60)

where g; h 2 N; C ]
1;g = C1A g

1 and C ]
2;h = C2A h

2 . In other words, Y ]
g;h (k)

is a virtual output associated with the set of Kronecker-generators Sg;h =
fA 1; A 2; B 1; B 2; C1A g

1; C2A h
2g. The virtual outputs fY ]

g;h (k)gk=1 ::N t are not
known when both g; h are not zero and are approximated with a high-order FIR
filter. Let z 2 N. For all k � z:

Y ]
g;h (k) �

z� 1X

i =0

C1A i + g
1 B 1U (k � i � 1)(C2A i + h

2 B 2)T (3.61)
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Y ]
g;h (k) �

z� 1X

i =0

M i + g+1 ;r U (k � i � 1)M T
i + h+1 ;` (3.62)

Using the estimates cM i;` ; cM i;r for the factored left and right coefficient-matrices in
the QUARKS model in Algorithm 3.1 along with the estimates b� ; b� in Algorithm 3.2,
the equation (3.62) reads:

Y ]
g;h (k) �

z� 1X

i =0

b� i + g+1
cM i + g+1 ;r U (k � i � 1)b� i + h+1

cM T
i + h+1 ;` (3.63)

Y ]
0;0(k) is an FIR approximation of the noise free model (3.4), hence the coefficients

b� ; b� are not needed for computing the virtual output Y ]
0;0(k).

We now investigate the requirements on the indices g; h to fill the tensor A
according to (3.51). Both sequences b� and b� have been estimated with s entries,
therefore the equation (3.63) implies the following ranges for choosing the triplet
(z; g; h):

z + g � s; z + h � s (3.64)
For ' strictly smaller than s and larger than n

p so that the rank inequalities (3.54)
and (3.57) hold, the combinations of the pair (g; h) for filling A are obtained with,
g = 0 ; h 2 f1; : : : ; ' � 1g, and g = 0 ; h = 0 , and g 2 f1; : : : ; ' � 1g; h = 0 . The
maximum value of g is obtained for g = ' � 1, which implies z + ' � 1 = s. A total
of 2' � 1 virtual outputs are available within the temporal range fz; ::; Nt g. For
each of the associated subsystems in (3.60), a data equation in matrix form similar
to (3.59) is written:

Y ]
g;h = V g;h + T g;h (3.65)

where, for M z = N t � ' + 1 :

Y ]
g;h =

2

6
6
6
6
6
4

Y ]
g;h (z) Y ]

g;h (z + 1) : : : Y ]
g;h (M z )

Y ]
g;h (z + 1)

: : :
:::

:::
: : :

:::
Y ]

g;h (z + ' � 1) : : : : : : Y ]
g;h (N t )

3

7
7
7
7
7
5

V g;h =

2

6
6
4

C ]
1;g X (z)C ]

2;h

T
: : : C ]

1;g X (M z )C ]
2;h

T

:::
: : :

:::
C ]

1;g A ' � 1
1 X (z)(C ]

2;h A ' � 1
2 )T : : : C ]

1;g A ' � 1
1 X (M z )(C ]

2;h A ' � 1
2 )T

3

7
7
5

T g;h is as follows:
2

6
6
6
6
4

0 : : : 0
C ]

1 ;g B 1 U (z)( C ]
2 ;h B 2 )T : : : C ]

1 ;g B 1 U (M z )( C ]
2 ;h B 2 )T

P 1

i =0
C ]

1 ;g A i
1 B 1 U (z + 1 � i )( C ]

2 ;h A i
2 B 2 )T : : :

:::
:::

:::P ' � 2

i =0
C ]

1 ;g A i
1 B 1 U (z + ' � 2 � i )( C ]

2 ;h A i
2 B 2 )T : : :

P ' � 2

i =0
C ]

1 ;g A i
1 B 1 U (N t � i )( C ]

2 ;h A i
2 B 2 )T

3

7
7
7
7
5

(3.66)
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The matrices V g;h are estimated with:

V g;h � Y ]
g;h � bT g;h (3.67)

and are contained in the tensor A . A diagonal slice of the tensor A is defined as
follows:

A (( i � 1)pN + 1 : ipN; (i � 1)N + 1 : iN; :) (3.68)
Then, each diagonal slice of the tensor A contains a matrix V g;h as illustrated in
Figure 3.1 and Figure 3.2.

O '; 1

O '; 2

�
X (z) : : : X (M z )

�

V 0;0

V 0;1

V 1;0

Figure 3.1: Schematic of the tensor A . The position of the observability matrices obtained by
writing the data equation for each virtual system are indicated for (g; h) equal to (0; 1); (0; 0); (1; 0).

h

g

C1

C1A 1

C2 C2A 2

C2A ' � 1
2

C1A ' � 1
1

V 0;0

V 0;1

V 1;0

Figure 3.2: Schematic of a slice A (: ; :; k). The position of the observability matrices obtained by
writing the data equation for each virtual system are indicated for (g; h) equal to (0; 1); (0; 0); (1; 0).

For example, the block-diagonal terms for each A (:; :; k) are contained in V 0;0, the
block-subdiagonal terms are contained in V 1;0, the block-superdiagonal terms are
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contained in V 0;1, etc. To summarize, one diagonal slice is provided by one data
equation (with E = 0 ) corresponding to one MSSM (3.60). The main block-diagonal
can be computed without knowing ( b� ; b� ) contrary to all the other slices.

From the estimates of the state sequence dX T (k) = T � 1
1 X (k)T 2, the following

bilinear least-squares is formulated to recover the matrices B 2; B 1:

min
B 2 ;B 1

M z � 1X

k= z+1

k
� dX T (k + 1) � A 1

dX T (k)A T
2

�
� B 1U (k)B T

2 k
2
F (3.69)

The minimization problem (3.69) is solved using Alternating Least Squares and
starting with a random non-zero initial guess.
The steps for estimating the state-sequence are summarized in Algorithm 3.3.

Algorithm 3.3: Estimation of the state-sequence

Input : fu(k)g1:N t ; fy(k)g1:N t ; b�; b�; cM ` ; cM r ; z; '
Output : bA 1; bA 2; bB 1; bB 2; bC1; bC2

1 foreach � = 1 : 2' � 1 do
2 if � < ' then
3 g = 0 ; h = �
4 else if � = ' then
5 g = 0 ; h = 0
6 else if � > ' then
7 g = � � '; h = 0 .
8 foreach k = z + 1 : N t do
9 Compute the virtual outputs with (3.63)

10 end
11 Compute V g;h with (3.67)

/* Fill-in the tensor A */
12 foreach k = z : N t do
13 Fill block-diag(A (:; :; k); � � ' ) with the k-th block column of V g;h

according to (3.51).
14 end
15 end

/* Compute the state-sequence */
16 Form the unfolding A (1) and compute the SVD (3.55)
17 Estimate cA 1; cC1

18 Form H and compute the SVD (3.58)
19 Estimate cA 2; cC2

/* Compute the input state-space matrices */
20 Solve (3.69) iteratively with ALS and estimate cB 2; cB 1
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3.5.3. Computational complexity
Computing the virtual outputs requires (2' �1)N 3N t z flops and therefore, scales with
O(N 3N t ). The first and second SVD cost respectively O(N 3M ) and O(cn1N 2M ).
Last, solving the bilinear least-squares in (3.69) requires N 3M z flops. The overall
computational complexity for Algorithm 3.3 is O(N 3N t ).

3.6. Numerical example
3.6.1. The model
The subspace algorithm is now illustrated with an adaptive optics application. The
dimensions of the problem are summarized in Table 3.1.

Model
N � N WFS sensor points N 2 f6; 8; : : : ; 32g
SNR sensor noise 20 dB
D aperture diameter N=4 m
Turbulence
m �m turbulence phase screen (3N + 1) � (3N + 1)
r 0 Fried parameter 0.2 m
L 0 outer scale 20 m
� MA neighborhood 50
Horizontal wind speed 3 pixels/sample
Vertical wind speed 0 pixels/sample

Table 3.1: Parameters for the numerical simulation - recursive QUARKS

We aim here at illustrating the subspace identification of Kronecker state-space
models in innovation form defined with:

�
x (k + 1) = Ax (k) + Ke (k)
y(k) = Cx (k) + e(k)

(3.70)

where e(k) is a zero-mean white Gaussian noise sequence. The prediction model
reads:

bx(k + 1 jk) = ~A bx(kjk) + Ky (k) (3.71)

We assume that the matrices ~A = A � KC , K and C have a Kronecker rank one,
hence giving rise to the MSSM as follows:

bX (k + 1 jk) = ~A 2
bX (kjk) ~A T

1 + K 2Y (k)K T
1 (3.72)

The performance of Algorithm 3.1 is evaluated for varying size of the lenslet-array
and compared to the SSARX method. For each of the 20 realizations, three methods
are compared:

� SSARX : the centralized identification scheme tailored for the model (3.71).
The number of temporal samples is set to the minimum required for the method,
4N 2s + 2s. The integer s is set to 15.
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� K4SID (Algorithms 3.1+3.2+3.3) The set of parameters is found below.

� K4SID+MLDS : the estimates obtained with K4SID are used for initializing
the non-linear Expectation-Maximization algorithm for handling multilinear
dynamical systems, Rogers et al. (2013). A number of 10sN temporal samples
are used for identification and 10 iterations are computed. However, only small
sizes of grids with N � 10 could be handled because of the high computational
complexity of MLDS. We have computed a suboptimal model from K4SID by
fixing the system orders to lower values than the optimal ones such that MLDS
could handle the optimization, i.e n1; n2 are set to 2N .

We summarize the building blocks of the algorithm K4SID along with the chosen
parameters used in the simulations below:

� the QUARKS identification (Algorithm 3.1):
The number of temporal points in the identification set (for Kronecker-based
models) is 10sN . The initial guesses for the matrices M i;` are chosen following
a Gaussian distribution with zero-mean and identity covariance matrix. A
maximum of 10 iterations is fixed along with a stopping bound � min set to
10� 5. The temporal stability of the QUARKS model is ensured by fitting a
DC-kernel:

pt m;n = e� � jm � n j e� �= 2(m + n )

for m; n = 1 ::s. The optimization is performed for different hyperparameters
�; �; � ; the optimal set is found by random search, Bergstra and Bengio (2012),
with 10 runs.

� the bilinear low-rank optimization in (3.46) (Algorithm 3.2):
The algorithm 3.2 for estimating the parameters b� and b� requires an initial
value for the regularization parameter, � (0) . Its value impacts whether the
bilinear constraint � i � i = 1 is met. If it is set too low, then both � and �
are estimated with 0, and the bilinear constraint is not met. Therefore, we
look for an optimal � (0) by grid search. Five values linearly sampled between 1
and 50 are successively as initial value for � (0) . We call an an optimal value
for � (0) the one that minimizes the prediction-error for the method K4SID for
a particular set of data and grid size. The initial guesses for � (0) , � (0) are
chosen equal to 1.

� State-sequence estimation (Algorithm 3.3):
The integers ' and z are respectively fixed to b s+1

2 c and ' � 1. The system
orders cn1 and cn2 correspond to the index of the singular value that in logarithm
is closest to the logarithmic mean of the maximum and minimum singular
values for both SVDs (3.55) and (3.58). The maximum number of iterations
in the ALS for minimizing (3.69) is set to 10.

The quality criteria is the Variance Accounted For (VAF) between the slopes mea-
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surements y i;j (k) 2 R2 and the predicted by i;j (k) and is defined with:

max
�
0;

�
1�

1
N t

P N t
k=1 ky i;j (k) � by i;j (k)k2

2

1
N t

P N t
k=1 ky i;j (k)k2

2

�
� 100

�

for N t = 5�103 time samples from a validation set independent from the identification
set. The VAF is computed for each sensor channel independently, and the mean
is taken over the whole measurement grid afterwards. The experiments have been
carried out using MatlabR2015b on a desktop computer with a CPU Intel Xeon
E5-1620V3/3.5 GHz with 24GB of RAM.

3.6.2. Analyzing the prediction-error
Figure 3.3 displays the VAF on validation data for the four algorithms as a function of
the total number of outputs, 2N 2. We stress that we are not aiming at reaching lower
prediction errors than SSARX as structural assumptions are made on the matrices.
However, we show that the proposed Kronecker-based modeling handles grids of
much larger sizes and with a slight decrease of performance w.r.t the centralized
version (when the latter model can be computed).

Figure 3.3: VAF ( %) on validation data as a function of the number of outputs. No model was
computed for SSARX for N > 20.

When N � 20 (that is, 2N 2 � 800), SSARX obtains lower prediction-errors than
K4SID. A centralized identification could no longer be carried out for N > 20
because of lack of memory which is a well-known problem as explained in Section 3.2.
The QUARKS estimation reaches performances similar to the one obtained with
SSARX and handles many more outputs. More temporal samples would improve the
performance with some impact on the scalability. The performances using K4SID are
lower than QUARKS because the low-rank bilinear algorithm (Algorithm 3.2) does
not in general converge to the global minimum of (3.45). The difficulties are twofold:
both the rank operator and the bilinear constraint have been relaxed to solve a
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sequence of convex minimizations rather than a rank minimization problem. The
estimates obtained with K4SID serve as good initial values for further optimization
using output-error algorithms for Kronecker models as highlighted with the method
that combines K4SID and MLDS (in green). However, the latter is computationally
cumbersome. Increasing the system order would result in higher performances but
in much longer optimization times as MLDS scales with the third power of the
global order, that is O(N 6) for the example considered. Systems could no longer be
identified with MLDS for sizes strictly larger than 10� 10 and this is corroborated
with the timing measurements in the subsection 3.6.4.

3.6.3. Storage complexity
The storage is defined as the number of entries to construct the state-transition
matrix A , that is n2 in the centralized case and n2

2 + n2
1 in the Kronecker model.

We analyse these results further by plotting the storage as a function of the size,
which are directly related to the system orders. Figure 3.4 illustrates a dependency
of the storage complexity with N 4:06 for global models while it is only N 1:63 for the
Kronecker-structured model. The order stops increasing for SSARX when N > 20
as reaching a user-chosen upper-bound, n = 2 � 103.

Figure 3.4: Storage complexity as a function of the size of the sensor grid, in log-log scale. The
linear model plotted corresponds to log10(Storage complexity ) = a � log10(N ) + b.

3.6.4. Timing experiments
We investigate how the computational time for the identification algorithms evolves
with N . We lay the emphasis on relative results rather than absolute as the latter
are very much hardware-dependent. The SSARX algorithm consists mainly of a
QR decomposition, a SVD and a least-squares, while the Kronecker-based methods
contains many loops in the QUARKS identification, the bilinear low-rank algorithm
and the state-sequence estimation. Consequently, the performances would benefit
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from a C implementation. A similar observation is done for the Matlab code used
for MLDS. We nonetheless focus on the difference of scaling capabilities of the three
algorithms in Figure 3.5. The time for SSARX to identify a model scales with N 5:74

while it is only N 2:49 for K4SID. The M-step in the MLDS computes a Kalman
smoother, which scales at the very least with O(N 6) as no Kronecker structure
could be exploited in every step and large matrices were used for computations. For
example, it requires computing the inverse of the global state covariance matrix at
each iteration for each time sample. Consequently, the computational time increases
sharply even for moderate sizes of arrays.

Figure 3.5: Computational time of the model identi�cation as a function of the size of the sensor
grid, in loglog scale. The linear model plotted corresponds to log10(T ime ) = a � log10(N ) + b. The
regression coe�cient is equal to (2:49; 3:26; 5:74; 5:70) for respectively K4SID, QUARKS, SSARX,
MLDS.

3.7. Conclusion
Conclusions
In this chapter, we presented a new framework to analyse large scale sensor arrays
and identify with O(N 3N t ) complexity the state-space matrices when they exhibit a
Kronecker rank-1 structure. The algorithm consists of first identifying a QUARKS
model in which we estimate the left and right factor matrices up to an unknown
parameter that is different for each factored Markov parameter. Next, we formulated
some low-rank conditions on a block-Hankel matrix such that the left and right
factored impulse responses are retrieved up to a scaling factor. A proposal has
been made to use a Block-Coordinate Descent algorithm with slack variables that
is solved iteratively and gradually ensures that the bilinear constraint is met. We
estimated the state-sequence using two consecutive SVD on a tensor and then, the
Kronecker generators from an Alternating Least Squares on the matrix state-space
model. The benefits of large-scale modeling with the Kronecker structure have been
illustrated with an adaptive optics example and are threefold. First, the Kronecker-
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based subspace algorithm handles larger systems than the benchmark SSARX allow.
Second, although the method we propose leads to a higher prediction-error than
the centralized version, the number of time samples required for using the SSARX
method increases with N 2. Last, timing experiments have shown a dependency with
N 5:65 for SSARX instead of N 2:40 for K4SID.

Recommendations
Improving the estimates using a non-linear output-error algorithm with using the
estimates from K4SID as initial estimates.
The estimates obtained with the subspace algorithm can be further refined by
using them as initial estimates for Kronecker-based output-error optimization algo-
rithms. The main challenge is to derive them with a complexity not larger than N 3N t .

The Kronecker rank may not be exactly equal to one in real-life applications.
We have not investigated in this chapter the identification of state-space models in
which the matrices (especially B ; C) have a Kronecker rank strictly larger than one,
which could help to reduce further on the orders n2; n1 while maintaining the same
prediction-error performances. When setting (A ; B ; C) 2 K2;r A �K2;r B �K2;r C , the
Kronecker rank of the Markov parameter CA j B is equal to r j := r C r j

A r B . A similar
exponential factor is to be observed for Linear Parameter Varying identification
schemes. The exponential increase with r A is devastating for the performances. It
should be assessed whether such model is realistic. This question is again relevant in
Chapter 5 when solving discrete Lyapunov equations. In any case, even if rA is set
to one and thus r j = r C r B =: r , the bilinear constraint in (3.45) reads PQ = I r for
P; Q 2 Rr � r .

An alternative to fill the tensor A .
The state-sequence is estimated based on a three-dimensional tensor written as A .
The data not lying on the block-superdiagonal was estimated by constructing virtual
outputs using FIR models. If the temporal order of these models is too low to
guarantee a good accuracy, estimating the set of generators using the state-sequence
may be worse than directly with the block-Hankel matrices. Knowing that the
three unfoldings of A are low-rank, that the data lying on the block-superdiagonal
is known, and the rest is parametrized as a function of input data and previously
estimated quantities, e.g bt i;j ; cM i;j , is it possible to estimate the virtual outputs with
O(N 3) complexity?
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Scaling up

We extend in this chapter the methods developed in the two previous ones to handle
the case where each system matrix is written as a Kronecker product between d
matrices, d not necessarily equal to two anymore. This formulation is also well-suited
to handle the identification of multi-dimensional systems.
System theory results related to observability, controllability and equivalent classes of
systems are first extended from Chapter 3. We then analyse the weaknesses of K4SID
and how these motivate two main differences introduced in this chapter: the class of
systems considered is restricted to systems where the factored Markov parameters
are strictly positive element-wise, and the factored state-space matrices are estimated
from a low-rank block-Hankel matrix. An improvement in accuracy and computation
time is observed, allowing to scale up the size of systems handled in reasonable time
and computing resources.

This chapter is published for the �rst time in this thesis.
Prof. Hansson contributed to the material presented in this chapter by suggesting to restrict to the
class of positive systems in order to linearise the multi-linear equality constraint in the second step
of K4SID.
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4.1. Introduction
Standard linear algebra operations when identifying the system with K4SID involve
matrix multiplications and least-squares such that the overall algorithm scales
with O(N 3N t ) for N t the number of temporal samples; hence providing a lower
bound on the achievable computational complexity. Although the generators may
be parametrized with additional structure such as banded when identifying auto-
regressive models, these type of structural patterns on the factor matrices are later not
used (and therefore destroyed) when estimating with K4SID the factored state-space
matrices because of the unknown similarity transformation relating two equivalent
sets of generators. Instead of adding further structure on the factors, this chapter
parametrizes the system matrices with more factors in the Kronecker product.

Linear maps between inputs and outputs when no temporal dynamics are
involved are often associated to a physical phenomenon (or a device) whose spatial
behaviour is measured on a regular grid, e.g the influence matrix H in (1.22) relates
the actuator inputs to the wavefront induced by the mirror. In the latter case, a
function representation is available: the influence of each actuator is modelled with
a two-dimensional Gaussian function. More generally, the function f maps a set of
variables (x1; x2; : : : ; xd) to R and we may approximate it with a sum of products
between d functions � `

j :

f (x1; : : : ; xd) �
rX

` =1

dY

j =1

� `
j (x j ) (4.1)

When, at each time instant, the spatial dynamics are represented by f , the values
can equivalently be rewritten into a tensor F such that:

F (i 1; : : : ; i d) �
rX

` =1

dY

j =1

v`
j (i j ); i j = 1 ; : : : ; I j (4.2)

where v `
j is a vector of appropriate size. Mohlenkamp (2013) shows that the

multivariate function approximation problem and the tensor approximation problem
are the same. The tensor F is able to capture the dynamics of any function f with
finite `2 norm (as defined from the standard inner product in a Hilbert space) when
increasing sufficiently r . This tensor F is actually a generalization of the reshuffled
matrix we defined in Chapter 2 which we formed using the operator R. For example
when f is a Gaussian function defined from R2 to R, the matrix F has rank one.
Consequently, the parametrization of the system matrices with a sum of Kronecker
products is very much related to a tensor approximation problem that we make
explicit in the second section.

Exploiting the separability of the function f yields a Kronecker product with
d factors and the state, input and output are reshuffled into tensors of order d.
When the sensor nodes are distributed over d spatial dimensions on a grid of size
N � : : :� N (d times), the output vector is reshuffled into a tensor according to the
grid dimensions. Alternatively, when the system is two-dimensional, the output signal
may also be reshuffled into a tensor of order d such that the product of its dimensions
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is equal to N 2, here exploiting the fact that the dimension of the system may be
different from the dimension of the model. In other words, we have assumed so far
that a parametrization of the system matrices with a Kronecker product between
only two matrices are used to model systems whose sensor array is two-dimensional.
This assumption is relaxed in this chapter and especially illustrated for adaptive
optics in Chapter 6. For example, parametrizing the system matrices with a product
of three (or more) Kronecker products may be used when the sensor array is only
two-dimensional. The level of accuracy and data-compression wanted is tuned by
selecting the Kronecker rank. As a fundament for understanding this particular type
of state-space models, we restrict in this chapter to Kronecker rank-one matrices.
When the dimension of the model d is larger than the dimension of the sensor array,
it increases in general the bias with the true model representation although it can
be partly compensated by increasing the Kronecker rank. Identifying state-space
matrices written as a sum of Kronecker products is left for future work and was
already discussed at the end of Chapter 3.

The questions we would like to answer in this chapter are as follows. Given a
two-dimensional sensor grid, is it possible to reshuffle the sensor data into a tensor
rather than a matrix with arbitrary choice for the sizes and, therefore, achieve linear
computational complexity with respect to the number of nodes, N 2? More generally,
what is the computational complexity achievable for identifying the state-space
matrices when the vectorized sensor data belongs to RN d

?
We propose in this chapter to extend the methods developed in Chapter 2

and 3 to answer these questions. To cope with the new problem formulation which
includes convex optimization with multi-linear constraints and larger datasets, we
are willing to improve K4SID.

A first weakness of K4SID is the non-globally convergent block-coordinate
update algorithm for handling a low-rank algorithm with bilinear constraints. For a
true value of the ambiguity sequence t corresponding to the estimates of the factored
Markov parameters, and if the time window used to compute the virtual outputs in A
is sufficiently large, the state sequence is accurately estimated as it only relies on two
consecutive SVD. After retrieving the state sequence, the factored matrices related
to B are estimated solving an Alternating Least Squares. However, when handling
tensor orders with d larger than 2, forming such a tensor A and especially computing
all the virtual outputs is very involved (also for book-keeping) and requires forming
a tensor of order d+ 1 with many missing entries. Two alternatives may be proposed:
either formulate a large optimization problem minimizing the rank of each unfolding
of this tensor to recover the missing entries, or estimate the state-space matrices
without requiring the knowledge of the state-sequence using realization theory on
block-Hankel matrices. We study the second option in this chapter.

This chapter is organized as follows. The second section details the equivalence
between a sums of Kronecker representation and tensor approximations. The third one
introduces tensor state-space models and proposes system theory results to prepare
for the numerical procedure presented in the fourth section. This latter section
restrains to a class of Kronecker systems where the factored Markov parameters
are strictly positive element-wise. The fifth section is a discussion on the proposed
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algorithm. Appendix B contains preliminaries on tensors.
Notations specific to the chapter. The inequality sign > is meant element-wise:
the relation of order in the set of real strictly positive scalars is such that for
two matrices (X ; Y ) 2 RN � N � RN � N , we say that X < Y if and only if, for
all (i; j ) 2 f1; :::; N g2; x i;j < y i;j . Similarly for the exponential and the logarithm
functions.

4.2. State-space models for multi-dimensional sys-
tems

Let d; I; J three integers. Let (I 1; : : : ; I d) and (J1; : : : ; Jd) be two tuples of integers
such that

Q d
j =1 I j = I and

Q d
j =1 J j = J . Let (n1; : : : ; nd) 2 Nd and n =

Q d
j =1 nj .

De�nition 4.1. Let r 2 N. The class of low-Kronecker rank matrices Kd;r contains
all matrices X 2 RJ � I parametrized as follows:

X =
rX

` =1

X d;` 
 : : :
 X 1;` (4.3)

where, for all (j; ` ) 2 f1; : : : ; dg � f1; : : : ; rg, X j;` 2 RJ j � I j , and r is the Kronecker
rank assumed much smaller than min(fJ j ; I j gj =1 ::d ).

This class is related to the CPD of a certain reshuffling. In the case d = 2 , we have
used in Chapter 2 a reshuffling operator R to write

R(X ) =
rX

` =1

U 2;` U T
1;` =

rX

` =1

U 2;` � U 1;` (4.4)

where U j;` = vec(X j;` ). When the matrix X is a Kronecker product between d
terms, the reshuffled operator maps to the d-dimensional space RJ d I d � ::: � J 1 I 1 . It is
defined such that:

R(X ) := X =
rX

` =1

U d;` � : : : � U 1;` (4.5)

This expression is a CPD of rank r of the tensor X .
For all j 2 f1; : : : ; dg, let A j 2 Rn j � n j ; B j 2 Rn j � I j ; C j 2 RJ j � n j . A LTI system
with state space matrices in Kd;1 is,

�
x (k + 1) = Ax (k) + Bu (k)
y(k) = Cx (k) + e(k)

(4.6)

where the measurement noise e(k) is zero mean white Gaussian with covariance
matrix � 2

e I J , and such that the state-space matrices are parametrized as:
8
<

:

A = A d 
 : : :
 A 1

B = B d 
 : : :
 B 1

C = Cd 
 : : :
 C1

(4.7)
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Equivalently, a tensor state-space model (TSSM) reads:
�

X (k + 1) = X (k) �1 A 1 �2 : : :�d A d + U(k) �1 B 1 �2 : : :�d B d

Y(k) = X (k) �1 C1 �2 : : :�d Cd + E(k)
(4.8)

where
�
X (k); U(k); Y(k); E(k)

�
2 Rn 1 � ::: � n d �Rm 1 � ::: � m d �Rp1 � ::: � pd �Rp1 � ::: � pd .

We refer to Appendix B for a definition of the symbol �n . Figure 4.1 depicts the
state equation without input for the cases: d 2 f1; 2; 3g.

Figure 4.1: Schematic of the state-update equation when d is equal to one (above), two (middle),
three (below). The state is represented in grey while the transition matrices are shown in white.

The standard LTI equation in vector form appears for d = 1 whereas multi-linear
equations are used to represent the dynamics when the state is a d-th order tensor
for d larger than one. The n-th mode fiber of the state at instant k is multiplied
with rows of A n . For example when d = 2 , the rows of X (k) are multiplied with the
rows of A 2 and its columns are multiplied with the rows of A 1.

A large part of the system theory results extend from Chapter 3 and we review
them for completeness. The parametrization of the state-space matrices A , B and
C with Kronecker products as in (4.7) is unique up to the trivial indeterminacies
(scaling and permutation).

Lemma 4.1. Let d 2 N. If � max (A j ) < 1 for all j 2 f1; : : : ; dg, then � max (A d 

: : :
 A 1) < 1. The reverse is not true in general.

Proof. The proof is done by induction on d and builds on existing results derived in
Chapter 3. The proposition in the lemma is denoted with P(d). We initialize with
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d = 1 for which the implication in the lemma is true. Let us assume P(d) and prove
P(d + 1) . Writing ~A := A d 
 : : :
 A 1 and using P(d), we have that � max ( ~A ) < 1.
Moreover, � max (A d+1 ) < 1. Using Lemma 3.1, � max (A d+1 
 ~A ) < 1 which ends
the proof. �

Lemma 4.2. Let d 2 N and j 2 f1; ::; dg. If the pair (A d 
 : : :
A 1; Cd 
 : : :
C1)
is observable, then each of the pairs (A j ; C j ) is observable. The reverse is not true
in general.

Proof. By induction and using Lemma 3.2. � Let a large
LTI system is modeled with an interconnected set of subsystems. If each subsystem
is observable, it is not true in general that the global system is observable. For a
tensor state space model, if the pairs associated to factor matrices are all observable,
the same conclusion holds.

Lemma 4.3. Let d 2 N and j 2 f1; ::; dg. If the pair (A d 
 : : :
A 1; B d 
 : : :
B 1)
is controllable, then each of the pairs (A j ; B j ) is controllable. The reverse is not
true in general.

Proof. By induction and using the counterpart of Lemma 3.2 dealing with the
controllability matrix. �
We define here the sets of generators along with their equivalence for yielding an
identical input-output behaviour using the tensor model (4.6)-(4.7).

De�nition 4.2. The set of generators S for the TSSM contains the factored state-
space matrices as follows:

S = ffA j gj =1 ::d ; fB j gj =1 ::d ; fC j gj =1 ::d g

A superscript within parenthesis is used to index different sets of generators and is
left out when it is clear from context.

De�nition 4.3. Two sets of generators S (1) and S (2) are said to be equivalent if
the input-output behaviour of the TSSM is identical.

Lemma 4.4. Let the input sequence be persistently exciting. Two sets of generators
S (1) and S (2) equivalently model the TSSM if and only if there exists a similarity
transformation T 2 Rn � n such that T = T d 
 : : :
 T 1 and:

8
><

>:

A (1)
d 
 : : :
 A (1)

1 = T � 1(A (2)
d 
 : : :
 A (2)

1 )T
B (1)

d 
 : : :
 B (1)
1 = T � 1(B (2)

d 
 : : :
 B (2)
1 )

C (1)
d 
 : : :
 C (1)

1 = ( C (2)
d 
 : : :
 C (2)

1 )T

(4.9)

Proof. If the similarity transformation T belongs to Kd;1 and (4.9) hold, the input-
output behaviour for the two sets is the same using classical results from unstructured
system identification.
If the input-output behaviour of the two sets of matrices S (1) and S (2) is identical
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for all time samples, then there exists a similarity transformation T (as in standard
state-space models) such that A (1) = T � 1A (2) T ; B (1) = T � 1B (2) ; C (1) = C (2) T .
Lemma B.1 allows us to write T as a sum of Kronecker products with d factors. If
both A (1) and A (2) have Kronecker rank one, a proof by induction shows that T
has Kronecker rank one, see Chapter 3 for further discussion. Moreover, there exists
a matrix P 2 RI � I such that u(k) = Pu (k). The matrix P = I I boils down to the
identity as this equality holds for all inputs u(k). �
The number of terms to represent a tensor with its CPD factors as in (4.3) is
rd

P d
j =1 J j I j compared to JI in the unstructured case. The improvements in terms

computational complexity with respect to an unstructured parametrization in vector
form is shown in Figure 4.2. Computing a state-update cost n operations and is
linear with respect to the size of the state-vector. We refer to Appendix B for a
detailed count.

Figure 4.2: Compression ratio between the unstructured matrix A and its Kronecker
parametrization for di�erent tensor order.

De�nition 4.4. Farina (2002) A LTI system is said to be externally (strictly)
positive if and only if for any (strictly) positive input and initial state vector, the
output is (strictly) positive.

Theorem 4.1. Farina (2002) A LTI system is externally (strictly) positive if and
only if its impulse response is (strictly) positive element-wise.

Such a definition is different from the definition of internally positive system as
studied in e.g Rantzer (2011). A system is said to be internally positive if and
only if its state and output are non-negative when the input and initial state are
non-negative. As a corollary, a system is internally positive if the matrices B ; C
are non-negative and the non-diagonal entries in A are non-negative. Therefore, all
internally positive systems are externally positive while the reverse is not true in
general. An externally strictly positive system may not admit a decomposition with
matrices A ; B ; C all strictly positive element-wise.
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Lemma 4.5. Let a LTI TSSM model as in (4.6)-(4.7). If, for all j 2 f1; : : : ; dg,
the LTI system defined from the triplet (A j ; B j ; C j ) is externally strictly positive,
then the LTI TSSM model as in (4.6)-(4.7) is externally strictly positive.

Proof. Let s 2 N. We have, for all (j; i ) 2 f1; : : : ; dg � f1; : : : ; sg, C j A i
j B j > 0. It

implies CdA i
dB d 
 : : :
 C1A i

1B 1 = CA i B > 0. �
In this chapter, we assume:

� A1: The pair (A d 
 : : :
 A 1; Cd 
 : : :
 C1) is observable.

� A2: The pair (A d 
 : : :
 A 1; B d 
 : : :
 B 1) is controllable.

� A3: For all j 2 f1; : : : ; dg, the spectral radius of A j is strictly inferior to 1.

� A4: The matrix
�
u(1) : : : u(N t )

�
is full row rank.

� A5: The measurement noise is zero-mean white noise with unknown covariance
matrix.

� A6: The measurement noise is uncorrelated with all past inputs.

� A7: For all j 2 f1; : : : ; dg, the LTI system defined from the triplet (A j ; B j ; C j )
is externally strictly positive.

4.3. Subspace-like algorithm, SEP-T4SID
The algorithm we now describe is referenced using the acronym SEP-T4SID standing
for Tensor Structured State-Space System IDentification assuming Strictly Externally
Positivity.

4.3.1. Identification of tensor auto-regressive models
High-order QUARKS
Let s1 a positive integer and s = 2 s1 � 1. The parameter s is the length of
the FIR filter in the QUARKS and should be chosen such that, first, for all j 2
f1; : : : ; dg; nj < s 1min(I j ; J j ) to ensure that a block-Hankel matrix built from the
factored Markov parameters is low-rank, and second, such that the approximation
error in the QUARKS is small.

Let M j;i := C j A i
j B j . We estimate in this section cM j;i such that M j;i =

t j;i
cM j;i and t j;i is an ambiguity factor necessarily non-zero. All factored Markov

parameters are strictly positive element-wise. When identifying a QUARKS model,
each least-squares is solved with strict positivity constraints on all the elements of
each factor matrix.
A FIR model derived from (4.6)-(4.7) reads as:

y(k) =
sX

i =1

(M d;i 
 : : :
M 1;i )u(k � i ) + e(k) (4.10)

The sensor data is available for N t temporal samples. Similarly as in Chapter 2 and
Hoff (2015), we formulate an Alternating Least-Squares algorithm for estimating



4.3. Subspace-like algorithm, SEP-T4SID

4

119

the factor matrices. If we assume that the factor matrices M n;i are known for all
(n; i ) 2 f1; :::; j � 1; j + 1 ; :::; dg � f1; :::; sg, then we wish to identify the remaining
ones from the cost function:

min
f M j;i gi =1 ::s

N tX

k= s+1

ky(k) �
sX

i =1

(M d;i 
 : : :
M 1;i )u(k � i )k2
2 (4.11)

s.t 8i 2 f1; : : : ; sg; M j;i > 0

Now forming the j -th mode reshuffling of Y(k) and U(k) denoted respectively with
Y ( j ) (k) and U ( j ) (k), the cost function (4.11) equivalently reads, for j = 1 ::d:

min
f M j;i gi =1 ::s

N tX

k= s+1

kY ( j ) (k) �
sX

i =1

M j;i F i;j (k � i )k2
F (4.12)

s.t 8i 2 f1; : : : ; sg; M j;i > 0

where the regression matrix is written as:

F j;i (k � i ) = U ( j ) (k � i )
�
M d;i 
 : : :
M j +1 ;i 
M j � 1;i 
 : : :
M 1;i

� T (4.13)

For a more compact notation, let:

M j =
�
M j; 1 : : : M j;s

�

�F j =

2

6
4

F j; 1(s) : : : F j; 1(N t � 1)
:::

:::
F j;s (1) : : : F j;s (N t � s)

3

7
5 2 R

sI j � (N t � s)
Q d

i =1 ;i 6= j
J i

Let � be a small positive integer. The indicator function on the set Cj = fM j 2
RJ j � sI j : M j � � g is denoted with Ij (:). The optimization (4.12) is then rewritten
into:

min
M j

k �Y j �M j �F j k2
F + Ij (M j ) (4.14)

We assume �F j is full row rank. To satisfy this condition, the number of time samples
is such that �F j is flat and the initial guesses are randomly chosen. The larger d,
the less temporal samples N t need to be acquired as the smallest dimension of M j

decreases.
A main idea to reduce the computational complexity for solving (4.14) is to

avoid forming the Kronecker products in (4.13) but use rather the tensor form of
FIR models which uses j -mode matrix products. Following Proposition B.1, each
term F j;i (k � i ) should be computed using:

U(k � i ) �d M T
d;i � : : :�j +1 M T

j +1 ;i �j I �j � 1 M T
j � 1;i � : : :�1 M T

1;i (4.15)

The entries are eventually reshuffled to form F j;i (k � i ) subsequently concatenated
into �F j .

The subproblem (4.14) is solved with ADMM. The algorithm is summarized in
Algorithm 4.1.
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Algorithm 4.1: QUARKS for tensorized data
Input : fu(k); y(k)gk=1: N t ; s;fI j ; J j gj =1 ::d

Output : fcM j;i g( j;i )2f 1;:::;d g�f 1;:::;s g

/* Prepare the data */
1 for j = 1 ::d do
2 for k = s + 1 ::N t do
3 Form the unfoldings Y ( j ) (k)
4 end
5 Form �Y j :=

�
Y ( j ) (s + 1) : : : Y ( j ) (N t )

�

/* Initial guesses */
6 for i = 1 ::s do
7 M (0)

j;i = rand(J j ; I j )
8 end
9 end

/* Default values */
10 ` = 0 ; `max = 30; � = 1; � min = 10 � 3

/* Start ALS */
11 while ` < ` max and � > � min do
12 for j = 1 ::d do
13 Form �F ( ` )

j , and compute its pseudo-inverse
/* Solve with ADMM */

14 N = ( �F ( ` )
j

�F ( ` ) ;T
j ) � 1 and G = N �F ( ` )

j
�Y T

j

15 � = 0 ; if possible warm-start Z ( `; 0)
j and � ( `; 0)

j

16 while stopping criterion not met do
17 M ( `;� +1)

j = G + N (� ( `;� )
j � Z ( `;� )

j )
18 Update the consensus variable:

� ( `;� +1)
j = max(�; M ( `;� +1)

j + Z ( `;� )
j )

19 Update the dual variable: Z ( `;� +1)
j = Z ( `;� )

j + M ( `;� +1)
j � � ( `;� +1)

j

20 Check stopping criterion
21 � = � + 1
22 end

23 Denote the optimal value with M ( ` +1)
j

24 end

25 c(`) = jj �Y d �M ( ` )
d

�Fdjj2F
26 � = jc(`) � c(` � 1)j
27 ` = ` + 1
28 end

29 Set cM i;j to the optimal values
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Computational complexity
The computational complexity for the most expensive operations is summarized in
the Table 4.1. The bottleneck is to form the matrix �F i although the computational
complexity is asymptotically in d linear with respect to the number of sensor nodes,
I . Figure 4.3 displays the exponent on the total number of sensor nodes I as written
in Table 4.1 as a function of the tensor order.

Operation Flops With I i = I j ; J i = J j ; I i = J i

Form �F j (N t � s)sI
P d

j =1 J j O(N t I (d+1) =d)
Compute �F j �FT

j (I j s)2(N t � s)
Q d

i =1 ;i 6= n J i O(N t I (d+1) =d)
Invert �F j �FT

j (I j s)3 O(I 3=d)

Table 4.1: Computational complexity for the most expensive operations in the QUARKS

Figure 4.3: Exponent on the total number of nodes I referring to Table 4.1 as a function of the
tensor order. The black line corresponds to a linear complexity with respect to the number of nodes
in the array.

When d = 1 , the cost for the identification is cubic with I which just corresponds
to the unstructured identification. When the tensor order is larger than two, the
bottlenecks are to form F i and multiply it with its transpose. When dealing with
two-dimensional sensor arrays, it is expected that d cannot be increased to very
large values without losing much accuracy in the identification. However, most of
the improvements are obtained within the first few tensor orders as d = 4 means a
complexity of O(I 1:25) instead of O(I 3) in the full unstructured case. Practically,
such trends hold only from a given size of the sensor array N which depends on the
implementation and the hardware.

Remark 4.1. The complexity is cubic with s. Similarly, when generalizing the
QUARKS for Kronecker rank strictly larger than one, the complexity is cubic with r
which reminds of the cubic complexity with the system order of the underlying SSS
matrix for linear algebra operations, Rice (2010).
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4.3.2. Low-rank optimization subject to multi-linear equality
constraints

Problem formulation

We assume that, for all (j; i ) 2 f1; : : : ; dg � f1; : : : ; sg, we have an estimate cM j;i

with strictly positive entries for the Markov parameters M j;i up to an unknown
ambiguity parameter t j;i . Only cM j;i is known in the equation M j;i = t j;i

cM j;i .

Lemma 4.6. Let (j; i ) 2 f1; : : : ; dg � f1; : : : ; sg. If M j;i > 0 and cM j;i > 0, then
t j;i > 0.

We denote, for j 2 f1; :::; dg; t j =
�
t j; 1 : : : t j;s

�
and t =

�
t 1 : : : t d

�
. The

block-Hankel matrix built from the sequence fM j;i gi 2f 1;:::;s g is defined with:

Hj (t j ) :=

2

6
6
6
6
4

t j; 1
cM j; 1 t j; 2

cM j; 2 : : : t j;s 1
cM j;s 1

t j; 2
cM j; 2 t j; 3

cM j; 3 : : : t j;s 1 +1
cM j;s 1 +1

:::
:::

t j;s 1
cM j;s 1 : : : : : : t j;s

cM j;s

3

7
7
7
7
5

To ensure that cM d;i 
 : : : 
 cM 1;i = M d;i 
 : : : 
 M 1;i , which corresponds to the
non-unique decomposition of each Markov parameter with a Kronecker product of d
matrices, the following condition necessarily holds:

8i 2 f1; :::; sg;
dY

j =1

t j;i = 1 (4.16)

In order to recover the terms M j;i , we wish to estimate the sequence t using the
low-rank priors on Hj (t j ) subject to a multi-linear equality constraint:

min
t

dX

j =1

rank(Hj (t j )) (4.17)

s.t 8i 2 f1; :::; sg;
dY

j =1

t j;i = 1 t j;i > 0

The solution to the optimization problem (4.17) has been characterized in Chapter
3 when d = 2 . We extend an important result.

Lemma 4.7. The solution to the optimization problem (4.17) is not unique.

Proof. Let (j; i ) 2 f1; :::; dg � f1; :::; sg. The optimal solution of (4.17) is such
that the ranks are all minimum, rank(Hj (t j )) = nj . Let � j;i non-zero such that
cM j;i = � j;i M j;i . Then, there exists scalars (aj ; cj ) such that t j;i � j;i = cj ai

j using
the result that the Hankel matrix built from the sequence ft j;i � j;i gi =1 ::s has rank
one as shown in Chapter 4. We have:

dY

j =1

t j;i =
dY

j =1

cj ai
j

� j;i
= 1
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Using the fact that
Q d

j =1 � j;i = 1 , it follows
Q d

j =1 cj ai
j =

� dY

j =1

cj

| {z }
c

�� dY

j =1

aj

| {z }
a

� i
= 1 , and

then, both a; c are equal to one. The pair (a; c) is therefore unique which is not the
case for the sequences built from the cj and aj . �
We now operate the change of variable vj;i = ln(t j;i ) to transform the multi-linear
product (4.16) into a sum and ease the numerical optimization. This step is the only
reason why we have assumed externally strictly positive systems in this chapter. The
logarithm function is a bijection from R+ ;� to R and therefore, the corresponding
optimal values for t j;i are obtained using the exponential function: bt j;i = ebv j;i . After
relaxing the rank constraint with the nuclear norm, the minimization (4.17) reads:

min
v j;i

dX

j =1

kHj (fev j;i gi 2f 1;:::;s g)k? (4.18)

s.t 8i 2 f1; :::; sg;
dX

j =1

vj;i = 0

The optimization (4.18) is solved with ADMM to handle the non-differentiable term
and a sequence of convex minimizations as in the second step of K4SID is not needed
anymore. At each iteration, the update of the primal variable is obtained with a
gradient descent accompanied with a backtracking line search. The iterations stop
when the decrease in the cost function between two consecutive iterations is below a
threshold.

Computational complexity
Each iteration involves linear algebra operations on matrices of size s1J j �s1I j . Now
assuming for all i; j = 1 ::d; I i = I j and I i = J i , the singular value soft-thresholding
step requires ds3

1I 3=d operations.

4.3.3. Realization
The solution bt obtained in the previous paragraph was characterized in Lemma 4.7:

t j;i
cM j;i = t j;i � j;i M j;i = cj ai

j M j;i (4.19)

The scalar cj is only a scalar and can be factorized as a product of two scalars e.g
pj ; qj . Let us denote the global optimum of the optimization (4.18) is ft opt;j gj =1 ::d .
The block-Hankel matrix Hj (t opt;j ) is then:

Hj (t opt;j ) =

2

6
6
6
4

pj qj M j; 1 pj qj aj M j; 2 : : : pj qj as1 � 1
j M j;s 1

pj qj aj M j; 2 pj qj a2
j M j; 3 : : : pj qj as1

j M j;s 1 +1
:::

:::
pj qj as1 � 1

j M j;s 1 : : : : : : pj qj as� 1
j M j;s

3

7
7
7
5

(4.20)
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whos rank is equal to nj :

Hj (t opt;j ) =

2

6
6
6
4

pj C j

pj C j (aj A j )
:::

pj C j (aj A j )s1 � 1

3

7
7
7
5

�
qj B j (aj A j )qj B j : : : (aj A j )s1 � 1qj B j

�

(4.21)
The vector t opt;j is not equal to bt j because of the non-convex nature of (4.18). After
selecting the system order bnj from an SVD of Hj (bt j ), the matrices cA j ; cB j ; cC j are
estimated via the standard realization steps derived in Algorithm 4.2.

Algorithm 4.2: Realization steps

Input : bt ; fcM j;i gj =1 ::d;i =1 ::s

Output : fbA j ; bB j ; bC j gj =1 ::d

1 Compute a SVD, Hj (bt j ) = U j � j V T
j

2 Select the system order, bnj

3 Denote: U j; bn j
= U j (:; 1 : bnj ) and V j; bn j

= � j (1 : bnj ; 1 : bnj )V j (:; 1 : bnj )T

/* Estimate B j and C j */
4 Extract cB j = V j; bn j

(:; 1 : I j ) and cC j = U j; bn j
(1 : J j ; :)

/* Estimate A j */
5 � = 10 � 6, bA j = Ibn j

6 while bA j is not strictly stable do
7 Solve the regularized least-squares:

min
A j

kU j; bn j
(J j + 1 : s1J j ; :) � U j; bn j

(1 : (s1 � 1)J j ; :)A j k2
F + � kA j k2

F

Denote the solution with bA j

8 � = 10 � �
9 end

Lemma 4.8. Let � = 0 in Algorithm 4.2. The set of factored matrices estimated
from Algorithm 4.2 is not an equivalent realization of the TSSM (4.6)-(4.7).

Proof. There exists a similarity transformation T j 2 Rn j � n j such that:

cA j = T j aj A j T � 1
j ; cB j = T j qj B j ; cC j = pj C j T � 1

j (4.22)

Using the fact that
Q d

j =1 aj = 1 (see Lemma 4.7), we write:

cA d 
 : : :
 cA 1 =
dY

j =1

aj TAT � 1 = TAT � 1 (4.23)
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However, it is not true that
Q d

j =1 pj = 1 nor that
Q d

j =1 qj = 1 , and therefore, only

cCd 
 : : :
 cC1 6= CT � 1; cB d 
 : : :
 cB 1 6= TB (4.24)

We have nonetheless
Q d

j =1 pj qj = 1 implying:

cCd
cB d 
 : : :
 cC1

cB 1 =
dY

j =1

pj qj CB = CB (4.25)

There are infinite possibilities for choosing pj ; qj such that the Hankel matrix built
from fpj qj ai

j gi 2f 1;:::;s g is rank one. �
The remaining question is whether it matters or not. When the initial state is zero,
the input-output relationship is given by an infinite impulse response and none of
the terms B or C appears separately. In such case, the input-output relationship is
identical as for the original system matrices. It is not the case when the initial state
is not zero although its influence decays with time.

This lemma is also the reason why we have introduced the tensor A in Chapter
3 in order to first estimate the state sequence, and second the factor matrices.

4.4. Numerical experiments
We present Monte-Carlo simulations based on randomly generated deterministic
state-space models. We assume that the sensor (and input) array is such that
I i = I 1=d. The system order for each factor matrix is set to I i + 1 . The entries
in the generators are randomly generated between 0 and 1 for B i and C i . Each
matrix A i is set diagonal to control its eigenvalues. Especially, and to allow a fair
comparison between the different tensor orders, A i is equal to 0:961=dI n i such that
the eigenvalues of the global matrix A are all equal to 0:96 whatever the tensor
order. The SNR is set to 20dB. Low SNR is mainly compensated by increasing the
length of the identification dataset in the QUARKS or adding regularization and
has already been investigated in Chapter 2, which justifies that we do not carry out
a noise analysis in this section.

The length of the past temporal window s is 15 and there are 10dsI 1=d para-
maters in both the identification and validation batches. The baseline is also a
three-step algorithm exploiting the Kronecker structure solving first the QUARKS
as in Algorithm 4.1, then assuming that bt = 1 and last, estimating the matrices with
Algorithm 4.2. The system order is selected by grid search in a limited range. The
second algorithm used for comparison solves a BCU update instead of (4.18). It is
denoted with BCU-T4SID. It is especially of interest as none offer any theoretical
guarantee of global convergence.

Accuracy
Let us denote the singular values of the matrix Hj (bt j ) with � j;i for all i 2
f1; : : : ; s1I 1=dg. Figure 4.4 compares the ratio defined as:

1
d

dX

j =1

P �
i =1 � j;i

P s1 I 1=d

i =1 � j;i

(4.26)



4

126 4. Scaling up

as a function of � for all three methods. The quicker it reaches one, the more
sparse the vector of the singular values, and the better the singular values have
been separated from the noise contribution (the latter stemming from both the
measurement noise, and the non-globally convergent behaviour of the second step).
Figure 4.4 shows the significant improvement of both BCU and (4.18) with respect
to the baseline bt = 1. The ratio has a smaller variance optimizing with (4.18) than
with the BCU.

Figure 4.4: Ratio evaluating the sparsity of the singular values vector for the three methods: bt = 1 ,
bt obtained with BCU or (4.18). The black vertical line indicates the true rank of H j (t opt;j ). The
tensor order is equal to 4 and I = 625 .

We now fix � in (4.26) to the system order of the factored matrices, i.e the
minimum value for which the ratio is equal to one when the global minimum of (4.17)
has been reached. A global trend observed in Figure 4.5 is that the sparsity increases
with the size of the array, for d constant. When d = 2 and for the sizes considered,
the differences between BCU and (4.18) are minor. It is no longer the case when
increasing d as observed for example when d = 3 in Figure 4.5. Even when t = 1,
the sparsity increases with the size of the array. The ambiguity parameter (the true
one that we can reconstruct solving a least squares as we know M i;j ) gets closer to
one when the size of the array increases. It may be particular to the datasets and
this method of assuming t = 1 is not reliable for all cases.

Figure 4.6 plots the VAF on validation data for respectively d = 3 and d = 5 as
a function of the size of the array. SEP-T4SID improves the mean and reduces the
variance w.r.t the BCU-T4SID especially for large d. Improvements in accuracy are
negligible when d = 2 and therefore not shown here. These observations are similar
as when evaluating the vector of singular values.

Computational time
Figure 4.7 shows the evolution of the computational time as a function of the size of
the array for the particular case d = 3 . Especially it shows the improvement of the
SEP-T4SID over BCU-T4SID for all sizes although the slope of the line is similar
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(a) (b)

Figure 4.5: Ratio evaluating the sparsity of the singular values vector for the three methods: bt = 1 ,
bt obtained with BCU or (4.18). The y-axis corresponds to the contribution to the nuclear norm
keeping only the �rst n i singular values. The tensor order is equal to two (left) and three (right).

(a) (b)

Figure 4.6: VAF on validation data as a function of the size of the array for SEP-T4SID and
BCU-T4SID. Left: d = 3 . Right: d = 5 .
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(as expected). We do not conclude directly from this figure that the QUARKS take
more time as it strongly depends on the number of identification samples, but only
mention it is however a general observation that it is the bottleneck for the equality
(4.16) to hold.

Figure 4.7: Evolution of the time for the QUARKS, the BCU-T4SID algorithm (QUARKS excluded),
and the SEP-T4SID (QUARKS excluded) as a function of the size of the array for d = 3 . The plot
is in loglog scale.

We now compute the relative time improvement using SEP-T4SID and average
over all sizes of array, for d constant. The values are summarized in Table 4.2.
With increasing d, the relative improvement decreases although the accuracy of
SEP-T4SID increases with respect to BCU-T4SID as observed in Figure 4.6.

Tensor order d = 2 d = 3 d = 4
Mean 0:84 0:74 0:67
Standard deviation 0:14 0:07 0:13

Table 4.2: Relative improvement in computational time using SEP-T4SID over BCU-T4SID; both
QUARKS excluded.

Figure 4.8 studies the scalability of both methods by showing the impact of increasing
the tensor order d. When writing the complexity with aN b for two scalars a; b, it is
expected that a decreases when increasing d while b stays constant.
The trends in Table 4.3 are especially useful for extremely large sizes of sensor array.
Tensor models should however not been used for small sizes of the sensor. It is
moreover remarkable that the three lines seem to cross each other at the approximate
same size of sensor. It is a particularity stemming from the choice of the length
of the past window s and the number of identification samples. The computing
installation that we use did not allow us to compute in reasonable time larger sizes of
the array and therefore future improvements should go in the direction of decreasing
the coefficient b of these models using e.g recursive methods.
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Figure 4.8: Total time of execution as a function of the total number of nodes in the array in loglog
scale for the proposed algorithm exploiting the positivity constraint. The tensor order d ranges in
the set f 2; 3; 4g.

Tensor order d = 2 d = 3 d = 4
Coef. a 0:79 0:59 0:46

Table 4.3: Coe�cient a of linear model log10(T ime ) = a � log10(J ) + b for di�erent values of the
tensor order d.

4.5. Conclusion
Conclusions
In this chapter, tensor state-space models have been introduced. Instead of the
classical state-space model in vector form, we have introduced a multi-linear variant
which recasts the input, state and output as tensors. The main weaknesses of
K4SID as derived in Chapter 3 have been addressed by first, restricting to the class
of Kronecker-structured systems whose factored Markov parameters are strictly
positive element-wise, and the state-space matrices are now estimated from standard
realization theory. The first variant introduces a different optimization strategy
for estimating an admissible ambiguity sequence. The cost function includes the
composition of the nuclear norm with the exponential component-wise function.
Although theoretical properties have not been determined, numerical experiments
have shown that this new formulation increases the accuracy of the estimates with
respect to the Block-Coordinate Update. These tensor state-space models reveal to
scale better for large sizes of the sensor array when increasing the order d.

Recommendations
There remains questions that we have not answered in this chapter and that are left
open for future research. We highlight a few of them related to the assumption of
strictly externally systems. More general recommendations related to the tensor
state-space models are found in the concluding chapter.
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When is it possible to model stochastic processes with internally or externally
positive matrices?

What are the properties of the function that maps v i to kHi (fev i;j gj 2f 1;:::;s g)k??

How to estimate the factored state-space matrices from a block-Hankel matrix
when these are assumed strictly positive element-wise?
Scalable control methods have been derived in Rantzer (2011) for the class of
internally positive systems although system identification is lagging behind. If the
factors of a tensor state-space model are all strictly positive element-wise, then the
state-space model in its vectorized form is internally positive. One main difficulty
that arises concerns the realization from a block-Hankel of state-space matrices
A ; B ; C with positive entries. Standard realizations do not guarantee that all three
matrices have positive entries, simultaneously. Yu et al. (2018b) develop a gray-box
identification method which allows an easy integration of such constraints. The
drawback is that it is solved using a Difference-of-Convex programming algorithm
which requires good initial guesses.



5
Solving Kronecker-structured
discrete Lyapunov equations

We solve the discrete Lyapunov equation when the system matrices are low-Kronecker
rank thereby reducing the computational cost with respect to the unstructured solution.
For an array with N � N nodes and such that the system order scales with N 2,
standard methods used for solving this equation are no longer tractable. Two com-
mon methods for medium-size matrices consist of the Bartels-Steward and Schur-
Hessenberg algorithm. Iterative algorithms are an alternative especially interesting
for structured large matrices. The sign function was e.g used in Rice (2010) to carry
out structure-preserving operations when the matrices are SSS. For discrete-time
equations and low Kronecker rank matrices, we investigate how standard algorithms
from the literature may efficiently exploit the structure.
As main contributions of this chapter, we adapt the squared Smith iterations to the
class of Kronecker-structured matrices, and highlight the equivalence with a discrete
Sylvester equation having a low-rank coefficient matrix which has received a large
interest in the literature. From this observation, we adapt a factored Alternating
Direction Implicit method for solving this equation when the state-transition matrix
has Kronecker rank one. Both algorithms reduce the complexity from O(N 6) to
O(N 3) for d = 2 .

This chapter is published for the �rst time in this dissertation. The authors are grateful to Prof.
Benner and Dr. Kürschner for providing a Matlab implementation of the algorithm in Benner and
Kürschner (2014).
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5.1. Introduction
When the state-space matrices of a stochastic LTI system are known, the minimum
variance unbiased estimator of the predicted state requires the knowledge of the
Kalman gain and essentially, to solve the Discrete Algebratic Riccati Equation
(DARE). As a first step toward solving the DARE when the matrices are low-
Kronecker rank, we propose a computationnaly efficient iterative algorithm for
solving a Kronecker-structured discrete Lyapunov equation given as follows:

P = APA T + Q (5.1)

The latter is a critical step for the Newton’s and Newton-Hewer’s algorithm as
highlighted in Benner and Faßbender (2011). Standard routines are the Bartels-
Stewart algorithm, Bartels and Stewart (1972), and the Schur-Hessenberg method,
Golub et al. (1978). Both scale with O(n6) when A 2 Rn 2 � n 2

(assuming n in the
same order of magnitude as N ). Alternatives have been proposed for solving a
large-scale discrete Lyapunov equation.

The first one relies on the matrix sign function, Gardiner and Laub (1985).
The sign iteration was introduced in Roberts (1980) and is computed sequentially,
each iteration involving a matrix inverse. It converges quadratically although it
suffers from numerical problems as soon as an eigenvalue comes too close to the
imaginary axis during the iterations. Although it adresses especially the continuous-
time Lyapunov equation, it adapts to discrete-time systems when first transforming
the latter into their equivalent continuous representation using the bilinear transform
C = ( D + I ) � 1(D � I ). The spectrum of D lies strictly within the unit circle if and
only if the spectrum of C lies on the left-half plane excluding the imaginary axis.
The bottleneck as it appears in general for structured-preserving operations is that
inverses are required, e.g for the bilinear transform and when computing the matrix
sign, implying more difficulties to maintain the structure in the solution without
losing much accuracy. Rice (2010) solves the continuous-time Lyapunov equation
using the sign iteration when the state-space matrices are SSS. Its main asset is the
property that the inverse of a SSS matrix is SSS as was discussed in Chapter 1.

The second alternative is the squared Smith’s iteration, Smith (1968). This
doubling algorithm only involves matrix-matrix multiplication and squaring the
transition matrix A at each iteration. When the matrix A is stable, the convergence
is quadratic. The Kronecker rank of A increases when squaring unless it is equal to
one from the first iteration. Errors due to truncation while keeping the Kronecker
rank (or system order in the SSS representation) low may accumulate throughout
the iterations at the expense of convergence, and then accuracy. It highlights the
need for truncation algorithms to maintain the Kronecker rank within acceptable
bounds and ensure computationally efficient operations.

While solving the DARE and when the system matrices are banded as obtained
e.g from discretizing a PDE, sparsity is however gradually destroyed throughout the
Smith’s iterations and the low-rank structure of the solution is preferably exploited,
Benner and Faßbender (2011). The third main class of algorithms targets especially
the cases where A is large and sparse, and Q low-rank. The latter condition is shown
to result in low-rank and not necessarily sparse solutions P . Sabino (2006) derives
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bounds on the decay of the singular values of P in the case that the coefficient matrix
A is stable and real symmetric. The smaller the condition number of A , the quicker
the decay of the singular values of P . There is however a lack of understanding
for non-symmetric coefficient matrices. Nonetheless, this low-rank property was
exploited to derive efficient algorithms which do not require to form the full solution
matrix. Factored Alternating Direction Implicit method (fADI) have been proposed
in Penzl (1999), Benner et al. (2008) and Benner and Kürschner (2014).

When vectorizing (5.1), the coefficient-matrix is a particular sum of Kronecker
products. Demko et al. (2010) and Canuto et al. (2014) show that the inverse of
symmetric, positive definite and banded matrices with this particular Kronecker
structure are off-diagonally decaying matrices. Haber and Verhaegen (2016) exploit
the decay in the entries of the solution to derive an algorithm with linear computa-
tional complexity with respect to the number of states. Major advantages of these
assumptions are that first, theoretical decay rates have been derived to characterize
the sparsity of the inverse in Canuto et al. (2014), second, that the relation between
sparsity of the solution and the condition number of A are well-understood, Haber
and Verhaegen (2016), and third, that a sparse banded solution paves the way for a
structured Kalman gain and efficient online computations.

In adaptive optics for example, the wavefront covariance matrix is not sparse
although low-Kronecker rank. The methods mentioned in the previous paragraphs
thus do not apply. This provides a motivation for deriving a structured solution of
the discrete Lyapunov equation in a scalable manner.

The main contributions of this chapter are twofold. First, we solve the discrete
Lyapunov equation while preserving the low-Kronecker rank structure throughout the
squared Smith’s iterations in order to ensure the targeted computational complexity,
O(n3). As a building block, we derive an algorithm for truncating a matrix in Kd;r Y

by a matrix in Kd;r X for r X strictly smaller than r Y . Theoretical conditions on when
the discrete Lyapunov equation admit a low-Kronecker rank structure have however
not been derived although it is shown to be equivalent to a widely studied and
on-going research topic, that is, if the matrix Q appearing in the discrete Sylvester
equation is low-rank, is the solution also low-rank. We write a factored ADI method
adapted to the Kronecker structure when the matrix A has Kronecker rank one.

The chapter is organized as follows. Section 5.2 formulates the problem and
introduces the Smith’s iterations. In Section 5.3.1 we investigate linear algebra
operations for low-Kronecker rank matrices. Section 5.3.4 adapts the doubling
algorithm while preserving the structure and mentions the pitfalls. Section 5.4
presents an alternative which consists of rewriting the discrete Lyapunov into a large
though structured discrete Sylvester equation with low-rank matrices. Section 5.5
discusses numerical experiments for randomly generated LTI systems.
Notations. �x is the complex conjugated of the complex scalar x and X H = �X T is
the complex conjugate transpose of X . The determinant of the square matrix A
is denoted with det(A ). For two square matrices A ; E , the generalized eigenvalues
�( A ; E) are equal to the set f� 2 C : det(A � � E) = 0 g.
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5.2. Problem formulation
Let d 2 N; (n1; : : : ; nd) 2 Nd and n =

Q d
i =1 ni . Let n = min(fni gi =1 ::d ). If ni

is independent of i , we denote the one-dimensional size of the sensor array with
�n = n1=d. For x(k) 2 Rn , let the state equation for a stochastic LTI model be written
as:

x(k + 1) = Ax (k) + w(k) (5.2)
The assumptions are the following. The matrix A is strictly stable. The process
noise w(k) is zero mean white Gaussian and with semi-positive definite covariance
matrix Q . Let r a positive integer such that r � n. We assume that both A and Q
belong to Kd;r .
Whether the solution of the discrete Lyapunov equation admits a low-Kronecker
rank decomposition depends on whether the inverse of a particular matrix may
be well approximated within this class. Writing A =

P r
i =1 A d;i 
 : : : 
 A 1;i and

Q =
P r

i =1 Qd;i 
 : : :
Q1;i , and vectorizing (5.1), we have:

(I � A 
 A )
| {z }

M

vec(P) = vec(Q) (5.3)

The matrix M is a low-Kronecker rank matrix. We denote its factors with M j;i for
(i; j ) 2 f1; : : : ; r + 1g � f1; : : : ; 2dg. Let us denote the inverse of M (assuming it
exists) with N and decompose it with a sum of Kronecker products as well. The
solution is then given by:

vec(P) =
� r NX

i =1

N 2d;i 
 : : :
 N 1;i
�
vec(Q) (5.4)

which is also rewritten using the ivec operator as:

P =
r NX

i =1

rX

j =1

N d;i Qd;j N T
2d;i 
 : : :
 N 1;i Q1;j N T

d+1 ;i (5.5)

The Kronecker rank of P is equal to min(r N r; n 4). The lower r N , the better. We
refer to Varnai (2017) for a first discussion on whether inverses of low-Kronecker
rank matrices with random factors admit a decomposition with a sum of few terms.
In this chapter, we first derive a structure-preserving algorithm and discuss sufficient
properties on the factor matrices for the discrete Lyapunov equation to be approxi-
mated within this class. The problem is now formulated.
From the known factor matrices of the Kronecker-structured

�
A ; Q

�
in the class Kd;r ,

and assuming A is stable and Q is symmetric positive definite, determine the state
covariance matrix bP in Kd;r solving the discrete Lyapunov equation with O( �n3) if
d = 2 and O( �n2(d� 1) ) for d � 3 such that the relative error between the unstructured
solution and bP is small.

5.3. The squared Smith’s method
We first discuss existence and uniqueness of the solution of the discrete Lyapunov
equation.
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Theorem 5.1. Let A ; Q 2 Rn � n matrices and such that A stable and Q is sym-
metric positive definite. The discrete Lyapunov equation

APA T � P = �Q (5.6)

has a unique solution when �� 6= 1 for every pair of eigenvalues �; � of A . The
solution is then given from the convergent serie:

P =
1X

i =0

A i QA i T (5.7)

Smith (1968) first truncates the infinite sum and derives the iterations:

P (0) = 0; P ( � +1) = Q + AP ( � ) A T (5.8)

where � is the iteration counter. He then proposes a doubling algorithm to speed up
the convergence. Instead of computing all consecutive updates of (5.8), the distance
in terms of � between two consecutive updates doubles at each iteration. Starting
from U (0) = A and P (0) = Q , the iterations are as follows:

P ( � +1) := P ( � ) + U ( � ) P ( � ) U ( � ) T
; U ( � +1) := U ( � ) 2

(5.9)

Or, to illustrate its quadratic convergence rate:

P ( � ) =
2�

X

i =0

A i QA i T (5.10)

Solving the discrete Lyapunov equation boils down to computing iteratively matrix-
matrix multiplications.

5.3.1. Structure-preserving operations
Assuming that the system matrices are in Kd;r , simply plugging them into (5.9)
would not improve the computational complexity unless the structure is exploited
and most importantly, maintained, at each iteration allowing to rewrite the routines
in matrix (or tensor) form. Linear algebra operations such as adding, multiplying and
transposing low-Kronecker rank matrices should therefore not destroy the structure.
We first review a few results on the computational complexity of elementary operations
when the matrix belongs to Kd;r before deriving algorithms for approximating a
matrix in Kd;r Y by a matrix in Kd;r X with r X smaller than r Y .

5.3.2. Adding, multiplying and transposing
Lemma 5.1. Let (X ; Y ) 2 Kd;r X � Kd;r Y and with factors matrices of same size.
The following properties hold:

� X + Y 2 Kd;r X + r Y

� XY 2 Kd;r X r Y
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� 8i 2 N; X i 2 Kd;r i
X

� X T 2 Kd;r X

Proof.

� The result readily follows from expressing X + Y in Kronecker format with:

X + Y =
r XX

i =1

X d;i 
 : : :
 X 1;i +
r YX

i =1

Y d;i 
 : : :
 Y 1;i

=
r X + r YX

i =1

Zd;i 
 : : :
 Z1;i

where, for all j 2 f1; : : : ; dg; Z j;i is equal to X j;i if i � rX and Y j;i otherwise.

� The product XY reads:

XY =
r XX

i =1

X d;i 
 : : :
 X 1;i

r YX

j =1

Y d;j 
 : : :
 Y 1;j

=
r XX

i =1

r YX

j =1

X d;i Y d;j 
 : : :
 X 1;i Y 1;j (5.11)

There is a maximum of rX r Y terms in the sum.

� Let i 2 N. From the previous point, we infer X 2 2 Kd;r 2
X
. A reasoning by

induction gives X i 2 Kd;r i
X
.

� For X 2 Kd;r X , we have X T =
P r X

i =1 X T
d;i 
 : : : 
 X T

1;i using the linearity of
the transpose operator and the property that it applies to each factor matrix
on each single Kronecker product.

�
These operations are denoted in the sequel with SOK_add, SOK_multiply ,
SOK_transpose , (SOK standing for Sums-Of-Kronecker).

5.3.3. Truncating the Kronecker rank of matrices
Adding and multiplying low-Kronecker rank matrices increase the Kronecker rank.
In this paragraph, we approximate a matrix Y belonging to Kd;r Y by a matrix X
in Kd;r X such that rX is smaller than rY . This operation is necessary for iterative
algorithms to ensure that the complexity does not explode throughout the iterations.

There are two options depending on whether the factor matrices of Y are
known. If the factor matrices are not known, then estimating the factor matrices in
X from the tensorised Y is solved in general with a CPD. If only the factor matrices
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are known (which is the case we are interested in as we never form the large matrices
for storage reasons), we aim at estimating X such that:

min
f X i;j gi =1 ::d ; j =1 ::r X

k
r YX

j =1

Y d;j 
 : : :
 Y 1;j �
r XX

j =1

X d;j 
 : : :
 X 1;j k2
F (5.12)

where X i;j ; Y i;j 2 Rn i � n i . The minimization problem (5.12) is multi-convex. For m
in the set f1; : : : ; dg, fixing all variables but fX m;j gj =1 ::r X yields a convex problem.
Similarly to Chapter 2 and 4 where we have dealt with autoregressive models, we
propose an Alternating Least-Squares algorithm to estimate the factor matrices.

Remark 5.1. Gauss-Newton algorithms may be proposed as well to benefit from the
quadratic convergence rate instead of linear for ALS, Vervliet and De Lathauwer
(2018). Key steps for deriving efficient updates is to exploit structure in the Hessian
and solve the associated linear equation with e.g conjugate gradient such that no
inversion is required. Such derivations are not presented here.

To exhibit the factor matrices X m;j and formulate a tractable optimization problem,
we transform (5.12) reshuffling the matrix along the m-th mode. In addition, we add
a regularization on the variable to minimize the Frobenius norm of X m;j to avoid
numerical issues due to terms diverging while the cost function still decreases (this
case is possible because of the ambiguity transformation inherent to the multi-linear
parametrization of X ). The optimization (5.12) is rewritten,

min
U X;m

kU Y;m V T
Y;m � U X;m V T

X;m k
2
F + � kU X;m k2

F (5.13)

where � is a weighting parameter, and:

U Y;m =
�
vec(Y m; 1) : : : vec(Y m;r Y )

�
2 Rn 2

m � r Y

V Y;m =
�
vec( ~Y m; 1) : : : vec( ~Y m;r Y )

�
2 R

Q d

i =1 ;i 6= n
n 2

i � r Y

~Y m;j = Y d;j 
 : : :
 Y m +1 ;j 
 Y m � 1;j 
 : : :
 Y 1;j

The terms U X;n and V X;n are defined similarly from the factors X i;j . To stop the
iterations, we need to evaluate the cost function (5.12). The latter is evaluated with
(r 2

Y + r X rY + r 2
X )dn3=d operations as follows.

kY � X k2
F =

r YX

j 1 =1

r YX

j 2 =1

dY

` =1

Trace(Y T
`;j 1

Y `;j 2 ) � 2
r YX

j =1

r XX

i =1

dY

` =1

Trace(Y T
`;j X `;i )

+
r XX

i 1 =1

r XX

i 2 =1

dY

` =1

Trace(X T
`;i 1

X `;i 2 ) (5.14)

For simplicity, assume that the dimensions of the factor matrices are equal. Denote
the value of the cost function at iteration � with c( � ) . Once jc( � ) � c( � � 1) j < � max

for some given threshold � max , we stop iterating.
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The algorithm entitled SOK_truncate is summarized in Algorithm 5.1. No
guarantee for achieving a global minimum of the approximation error is provided. As
discussed in the musings, Mohlenkamp (2013), the convergence to a global minimum
of ALS is not well understood in general. When d = 2 , the algorithm is very similar
to a PCA problem and a proof of convergence to a set of stationary points is given
in Udell et al. (2016).

Algorithm 5.1: SOK_truncate(Y,r_X,lambda)
Input : fY i;j gi =1 ::d;j =1 ::r Y ; rX ; �
Output : fX i;j gi =1 ::d;j =1 ::r X

/* Default values */
1 � max = 30; � max = 10 � 3

/* Initial guesses */
2 �  0
3 foreach i � d do
4 foreach j � r do
5 X ( � )

i;j  rand(n_i,n_i)
6 end
7 end

/* ALS iterations */
8 while � � � max and � > � max do
9 foreach n = 1 ::d do

10 Form V ( � )
X;n from fX ( � +1)

i;j gi =1 ::n � 1;j =1 ::r X ; fX ( � )
i;j gi = n +1 ::d;j =1 ::r X

11 Compute V T
Y;n V ( � )

X;n and denote with c
12 Compute U Y;n c and denote with d

13 Compute V ( � )
X;n

T
V ( � )

X;n + � I and invert, denote with R

14 Set U ( � +1)
X to dR

15 Update fX ( � +1)
i;j gj =1 ::r X from U ( � +1)

X

16 end
/* Check stopping criterion */

17 Evaluate the residual using (5.14) and denote with c( � )

18 �  jc( � ) � c( � � 1) j
19 �  � + 1
20 end

21 X i;j  X ( � � 1)
i;j

Computational complexity

Storing U Y;m ; V Y;m for all m 2 f1; : : : ; dg scales with rd(n2 d � 1
d + n2=d). If all

variables are fixed but U X;m 2 Rn 2
m � r X , the optimization (5.13) is a standard

regularized least-squares whose complexity is dominated by the cost for computing
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products such as V T
X;m V X;m , i.e:

V T
X;m V X;m =

2

6
4

vec( ~X m; 1)T vec( ~X m; 1) : : : vec( ~X m; 1)T vec( ~X m;r X )
:::

: : :
:::

vec( ~X m;r X )T vec( ~X m; 1) : : : vec( ~X m;r X )T vec( ~X m;r X )

3

7
5 (5.15)

where, for i; j 2 f1; : : : ; rX g:

vec( ~X m;i )T vec( ~X m;j ) = 1T vec
�
A d;i;j 
 : : :
 A m +1 ;i;j 
 A m � 1;i;j 
 : : :
 A 1;i;j

�

A `;i;j = X `;i �H X `;j ; ` = 1 ::d (5.16)

where �H denotes the Hadamard product. The cost for computing A `;i;j is n2=d.
Computing vec( ~X m;i )T vec( ~X m;j ) requires n2(d� 1)=d flops: forming this large matrix
with Kronecker products is devastating for the computational efficiency especially
as soon as d is larger than two. It is the bottleneck of this algorithm. This type of
operation is repeated (rX + 1) =2 times to form (5.15). Computing the inverse costs
only r 3

X . Computing V T
Y;i V

( � )
X;i costs r Y r X n2(d� 1)=d. As an illustration with the

notations in an array of size N � N and d = 2 , we have n = N 2 and the algorithm
scales with O(N 2). For arrays of size N � N � N , the complexity reaches O(N 4).
Asymptotically with d, the complexity is not linear with the number of nodes in the
array but scales quadratically with the latter. It is a main difference to all previous
algorithms studied in this thesis where increasing the tensor order decreases the
scalability coefficient.

5.3.4. Pitfalls
The algorithm for solving the discrete Lyapunov equation via the squared Smith
iterations is first summarized in Algorithm 5.2. When U ( � ) is stable, the sum of
the norms (e.g Frobenius) of the factor matrices decays to 0, at least from a certain
iteration, and is used as stopping criterion.

The difficulty in this algorithm is therefore not only to keep the Kronecker
structure, but to ensure simultaneously that the truncated (global) U ( � ) is stable.
The pitfalls relate essentially to the convergence of the doubling algorithm when
the matrix A has eigenvalues close to the unit circle. Truncating while iterating
may cause the eigenvalues of U ( � ) to jump outside the unit circle and consequently,
cause the residual to diverge. In this case, the Kronecker rank should be increased.
Computing in a scalable manner the eigenvalues of a Kronecker-structured matrix
from its factors would allow to integrate a stopping criterion such that the algorithm
is restarted with a larger Kronecker rank, r P . Indeed, there is no characterization in
terms of the factors (or their respective eigenvalues) such that a sum of Kronecker
products is stable. For example with the case d = 2 , let a matrix whose reshuffling
is rank r strictly larger than one. It is not true in general that if the spectral radius
of each factor matrix is strictly smaller than one, then the matrix written of a sum
of r Kronecker terms has its spectral radius strictly smaller than one.

Another concern (minor compared to the previous one) here is related to the
non-uniqueness of each factor due to the multi-linear representation, i.e. the trivial
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