
 
 

Delft University of Technology

Java Unit Testing Tool Competition - Seventh Round

Kifetew, Fitsum ; Devroey, Xavier; Rueda, Urko

DOI
10.1109/SBST.2019.00014
Publication date
2019
Document Version
Accepted author manuscript
Published in
2019 IEEE/ACM 12th International Workshop on Search-Based Software Testing (SBST)

Citation (APA)
Kifetew, F., Devroey, X., & Rueda, U. (2019). Java Unit Testing Tool Competition - Seventh Round. In 2019
IEEE/ACM 12th International Workshop on Search-Based Software Testing (SBST): Proceedings (pp. 15-
20). [8812209] IEEE . https://doi.org/10.1109/SBST.2019.00014

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SBST.2019.00014
https://doi.org/10.1109/SBST.2019.00014


Java Unit Testing Tool Competition - Seventh
Round

Fitsum Kifetew
Fondazione Bruno Kessler

Trento, Italy
kifetew@fbk.eu

Xavier Devroey
Delft University of Technology

Delft, The Netherlands
x.d.m.devroey@tudelft.nl

Urko Rueda
Research Center on

Software Production Methods
Universitat Politècnica de València

Valencia, Spain
urueda@pros.upv.es

Abstract—We report on the results of the seventh edition of the
JUnit tool competition. This year, four tools were executed on a
benchmark with (i) new classes, selected from real-world software
projects, and (ii) challenging classes from the previous edition.
We use Randoop and manual test suites from the projects as
baselines. Given the interesting findings of last year, we analyzed
the effectiveness of the combined test suites generated by all
competing tools and compared; results are confronted with the
manual test suites of the projects, as well as those generated by
the competing tools . This paper describes our methodology and
the results, highlight challenges faced during the contest.

Index Terms—tool competition, benchmark, mutation testing,
automation, unit testing, Java, statistical analysis, combined
performance

I. INTRODUCTION

After a successful sixth edition in 2018 [11], this year,
we celebrate the seventh edition of the Java unit testing tool
competition, involving five tools (two of them introduced
this year) and a fresh set of classes under test (CUTs). The
participant tools are: EvoSuite [1], T3 [9], [10], Sushi [3], [4],
Tardis [2], and Randoop [7].

While Sushi and Tardis are new entries to this year’s edition,
EvoSuite and T3 were participants in previous competitions
but have been since improved by the respective authors.
For Randoop, used as a baseline, we have updated it to
the latest version (version 4.1.1). Furthermore, following last
year’s initiative, we performed a combined analysis in which
we constructed test suites by putting together all the tests
generated, for a particular CUT, by all participating tools.
Last year, the combined analysis gave better performance
than any single tool [11], indicating that the different tools
were complementary in the areas of the solution space they
covered. This year, we also combined the test suites generated
by all tools and analyze the resulting performance. Finally, we
compared the results achieved by the tools against manually-
written test suites included in the original projects from which
our CUTS were extracted.

For the comparison, we used well-established structural
coverage metrics, namely statement and branch coverage,
which we computed by using JaCoCo1. Additionally, we ap-
plied mutation analysis to assess the fault revealing potentials

1https://www.jacoco.org/jacoco

of the test suites generated by the tools. We used PITest2 to
compute the mutation scores of the various test suites (either
automatically generated or manually-written).

We used similar time budgets as last year [11]: 10, 60, 120,
and 240 seconds. Such a range of time budgets allows us to
assess the capabilities of the tools in different usage scenarios,
while staying within the tight time period and computational
resources available for running the experiments.

The rest of this report is organized as follows. Section II
describes the benchmark, Section III describes participating
tools and baselines. Section IV presents the methodology while
Section V presents the results. Concluding remarks are given
in Section VI.

II. THE BENCHMARK SUBJECTS

Benchmark preparation should ideally take into considera-
tion several factors. The benchmark should be a representative
sample of real-world software [5]; preferably be open-source
and cover different application domains [5]; the classes should
not be trivial [8] (e.g., classes with only branchless methods)
and should handle different types of input. Taking these
aspects into account, we focused on GitHub repositories that
satisfy the following criteria: (i) can be built using Maven,
and (ii) contains JUnit 4 test suites. We also included CUTs
from last year’s edition which proved to be challenging for the
competing tools. As a result, we selected the following new
projects:

• Antlr43: is a tool able to generate lexical analyzers and
parsers for structured text or binary files written with a
given grammar. For the competition, we focused on the
antlr and antlr-runtime modules.

• AuthzForce4: is an Attribute-Based Access Control
(ABAC) framework compliant with OASIS XACML 3.0.
For the competition, we focused on the authzforce-ce-
core module.

• Fescar5: is a distributed transaction framework for mi-
croservices architecture.

2http://pitest.org/
3https://github.com/antlr/antlr4
4https://github.com/authzforce/core
5https://github.com/alibaba/fescar/



TABLE I
CHARACTERISTICS OF THE BENCHMARK. UPPER HALF: SUBJECTS NEW

THIS YEAR; LOWER HALF: SUBJECTS KEPT FROM LAST YEAR

Project #CUTs 10s 4m # Sampled CUTs

Antlr4 370 61.6m 24.6h 20
AuthzForce 70 11.6m 4.6h 10
Fescar 75 12.5m 5.0h 10
Imixs-Workflow 83 13.8m 5.5h 20
Spoon 437 72.8m 29.1h 10
Dubbo 235 39.1m 15.7h 1
FastJason 217 36.2m 14.5h 2
Okio 44 7.3m 2.9h 2
Webmagic 162 27.0m 10.8h 2
Zxing 268 44.7m 17.9h 1

• Imixs-Workflow6: is an open source workflow engine. For
the competition, we focused on the imixs-workflow-core
and imixs-workflow-engine modules.

• Spoon7: is a library for analyzing and transforming Java
source code.

Table I summaries the main characteristics of the selected
projects. Antlr4, AuthzForce, Fescar, Imixs-Workflow, and
Spoon are newly added this year, while the remaining come
from last year [11]. The total number of CUTs in each project
ranges between 44 (Okio) and 437 (Spoon) classes. Since
considering all CUTs in each project is infeasible due to the
extremely large amount of time and resources the competition
would require, following the experience of previous editions,
we sampled a small number of CUTs from each project as
reported in Table I. Basically we sampled 10 CUTs from each
new project/module and kept 8 of the challenging CUTs from
last year’s edition, for a total of 78 CUTs. For the selection, we
followed a similar procedure as in the previous editions [11].
First, we computed McCabe’s cyclomatic complexity for all
methods and classes in each project using JavaNCSS8. Then,
we removed classes that contain only methods with a complex-
ity lower than three. This filter reduces the chance of sampling
very trivial classes with either no branches or that can be fully
covered with few randomly generated tests [8].

As a further filtering mechanism, we generated test cases
using the previous version of Randoop on all candidate CUTs
with a time budget of 10 seconds. This is an additional step we
took to ensure that the CUTs are not too trivial. We ordered
the filtered CUTs by (i) the number of branches (descending),
(ii) the number of branches covered by Randoop (ascending),
(iii) the number of lines (descending), and (iv) the cyclomatic
complexity (descending). Finally we picked the top 10 CUTs
from each of the 7 projects/modules, resulting in 70 CUTs.
Furthermore, we picked the most challenging eight classes
from previous year’s benchmarks. This resulted in 78 Java
classes9, whose number of branches ranges between 4 and

6https://github.com/imixs/imixs-workflow
7https://github.com/INRIA/spoon/
8https://github.com/codehaus/javancss
9https://github.com/PROSRESEARCHCENTER/junitcontest/tree/master/

bin/benchmarks 7th

TABLE II
SUMMARY OF TOOLS

Tool Technique Static analysis

EvoSuite [1], [8] Evolutionary algorithm yes
Sushi [3], [4] Evolutionary + Symbolic executon yes
Tardis [2] Evolutionary + Concolic testing yes
T3 [9], [10] Random testing no
Randoop [7] Random testing no

512, while number of lines ranges between 10 and 820, and
number of mutants generated by PIT ranges between 4 and
316.

This year, however, we discovered several issues with the
new CUTs when computing metrics (coverage and mutation
score) after test generation. In particular, the library we use
in our contest infrastructure for computing code coverage (Ja-
CoCo) had difficulty in measuring coverage for several of the
CUTs in the benchmark. We upgraded JaCoCo from version
0.6.3 to 0.8.3 (the latest version) and re-executed metrics
computation on all test cases generated by all tools. This fixed
some of the issues but still metrics computation failed for
several classes. Consequently, we were forced to drop CUTs
from four of the projects/modules (antlr, antlr-runtime, imixs-
workflow-core, imixs-workflow-engine) from the benchmark.
The final number of CUTs for which execution was completed
successfully were 38 CUTs.

III. THE TOOLS

A total of five tools are considered in this year’s edition:
EvoSuite, Randoop, Sushi, Tardis, and T3 (see Table II).
EvoSuite and T3 have also participated in previous editions
of the contest, however for the current edition, besides bug
fixes, they have introduced important improvements to their
respective test generation mechanisms. Sushi and Tardis are
new tools participating in the contest for the first time this
year. Randoop is used as a baseline and has been updated to
its latest version (4.1.1).

As shown in Table II, EvoSuite, Sushi, and Tardis use
evolutionary algorithms for evolving test suites. However,
Sushi and Tardis further exploit (dynamic) symbolic execution
to enhance the test generation process [3]. On the other hand,
T3 and Randoop follow a random testing strategy.

Baselines: As baseline, we use tests generated by Randoop,
as well as manually written test suites of the CUTs available
from their respective projects. It should be noted that, we use
manual tests as baseline to give an idea of how automatically
generated test suites fair with respect to human written tests.
It is, however, difficult to draw direct parallels between the
two as manual test suites are typically evolved and improved
overtime, and it is hard to estimate how much (human) effort
has been spent in writing the test suites.

IV. CONTEST METHODOLOGY

The methodology adopted in this year’s edition is mostly
similar to that of last year’s [11]. Here we highlight the main



changes introduced this year:
→ Public contest repository10. The full contest infras-

tructure was already published on GitHub as an open source
project in the previous editions. In this year’s edition, to
further minimize the effort and time required to configure
the infrastructure, we packaged the contest infrastructure as
a docker container so that participants could easily test their
tools. We hope that making the infrastructure open and easily
accessible will contribute to keeping the contest alive and
attract new participants. Furthermore, all the resources of the
previous two editions were published in the GitHub repository,
including benchmarks, reports, detailed data, etc. Details of
this year’s edition will also be made available in the online
repository.
→ CUTs. We selected 78 CUTs for the benchmark (70 new,

8 from last year) as described in Section II, however the final
number of CUTs was 38 due to problems faced during metrics
computation.
→ Execution frame. A total of 4560 executions were

performed (5664 in the previous edition): 38 CUTs x 5 tools x
4 time budgets x 6 repetitions for statistical analyses. Similar
to last year, the executions were run in a cluster environment
running Sun Grid Engine (SGE). We have used five physical
nodes, each with 12 CPU cores (Intel(R) Xeon(R) CPU E5-
2440 @ 2.40GHz) and 64GB RAM. In contrast to previous
editions in which all tools were run in parallel, in this edition,
each tool was run on a dedicated physical node for all time
budgets and repetitions.
→ Test generation. Similar to the previous edition, for

each tool, the test generation was repeated a total of 6 times,
to account for the inherent randomness of the generation
processes. Unlike the previous edition where the execution
sporadically hang during tests generation, this year no such
problem was observed.
→ Metrics computation. We kept the strict mutation

analysis time budget of 5 minutes per CUT, and a timeout of
1 minute for each mutant. Moreover, we sampled the mutants
generated by PITest: we applied a random sampling of 33% for
CUTs with more than 200 mutants, and a sampling of 50% for
CUTs with more than 400 mutants. This year, however, we had
difficulty in computing metrics for several CUTs in our bench-
mark, in particular CUTs from antlr, antlr-runtime, imixs-
workflow-core, and imixs-workflow-engine. The problems were
caused by the coverage computation using JaCoCo. Updating
JaCoCo to its latest version could not solve the issues. Since
our mutation analysis depends on coverage results computed
by JaCoCo, the failures in coverage computation also led to
failures in mutation analysis. Eventually we had to exclude 40
CUTs from our benchmark due to these difficulties. The test
generation phase, however, was completed successfully, and all
test cases generated have been communicated to the respective
tool authors for eventual analysis. Due to the limited amount
of time between tool submission and results notification, we
could not perform the metrics computation with a different

10https://github.com/PROSRESEARCHCENTER/junitcontest

tool for coverage analysis. For the next edition of the contest,
based on the data collected this year, we will help the new
organizers to investigate and correct the issues.
→ Combined analyses. We performed the combined anal-

ysis by putting together all the tests generated by all tools
for a given CUT and time budget. Metrics computation was
performed on the combined test suite in the same way as for
the individual tools, however the computational cost increases
to the sum of the costs required to evaluate the test suites
generated by the individual tool. Due the high computational
costs for the combined analyses, we were only able to do it
for budgets of 10 and 240 seconds.
→ Time budgets. Similar to the previous edition [11], we

considered four search budgets: 10, 60, 120 and 240 seconds.
→ Statistical Analysis. We used statistical tests to support

the results. First, we used the Friedman test to compare
the scores achieved by the different tools over the different
CUTs and time budgets. In total, each tool produced (38
CUTs × 4 budgets) = 152 data points, corresponding to the
average scores achieved across six independent repetitions.
Second, we applied the post-hoc Conover’s test for pairwise
multiple comparisons. While the former test allows us to
assess whether the scores achieved by alternative tools differ
statistically significantly from each other, the latter test is used
to determine for which pair of tools the significance actually
holds.

Note that for all aforementioned statistical tests, we used the
confidence level α=0.05; p-values obtained with the Conover’s
test were further adjusted with the Holm-Bonferroni proce-
dure, which is required in case of multiple comparisons.

A. Threats to Validity

Conclusion validity. As in previous editions, we perform
statistical analyses for significance. The number of repetitions
(6 runs) could be considered low for rigorous statistical
analysis. The could be improved in future editions by either
allocating more computational resource or increasing the time
span available for the experiments. Effects of multiple compar-
ison are mitigated by adjusting p-values via Holm-Bonferroni.

Internal validity. The contest infrastructure has been im-
proved over the last seven years. It is released as an open-
source project to foster improvement and bug fixes from the
community. There could be failures in computing metrics for
some tools and CUTs due to issues in the interaction between
the contest infrastructure and libraries (e.g., JaCoCo or PITest).
The benchmarks used in the competition were hidden from the
participants, but they were able to test their tools via docker
using some of the CUTs from past editions.

Construct validity. The scoring formula used to rank the
tools —which is identical to the past edition— assigns a
higher weight to the mutation coverage. Also, we apply a
time window of 1 minute per mutant and a global timeout
of 5 minutes per CUT, as well as a random sampling of the
mutants to reduce the costs of metrics computation. Note that
the set of sampled mutants for each CUT is kept the same for
all tools and search budgets.



TABLE III
AVERAGE (MEAN) COVERAGE METRICS AND OVERALL (SUM) SCORES

OBTAINED ACROSS ALL CUTS.

Tool Budget covi covb covm Score Std.dev(in sec.) Min Mean Max Min Mean Max Min Mean Max

evosuite

10

0.00 0.31 1.00 0.00 0.25 1.00 0.00 0.29 1.00 41.42 7.93
randoop 0.00 0.25 0.70 0.00 0.16 0.83 0.00 0.20 0.90 35.58 0.40
sushi 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tardis 0.00 0.01 0.18 0.00 0.00 0.04 0.00 0.00 0.15 0.63 0.55

t3 0.00 0.35 0.89 0.00 0.28 1.00 0.00 0.02 0.34 34.48 2.04

evosuite

60

0.00 0.34 1.00 0.00 0.30 0.96 0.00 0.29 1.00 78.75 16.21
randoop 0.00 0.24 0.70 0.00 0.15 0.83 0.00 0.20 0.90 37.99 0.36
sushi 0.00 0.07 0.61 0.00 0.02 0.32 0.00 0.06 0.60 12.33 2.81
tardis 0.00 0.12 0.51 0.00 0.08 0.49 0.00 0.11 0.77 25.01 7.39

t3 0.00 0.35 0.84 0.00 0.28 1.00 0.00 0.02 0.29 36.17 3.16

evosuite

120

0.00 0.28 1.00 0.00 0.26 0.97 0.00 0.24 1.00 65.89 17.67
randoop 0.00 0.24 0.70 0.00 0.15 0.83 0.00 0.21 0.90 39.37 0.55
sushi 0.00 0.07 0.62 0.00 0.03 0.33 0.00 0.07 0.60 13.52 2.42
tardis 0.00 0.09 0.52 0.00 0.06 0.49 0.00 0.09 0.80 19.82 4.47

t3 0.00 0.36 0.89 0.00 0.28 1.00 0.00 0.02 0.34 37.49 2.85

evosuite

240

0.00 0.30 1.00 0.00 0.27 0.99 0.00 0.25 1.00 69.37 18.48
randoop 0.00 0.24 0.70 0.00 0.16 0.83 0.00 0.21 0.90 41.46 0.41
sushi 0.00 0.08 0.61 0.00 0.03 0.26 0.00 0.07 0.56 13.99 4.73
tardis 0.00 0.10 0.51 0.00 0.06 0.49 0.00 0.09 0.80 21.35 7.05

t3 0.00 0.35 0.85 0.00 0.29 1.00 0.00 0.02 0.34 37.14 3.85

External validity. To mitigate the effects on the low number
of subjects in the benchmark, we attempted to increase the
benchmark size to 78 this year. However, due to technical
challenges with JaCoCo, we had to eventually eliminate much
of the CUTs from the benchmark. Nonetheless, the number of
active participant tools has increased compared to the previous
edition. Future editions of the contest should work towards
expanding the benchmark size, of course also considering the
amount of time for computing the results and number of tools
involved.

V. CONTEST RESULTS

Detailed results for all tools, as well as manual and com-
bined analysis, for all budgets, averaged over six repetitions,
can be found in an online appendix [6]. Table III summarizes
the average (mean) instruction coverage (covi), branch cov-
erage (covb), and strong mutation coverage (covm) achieved
across all CUTs over the four search budgets. Table III also
shows the overall scores, which are computed as the sum of
the average scores achieved across all CUTs and for each
search budget, separately. As expected, the maximum coverage
metrics and the scores tend to increase as the time given for
test generation increases. However, the average coverage does
not appear to be much affected by the time budget. This could
be due to the fact that with increased budget the tools tend to
generate too many tests, eventually increasing the possibility
of timeouts and potential problems with coverage/mutation
computation.

Comparison with manual and combined suites. We
present in Table VI summary of results for all tools as well
as results of the combined analysis and manual test suites,
for all 38 CUTs in the benchmark. Figure 1 shows a plot
of the performances. Due to lack of space, Table VI reports
results only for the 10 second budget, the full details can be
found in the online technical report [6]. As can be seen from
Table VI, for some of the CUTs the manual suites has a very
low coverage (FESCAR, AUTHZFORCE, and WEBMAGIC),
while for others (SPOON) the manual suites achieve a higher
coverage than the combined ones.

TABLE IV
OVERALL SCORES AND RANKINGS OBTAINED WITH THE FRIEDMAN TEST

Tool Score Ranking

t3 145.27 2.30
evosuite 255.43 2.38
randoop 154.34 2.51

tardis 66.80 3.73
sushi 39.84 4.09

TABLE V
PAIRWISE COMPARISON ACCORDING TO THE POST-HOC CONOVER’S TEST

evosuite randoop sushi t3

randoop 0.83 - - -
sushi 8.08e-19 4.38e-18 - -

t3 0.14 0.11 1.31e-26 -
tardis 1.9e-13 7.57e-13 0.22 3.32e-20

Confirming previous observations [11], combined analysis
was able to achieve better results compared to the individual
tools. However, this year, combined analysis did not always
outperform manual test suites.

We also observe from Table III and Table VI that sushi
and tardis were not able to achieve good coverage for
the small time budgets. Eventually the results for these two
tools improved as the budget increased. However compared
to the other tools they generally achieved low coverage. This
could be attributed to the fact that the techniques employed in
these tools perform complex symbolic analyses and execution,
besides search-based algorithms [3]. Given a search budget
grater than 240 seconds, the tools could have generated more
effective test cases. Unfortunately, this was not possible in the
context of the contest, giving the limited amount of time avail-
able for running the experiments. To assess this hypothesis,
we executed these two tools with a budget of 480 seconds11,
and results confirm our hypothesis, but the improvements were
still marginal. In future contests, we encourage the tool authors
to optimize the efficiency of the tools in using the allocated
time budget, and we recommend future contest organizers to
consider larger time budgets, if resources allows it.

Final scores and statistical results. Table IV presents
the overall scores achieved by the tools at different search
budgets as well as the ranking produced by the Friedman test.
According to the test, some tools turn out to be statistically
different in terms of scores (p-value as low as 10−26), while
other tools did not differ significantly (e.g., EvoSuite vs T3
or vs Randoop). Table V reports the p-values produced by the
post-hoc Conover’s procedure. Note the p-values are adjusted
with the Holm-Bonferroni correction procedure as required in
case of multiple pairwise comparisons.

11Since these two tools did not produce much tests, metrics computation
finished sooner than for the other tools. We were able to run them with a
larger time budget. For the other tools however we could not do it due to
shortage of time.



TABLE VI
RESULTS FOR MANUAL, AVERAGED COMBINED, AND TOOLS ON 10S BUDGET

manual combined 10s t3 10s evosuite 10s sushi 10s tardis 10s
CUT covi covb covm covi covb covm covi covb covm covi covb covm covi covb covm covi covb covm

AUTHZFORCE-11 83.0 80.0 28.0 24.5 10.0 11.9 21.0 10.0 0 14.0 0 4.7 0 0 0 0 0 0
AUTHZFORCE-1 0 0 0 0 0 0 73.7 100.0 0 0 0 0 0 0 0 0 0 0
AUTHZFORCE-27 40.0 50.0 75.0 90.0 75.0 75.0 70.0 25.0 0 90.0 75.0 75.0 0 0 0 0 0 0
AUTHZFORCE-32 49.0 63.0 54.0 31.1 20.0 23.0 26.6 20.0 0 13.3 0 7.6 0 0 0 0 0 0
AUTHZFORCE-33 0 0 0 76.5 100.0 90.9 74.8 94.4 0 37.2 55.5 57.5 0 0 0 0 0 0
AUTHZFORCE-48 0 0 0 90.0 63.6 88.2 89.4 62.8 0 0 0 0 0 0 0 0 0 0
AUTHZFORCE-52 0 0 0 62.0 91.6 100.0 62.0 83.3 0 62.0 91.6 100.0 0 0 0 0 0 0
AUTHZFORCE-5 0 0 0 51.1 59.0 60.7 43.1 53.7 0 22.3 20.4 27.3 0 0 0 0 0 0
AUTHZFORCE-63 0 0 0 50.0 35.0 38.8 42.5 30.0 0 27.5 10.0 5.5 0 0 0 0 0 0
AUTHZFORCE-65 0 0 0 60.0 41.6 0 60.0 41.6 0 0 0 0 0 0 0 0 0 0

DUBBO-2 38.0 32.0 42.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FASTJSON-1 8.0 6.0 5.0 .7 .6 .4 .6 .5 .4 0 0 0 0 0 0 0 0 0
FASTJSON-3 56.0 49.0 22.0 19.1 11.6 11.1 10.4 5.0 6.3 0 0 0 0 0 0 0 0 0
FESCAR-12 0 0 0 73.0 12.5 50.0 26.9 0 0 73.0 12.5 50.0 0 0 0 3.2 0 0
FESCAR-18 0 0 0 78.2 71.4 84.0 32.6 35.7 0 72.4 61.9 81.1 0 0 0 18.4 3.5 15.2
FESCAR-1 0 0 0 99.1 97.9 97.7 79.7 60.4 0 99.1 97.9 97.7 0 0 0 0 0 0
FESCAR-23 0 0 0 73.0 63.0 78.5 38.0 28.5 0 73.0 63.0 78.5 0 0 0 0 0 0
FESCAR-25 0 0 0 46.8 37.5 22.2 46.8 37.5 0 46.3 37.5 22.2 0 0 0 0 0 0
FESCAR-36 0 0 0 100.0 100.0 100.0 29.0 14.7 0 100.0 100.0 100.0 0 0 0 2.9 .6 1.8
FESCAR-37 0 0 0 69.3 54.4 71.8 51.0 35.2 0 69.3 52.9 71.8 0 0 0 0 0 0
FESCAR-41 0 0 0 1.7 2.0 2.3 .4 0 0 0 0 0 0 0 0 0 0 0
FESCAR-42 0 0 0 27.9 7.1 0 27.9 7.1 0 0 0 0 0 0 0 0 0 0
FESCAR-7 0 0 0 39.2 40.1 38.2 19.2 18.7 0 37.9 37.7 37.9 0 0 0 0 0 0
OKIO-1 83.0 76.0 3.0 69.3 56.3 6.8 32.5 22.9 8.4 26.0 18.2 8.8 0 0 0 0 0 0
OKIO-4 90.0 73.0 27.0 22.3 19.2 13.0 1.4 .6 .9 22.3 19.2 13.0 0 0 0 0 0 0

SPOON-105 84.0 79.0 71.0 17.9 17.6 23.5 17.8 17.3 0 0 0 0 0 0 0 0 0 0
SPOON-155 98.0 93.0 100.0 25.1 14.0 19.6 19.4 6.2 0 24.3 11.9 19.0 0 0 0 0 0 0
SPOON-169 97.0 89.0 68.0 11.6 6.9 10.2 5.0 3.2 0 0 0 0 0 0 0 0 0 0
SPOON-16 96.0 84.0 87.0 47.8 33.9 45.4 16.0 7.8 0 47.8 33.9 45.4 0 0 0 0 0 0
SPOON-20 91.0 70.0 75.0 49.2 33.3 40.2 42.8 20.0 0 49.2 33.3 40.2 0 0 0 0 0 0
SPOON-211 98.0 94.0 86.0 23.7 16.2 34.7 20.3 15.3 0 19.4 8.1 27.7 0 0 0 0 0 0
SPOON-253 97.0 87.0 94.0 62.2 57.8 68.1 60.5 54.6 0 31.5 29.6 34.8 0 0 0 0 0 0
SPOON-25 60.0 63.0 57.0 28.7 21.4 23.6 28.5 21.2 0 0 0 0 0 0 0 0 0 0
SPOON-32 88.0 87.0 92.0 20.8 5.2 5.5 30.0 12.5 0 5.0 2.0 1.1 0 0 0 0 0 0
SPOON-65 99.0 99.0 100.0 40.6 50.5 1.7 40.6 50.0 0 3.0 1.5 .1 0 0 0 0 0 0
WEBMAGIC-1 0 0 0 39.2 27.7 50.1 0 0 0 32.8 23.3 42.0 0 0 0 0 0 0
WEBMAGIC-4 0 0 0 69.2 9.0 59.1 12.6 2.0 9.7 0 0 0 0 0 0 0 0 0
ZXING-10 91.0 83.0 21.0 90.5 77.4 23.1 66.7 62.0 33.8 88.3 70.1 62.9 0 0 0 0 0 0



Fig. 1. Performance of tools, manual suites, and combined suites

VI. CONCLUDING REMARKS

This year’s contest was successful in that four tools actively
participated, and evosuite and t3 where improved, with
respect to the previous edition, by their respective authors. The
two new tools, tardsi and sushi brought in diversity as
they rely on symbolic execution. Randoop was also updated
to its latest version.

Two of the projects form which CUTs were extracted
(Antlr4 and Imixs-Workflow) proved to be problematic during
coverage computation, despite upgrading JaCoCo. To mini-
mize such issues, it would help if future editions could start
promoting the contest early and collect participating tools;
this would give enough time to handle potential issues that
could arise. We also observed some discrepancies between
the coverage results reported by our contest infrastructure
and results reported by the coverage tools when executed
independently, on the same test suite. Issues were reported
by the author of t3 in which for some of the CUTs, given
the same test suite generated during the contest, different
coverage results were obtained from the contest infrastruc-
ture and independent measurement by the author using the
same library (JaCoCo/PIT). Such issues could arise from the
interaction between the contest infrastructure and the coverage
libraries. Using data from this year’s edition those issues will
be investigated and resolved by the organizers of upcoming
editions and other external contributors.

Similarly to the previous edition, the combined analysis
showed better results. This year we executed the combined
analysis for two time budgets (i.e., 10 and 240 sec), next
editions of the contest could target all time budgets.

Another interesting observation is that Randoop, which
we included as a baseline, showed quite good performance
and resilience to the difficulties that seem to have affected the
other tools.

The fact that the contest infrastructure is dockerized proved
to be quite effective in reducing the effort required to set up

and execute a given tool in the contest setting. We could not,
however, run the full experiments using docker due to the
fact that docker is not available in the cluster environment
where we run all the experiments. This created extra effort in
maintaining the two versions synchronized. In future editions,
if docker could be used also for the full experiments, it could
save valuable time for the organizers.

ACKNOWLEDGMENTS

Special thanks to Matteo Biagiola who helped in porting
the contest infrastructure to a docker image. This work has
been partially supported by the Spanish Ministry of Economy
and Competitiveness (MINECO) under the project DataME
(TIN2016-80811-P); by the Italian Ministry of Education,
University, and Research (MIUR) with the PRIN project
GAUSS (grant n. 2015KWREMX); and by the EU Project
STAMP ICT-16-10 No.731529 and the NIRICT 3TU.BSR
(Big Software on the Run) project.

REFERENCES

[1] A. Arcuri, J. Campos, and G. Fraser. Unit test generation during software
development: Evosuite plugins for Maven, IntelliJ and Jenkins. In
IEEE International Conference on Software Testing, Verification and
Validation (ICST), pages 401–408. IEEE Computer Society, 2016.

[2] P. Braione. Tardis concolic test case generator, 2019. Available at:
https://github.com/pietrobraione/tardis.

[3] P. Braione, G. Denaro, A. Mattavelli, and M. Pezzè. Combining
symbolic execution and search-based testing for programs with complex
heap inputs. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2017, pages 90–
101, New York, NY, USA, 2017. ACM.

[4] P. Braione, G. Denaro, A. Mattavelli, and M. Pezzè. SUSHI: A test
generator for programs with complex structured inputs. In Proceedings
of the 40th International Conference on Software Engineering: Compan-
ion Proceeedings, ICSE ’18, pages 21–24, New York, NY, USA, 2018.
ACM.

[5] G. Fraser and A. Arcuri. A large scale evaluation of automated unit test
generation using evosuite. ACM Transactions on Software Engineering
and Methodology (TOSEM), 24(2):8, 2014.

[6] F. Kifetew, X. Devroey, and U. R. Molina. Java unit testing tool
competition - seventh round. Technical report, 2019. Available
at: https://github.com/PROSRESEARCHCENTER/junitcontest/blob/
master/publications/SBSTcontest2019 detailed results.pdf.

[7] C. Pacheco and M. D. Ernst. Randoop: feedback-directed random
testing for java. In Companion to the 22nd ACM SIGPLAN conference
on Object-oriented programming systems and applications companion,
OOPSLA ’07, pages 815–816, New York, NY, USA, 2007. ACM.

[8] A. Panichella, F. M. Kifetew, and P. Tonella. Automated test case
generation as a many-objective optimisation problem with dynamic
selection of the targets. IEEE Transactions on Software Engineering,
44(2):122–158, Feb 2018.

[9] I. Prasetya. T3, a combinator-based random testing tool for Java:
Benchmarking. Int. Workshop Future Internet Testing, Lecture Notes
in Computer Science, 8432, 2014.

[10] I. Prasetya. T3i: A tool for generating and querying test suites for java.
In 10th Joint Meeting of the European Software Engineering Conference
(ESEC) and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE). ACM, 2015.

[11] U. Rueda Molina, F. Kifetew, and A. Panichella. Java unit testing tool
competition: Sixth round. In Proceedings of the 11th International
Workshop on Search-Based Software Testing, SBST ’18, pages 22–29,
New York, NY, USA, 2018. ACM.


