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SUMMARY

Aberrations in optical systems, such as telescopes and microscopes, degrade the quality
of the images that can be produced by these systems. For example, an object that is
positioned out of focus produces a blurred image on a camera sensor and the turbulent
air in the earth’s atmosphere reduces the imaging performance of telescopes. In this
thesis we only consider wavefront aberrations.

AO can be used to compensate for these wavefront aberrations. The working prin-
ciple of AO is to quantify by measuring or estimation the wavefront aberration and to
dynamically adjust wavefront modulating devices, such as Deformable Mirrors (DMs),
to counteract the aberration and thereby improving the optical performance.

The estimation of the wavefront aberration based on images of a point source is
called phase retrieval, which is a highly nonlinear estimation problem. The success of
the estimation usually depends on the (type of) algorithm, the available information on
the aberration that is incorporated in the estimate, and the degree to which the model of
the optical system corresponds to reality.

In this thesis we propose a convex optimization-based method for phase retrieval.
The method allows for easy inclusion of many types of prior information on the aber-
ration. Furthermore, we develop an efficient implementation of the optimization. The
robustness of the approach against measurement noise is investigated and compared
with several other state of the art algorithms. Experimental validation shows the algo-
rithm is well able to estimate aberrations in real-life circumstances.

A new type of prior information is introduced to estimate dynamic wavefront aber-
rations. In literature and in practice, the optical path is split between either a wave-
front sensor and a camera, or between multiple cameras in order to reliable estimate an
aberration. The inherent problem is that between the sensor and cameras the aberra-
tion can differ (Non-Common Path (NCP) errors), and a wrong estimate is used in the
compensation by the AO system. We propose a method to estimate the aberration from
measurements by a single camera, by assuming that the aberration evolves according to
(non-specific) model, i.e. the dynamics are contained in a model-set. At the same time
that we estimate the aberration, we also identify the dynamics according to which the
aberration evolves over time.

The estimation of the wavefront aberration based on images of an unknown object
is called blind deconvolution if both the aberration and object are estimated. Like phase
retrieval, this too is a highly nonlinear estimation problem. We propose the first convex-
optimization based estimation method for blind deconvolution problems that estimate
aberration and object when the images are acquired using coherent illumination. The
method allows for the inclusion of many existing types of prior information on the object
and/or aberration.

Finally, we analyze controllers for segmented mirrors in large ground-based tele-
scopes. These mirrors consist of many interconnected hexagonal segments. This dis-

xiii



xiv SUMMARY

tributed nature of the system warrants the investigation into whether the controller that
keeps the segments aligned can be designed in such a way that it can be distributed over
the segments as well, essentially resulting in a distributed controller where local con-
trollers communicate with each other. What complicates the analysis is that the dynam-
ics across segments are not necessarily decoupled: the wind load can be correlated and
the flexibility in the supporting structure of the segments can cause dynamic coupling.
We investigate the design of a distributed controller that incorporates these global dy-
namics. Furthermore, we investigate the performance of the distributed controller and
how it relates to the communication and interconnection pattern of the local controllers.



SAMENVATTING

Aberraties in optische systemen, zoals telescopen en microscopen, verslechteren de kwa-
liteit van de afbeelding die door deze systemen geproduceerd kunnen worden. Bijvoor-
beeld, een object dat niet in het brandpunt is gepositioneerd resulteert in een onscherpe
afbeelding en de turbulente lucht in de atmosfeer van de aarde beinvloed op een ne-
gatieve manier de capaciteit van telescopen om goede afbeelding te maken. In deze
dissertatie kijken alleen naar zogenoemde golffrontaberraties.

Adaptieve Optica (Adaptive Optics (AO)) kan gebruikt worden om deze golffronta-
berraties te compenseren. Het principe achter AO is dat de golffrontaberratie gekwanti-
ficeerd wordt door deze te meten of te schatten en op een dynamische manier golffront-
modulerende instrumenten, zoals vervormbare spiegels (Deformable Mirrors (DMs)),
aan te sturen om de aberratie (verstoring) tegen te werken en op deze manier de presta-
ties van het optische systeem te verbeteren.

Het schatten van de golffrontaberratie op basis van afbeeldingen van een puntbron
heet phase retrieval (faseherwinning), en dit is een sterk niet-lineair schattingsprobleem.
Het slagen van het schatten wordt doorgaans bepaald door het (type) algoritme, de be-
schikbare informatie over de aberratie die meegenomen wordt bij het schatten, en de
mate waarin het model van het optische systeem overeenkomt met de werkelijkheid.

In deze dissertatie introduceren we een methode gebaseerd op convexe optimalisa-
tie voor het faseherwinningsprobleem. De methode maakt het eenvoudig om een groot
aantal verschillende types voorkennis over de aberratie mee te nemen in de schatting.
Daarnaast ontwikkelen we een efficiënte implementatie voor de optimalisatie. The ro-
buustheid van de aanpak ten opzichte van meetruis wordt onderzocht en vergeleken met
verschillende andere algoritmes die het nieuwste van het nieuwste zijn. Experimentele
validatie laat zien dat het algoritme goed in staat is om aberraties te schatten in reële
omstandigheden.

We introduceren een nieuw type van voorkennis om een tijd-variërende golffron-
taberratie te schatten. Zowel in de literatuur als in de praktijk wordt het optische pad
in tweeën gesplitst tussen een golffrontsensor en een camera, of tussen verschillende
camera’s, om zodoende nauwkeurig de aberratie te schatten. Het inherente probleem is
dat tussen de sensor en camera’s de aberratie kan verschillen (Non-Common Path (NCP)
fouten), en dus een verkeerde schatting wordt gebruikt voor compensatie in het adap-
tieve optica-systeem. Wij stellen een methode voor om de aberratie te schatten op basis
van metingen van een enkele camera, door aan te nemen dat de aberratie over tijd ver-
andert volgens een (niet-specifiek) model, dus dat de dynamica zich in een bepaalde
modelset bevinden. Tijdens het schatten van de aberatie schatten we tegelijkertijd de
dynamica van het systeem, die beschrijft hoe de aberratie over tijd verandert.

Het schatten van de golffrontaberratie, gebaseerd op afbeeldingen van een onbekend
object, heet blinde deconvolutie (engels: blind deconvolution), als zowel de aberratie
als het onbekende object worden geschat. Net als faseherwinning is dit ook een sterk
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niet-lineair schattingsprobleem. We introduceren de eerste op convexe optimalisatie
gebaseerde schattingsmethode voor blinde deconvolutieproblemen die de aberratie en
het object schatten wanneer de afbeelding genomen zijn door middel van coherente
belichting. De methode staat toe dat vele verschillende bestaande types van voorkennis
over het object of aberratie worden meegenomen in de schatting.

Als laatste analyseren we regelaars voor gesegmenteerde spiegels in grote telescopen
die zich op aarde bevinden. Deze spiegels bestaan uit vele samengebonden hexago-
nale segmenten. Dit gedistribueerde aspect van het systeem vraagt om onderzoek naar
de vraag of de regelaar die de segmenten richt, op zo een manier kan worden ontwor-
pen, dat deze zelf ook gedistribueerd kan worden over de segmenten, en op deze manier
een gedistribueerde regelaar oplevert waarbij lokale regelaars met elkaar communice-
ren. Wat de analyse lastig maakt is dat de dynamica van de segmenten niet noodza-
kelijkerwijs ontkoppeld zijn: de wind die tegen de verschillende segmenten blaast kan
gecorreleerd zijn en de flexibiliteit van de ondersteunende constructie kan de dynamica
van de segmenten koppelen. Wij onderzoeken een ontwerpmethode voor een gedistri-
bueerde regelaar die al deze gekoppelde dynamica meeneemt. Bovendien onderzoeken
we de prestaties van de gedistribueerde regelaar en hoe dit gerelateerd is aan de com-
municatie en het samenschakelingspatroon van de lokale regelaars.



1
INTRODUCTION

1.1. OUTLINE OF THE INTRODUCTION
This introduction will cover some of the essential concepts used in this thesis. In Sec-
tion 1.2 we discuss optical systems and the pupil function that characterizes them. Fur-
thermore, in this section we introduce the estimation problems in which the pupil func-
tion is estimated based on images taken by a camera. Section 1.3 deals with sensors and
actuators in Adaptive Optics, through which the performance of an optical system can
be improved. Sections 1.4 and 1.5 discuss the existing algorithms relating to the estima-
tion problems introduced in Section 1.2.

1.2. LINEAR SYSTEMS THEORY FOR OPTICAL SYSTEMS AND RE-
LATED INVERSE PROBLEMS

The systems description of Fourier optics in this section follows the line of definitions
and assumptions as outlined in [1].

Consider Figure 1.1. Suppose we have an optical system consisting of a collection
of lenses and mirrors, with an entrance pupil and an exit pupil, and suppose that the
passage of light between these two planes can be adequately described by geometrical
optics. This system has an object plane in front (along the direction of the rays of light)
of the entrance pupil, and an image plane behind the exit pupil, perpendicular to the
optical axis.

Here we consider the case of monochromatic coherent illumination. The complex
amplitude distribution of an object in the object plane is denoted by

go(p) 2 C, (1.1)

where p are the coordinates in the object plane. The complex amplitude distribution of
an image in the image plane is denoted by

gi (u) 2 C, (1.2)

1
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2 1. INTRODUCTION

Figure 1.1: A schematic depiction of a generalized optical system including the object plane, entrance and exit
pupil, and the image plane. Adapted from [1, Figure 6.1.].

where u are the (two dimensional, reduced1) coordinates for the image plane. We as-
sume that the Fraunhofer approximation holds, with the consequence that the ampli-
tude distribution in the image plane is related by a Fourier transform to the amplitude
distribution in the exit pupil (or just ‘the pupil’).

1.2.1. THE POINT SPREAD FUNCTION
In case the amplitude distribution in the object plane is a point source, it can be shown
[1, Ch. 4] that a circular aperture of a diffraction-limited system2 produces a field in the
image plane at a distance z that is given by

gi (r ) Æexp
¡

j kz
¢

exp
µ

j
kr 2

2z

¶
¼w2

j ¸ z

µ
2

J1(kwr /z)
kwr /z

¶
, (1.3)

where k Æ2¼
¸ is the wavenumber, r is the radial coordinate, w is the radius of the aperture

and J1 is a Bessel function of the first kind. The intensity distribution of this imaging
system is called the Airy pattern,
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, (1.4)

where i denotes the intensity in the image plane, see Figure 1.2a.
More generally, for non-diffraction limited systems as well, we call the complex am-

plitude distribution in the image plane resulting from a point source in the object plane,
the amplitude impulse response, denoted h. The intensity jhj2 is called the intensity
impulse response, denoted s Æjhj2, although this quantity is better known as the Point
Spread Function (PSF). As will be discussed in Section 1.2.4, h and s are related to the
formation of images of amplitude distributions in the object plane that are not point
sources. For this reason h is sometimes called the coherent point spread function, al-
though to prevent confusion with s, we make minimal use of this term in this thesis.

1The use of reduced coordinates allows us to disregard magnification and image inversion, and use the same
coordinates as in the object plane.

2A diffraction-limited system “converts a diverging spherical wave incident on the entrance pupil into a con-
verging spherical wave at the exit pupil." [1, p. 129].
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(a) Diffraction limited system. (b) System with a defocus aberration

Figure 1.2: An example Airy pattern, the point spread function for a diffraction limited optical system on the
left, and the PSF for a system with a defocus aberration on the right.

1.2.2. THE GENERALIZED PUPIL FUNCTION
Let A(x) denote the support function of the aperture,

A(x) Æ

(
1 if x is inside the aperture,
0 if x is outside the aperture,

(1.5)

where x is the position vector in the aperture.
In systems with low numerical aperture, and where the paraxial approximation holds,3

the aberration (the optical path difference) of the wavefront of light emanating from a
point source is related by a scaling to the phase aberration Á in the pupil. The complex
amplitude in the pupil A(x) is extended with a complex term to incorporate this phase
aberration:

P (x) ÆA(x)exp
¡

j Á(x)
¢

. (1.6)

P (x) is referred to as the Generalized Pupil Function (GPF).
The relation between the GPF and the amplitude impulse response is a two-dimensional

spatial Fourier transform:
P (x) ÆH(x) :ÆF {h(u)} . (1.7)

Since h is the amplitude impulse response, H is called the amplitude transfer function.

RADIAL BASIS FUNCTIONS

In relation to the GPF, two sets of basis functions are of importance in this thesis. The
first set is that of (Gaussian) radial basis functions [2, 3]. A (real-valued) radial basis
function Gi is defined as

Gi (x) ÆA(x)exp
¡
¡ ¹ i hx ¡ xi , x ¡ xi i

¢
, (1.8)

where the subscript i is an index for the basis functions, ¹ i 2 RÅ determines the spread
of the function, and xi are the two-dimensional coordinates of the center of the basis
function. In [2] the approximation of the GPF as the following finite sum has been stud-
ied:

P (x) ¼P̃ (x) Æ
naX

iÆ1
ai Gi (x), (1.9)

3This means that several assumptions [1, Section 5.1.2.] relating to small angles hold, which simplify the re-
lated mathematics.
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Noll index m n name

1 0 0 piston
2 1 1 tip
3 -1 1 tilt
4 0 2 defocus

Table 1.1: Some common names for Zernike polynomials in (1.11) and (1.12) for a few different indices n and
m. The names are related to the optical aberration they produce.

with coefficients ai 2 C and na the number of basis functions.

ZERNIKE BASIS FUNCTIONS

The second set of importance are the Zernike polynomials [4]. These basis functions
are used to approximate the phase Á(x) in a circular pupil. Instead of rectangular coor-
dinates x, the functions are usually expressed in polar coordinates (r,µ), where r is the
radius and µ the angle. Define the radial polynomial

Rm
n (r ) Æ

8
<

:

P n¡ m
2

kÆ0
(¡ 1)k (n¡ k)!

k !( nÅm
2 ¡ k)!( n¡ m

2 ¡ k)! r
n¡ 2k m ¡ n even,

0 m ¡ n odd.
(1.10)

The even Zernike polynomials are defined as

Z m
n (r,µ) ÆRm

n cos(mµ) (1.11)

and the odd ones as
Z ¡ m

n (r,µ) ÆRm
n sin(mµ), (1.12)

where n ¸ m and 0 · r · 1. It is common to renumber the Zernike polynomials Z m
n !

Zi to a sequential index using for example Noll’s index [4] or The Optical Society (OSA)
standard index [5]. The phase is then approximated as

Á(r,µ) ¼Á̃(r,µ) Æ
nzX

iÆ1
ci Zi (r,µ), (1.13)

where ci 2 R are the Zernike coefficients. A number of Zernike basis functions have con-
ventional names that are related to the aberrations they produce. Some are listed in
Table 1.1.

1.2.3. THE PHASE RETRIEVAL PROBLEM
Typically, optical detectors like cameras can only measure the intensity (or amplitude)
of the incident light,

y(u) Æi(u) Æ
¯
¯gi (u)

¯
¯2 , (1.14)

where y denotes the measurement – which for now is assumed noise-free.4 In the optical
setting with a point source, the measurement is that of the PSF,

y(u) Æs(u) Æjh(u)j2 Æ
¯
¯F ¡ 1 {P (x)}

¯
¯2 . (1.15)

4The symbol y is used for any measurement; depending on the setting, a hypothetical noise-free one or a noisy
one.
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The phase retrieval problem is to estimate P (x) from the measurements y(u) and other
information that is available a priori. For the analysis of the performance of an optical
system, sometimes this problem reduces to estimating only the phase aberration in the
GPF when the amplitude is known, i.e. estimating Á(x) Æ\ P (x).

The phase retrieval problem can be vectorized in the following way. Denote with v Æ
vect(V ) the vector obtained from vertically stacking the columns of a matrix V . Assume
that the Generalized Pupil Functions has an unknown apodisation and is sampled on an
m £ m grid,5 so that if

a :Ævect(P (x)) 2 Cm2
, (1.16)

we obtain for the measurement
y Æ

¯
¯F ¡ 1a

¯
¯2 , (1.17)

where F 2 Cm2£ m2
is the transformation matrix that gives the vectorized two-dimensional

Discrete Fourier Transform (DFT) of the vectorized Generalized Pupil Functions, and
where j¢j2 is meant element-wise. The phase retrieval problem is thus formulated as

find a

subject to y Æ
¯
¯F ¡ 1a

¯
¯2

a 2 M ,

(1.18)

where M is some set describing the prior information available on a.
Solutions to (1.18) are in general not unique, see [7] for a short discussion. For ex-

ample, if a is a feasible solution, then so is aexp
¡

j Á0
¢

for any phase shift (piston mode)
Á0. In the context of Adaptive Optics (AO, see Section 1.3), this particular ambiguity is of
minor concern, since it does not effect the formed image. Only under specific conditions
the use of specific algorithms guarantees that - save the trivial ambiguities - the correct
solution to (1.18) can be found, see for example [7] for a recent overview and the refer-
ences in that overview paper. However, in practice good results can be achieved with a
variety of algorithms, see also Section 1.4.

Apart from the particular algorithm chosen, a key ingredient for good practical re-
sults is the availability and accuracy of prior information [8]. An often used type of prior
information is phase diversity, which we will discuss in the following section. In Sec-
tion 1.2.3 we discuss several other types of prior information.

INCORPORATION OF PHASE DIVERSITY INTO THE PHASE RETRIEVAL PROBLEM

Phase diversity refers to an additive known phase distortion ÁD (x) in the pupil plane
[9, 10]. The GPF that includes the diversity is given by

P D (x) ÆA(x)exp
¡

j
¡
Á(x) Å ÁD (x)

¢¢
ÆP (x)exp

¡
j ÁD (x)

¢
. (1.19)

A measurement of the PSF in the image plane will give a diversity image,

yD Æ
¯
¯F ¡ 1 {P D }

¯
¯2

Æ
¯
¯F ¡ 1 ©

A(x)exp
¡

j
¡
Á(x) Å ÁD (x)

¢¢ª̄̄2 . (1.20)

5A modal approximation is also occasionally used [3, 6].
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The purpose of using multiple images, each with a different, known phase diversity, is to
improve the performance of phase retrieval algorithms, in terms of convergence, ambi-
guity and robustness to measurement noise. Why it leads to better results, seems to be
an open problem. The diversity is typically introduced by means of a deformable mirror
(Section 1.3.3) or another phase-modulating device. To introduce a defocus as a phase
diversity, it is also possible to move the camera along the optical axis. The micro-lens ar-
ray in a Shack-Hartmann sensor (Section 1.3.2) that focuses light in the pupil plane onto
a camera can also be modeled as a particular phase diversity [11].

The phase diversity can be incorporated into the phase retrieval problem as described
in the previous section in the following way. Denote with W Æd(w) the matrix with ele-
ments of the vector w on its diagonal. The diversity is expressed in matrix form by

pd Ævect
¡
exp

¡
j Ád

¢¢
2 Cm2

,

Dd Æd
¡
pd

¢
2 Cm2£ m2

.
(1.21)

The diversity image(s) can be expressed now as

yD Æ
¯
¯F ¡ 1Dd a

¯
¯2 . (1.22)

If nd is the number of images obtained by applying phase diversities, then the matrices
F Dd ,i for i Æ1, . . . ,nd , can be stacked to obtain the matrix U ,

U Æ

0

B
@

U1
...

Und

1

C
AÆ

0

B
@

F ¡ 1Dd ,1
...

F ¡ 1Dd ,nd

1

C
A (1.23)

and the corresponding measurement vectors yD,i can be stacked in the same manner to
obtain the measurement vector y.

The phase retrieval problem - for the case of static aberrations - from images of the
PSF can be stated as

find a

subject to y ÆjU aj2

a 2 M .

(1.24)

OTHER TYPES OF PRIOR INFORMATION USED IN PHASE RETRIEVAL

Magnitude of the GPF The well-known Gerchberg-Saxton (GS) algorithm [12] uses the
a priori knowledge of the magnitude of the Generalized Pupil Functions z, i.e. the con-
straint

jaj2 Æz. (1.25)

Support and positivity constraints Fienup [13] extended the GS algorithm by incor-
porating support, realness and positivity constraints on a.



1.2. LINEAR SYSTEMS THEORY FOR OPTICAL SYSTEMS AND RELATED INVERSE PROBLEMS

1

7

Smoothness In [14] phase retrieval is applied to the problem of Coherent Diffraction
Imaging (CDI), where the measured intensities are the squared amplitudes of the Fourier
transform of an image, which constitutes the pupil. The measurement noise affects the
estimates of the PSF in the image plane. The Oversampling Smoothness (OSS) algorithm
proposed in [14] operates on the assumption that the spatial frequencies as measured in
the image plane, vary smoothly over frequency. A spatial filter is used to incorporate this
knowledge.

Phase diversity and other linear constraints on the phase aberration In [15] linear
equality constraints on the phase are used to decrease the number of parameters to es-
timate. Phase diversity is a particular example of a linear constraint. To illustrate this,
consider the following example. If there are two images,

y1 Æ
¯
¯F ¡ 1a1

¯
¯2 , y2 Æ

¯
¯F ¡ 1a2

¯
¯2 (1.26)

and the phase in the pupil plane differs by a known amount, i.e. the diversity, we have
the optimization problem

find a1,a2

subject to y1 Æ
¯
¯F ¡ 1a1

¯
¯2 ,y2 Æ

¯
¯F ¡ 1a2

¯
¯2 .

\ a1 ¡ \ a2 Ævect
¡
Ád

¢

ja1j Æja2j ,

(1.27)

which, by introducing the proper variables, can be recasted into (1.24).
The use of phase diversity to obtain good estimates is a widely used and researched

technique [16–25].

Total-Variation Let r i be the matrix computing the discrete spatial gradient at pixel i
in the pupil plane. The discrete total variation regularization [26] is expressed through
the term X

i
kr i ai k1 . (1.28)

Regularization with this term produces estimates with reduced oscillations in the spatial
directions [27–29].

Sparsity The sparsity of a vector a refers to the case where many of the elements of this
vector equal 0. The number of non-zero elements of a vector a is called the cardinality,
denoted with kak0. This norm is non-convex, and the number of non-zero elements is
not always known a prior. Often the 1-norm, kak1, is used as a convex alternative to
induce sparsity in the solution [30]. Relating to phase retrieval, this prior information is
used in, among others, [31–38]

Small-phase approximation For small phase aberrations, the highly non-linear mea-
surement model can be approximated with a linear or quadratic model in the phase
aberration. This approximation can simplify and speed up the phase retrieval, as demon-
strated in for example [39–47].
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Known temporal model In [48] it is proposed to use the assumption that the temporal
evolution of the phase aberration is approximately constant, i.e.

ÁkÅ1 ÆÁk , (1.29)

where the subscript k denotes the time index, and that therefore the known difference
(phase diversity) between two successive aberrations is the correction applied by the
Adaptive Optics system.

1.2.4. IMAGE FORMATION
We make a distinction between two types of imaging, coherent imaging and incoherent
imaging, because the type of illumination, coherent or incoherent, determines how the
recorded image is formed. In both imaging cases the relation between input and output
can be described as a (spatial) linear system [1, Section 6.2], although for each illumina-
tion case in a different way.

COHERENT ILLUMINATION

In case of coherent illumination, the complex amplitude distribution in the object plane
go is related to the complex amplitude distribution in the image plane gi by a convolu-
tion with the amplitude impulse response h:

gi Ægo ? h, (1.30)

where ? denotes the convolution. Taking the (spatial, 2 dimensional) Fourier transform
on both sides, we obtain the linear relation between the Fourier transform of go and that
of gi through the amplitude transfer function H,

Gi ÆGo H, (1.31)

where Gi ÆF
©

gi
ª

and Go ÆF
©

go
ª
. The image as recorded by the camera in the image

plane is
i Æ

¯
¯gi

¯
¯2 Æ

¯
¯go ? h

¯
¯2 . (1.32)

Coherent imaging plays a role in for example Coherent Diffraction Imaging, ptychog-
raphy, long range horizontal imaging [49], or the imaging of metamaterials [50, 51].

INCOHERENT ILLUMINATION

In case of incoherent illumination, the intensity in the object plane f Æ
¯
¯go

¯
¯2 is related to

the intensity in the image plane i Æ
¯
¯gi

¯
¯2 by a convolution with the Point Spread Function

s Æjhj2:
i Æf ? s. (1.33)

Taking the (spatial, 2 dimensional) Fourier transform on both sides, we obtain the linear
relation between the Fourier transform of f and that of i through the Optical Transfer
Function (OTF) S,

I ÆFS, (1.34)

where I ÆF {i}, F ÆF {f} and S ÆF {s}.
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1.2.5. THE BLIND DECONVOLUTION PROBLEM
Where the phase retrieval problem was the estimation of the amplitude impulse re-
sponse or GPF from intensity measurements of the image of a point source, the (spatial)
blind deconvolution problem in the imaging context adds to this the estimation of the
object plane complex amplitude or object plane intensity. In an imaging setting, blind
deconvolution can be used for post-processing acquired images to increase the image
quality of the final estimates of an object. Another use for blind deconvolution is the
estimation of phase aberrations that distort the formed image on the camera, with the
purpose of compensating for these aberrations. The blind deconvolution problem in the
imaging context is a problem that in different contexts and applications is interpreted
differently. The first difference is the imaging case that is considered. That is, an image
formed with coherent, or with incoherent light.

For the coherent case this gives the problem

find h, go

subject to ic Æ
¯
¯go ? h

¯
¯2

go 2 M go

h 2 M h,

(1.35)

where M go and M h are sets describing the prior information on the variables.
With incoherent illumination the blind deconvolution problem is

find s, f

subject to ii Æf ? s

s ¸ 0, f ¸ 0

f 2 M f

s 2 M s,

(1.36)

and this is the deconvolution problem that is most often encountered in literature, for
the reason that most real-world images are taken in this setting.

Even though in (1.36) the Point Spread Function s can be abstracted to any blur-
ring function, in astronomy-related literature, the (incoherent) imaging case is often dis-
cussed in the context of phase aberrations. The blind deconvolution problem is then
[11, 52, 53]

find Á, h, f

subject to ii Æf ? jhj2

f ¸ 0

h ÆF ¡ 1 ©
Aexp

¡
j Á

¢ª

f 2 M f

Á 2 M Á.

(1.37)

The object f Æ
¯
¯go

¯
¯2 2 Rm£ m

Å is directly estimated (not go), being real and positive. The
PSF is constrained to represent a phase aberration. This formulation directly extends to
the blind deconvolution problem that includes phase diversity images as in Section 1.2.3,
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but even though the objects f are identical in the images, the relation between the differ-
ent Point Spread Functions is highly nonlinear.

PRIOR INFORMATION USED IN BLIND DECONVOLUTION

Many of the types of prior information used in the phase retrieval literature, see Sec-
tion 1.2.3, have been applied to the blind deconvolution problem as well. See also [54]
for a short overview of regularization applied to blind deconvolution.

Phase diversity If we view the literature from the point of imaging with possible phase
aberrations according to (1.37), then what is not always taken into account is the fact that
if the blurring is caused by a phase aberration, and we have multiple images of the same
object with a different phase diversity (multi-frame blind deconvolution), that there is
additional information on the relation between the several intensity impulse response
functions si . In [55] problem (1.37) this issue is addressed using an GS-like iterative
transform algorithm. In [21, 52, 53, 56, 57] the phase aberration is estimated using di-
versity images in a Bayesian setting and with a gradient descent algorithm, or from a
least squared error perspective [58]. [59] uses a parameter search.

Smoothness Prior information on the shape (smoothness) of s, based on astronomical
data, is used in [60]. [61] assumes piece-wise smoothness.

Sparsity and Total-Variation In order to recover sharp edges in an object, Total-Variation
regularization [62, 63] can be applied, potentially combined with sparsity [63].

Linear constraints [64] considers the case in astronomy where multiple objects are
imaged, with known (linear) relations between the phase (multi-frame blind deconvolu-
tion). For the use of translation diversity [24, 25], an object is placed at the aperture, and
their relative position is changed to obtain images for parts of the object. To combine
these images, a blind deconvolution problem can be formulated where the overlapping
parts of the to be estimated object are used as (linear) constraints in the optimization.

1.3. ADAPTIVE OPTICS
Given an aberrated phase ÁAB in the pupil plane, Adaptive Optics (AO) can be used to
compensate for this aberration and improve the imaging performance of the system [65–
67]. Typically use is made of sensors, that give a measurement (or estimate) of the phase,
and wavefront-modulating devices such as deformable mirrors, that influence the aber-
rated wavefront. We discuss the typical AO setup, sensors, actuators and the typical AO
control loop.

1.3.1. THE AO SETUP
In Figure 1.3 two AO setups are displayed. The first one, Figure 1.3a, shows an open-loop
setup. The wavefront sensor measures the aberrated phase directly, and the deformable
mirror compensates the measured aberration. The second setup, Figure 1.3b is a closed-
loop AO setup. The wavefront sensor measures the difference between the aberrated
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(a) Open loop.

(b) Closed loop.

Figure 1.3: Two different AO setups.

phase and the compensated phase. The actuator commands to the mirror are updated
to compensate for this residual on top of the previous aberration correction, thereby
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regulating the residual to zero.

1.3.2. SENSORS
PUPIL PLANE SENSORS

Pupil plane wavefront sensors attempt to measure the phase of the complex amplitude
distribution in a plane optically conjugated to the pupil plane, see Figure 1.3. One such
instrument is the Shack-Hartmann (SH) wavefront sensor [68]. The SH wavefront sensor
consists of a grid of lenslets, that each focus a part of the aperture onto a Charge-Coupled
Device (CCD) or Complementary Metal Oxide Semiconductor (CMOS) camera. If the
phase aberration as seen by the SH sensor ÁSH is zero, each section of the camera’s pixels
corresponding to a lenslet will have a focused spot in its center, see Figure 1.4. However,
if ÁSH 6Æ0, then the location of the geometric mean of pixel values in the sub-aperture
is indicative of the first order spatial gradient of the phase. If we have n2

s sub-apertures
arranged in a square grid, then we have the relation

ySH ÆGÁSH , (1.38)

where ySH 2 R2n2
s are the measured spatial derivatives (here assumed noise-free) and

G is the measurement matrix, whose size depends on the geometry of the sensor. The
phase aberration ÁSH as seen by the Shack-Hartmann sensor can be estimated from
the measured spatial derivatives or from the measured intensity distributions. However,
some phase aberrations cannot be measured (those in the null space of G) [68–71].

The linear relation between phase and measurement (1.38) enables efficient and nu-
merically stable modelling methods for the phase aberration temporal dynamics like
subspace identification [72, 73], or modelling with Vector Auto-Regressive (VAR) mod-
els.

The phase aberration as seen by the Shack-Hartmann sensor is on a different optical
path than the phase aberration that reaches the camera, see Figure 1.5. The differences
between these two phase aberration are called non-common path errors (NCP errors).
These NCP errors are encountered in for example astronomy [18–20] and ophthalmic
imaging [74–76].

FOCAL PLANE SENSORS

To overcome the control problem arising from non-common path errors, the measure-
ments from the focal plane camera can be used to generate a control signal. Where in
the case of a point source the relation between measurements and wavefront error are
linear for a Shack-Hartmann sensor (1.38), the relation between the measurements in
the focal plane and the wavefront error are highly non-linear, see (1.15) and (1.20).6

In [18, 19] this technique is used for calibration and removal of static aberrations in
the optical system of the Very Large Telescope (VLT). In [77] the technique is used for
coronagraphic imaging. [53] uses focal plane sensors to estimate aberration and object
jointly. A comparison in [6] shows experimental results for different phase retrieval tech-
niques that estimate the phase aberration from the focal plane camera.
6The comparison is not entirely on an equal footing here: the SH sensor produces an estimate of the aberration

that is defined by a resolution determined by the number of lenslets, whereas a focal plane sensor obtains
measurements determined by the number of pixels.
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Figure 1.4: The intensity pattern (‘spots’) in the detector plane of a Shack-Hartmann wavefront sensor gener-
ated by a flat wavefront.
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Figure 1.5: The classical AO setup follows the aberration correction along the green path. The additional aber-
ration marked in green is corrected by the mirror, but not seen by the focal plane camera. The additional
aberration in blue is seen by the camera, but not corrected by the mirror. A controller that uses the focal plane
camera and the blue path to compute the correction by the mirror does not suffer from this problem.
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These methods have in common that they employ the use of phase diversity to obtain
the correct estimate. An important difference between these methods is that [53] em-
ploys two cameras (on different optical paths) to generate the diversity image, whereas
[6, 18, 19, 77] use the deformable mirror in the AO system to introduce the diversity and
obtain the diversity images sequentially. The first method essentially gives the same
non-common path issue as with the SH sensor. The second method needs to assume
that the aberration is static.

Using a single focal plane sensor with the purpose of compensating dynamic aber-
rations is a topic that is seemingly not well researched, both for identification and (opti-
mal) control purposes.

1.3.3. ACTUATORS
In this thesis we only consider deformable mirrors as wavefront modulating devices. We
treat segmented mirrors of large astronomical telescopes and (small) deformable mir-
rors for optical bench setups in separate sections below, due to their size difference and
related control issues, even though they conceptually can be put under the same um-
brella.

DEFORMABLE MIRRORS

Deformable mirrors modulate the phase in the pupil plane through the introduced phase
ÁDM . In membrane mirrors a reflective membrane changes its shape, and therefore the
introduced phase, under the influence of actuator signals u 2 Rnu , where nu is the num-
ber of actuators of the mirror. This relationship is typically modeled using the mirror’s
influence matrix H 2 Rn2£ nu ,7 where we assume that ÁDM 2 Rn2

is sampled on a grid of
size n £ n,

ÁDM ÆHu. (1.39)

The matrix H can be obtained experimentally by ‘poking’ the actuators. That is, by actu-
ating the system using u Æenu

i for i Æ1, . . . ,nu , where eN
i is a unit vector of length N that

equals 1 on index i and 0 on the other indices. The measured phases then constitute
the columns of H . Another way to characterize the mirror is through its effect on the
measurements of the Shack-Hartmann sensor in a closed-loop setup,

ySH ÆH̃u. (1.40)

where H̃ 2 Rn2
s £ nu .

SEGMENTED MIRRORS

The use of large mirrors in astronomical telescopes brings with it the problem that fab-
rication of these large mirrors with the required precision is either currently not possible
or prohibitively expensive. The solution for this problem is to construct mirrors that
consist of segments. For example the Keck telescope, the Thirty Meter Telescope (TMT)
and the European Extremely Large Telescope (E-ELT) have or will have segmented pri-
mary mirrors. All three consist of grids of hexagonal mirror segments, each of which has

7We assume the sampling time of the system is such, that the mirror can be regarded to behave in a static
manner and not in a dynamic one.
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Figure 1.6: An illustration of a two-ring segmented mirror with 18 hexagonal elements, capacitance-based edge
sensors measuring relative displacement and actuators on the back of the segments controlling piston, tip and
tilt. Adapted from [79, 80].

edge sensors to measure the relative displacement with respect to neighbouring seg-
ments and three actuators to control the segment’s position. The segmented mirror can
be considered to introduce a phase ÁSM into the system that is linearly related to the
(overall) mirror shape [78].

If a static relation is assumed between the actuator displacements ua and the edge
sensor readings ye , the relation between the two [81, 82] is

ye ÆJua , (1.41)

where J is the influence matrix.
The segments are mounted on a supporting structure. If the supporting structure

causes the segments to dynamically interact (and (1.41) does not hold), we can describe
the system (disregarding disturbances) using a dynamic model [82],

M ẍ Å V ẋ Å K x ÆBu,

ye ÆGe x,
(1.42)

where M is the mass matrix, V the damping matrix and K contains the spring constants.
B is the input matrix, x the system state and u the vector of actuator displacements. The
matrix Ge describes the relation between system states and measurements.

1.3.4. THE CONTROL LOOP
This description of the control loop follows [83, 84] and is a description of the temporal
modelling of the system as displayed Figure 1.3b.
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The Shack-Hartmann measurement that is available to the controller at time k, de-
noted as ySH

k , is dependent on the phase aberration at the sensor at time k ¡ 1,

ySH
k ÆGÁSH

k¡ 1 Å wk , (1.43)

where G is the measurement matrix, wk » N (0,§ w ) is the Gaussian measurement noise
with zero mean and covariance § w at time k and ÁSH 2 Rn2

is the (vectorized) phase
aberration at the sensor. The phase introduced by the deformable mirror at time k de-
pends on the input signals as sent to the mirror at time k ¡ 1,

ÁDM
k ÆHuk¡ 1. (1.44)

This means that the estimate ŷk jk¡ 1 (i.e. the estimate for time k, dependent on informa-
tion available on time k ¡ 1) is given by

ŷSH
k jk¡ 1 ÆGÁ̂AB

k jk¡ 1 ¡ G Huk¡ 2. (1.45)

MODELING OF AN AO SYSTEM WITH A DYNAMIC PHASE ABERRATION

For simplicity, assume we have a dynamic model of the aberration available in the form
of a Vector Auto-Regressive model of order 2 (VAR(2)):

ÁAB
kÅ1 ÆA1ÁAB

k Å A2ÁAB
k¡ 1 Å vk , (1.46)

where vk » N (0,§ v ) is white Gaussian noise driving the time evolution of the aberration
and A1, A2 2 Rn2£ n2

are coefficient matrices.8 Define the state vector

xk Æ
³
ÁAB

k
T

ÁAB
k¡ 1

T uT
k¡ 1 uT

k¡ 2

´T
. (1.47)

In closed loop we have the relation

ÁSH
k ÆÁAB

k ¡ ÁDM
k , (1.48)

and so the state-space system becomes [83, 84]

xkÅ1 ÆAxk Å Buuk Å Bv vk

ySH
k ÆC xk Å Dw wk

(1.49)

where

A Æ

0

B
B
@

A1 A2 0 0
I 0 0 0
0 0 0 0
0 0 I 0

1

C
C
A, Bu Æ

0

B
B
@

0
0
H
0

1

C
C
A, Bv Æ

0

B
B
@

I
0
0
0

1

C
C
A, C ÆG

¡
0 I 0 ¡ H

¢
, Dw ÆI . (1.50)

Other models for the time evolution dynamics of the phase aberration are for example
(see [84]) a simple random walk process (integrator), ÁAB

kÅ1 ÆÁAB
k Å vk , identified models

[72, 85–88], or models based on first-principles modeling [83, 84].

8Alternatively, the time evolution of a (small) limited set of Zernike coefficients (Section 1.2.2) can be used as
a temporal model, to reduce the size of the coefficient matrices A1 and A2



1

18 1. INTRODUCTION

Using Linear Quadratic Gaussian (LQG) control, the phase can be optimally com-
pensated by the mirror. If Á̂AB

kÅ1jk is the optimal estimate of the phase aberration at the
next time step, then the LQG control input is

uk ÆHÅÁ̂AB
kÅ1jk , (1.51)

where HÅ is the pseudo-inverse of H [84].

ADVANTAGES AND DISADVANTAGES OF THE CLASSICAL AO SETUP

The use of a classical AO setup has several advantages:

• The measurement of the phase derivatives with a SH sensor and the construction
of the phase estimate can be done quickly.

• The determination of the appropriate actuator commands is, in the simplest case,
a matrix-vector multiplication [89]. In the dynamic case, as demonstrated in the
previous subsection, optimal control can be applied to compensate the aberra-
tion.

• The use of a Shack-Hartmann sensor with a large grid of subapertures can give an
accurate reconstruction of the phase [71].

There are also some inherent downsides to the classical setup:

• The light that enters the system is divided by the beam splitter over two optical
paths. If the light source is weak, this will negatively affect the signal-to-noise ratio
at the camera.

• The Shack-Hartmann sensor is used to estimate the phase aberration as it reaches
the SH sensor, but this might be different from the aberration that reaches the
camera. This is encountered in for example astronomy [19, 20, 22, 23, 58, 90] and
opthalmology [76].

As described in Section 1.3.2, the use of focal plane sensors, extracting the aberration
from the focal plane camera itself, can mitigate these problem at the cost of an increased
computational complexity. For an analysis of the computational problems and existing
solutions, we review in the next two section phase retrieval algorithms (extracting the
phase aberration from an image of a point source) and blind deconvolution algorithms
(extracting the phase aberration from an image of an extended object).

1.4. AN OVERVIEW OF PHASE RETRIEVAL ALGORITHMS
Due to the importance of the phase retrieval problem, there exist a number of review
articles that give an overview of the different algorithms that have been developed to
solve the phase retrieval problem [7, 8, 35, 91, 92]. We treat here two main categories.
The first category is that of iterative transform (or iterative projection) methods. These
were the first to be developed and are widely used in practice. The second category is
that of convex optimization based algorithms, because they are relevant to the methods
proposed in this thesis. After we set out these two categories, we briefly touch on other
approaches.
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1.4.1. ITERATIVE, FOURIER TRANSFORM-BASED METHODS
Many of the most popular methods for general phase retrieval fall into the category
of iterative transform methods, whose most well known members are the Gerchberg-
Saxton (GS) algorithm [12] and Fienup’s Hybrid Input-Output (HIO) algorithm [13, 93].

In [8] a very clear overview is given to show the difference between many of the pop-
ular algorithms in this class. Therefore we will follow the presentation in [8] to briefly set
out the main algorithms. To simplify the presentation we assume there is one image and
no diversity. Furthermore, a and h are vectorized. a(x) is defined on a support set D . The
corresponding problem is

find a

subject to y Æ
¯
¯F ¡ 1a

¯
¯2 .

(1.52)

The algorithms make use of projection and reflection operations, which is why this
class of algorithms is also often denoted as that of alternating projection algorithms.

Let PC denote the projection operator of a signal onto a set C . The reflector RC is
defined as

RC Æ2PC ¡ I , (1.53)

where I is the identity map,
x0ÆI (x) Æx. (1.54)

The magnitude constraint projection Py is the projection

Py(a) ÆF h, where h Æ

( p
y F ¡ 1a

jF ¡ 1aj if F ¡ 1a 6Æ0,
p

y otherwise.
(1.55)

The support constraint projection PD is the projection

PD (a(x)) Æ

(
a(x) if x 2 D ,
0 otherwise.

(1.56)

If a(x) is assumed real and nonnegative, and nonnegativity constraints are also incorpo-
rated, the projection is

PÅ(a(x)) Æ

(
max(0,a(x)) if x 2 D ,
0 otherwise.

(1.57)

Fienup’s HIO algorithm [13] consists of the updates

akÅ1 Æ

(
Py(ak (x)) if x 2 D and Py(ak (x)) ¸ 0
ak (x) ¡ ¯ k Py(ak (x)) otherwise.

(1.58)

Here ¯ k is a tuning parameter. In [94] it is shown that with only support constraints,
(1.58) is equivalent to

akÅ1 Æ
1
2

¡
RD (Ry Å (¯ k ¡ 1)Py) Å I Å (1 ¡ ¯ k )Py

¢
(ak ), (1.59)
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The Difference Map algorithm [95] consists of the update

akÅ1 Æ
¡
I Å ¯

¡
PÅP1 ¡ PyP2

¢¢
(ak ),

P1 Æ(1 Å ° 1)Py ¡ ° 1I

P2 Æ(1 Å ° 2)PÅ ¡ ° 2I

(1.60)

The Relaxed Averaged Alternating Reflections (RAAR) algorithm [96] consists of the
update

akÅ1 Æ
µ

1
2

¯ (RÅRy Å I ) Å (1 ¡ ¯ )Py

¶
(ak ) (1.61)

The Gerchberg-Saxton algorithm [12] considers a slightly different case relating to
(1.52), because it assumes the presence of the additional constraint

z Æjaj2 , (1.62)

but not any support or nonnegativity constraints. If Pz is the projection

Pz(a) Æ

( p
z a

jaj if a 6Æ0,
p

z otherwise.
, (1.63)

then the GS algorithm is the update sequence

akÅ1 Æ(PzPy)(ak ). (1.64)

For iterative transform methods a global convergence result does not exist, only local
convergence results [97]. Advantages are that the Fourier transforms can be efficiently
carried out using the Fast Fourier Transform (FFT) algorithm, and projections such as
(1.55) can be applied with element-wise operations.

1.4.2. CONVEX OPTIMIZATION-BASED RETRIEVAL METHODS
A different category of phase retrieval algorithms are based on convex relaxations of
(1.18). These relaxation-based methods have enjoyed great attention in the last few
years; the overview articles [7, 98] compare a number of approaches.

Notice that (1.18), when described in row-by-row fashion, reads

y[i ] Æ
¯
¯U[i ,:]a

¯
¯2 , i Æ1, . . . ,ny . (1.65)

The square brackets indicate the element index and the colon indicates all elements
along that dimension. (1.65) can be reformulated as follows:

y[i ] Æ
¯
¯U[i ,:]a

¯
¯2

Æ(U[i ,:]a)H (U[i ,:]a)

Ætrace
³
(aHU H

[i ,:])(U[i ,:]a)
´

Ætrace
³
U H

[i ,:]U[i ,:]aaH
´

Ætrace(Ui A) ,

(1.66)
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where ¢H is the Hermitian transpose, Ui ÆU H
[i ,:]U[i ,:], A ÆaaH 2 Cna £ na , and na are the

number of coefficients in a. The principle of defining the symmetric positive definite
rank-1 matrix A and viewing the quadratic measurements as linear measurements in a
higher dimension, is called ‘lifting’ and is the basis of the well-known PhaseLift algo-
rithm [99].

The exact reformulation of problem (1.18) is then

find A

subject to y[i ] Ætrace(Ui A) , i Æ1, . . . ,ny ,

rank(A) Æ1

A º 0

(1.67)

where ny is the number of measurements
The PhaseLift algorithm consists of two steps. The first step is to solve the semidefi-

nite relaxation of (1.67) to obtain A0:

A02 argmin
A

trace(A)

subject to y[i ] Ætrace(Ui A) , i Æ1, . . . ,ny ,

A º 0.

(1.68)

The second step is to take the resulting optimal A0and find the vector a0by solving

a02 argmin
a

°
° aaH ¡ A0°° 2

F , (1.69)

which can be computed with an eigendecomposition or singular value decomposition
(SVD) of A0.

The PhaseCut algorithm [100, 101] is based on a different convex relaxation of (1.18)
and itself based on the approach in [102]. The starting point is to split the amplitude and
phase components v 2 Cny , and reformulate the optimization problem to

min
a,v

°
°U a ¡ d

¡p
y
¢

v
°
° 2

2

subject to jv j Æ1ny

(1.70)

Given an optimal v , the optimal a can be found by solving the ordinary least squares
problem, a ÆU † d

¡p
y
¢

v . Substituting this into (1.70), one obtains

min
a,v

°
°
° (UU † ¡ I )d

¡p
y
¢

v
°
°
°

2

2

subject to jv j Æ1ny

(1.71)

The objective function is written into a quadratic form to obtain

v H N v, (1.72)
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where N Æ((UU † ¡ I )d
¡p

y
¢
)H ((UU † ¡ I )d

¡p
y
¢
). Similar to PhaseLift, define V Æv v H 2

Cny £ ny . The optimization problem then becomes

min
V

trace(V N )

subject to bd(V ) Æ1ny ,

V º 0,

rank(V ) Æ1,

(1.73)

where bd(V ) are the values on the diagonal of V .
The convex relaxation of (1.18) for PhaseCut is the problem

min
V

trace(V N )

subject to bd(V ) Æ1ny ,

V º 0

(1.74)

The optimal v is recovered from V in a similar manner to PhaseLift.
The PhaseLift and PhaseCut algorithms share the trait that a vector in a quadratic

expression is ‘lifted’ to a full matrix. The advantage of doing this, is that it gets rid of
a product of decision variables and is therefore a crucial step towards the convex re-
laxation of the phase retrieval problem. The trade-off is that the lifting returns a rank
constraint. This rank constraint is then dropped and traded-in for a low-rank inducing
convex objective function. There are also a number of disadvantages to this lifting ap-
proach. The first is quadratic increase in the number of decision variables, which affects
storage requirements [103] and algorithm runtime (the problem becomes a Semidefinite
Programming problem (SDP), [104]). The second is the difficulty it brings to including
prior information on the (original) decision variable into the problem, since this deci-
sion variable itself has been substituted.

In case of PhaseLift, to avoid the increase in decision variables, it is proposed in [99]
to keep the matrix A factored into A ÆaaH or a higher rank factorization, and iteratively
update the factors, see also [103]. In this way, the algorithm is somewhat connected
to the GS algorithm. Fienup showed in [13] how the iterative projection algorithm is
related to a basic gradient descent scheme. In [105] it is shown how the factored form of
PhaseLift is connected to a regularized gradient descent scheme.

The recently proposed PhaseMax convex relaxation [106–108] avoids this lifting and
changes the nonconvex equality constraint into a convex inequality constraint,

max
a

aT
inita

subject to
p

y ¸ jU aj ,
(1.75)

where ainit is an initial guess and the inequality holds element-wise. The PhaseLamp
algorithm [109] is an iterative application of PhaseMax.

An important aspect of the convex methods listed here is the presence of the results
in literature on recovery guarantees. That is, the circumstances under which the method
recovers the correct solution with high probability. The common assumption in these
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proofs is that the rows of the matrix U are random Gaussian vectors.9 Since this as-
sumption does not necessarily hold for the imaging case we study, we do not treat this
here. Instead we refer to several articles where these algorithm properties are developed
and compared [98–100, 111–114].

1.4.3. OTHER PHASE RETRIEVAL METHODS
A third common approach is to formulate a cost (or loss) function, and to minimize this
cost function with a gradient-descent-based method. In phase retrieval the cost func-
tions are usually highly nonlinear, and convergence to a global minimum usually can-
not be guaranteed. With careful initialization, and under specific circumstances, some
convergence can be guaranteed, as described in literature on Wirtinger flow algorithms
[111, 115–118]. Given the cost function

f (a) Æ
°
° y ¡ jU aj2

°
° 2

2 , (1.76)

these algorithms make use of the Wirtinger derivative of the cost function [111, 115] with
respect to the complex-valued vector a,

@f (a)
@a

Æ4
nyX

iÆ1
(yi ¡

¯
¯U[i ,:]a

¯
¯2)(U H

[i ,:]U[i ,:])a. (1.77)

This derivative can be expressed in matrix-vector notation as

@f (a)
@a

Æ4U H ª ny

³
U a  Iny

´ ¡
jU aj2 ¡ y

¢
(1.78)

where ª ny is the selection matrix [119] such that for a matrix X of size ny £ ny it holds
that

ª ny vect(X ) Æbd(X ) , (1.79)

the vector of values on the diagonal of X , and  denotes the Kronecker product.
A different approach is to directly optimize the actuator input values or the aber-

rated phase based on an image-based metric [75, 120–122]. This technique is common
in sensorless Adaptive Optics.

Recently, also neural network-based approaches have been proposed for phase re-
trieval [123–125].

1.5. AN OVERVIEW OF BLIND DECONVOLUTION ALGORITHMS
We make two distinctions when it comes to blind deconvolution algorithms. The first is
whether the algorithm applies to the coherent or incoherent case in Section 1.2.5. The
second is whether the algorithm is based on convex optimization or on non-convex op-
timization.

9In recent work the results are slightly extended [110].
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1.5.1. NON-CONVEX OPTIMIZATION FOR THE INCOHERENT CASE
In the incoherent case, we have measurements formed according to

ii Æs ? f, where s Æjhj2 , f Æ
¯
¯go

¯
¯2 , (1.80)

where f is the object and s the squared amplitude of the amplitude impulse response.
The Fourier transform of this expression reads

Ii ÆSF. (1.81)

If s is known, Richardson [126] and Lucy [127] independently proposed the algorithm
that is referred to as the Richardson-Lucy algorithm to deconvolve the object from the
measurements with the following iteration:

fkÅ1(u) Æ
µ

ii(u)
fk (u) ? s(u)

? s(¡ u)
¶

fk ÆPs(fk (u)) :ÆPs(fk ). (1.82)

If not s but f is known, the expression is similar and denoted Pf(sk ). If s is unknown, so
in the case of blind deconvolution, the iterations can simply be alternated [128],

fkÅ1 ÆP m
sk

(fk ) ÆPsk ¢¢¢Psk| {z }
m times

(fk )

skÅ1 ÆP m
fkÅ1

(sk )
(1.83)

where m denotes the number of repeated iterations. The algorithms enjoys popularity
for both deconvolution and blind deconvolution, see for example [129–132].

Other methods adapts the Gerchberg-Saxton/Fienup algorithm to the blind decon-
volution problem [133–135], by iteratively applying the image plain constraints that s
and f are real and positive functions, and the pupil constraint (1.80).

The blind deconvolution problem is also often addressed in a (post-processing) Bayesian
framework, maximizing the Maximum Likelihood (ML) or the Maximum a posteriori
(MAP) probability density. See [136] for an overview of Bayesian methods. Applications
include microscopy [137] and astronomy [21, 60].

1.5.2. CONVEX OPTIMIZATION FOR THE INCOHERENT CASE
In the last few years a new method has been developed for blind deconvolution in the
incoherent case, based on a convex relaxation of the problem [138, 139]. This convex
relaxation approach is close in nature to the PhaseLift algorithm [99], because it relies
on ‘lifting’ of decision variables.

In the discrete convolution case, notice that the measurement ii is a summation of
products of elements in s and f. Let īi, s̄ and f̄ denote the vectorized variables. Then there
exists a selection matrix U such that

ii Æs ? f , īi ÆU vect
¡
s̄f̄T ¢

(1.84)

Now let U[i ,:] denote the i ’th row of U and let A Æs̄f̄T . The i ’th row (1.84) now reads

ii,[i ] ÆU[i ,:] vect(A) Ætrace(Ui A) , (1.85)
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where vect
¡
UT

i

¢
ÆU T

[i ,:]. It means that the blind deconvolution problem for the incoher-
ent case can equivalently be written as

find A

subject to ii,[i ] Ætrace(Ui A) , i Æ1, . . . ,ny

rank(A) Æ1.

(1.86)

To obtain the convex relaxation of this problem, the rank constraint is dropped and the
objective function becomes the nuclear norm of A,

min
A

kAk¤

subject to ii,[i ,:] Ætrace(Ui A) , i Æ1, . . . ,ny .
(1.87)

The nuclear norm of a matrix is defined as the sum of its singular values,

kX k¤ Æ
X

i
¾i (X ). (1.88)

The minimization of the nuclear norm of a matrix promotes low-rank solutions [140].
Based on this formulation, research has been done on how to incorporate prior in-

formation like sparsity [36, 37, 141], the demixing of sums of convolutions (idem), con-
ditions that give recovery guarantees [138, 139, 142, 143], and techniques to improve the
computational complexity [144].

1.5.3. NON-CONVEX OPTIMIZATION FOR THE COHERENT CASE
The blind deconvolution problem for the coherent case is expressed as

find h, gi , go

subject to yc Æ
¯
¯gi

¯
¯2

gi Æh ? go

(1.89)

The equivalent problem in the Fourier domain is

find H, Gi , Go

subject to Yc ÆGi F Gi

Gi ÆHGo ,

(1.90)

where F denotes the autocorrelation. In [24, 25] the estimation of wavefront errors in
CDI is analyzed and the authors choose to minimize a weighted least squared error met-
ric with a gradient descent scheme. [145] compares the performance of several gradient
descent schemes (first and second order schemes on amplitude and intensity based er-
ror metrics) showing superior robustness to noise for amplitude based metrics. Refine-
ment of a guessed object and wavefront aberration in a Maximum Likelihood context
can be found in [146]. One important aspect in these refinement schemes is the initial
guess, which [147] suggests could be provided using Machine Learning.
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In [148, 149] the extended Ptychographical Iterative Engine (ePIE) is proposed, an
iterative transform algorithm for ptychography. The algorithm makes use of multiple
images with shifted pupils, but for the sake of simplicity, we do not discuss that here.

Let Gi ÆHGo , and define the functions

Py(Gi ) ÆF gi , where gi Æ

( p
y F ¡ 1gi

jF ¡ 1gi j
if F ¡ 1gi 6Æ0,

p
y otherwise.

(1.91)

PH(Gi ) Æ
HH

jHj2max
Gi

PGo (Gi ) Æ
GH

o

jGo j2max
Gi

(1.92)

The ePIE algorithm consists of the alternating updates of H and Go :

Gi ,kÅ1 ÆHk Go ,k

HkÅ1 ÆHk Å ®PGo ,k ((Pyc ¡ I )(Gi ,kÅ1))

Æ(I Å ®PGo ,k (Pyc ¡ I )Go ,k )Hk

Go ,kÅ1 ÆGo ,k Å ¯ PHk ((Pyc ¡ I )(Gi ,kÅ1)),

Æ(I Å ¯ PHk ((Pyc ¡ I )Hk )Go ,k

(1.93)

for some choice of parameters ® and ¯ .

1.6. MOTIVATION AND OUTLINE OF THIS THESIS
1.6.1. MOTIVATION
The motivation for the research in this thesis comes from the gaps we identify in the
current literature on phase retrieval, blind deconvolution and their relation to the system
and control setting for Adaptive Optics. Convex methods have shown their success in
solving the phase retrieval problem and the incoherent blind deconvolution problem,
but have some limitations.

1. Not all forms of prior information are easily included due to the ‘lifting’ these
methods typically employ.

2. The lifting of these variables creates optimization problems of a high computa-
tional complexity.

3. Among the convex methods, no convex optimization algorithm seems to exist for
coherent blind deconvolution.

4. Among convex methods for either case of illumination, phase diversity is not em-
ployed as prior information in the deconvolution problem.

5. Generally, the time evolution of the phase aberration in phase retrieval is under-
utilized as a form of prior information.
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The aim of the research in this thesis is to develop convex optimization-based meth-
ods that are able to address these issues, investigate their performance and convergence
properties and where possible, verify their performance on experimental measurement
data.

1.6.2. OUTLINE
This thesis is organized as follows.

COPR Chapter 2 we present a novel convex optimization-based method for the phase
retrieval problem. The convex relaxation does not require ‘lifting’ and is affine the deci-
sion variables. This enables the easy inclusion of prior information. Since the relaxation
is parameterized, we also suggest an iterative algorithm with acronym COPR (Convex
Optimization-based Phase Retrieval) with some results on convergence properties for
specific cases. We present two different approaches to reduce the computational bur-
den. First, we use Gaussian Radial Basis Functions (GRBFs) to parameterize the pupil
function. Secondly, we provide a tailored ADMM algorithm to solve the relaxed problem
in an efficient way. The Alternating Direction Method of Multipliers (ADMM) algorithm
requires per iteration only parallelized Singular Value Decompositions (SVDs) of 2 £ 2
matrices, and a matrix vector multiplication.

This chapter is based on “Reinier Doelman, Nguyen H. Thao and Michel Verhae-
gen, Solving large-scale general phase retrieval problems via a sequence of convex relax-
ations. Journal of the Optical Society of America A 35(8), pp. 1410–1419. OSA (2018)"

A phase-evolution-dynamics-set prior In Chapter 3 we propose a convex relaxation-
based method for a problem with two different interpretations. The first interpretation
of the problem is a phase retrieval problem for a time series of images, where the phase
changes dynamically over time. The novel idea is to regularize the phase retrieval prob-
lem with prior information that the phase change according to a dynamic model (a VAR
model of specified order), but the model itself is unknown.10 The novel constraint is a
bilinear constraint, and the proposed method easily extends to other prior information
that can be formulated as bilinear constraints. A final novel aspect of our method is that
– in the context of phase retrieval – most images in a sequence can be taken in-focus,
and phase diversity does not seem to be necessary at all time instances in our numerical
simulation for successful retrieval results, thereby solving the non-common-path error
problem.

The second interpretation of the problem is that of blind Wiener system identifica-
tion with squared output measurements. The proposed solution for these system iden-
tification problems is to solve a convex relaxation of the problem, if necessary in an it-
erative manner. Compared to existing literature on blind Wiener system identification,
which use Bayesian methods, our method does not seem to require a careful initializa-
tion.

This chapter is based on “Reinier Doelman, Måns Klingspor, Anders Hansson, Jo-
han Löfberg and Michel Verhaegen, Identification of the dynamics of time-varying phase

10If the model were known, the constraint would be a linear constraint, see Section 1.2.3 and 1.2.5.
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aberrations from time histories of the point-spread function. In preparation, 2019"

Convex optimization based blind deconvolution for images taken with coherent light
Chapter 4 proposes a convex relaxation of the blind deconvolution problem for the imag-
ing setting with coherent illumination. The application of convex relaxation for this set-
ting seems to be novel. The method enjoys easy extension to the incoherent case, and
incorporation of many different types of prior information. Compared to other convex
relaxation-based algorithms for blind deconvolution, our method is novel with regard
to keeping the pupil function parameterized (or amplitude transfer function), and not
lifting its squared amplitude, the intensity impulse response function. This allows the
application of phase diversity to the blind deconvolution problem, which is novel for
convex-optimization based blind deconvolution in any setting. Similar to the COPR al-
gorithm, the computation of the solution to the convex relaxation can be split into com-
pletely parallelized SVDs and the solutions to ordinary least squares problems.

This chapter is based on “Reinier Doelman and Michel Verhaegen, Convex optimization-
based blind deconvolution for images taken with coherent illumination. Submitted to
Journal of the Optical Society of America A, 2018."

Distributed wind-load compensation for segmented mirror telescopes The large, seg-
mented primary mirrors in ground-based telescopes suffer from dynamic disturbances
due to for example the wind loading and the vibrations introduced by other equipment.
The difficulty in rejecting these disturbances is partly due to the dynamic coupling the
segments have, introduced by the flexibility in the support structure on which the seg-
ments are mounted, and the spatial correlation in the wind loading. From a system
engineering point-of-view it would be desirable to have a distributed controller, where
each segment has its own controller, and the controllers communicate with each other.
In Chapter 5 we ask the question how the controllers could best be interconnected to
achieve the required performance of the overall system, a question that current litera-
ture on control for segmented mirrors has not answered yet.

This chapter is based on “Reinier Doelman, Sander Dominicus, Renaud Bastaits and
Michel Verhaegen, Systematically structured H 2 optimal control for truss-supported
segmented mirrors. IEEE Transactions on Control Systems Technology 99, pp. 1–8. IEEE
2018."
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2
SOLVING LARGE-SCALE GENERAL

PHASE RETRIEVAL PROBLEMS VIA A

SEQUENCE OF CONVEX

RELAXATIONS

We present a convex relaxation-based algorithm for large-scale general phase retrieval
problems. General phase retrieval problems include i.a. the estimation of the phase of
the optical field in the pupil plane based on intensity measurements of a point source
recorded in the image (focal) plane. The non-convex problem of finding the complex field
that generates the correct intensity is reformulated into a rank constraint problem. The
nuclear norm is used to obtain the convex relaxation of the phase retrieval problem. A
new iterative method, indicated as Convex Optimization-based Phase Retrieval (COPR),
is presented, with each iteration consisting of solving a convex problem. In the noise-free
case and for a class of phase retrieval problems the solutions of the minimization problems
converge linearly or faster towards a correct solution. Since the solutions to nuclear norm
minimization problems can be computed using semidefinite programming, and this tends
to be an expensive optimization in terms of scalability, we provide a fast Alternating Di-
rection Method of Multipliers (ADMM) algorithm that exploits the problem structure. The
performance of the COPR algorithm is demonstrated in a realistic numerical simulation
study, demonstrating its improvements in reliability and speed with respect to state-of-
the-art methods. Furthermore, COPR is tested on experimental measurements.

Parts of this chapter have been published in Reinier Doelman, Nguyen H. Thao, and Michel Verhaegen, "Solv-
ing large-scale general phase retrieval problems via a sequence of convex relaxations," J. Opt. Soc. Am. A 35,
1410-1419 (2018), [1].
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2.1. INTRODUCTION
Recovery of a signal from several measured intensity patterns, also known as the phase
retrieval problem, is of great interest in optics and imaging. Recently it was shown in
[2] that the problem of estimating the wavefront aberration from measurements of the
Point Spread Functions can be formulated as a phase retrieval problem.

In this paper, we consider the general phase retrieval problem [3]:

find a 2 Cna such that yi Æ juH
i aj2 for i Æ1, . . . ,ny ,

where yi 2 RÅ and ui 2 Cna are known and (¢)H denotes the Hermitian transpose of a
vector (matrix). For brevity the following compact notation will be used in this paper to
denote this general noise-free phase retrieval problem:

find a 2 Cna such that y Æ jU aj2, (2.1)

where y 2 R
ny
Å are the measurements and U 2 Cny £ na is the propagation matrix. With

noise on the measurements yi , we consider the following related optimization problem:

min
a2Cna

°
° y ¡ jU aj2

°
° , (2.2)

where k¢k denotes a vector norm of interest.
The sparse variant of the phase retrieval problem corresponds to the case that the

unknown parameter a is a sparse vector. A special case of this problem is when the
measurements are the magnitude of the Fourier transform of multiples of a with cer-
tain phase diversity patterns. A number of algorithms utilizing the Fourier transform
have been proposed for solving this class of phase retrieval problems [4–6].

The fundamental nature of (2.1) has given rise to a wide variety of solution methods
that have been developed for specific variants of this problem since the observation of
Sayre in 1952 that phase information of a scattered wave may be recovered from the
recorded intensity patterns at and between Bragg peaks of a diffracted wave [7]. Direct
methods [8] usually use insights about the crystallographic structure and randomization
to search for the missing phase information. The requirement of such a-priori structural
information and the expensive computational complexity often limit the application of
these methods in practice.

A second class of methods first devised by Gerchberg and Saxton [9] and Fienup [4]
can be described as variants of the method of alternating projections on certain sets
defined by the constraints. For an overview of these methods and latter refinements we
refer the reader to [5, 10].

In [11] (2.1) is relaxed to a convex optimization problem. The inclusion of the spar-
sity constraint in the same framework of convex relaxations has been considered in [12].
However, as reported in [6] the combination of matrix lifting and Semidefite Program-
ming (SDP) makes this method not suitable for large-scale problems. To deal with large-
scale problems, the authors of [6] have proposed an iterative solution method, called
GESPAR, which appears to yield promising recovery of very sparse signals. However, this
method consists of a heuristic search for the support of a in combination with a variant
of Gauss-Newton method, whose computational complexity is often expensive. These
algorithmic features are potential drawbacks of GESPAR.
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In this paper, we propose a sequence of convex relaxations for the phase retrieval
problem in (2.1). Contrary to existing convex relaxation schemes such as those proposed
in [11, 12], matrix lifting is not required in our strategy. The obtained convex problems
are affine in the unknown parameter vector a. Contrary to [13], our strategy does not re-
quire the tuning of regularization parameters when the measurements are corrupted by
noise. We then present an algorithm based on the Alternating Direction Method of Mul-
tipliers (ADMM) that can solve the resulting optimization problems effectively. This po-
tentially addresses the restriction of current SDP-based methods to only relatively small-
scale problems.

In Section 2.2 we formulate the estimation problem of our interest for both zonal and
modal forms. In Section 2.3 we propose an algorithm for solving this problem. The algo-
rithm is based on iteratively minimizing a nuclear norm. The nuclear norm of a matrix
is the sum of its singular values. Its benefit in optimization is that it is used as a con-
vex relaxation to the rank function [14]. The convexity enables direct use of standard
software libraries for solving convex optimization problems. However, since it is a com-
putationally heavy minimization problem, we suggest an ADMM-based algorithm based
on [15] in Section 2.4 that exploits the problem structure and is therefore more efficient
in practical cases. This ADMM algorithm features two minimization problems whose so-
lutions can be computed exactly and with complexity O

¡
ny na

¢
, where ny is the number

of measurements and na is the number of unknown variables. To find these solutions
either a least-squares problem has to be solved or the Singular Value Decompositionss
of 2 £ 2 matrices have to be computed. Analytic solutions for the ADMM algorithm up-
date steps will be presented in Subsections 2.4.1 and 2.4.2. The convergence behaviour
of the algorithm proposed in Section 2.3 is analyzed in Section 2.5. Compared to the
other sections, the mathematical analysis in this section is more involved, which is often
the case for convergence analyses. In Section 2.6 we describe and discuss the results of a
number of numerical experiments that demonstrate the promising performances of our
algorithms. In Section 2.7 we test COPR on experimental measurements. We end with
concluding remarks in Section 2.8.

2.2. WAVEFRONT ESTIMATION FROM INTENSITY MEASUREMENTS
The problem of phase retrieval from the Point Spread Function images can be approached
from 2 directions. We take the opportunity to present them in a unified way. We first de-
scribe the problem in zonal form, and then in modal form. The modal form approach
used in this paper seems less popular than the zonal form one.

2.2.1. PROBLEM FORMULATION IN ZONAL FORM
In [2] it was shown that reconstructing the wavefront from Charge-Coupled Device (CCD)
recorded images of a point source may also be formulated as a phase retrieval prob-
lem. These recorded images are called Point Spread Functions (PSFs). As such ap-
proaches avoid the requirement of extra hardware to sense the wavefront, such as a
Shack-Hartmann wavefront sensor, the problem is relevant and summarized here.

The PSF is derived from the magnitude of the Fourier transform of the Generalized
Pupil Function (GPF). For an aberrated optical system the GPF is defined as the complex
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valued function [16]:
P (½,µ) ÆA(½,µ)e j Á(½,µ), (2.3)

where ½(radius) and µ (angle) specify the normalized polar coordinates in the exit pupil
plane of the optical system. In (2.3), A(½,µ) is the amplitude apodisation function and
Á(½,µ) is the phase aberration function.

The aim of the wavefront reconstruction problem is to estimate Á(½,µ). Once this
phase aberration of an optical system has been estimated, it can be corrected by using
phase modulating devices such as deformable mirrors.

In order to estimate Á(½,µ), a known phase diversity pattern Ád (½,µ) can be intro-
duced (e.g., by using a deformable mirror) to transform the GPF in a controlled manner
into the aberrated GPF:

P d (½,µ) ÆA(½,µ)e j Á(½,µ)e j Ád (½,µ). (2.4)

The noise-free intensity pattern of P d (½,µ) measured at the image plane is denoted

yd Æ
¯
¯
¯F ¡ 1

n
A(½,µ)e j Á(½,µ)e j Ád (½,µ)

o¯
¯
¯
2

. (2.5)

If we sample the function P d (½,µ) at points corresponding to a square grid of size m £ m
on the pupil plane, then A(½,µ), Ád (½,µ) and Á(½,µ) are square matrices of that size.

Let us define vect(¢) the vectorization operator such that vect(Z ) yields the vector
obtained by stacking the columns of matrix Z into a column vector. The inverse operator
vect¡ 1(¢), which maps a column vector of size m2 to a square matrix of size m £ m, is also
well defined. Let in particular the matrix Z and the vector a be defined as:

Z ÆA(½,µ)e j Á(½,µ) 2 Cm£ m , a Ævect(Z ) 2 Cm2
.

With the definition of the vector h̄d :

h̄d Ævect
³
e j Ád (½,µ)

´
2 Cm2

,

and with Dd Æd
¡
h̄d

¢
2 Cm2£ m2

the diagonal matrix with diagonal entries taken from the
vector h̄d , we can write the noise-free intensity measurements in (2.5) as

yd Æ
¯
¯
¯F ¡ 1

n
e j Ád (½,µ)Z

o¯
¯
¯
2

Æ
¯
¯F ¡ 1 ©

vect¡ 1(Dd a)
ª¯
¯2 .

As the Fourier transform is a linear operator, we can write our noise-free intensity mea-
surements in the form:

yd ÆjUd aj2 , (2.6)

where in this case Ud is a unitary matrix.
By stacking the vectors yd and the matrices Ud , obtained from the nd images with

nd different phase diversities, correspondingly into the vector y and the matrix U (of
size nd m2 £ m2), the problem of finding a from noise-free intensity measurements can
be formulated as in (2.1) and that from noisy measurements can be formulated as in (2.2)
for na Æm2 and ny Ænd m2.
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It is worth noting that the dimension of the unknown a with m in the range of a cou-
ple of hundreds turns this problem into a non-convex large-scale optimization problem.
For such a problem the implementation of PhaseLift [13] using standard semidefinite
programming, using libraries like MOSEK [17], will not be tractable because of the large
matrix dimensions of the unknown quantity. If we assume that the computational com-
plexity of semidefinite programming with matrix constraints of size n £ n increases with
O

¡
n6¢

[18], then a naive implementation of the PhaseLift method applied to (2.2) involv-
ing a single image has worst-case computational complexity of O

¡
m12¢

.

2.2.2. PROBLEM FORMULATION IN MODAL FORM

In general, only approximate solutions can be expected for a phase retrieval problem.
In the modal form of the phase retrieval problem, also considered in [2] for Extended
Nijboer-Zernike (ENZ) basis functions, the GPF is assumed to be well approximated by
a weighted sum of basis functions. We make use of real-valued radial basis functions
[19] with complex coefficients to approximate the GPF. These are studied in the scope
of wavefront estimation in [20] and an illustration of these basis function on a 4 £ 4 grid
in the pupil plane is given in Figure 2.1.

Figure 2.1: 16 radial basis functions with centers in a 4 £ 4 grid, with circular aperture support.

Switching from the polar coordinates (½,µ) to the Cartesian coordinates (x, y) in the
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pupil plane, let us consider the radial basis functions and the approximate GPF given by

Gi (x, y) ÆÂ(x, y)e¡ ¸ i ((x¡ xi )2Å(y¡ yi )2),

P (x, y) ¼ fP (x, y,a) Æ
naX

iÆ1
ai Gi (x, y),

(2.7)

where (xi , yi ) are the centers of basis functions Gi (x, y), ai 2 C, ¸ i 2 RÅ determines the
spread of that function, Â(x, y) denotes the support of the aperture, and a is the coeffi-
cient parameter vector to be estimated. The parameters ¸ i are usually taken equal for all
basis functions and for their tuning we refer to [20].

The aberrated GPF corresponding to the introduction of phase diversity Ád is

fP d (x, y,a,Ád ) Æ
naX

iÆ1
ai Gi (x, y)e j Ád (x,y). (2.8)

The normalized complex PSF (amplitude impulse response) is the 2-dimensional inverse
Fourier transform of the GPF [21, 22]. The aberrated complex PSF corresponding to the
aberrated GPF in (2.8) is given as

hd (u, v) Æ
naX

iÆ1
ai F

¡ 1
n

Gi (x, y)e j Ád (x,y)
o

Æ
naX

iÆ1
aiUd ,i (u, v), (2.9)

where (u, v) are the Cartesian coordinates in the image plane of the optical system.
We now drop the dependency on the coordinates and vectorize expression (2.9) for

all nd diversities that have been applied to obtain the following compact form of a single
matrix-vector multiplication,

h̄ ÆU a. (2.10)

The vector h̄ is the obtained vectorization and combination over all the aberrated com-
plex PSFs, and the matrix U is the vectorized and concatenated version of the functions
Ud ,i sampled on a grid of size m £ m.

Let the intensity of the PSFs be recorded on the corresponding grid of pixels of size
m £ m, and let the vectorization of this intensity pattern for different phase diversities be
concatenated into the vector y. We can again formulate the problem of finding a from
noise-free intensity measurements as in (2.1) and from noisy measurements as in (2.2)
for ny Æm2nd .

It is worth noting that the dimension of a is not dependent on the size of the sample
grid (the size of the problem). This is the fundamental advantage of the modal form
formulation over the zonal form one, for which the size of a directly depends on the size
of the problem, i.e. na Æm2.

In this paper two steps are combined to deal with the large-scale nature of optimiza-
tion (2.2):

1. The unknown pupil function P (½,µ) can be represented as a linear combination of
a number of basis functions. In [2] use has been made of the ENZ basis functions,
while in [20] use is made of radial basis functions instead of ENZ ones. The radial
basis functions are used here as [20] demonstrated their advantages over the ENZ
type.
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2. A new strategy is proposed for solving optimization (2.1) via a sequence of convex
optimization problems. Each of the subproblems can be solved effectively by an
iterative ADMM algorithm that exploits the problem structure.

In the following we assume that the problem is normalized such that all entries of y
have values between 0 and 1.

2.3. THE COPR ALGORITHM
Equation 2.1 is equivalent to a rank constraint. Define the matrix-valued function

L(A,B ,C , X ,Y ) Æ
µ
C Å AY Å X B Å X Y A Å X

B Å Y I

¶
, (2.11)

where I is the identity matrix of appropriate size. Let b 2 Cna be a coefficient vector. For
notational convenience, we will denote

M(U ,a,b,y) :Æ

L
¡
d

¡
aHU H ¢

,d(U a) ,d
¡
y
¢

,d
¡
bHU H ¢

,d(U b)
¢

.

Our proposed algorithm in this paper relies on the following fundamental result.

Lemma 2.3.1 ([23]). For any b 2 Cna , the constraint y ÆjU aj2 is equivalent to the con-
straint

rank
¡
M(U ,a,b,y)

¢
Æny .

For addressing problem (2.2), Lemma 2.3.1 suggests a consideration of the following
approximate problem, for a user-selected parameter vector b,

min
a2Cna

rank
¡
M(U ,a,b,y)

¢
. (2.12)

Since (2.12) is a non-convex problem and to anticipate the presence of measurement
noise, we propose to solve the following convex optimization problem:

min
a2Cna

f (a) :Æ
°
° M(U ,a,b,y)

°
°

¤ , (2.13)

where k¢k¤ denotes the nuclear norm of a matrix, the sum of its singular values [14, 24].
The motivation to choose M (and L) in the structure of (2.11), is that it is affine in the
unknown a. By relaxing the rank constraint into (2.13) we obtain a convex relaxation
without ‘lifting’ (substituting) the variables as is the case with PhaseLift. One advantage
is that the solution for a can be easily influenced if we have prior knowledge. For exam-
ple, in the case that prior knowledge on the problem indicates that a is a sparse vector,
the objective function in (2.13) can easily be extended with an ` 1-regularization to stim-
ulate sparse solutions, since the vector a appears affinely in M(U ,a,b,y):

min
a2Cna

f (a) Å ¸ kak1 , (2.14)

for some regularization parameter ¸ .
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Note that for b Æ ¡a,
°
° M(U ,a, ¡ a,y)

°
°

¤ Æ
°
° y ¡ jU aj2

°
°

1 Å ny . (2.15)

Since the result of optimization 2.13 might not produce a desired solution sufficiently
fitting the measurements, we propose the iterative Convex Optimization-based Phase
Retrieval (COPR) algorithm, outlined in Algorithm 1.

Algorithm 1 Convex Optimization-based Phase Retrieval (COPR)

1: procedure COPR(b,¿) . Some guess for b
2: while

°
° y ¡ jU aj2

°
°

1 È ¿ do . Termination criterion
3: aÅ 2 argmina

°
° M(U ,a,b,y)

°
°

¤
4: bÅ Ã ¡ aÅ

5: end while
6: end procedure

The nuclear norm is a convex function, and standard software like YALMIP [25] or
CVX [26] can be used to concisely implement Algorithm 1. However, the nuclear norm
minimization in Algorithm 1 is the main computational burden for an implementation.
Usual implementations of the nuclear norm involve semidefinite constraints, and re-
quire a semidefinite optimization solver. If we assume that their computational com-
plexity increases with O

¡
n6¢

[18] with constraint on matrices of size n£ n, then minimiz-
ing the nuclear norm of the matrix M(U ,a,b,y) of size 2ny £ 2ny is computationally infea-
sible even for relatively small-scale problems. Therefore, we propose a tailored ADMM
algorithm of which the computational complexity of the iterations scales O

¡
ny na

¢
, and

requires the inverse of a matrix of size 2na £ 2na for every iteration of Algorithm 1.

2.4. EFFICIENT COMPUTATION OF THE SOLUTION TO (2.13)
The minimization problem (2.13) can be reformulated as:

min
X ,a

kX k¤ subject to X ÆM(U ,a,b,y). (2.16)

Applying the ADMM optimization technique [15, 27] to the constraint optimization
problem (2.16), we obtain the steps in Algorithm 2.

The advantage of using this ADMM formulation is that both of the update steps (2.17)
and (2.18) have solutions that can be computed analytically. The efficient computation
of the solutions are described in the following two subsections.

2.4.1. EFFICIENT COMPUTATION OF THE SOLUTION TO (2.17)
Upon inspection of (2.17), we see that this is a complex-valued standard least squares
problem since M(U ,a,b,y) is parameterized affinely in a. Let R (¢) and I (¢) respectively
denote the real and the imaginary parts of a complex object. Let the subscripts (¢)1, (¢)2
and (¢)3 respectively denote the top-left, top-right and bottom-left submatrices accord-
ing to (2.11). Define

Z ÆX Å
1
½

Y, X Æd
¡
bHU H ¢

.
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Algorithm 2 An ADMM algorithm for solving (2.16) based on [15]

1: procedure NN-ADMM(b,y,½,¿)
2: a Ã ¡ b
3: X Ã M(U ,a,b,y)
4: Y Ã 0
5: while

¯
¯
°
° M(U ,aÅ ,b,y)

°
°

¤ ¡
°
° M(U ,a,b,y)

°
°

¤

¯
¯ È ¿ do

6: aÅ 2

argmin
a

°
°
°
° X ¡ M(U ,a,b,y) Å

1
½

Y

°
°
°
°

2

F
(2.17)

7: XÅ 2

argmin
X

kXk¤ Å
½

2

°
°
°
° X ¡ M(U ,aÅ ,b,y) Å

1
½

Y

°
°
°
°

2

F
(2.18)

8: YÅ Ã Y Å ½
¡
XÅ ¡ M(U ,aÅ ,b,y)

¢

9: update ½according to the rules in [27]
10: end while
11: end procedure

In the sequel, let bd(P ) denote the vector with the diagonal entries of a square matrix P .
Reordering the elements in (2.17), separating the real and the imaginary parts, re-

moving all matrix elements in the argument of the Frobenius norm that do not depend
on a, and vectorizing the result, gives the following least squares problem:

min
x

kuADM M ¡ uCOPR ¡ ABxk2
2 . (2.19)

The variables uADM M , uCOPR , A, B and x are given by

uADM M Æ

0

B
B
B
B
B
@

bd(R (Z1))
bd(R (Z2))
bd(R (Z3))
bd(I (Z2))
bd(I (Z3))

1

C
C
C
C
C
A

, uCOPR Æ

0

B
B
B
B
B
@

y Å bd
¡
jX j2

¢

bd(R (X ))
bd(R (X ))
bd(I (X ))

¡ bd(I (X ))

1

C
C
C
C
C
A

,

A Æ

0

B
B
B
B
@

2R (X ) 2I (X )
I 0
I 0
0 I
0 ¡ I

1

C
C
C
C
A

, B Æ
µ

R (U ) ¡ I (U )
¡ I (U ) ¡ R (U )

¶
,

(2.20)

and x Æ
¡
R (a)T I (a)T ¢T . This means that the optimal solution to (2.19) is given by

x¤ Æ(B T AT AB)¡ 1B T AT (uADM M ¡ uCOPR ).

During the ADMM iterations only uADM M changes. The inverse (B T AT AB)¡ 1 has to be
computed once for every iteration of Algorithm 1 (i.e. it remains constant throughout the
ADMM iterations). Since the complexity of computing an inverse is O

¡
n3¢

for matrices
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of size n £ n, the computational complexity of this inverse process scales cubically with
the number of basis functions.

Once this inverse matrix is obtained, the optimal solution to the least squares prob-
lem in (2.19) can be computed by a simple matrix-vector multiplication, whose com-
plexity scales with O

¡
ny na

¢
.

Another approach that avoids the dense matrix-matrix multiplication in the compu-
tation of the inverse, is to use thin QR factorizations. Let

A ÆQ ARA , B ÆQB RB , and QC RC ÆRAQB . (2.21)

B is dense and tall, but the (thin) QR factorization of B has to be computed only once.
The QR factorization of the sparse A matrix is itself sparse (A is by permutation block
diagonal with blocks of size 5 by 2). RAQB is dense and tall, but of smaller size than AB .
The optimal solution can be computed using back substitution or using the pseudo-
inverse of the triangular matrix RC RB , where both these matrices are of size 2na £ 2na .
The solution is given by

x¤ Æ(RC RB )†QT
C QT

A (uADM M ¡ uCOPR ) (2.22)

Note that in the case that the objective term includes regularization as in (2.14), the
optimization (2.19) should be modified appropriately to include the additive regulariza-
tion term ¸ kak1.

2.4.2. EFFICIENT COMPUTATION OF THE SOLUTION TO (2.18)
The optimization in (2.18) is of the form

argmin
X

kX k¤ Å ¸ kX ¡ Ck2
F . (2.23)

The solution can be computed using singular value soft-thresholding, see [15, Theorem
2.1].

Let C ÆUC §C V T
C be the Singular Value Decomposition of C 2 C2ny £ 2na .

Lemma 2.4.1 ([28]). The solution X to (2.23) has singular vectors UC and VC .

Proof. Let X ÆUX § X V T
X be a Singular Value Decomposition of X . Then

kX k¤ Å ¸ kX ¡ Ck2
F Ætrace(§ X )Å

¸ (hX , X iÅhC ,C i ¡ 2hX ,C i ) .

Using Von Neumann’s trace inequality we get

min
X

(trace(§ X ) Å ¸ (hX , X iÅhC ,C i ¡ 2hX ,C i ))

¸ min
X

(trace(§ X ) Å ¸ (hX , X iÅhC ,C i ¡ 2trace(§ X §C )))

with equality holds true when C and X are simultaneously unitarily diagonalizable. The
optimal solution X to (2.23) therefore has the same singular vectors as C , i.e. UX Æ
UC , VX ÆVC .



2.5. CONVERGENCE ANALYSIS OF ALGORITHM 1

2

51

Denote the singular values of C in descending order as ¾C ,1, . . . ,¾C ,2ny , and those of
X similarly. Thanks to Lemma 2.4.1, (2.23) can be simplified to

argmin
¾X ,i

2nyX

iÆ1

³
¾X ,i Å ¸

¡
¾X ,i ¡ ¾C ,i

¢2
´

. (2.24)

This problem is completely decoupled in ¾X ,i and the optimal solution to (2.24) is
computed with

¾X,i Æmax
µ
0,¾C ,i ¡

1
2¸

¶
, i Æ1, . . . ,2ny .

By row and column permutations, the matrix C is block-diagonal with blocks of size
2 £ 2. The Singular Value Decomposition (SVD) of this permuted matrix therefore in-
volves block-diagonal matrices UC , §C and VC and these blocks can be obtained sepa-
rately and in parallel. Since the blocks are of size 2 £ 2, the SVD can be obtained analyti-
cally.

This shows that a valid SVD can be computed very efficiently, in O (1). That is, in
theory, in a computation time independent of the number of pixels in the image, the
number of images taken or of the number of basis functions.

2.5. CONVERGENCE ANALYSIS OF ALGORITHM 1
Algorithm 1 can be reformulated as a Picard iteration akÅ1 2 T (ak ), where the fixed point
operator T : Cna ! Cna is given by

T (a) Æarg min
x2Cna

°
° M(U ,x, ¡ a,y)

°
°

¤ . (2.25)

Our subsequent analysis will show that the set of fixed points, Fix T , the set of a’s
for which a ÆT (a), of T is in general nonconvex and as a result, iterations generated
by T can not be Fejér monotone [29, Definition 5.1 of] with respect to Fix T . That is,
each new iterate is not guaranteed to be closer to all fixed points in Fix T . Therefore, the
widely known convergence theory based on the properties of Fejér monotone operators
and averaging operators is not applicable to the operator T given at (2.25).

In this section, we make an attempt to prove convergence of Algorithm 1, which has
been observed from our numerical experiments, via a relatively new developed conver-
gence theory based on the theory of pointwise almost averaging operators [30]. It is
worth mentioning that we are not aware of any other analysis schemes addressing con-
vergence of Picard iterations generated by general nonaveraging fixed point operators.
Our discussion consists of two stages. Based on the convergence theory developed in
[30], we first formulate a convergence criterion for Algorithm 1 (Proposition 2.5.1) under
rather abstract assumptions on the operator T . Due to the highly complicated structure
of the nuclear norm of a general complex matrix, we are unable to verify these math-
ematical conditions for general matrices U . However, we will verify that they are well
satisfied in the case that U is a unitary matrix (Theorem 2.5.2). From the latter result,
we heuristically hope that Algorithm 1 still enjoys the convergence result when the ma-
trix U is close to being unitary in a certain sense. In Section 2.6 we demonstrate that
convergence is obtained in practice for the imaging case.
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It is a common prerequisite for analyzing local convergence of a fixed point algorithm
that the set of solutions to the original problem is nonempty. That is, there exists a 2 Cna

such that y Æ jU aj2. Before stating the convergence result, we need to verify that the fixed
point set of T is nonempty.

Lemma 2.5.1. The fixed point operator T defined at (2.25) holds
©

a j y Æ jU aj2
ª

µ Fix T :Æ
©

a 2 Cna j a 2 T (a)
ª

.

Proof. See Appendix A.1.

The next proposition provides an abstract convergence result for Algorithm 1. Fix T
is supposed to be closed. In the sequel, the metric projection associated with a set  is
denoted P ,

P (x) :Æ{! 2  j kx ¡ ! k Ædist(x,  )} , 8 x.

Proposition 2.5.1. [30, simplified version of Theorem 2.2 of] Let S ½Fix T be closed with
T (a¤ ) ½Fix T for all a¤ 2 S and let W be a neighborhood of S. Suppose that T satisfies
the following conditions.

(i) T is pointwise averaging at every point of S with constant ® 2 (0,1) on W . That is,
for all a 2 W , aÅ 2 T (a), a¤ 2 PS (a) and a¤

Å 2 T (a¤ ),

°
° aÅ ¡ a¤

Å

°
° 2 ·

°
° a ¡ a¤°

° 2 ¡
1 ¡ ®

®

°
° (aÅ ¡ a) ¡ (a¤

Å ¡ a¤ )
°
° 2 . (2.26)

(ii) The set-valued mapping Ã :ÆT ¡ Id is metrically subregular on W for 0 with con-
stant ° È 0, where Id is the Identity mapping. That is,

° dist(a,Ã ¡ 1(0)) · dist(0,Ã (a)), 8 a 2 W. (2.27)

(iii) It holds dist(a,S) · dist(a,Fix T ) for all a 2 W .

Then all Picard iterations akÅ1 2 T (ak ) starting in W satisfy dist(ak ,S) ! 0 as k ! 1 at
least linearly.

The pointwise property instead of the standard averaged property is imposed in (i )
of Propositon 2.5.1 allows us to deal with the intrinsic nonconvexity of the fixed point
set Fix T . The metric subregularity assumption imposed in (i i ) technically ensures ad-
equate progression of the iterates relative to the distance from the current iterate to the
fixed point set. This is not only a technical assumption, but also a necessary condition for
local linear convergence of a fixed point algorithm, Theorem 3.12 of [31]. Condition (i i i )
is, on one hand, a technical assumption and becomes redundant when S ÆFix T . On the
other hand, the set S allows one to exclude from the analysis possible inhomogeneous
fixed points of T , at which the algorithm often exposes weird convergence behavior [30,
see Example 2.1 of].

The size of neighborhood W appearing in Proposition 2.5.1 indicates the robustness
of the algorithm in terms of erroneous input (the distance from the starting point to a
nearest solution).

We now apply the abstract result of Proposition 2.5.1 to the following special, but
important case.
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Theorem 2.5.2. Let U 2 Cna £ na be unitary and a¤ 2 Cna be such that jU a¤ j2 Æy. Then
every Picard iteration generated by Algorithm 1 akÅ1 2 T (ak ) starting sufficiently close to
a¤ converges linearly to a point ã 2 Fix T satisfying jU ãj2 Æy.

Proof. See Appendix A.2.

2.6. NUMERICAL EXPERIMENTS
Four important numerical aspects of the COPR algorithm, including convergence, flexi-
bility, complexity, and robustness, are tested on relevant problems. First we discuss con-
vergence and the number of iterations of COPR and the ADMM algorithm. Second, we
demonstrate the flexibility of the convex relaxation by comparing the COPR algorithm
with an added ` 1-regularization to the PhaseLift method [13] and to the Compressive
Sensing Phase Retrieval (CPRL) method in [12] on an under-determined sparse estima-
tion problem. Then we compare the practically observed computational complexity of
COPR and a naive implementation of PhaseLift [13]. Finally, we investigate the robust-
ness of COPR relative to noise in a Monte-Carlo simulation for 25 and 100 basis func-
tions. We compare four algorithms: COPR, PhaseLift [13], a basic alternating projections
method (Section 4.3 in [13]) and an averaged projections method based on [32]. We note
that the latter method fundamentally employs the Fourier transform at every iteration
and hence is, in generally, not applicable for phase retrieval in the modal form.

2.6.1. CONVERGENCE

The while-loops in Algorithms 1 and 2 can be run for a fixed number of iterations. Fig-
ure 2.2 shows four such combinations for a typical problem with 5 images of size 256 £
256 and 64 basis functions. All cases are identically initialized with coefficients that best
approximate a flat wavefront. As can be seen from the figure and the line with a square
marker, only one COPR iteration is necessary here, as the ADMM algorithm slowly con-
verges towards 0. However, stopping the ADMM algorithm after a limited number of it-
erations and having more than one COPR iteration can have a clear benefit, since faster
convergence is achieved this way.

2.6.2. APPLICATION OF COPR TO COMPRESSIVE SENSING PROBLEMS

The first problem is to estimate 16 coefficients from 8 measurements, where the optimal
vector is known to be sparse.

We generate a sparse coefficient vector a with two randomly generated non-zero
complex elements. We generate two images (nd Æ2, m Æ128) by applying two differ-
ent amounts of defocus with Zernike coefficients ¡ ¼

8 and ¼
8 , respectively. From each

image we use the center 2 £ 2 pixels, resulting in a total of ny Æ8 measurements.
The applied algorithms are the COPR algorithm, the COPR algorithm with an addi-

tional ` 1-regularization, the PhaseLift algorithm [13] and the CPRL algorithm of [12]. The
results are displayed in Figure 2.3. As can be seen from the figure, COPR and PhaseLift
fail to retrieve the correct solution. The CPRL method and the regularized COPR algo-
rithm compute the correct solution.
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Figure 2.2: Convergence plot for 4 different combinations of COPR iterations and ADMM iterations. Denoted
in the legend are first the number of COPR iterations, and then the number of ADMM iterations used to solve
(2.16) in each COPR iteration. Markers denote each new COPR iteration.

2.6.3. COMPUTATIONAL COMPLEXITY
The second problem demonstrates the trends of the required computation time when
the number of estimated coefficients increases. The underlying estimation problem
consists of 7 images with different amounts of defocus applied as phase diversity, where
each image is of size 64 by 64 pixels. A subset of 20 by 20 pixels of each image is used
in the estimation. We compare the COPR algorithm to the PhaseLift algorithm, which
is implemented according to optimization problem (2.5) in [13]. For PhaseLift, the re-
ported time is the time it takes the MOSEK solver [17] to solve the optimization problem.
This does not include the time taken by YALMIP [25] to convert the problem as given
to the solver-specific form. For COPR, the initial guesses for the coefficients are drawn
randomly from a Gaussian distribution, the number of iterations is set beforehand ac-
cording to convergence to the correct solution, and the total time is recorded. The im-
plementation of COPR does not exploit the parallelism referred to in Section 2.4.2. By
convergence we mean that the estimated vector â satisfies the tolerance criterion:

min
c2C, jc jÆ1

°
° câ ¡ a¤°

° 2
2 · 10¡ 5, (2.28)

where a¤ is the exact solution.
The minimization over the parameter c ensures that the (unobservable) piston mode

in the phase is canceled.1 The computational complexity of PhaseLift is, as implemented,
approximately O

¡
n4¢

. The MOSEK solver ran into numerical issues for more than 25 es-
timated parameters. The COPR algorithm’s computational complexity is approximately

1Let
¡
â a¤ ¢

ÆQR be the QR decomposition. Then \ c¤ Æ\ R12
R11

.
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Figure 2.3: The absolute values of 16 estimated coefficients according to 4 different algorithms.

O (n). The better complexity is offset by a longer computation time for very small prob-
lems.

2.6.4. ROBUSTNESS TO NOISE
When estimating an unknown phase aberration, it is more logical to evaluate the perfor-
mance of the algorithm on its ability to estimate the phase, and not the coefficients of
basis functions.

We assume the phase is randomly generated with a deformable mirror. Let H 2

Rm2£ nu be the mirror’s influence matrix and u 2 Rnu be the input to the mirror’s actu-
ators, such that

ÁDM ÆHu. (2.29)

The input values ui are drawn from the uniform distribution between 0 and 1. The
mirror has nu Æ44 actuators and the images have sides m Æ128. The aperture radius is
0.4.

Five different defocus diversities are applied with Zernike coefficients uniformly spaced
between ¡ ¼

2 and ¼
2 . Gaussian noise is added to the obtained images such that

y Æmax(0,
¯
¯F ¡ 1 ©

P d (½,µ)
ª¯
¯2

Å " ), " 2 N (0,¾I ). (2.30)

and ¾ is the noise variance. No denoising methods were applied. The Signal-to-Noise
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Figure 2.4: A computation time comparison between PhaseLift and COPR for different numbers of coefficients.

Ratio (SNR) is computed according to

10log10

°
°
° y ¡

¯
¯F ¡ 1 ©

P d (½,µ)
ª¯
¯2

°
°
°

2

2
°
°
°
¯
¯F ¡ 1

©
P d (½,µ)

ª¯
¯2

°
°
°

2

2

. (2.31)

The phase is estimated from y using four different algorithms. The first is the COPR
algorithm. The second is the averaged projections (AvP) algorithm [32]. The AvP al-
gorithm is an extension of the well-known Gerchberg-Saxton algorithm [33] for solving
problems with multiple images and is in the same class of algorithms as the Hybrid-
Input-Output algorithm and the Difference Map [34, 35]. This makes this algorithm rel-
evant for comparison. The third is the alternating projections (AlP) method ([13], Section
4.3), and the fourth algorithm is the PhaseLift method [13].

The COPR, PhaseLift and the AlP method are applied to estimate the phase using
25 basis functions, where the initial guesses for the coefficients are those coefficients
that best approximate a flat wavefront. The AvP method is not based on the use of basis
functions but on projection and the Fourier transform.

We make use of the Strehl ratio as a measure of optical quality. The Strehl ratio S is
the ratio of the maximum intensity of the aberrated PSF and that of the unaberrated one
and can be approximated with the expression of Mahajan:

S ¼e¡ ±2
,

where ± Æ
°
° ÁDM ¡ Á̂

°
°

2 and the mean residual phase has been removed [36].
For every noise level, 100 different phases were generated with the deformable mirror

model (2.29). The results are presented in Figure 2.5. The resulting Strehl-ratio’s are
plotted with a trend line connecting the 50% quantiles. Figure 2.6 gives a qualitative
comparison of the estimates for a single case.
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Figure 2.5: The Strehl ratio of the estimated phase aberration as a function of SNR.

In the case of PhaseLift, the tuning parameter that trades off measurement fit and
the rank of the ‘lifted’ matrix is tuned once and applied to all problems. This has the
effect that the reported performance is not as high as it could be with optimal tuning for
individual problems. This points to another advantage of COPR: the absence of tuning
parameters aside from the choice of basis functions.

The two figures show that COPR is robust to noise and gives accurate phase estimates
for a wide range of noise levels.

2.7. EXPERIMENTAL VALIDATION
In this section we validate COPR on experimentally obtained data. The optical setup and
the conditions of the data collection have been described in [37]. We thank Oleg Soloviev
and Thao Nguyen for providing the data and the estimates of the DRAP algorithm as
presented in [37].

The measured Point Spread Functions are displayed on the top row of Figure 2.7,
where each PSF is an image with a size of 256£ 256 pixels. From each image 10000 pixels
were used in the optimization (ny Æ5 ¢104). The number of basis functions employed
is 225, where ¸ Æ60. The COPR algorithm was run for 20 iterations, producing the fit
that can be seen in Figure 2.8. The result of each COPR iteration was computed using
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Figure 2.6: Example PSF and phase estimates of the COPR, Alternating Projection [13], Averaged Projection
[32] and PhaseLift [13] algorithms for 3 PSF measurements with an SNR of approximately 36dB.

Figure 2.7: The measured Point Spread Functions (top) and the respective estimates (bottom). False colours
are used according to x 7! x0.9 for better visibility.

an ADMM optimization with 80 iterations. A breakdown of the computation time of the
algorithm is recorded in Table 2.1. The implementation of COPR, that did not exploit
parallelization opportunities, took approximately 10 minutes to compute the results re-
ported here. As can be seen from the table, most time in an ADMM iteration (~90%)
was spent updating the variable X , for which a large number of Singular Value Decom-
positionss were computed in a serial manner even though parallelization is an option.

The resulting coefficients produces estimated PSFs as shown in Figure 2.7 on the
bottom row. As can be seen from the figure, the measured PSFs and estimated PSFs
closely agree.

The estimated phase in the pupil plane is given in Figure 2.9, together with the mea-
sured phase, and the phase as estimated according to the DRAP method in [37]. As can
be seen from the figure, the estimated phase by COPR resembles the phase as measured
by the Shack-Hartmann wavefront sensor and the phase as estimated by the DRAP algo-
rithm.

2.8. CONCLUDING REMARKS
The convex relaxations in solving the phase retrieval problem as proposed in (2.13) have
the advantage over current convex relaxation methods, such as PhaseLift, that our strat-
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Figure 2.8: The estimates of the coefficients by the COPR algorithm iteratively produce a better fit with respect
to the measurements.

Iteration Update overhead total

a X Y

ADMM iteration 0.03 0.27 0.01 0.02 0.33
Nuclear norm 2.02 21.46 0.67 5.82 29.97
COPR total 40.42 429.28 13.39 116.21 599.30

Table 2.1: Approximate computation times for the COPR algorithm in seconds. The algorithm executed 20
nuclear norm minimizations and 80 ADMM iterations for every nuclear norm minimization. The time reported
in the column with ‘overhead’ is the difference between the total time and the sum of the update times. It
comprises for example computation time for pseudo-inverses and QR factorizations, that are required for the
least squares problem that is the update of a. The total computation time is approximately 10 minutes (599
seconds).

Figure 2.9: The measured phase (left), the estimate of the phase using the DRAP algorithm and the estimate of
the phase using the COPR algorithm. The measured phase has been flipped and rotated by ¼/2 radians. The
(relative) size of the aperture, the flipping and the rotation have been manually tuned.
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egy is affine in the coefficients that are to be estimated. This allows for easy extension of
the proposed method to phase retrieval problems that incorporate prior knowledge on
the coefficients by regularization of the objective function. One such successful exten-
sion is the regularization with the ` 1-norm to find sparse solutions, as demonstrated in
Figure 2.3.

In Section 2.4 an ADMM algorithm was proposed for efficient computation of the
solution to (2.13). The result is that for the COPR algorithm a better computational com-
plexity is observed compared to PhaseLift, see Figure 2.4. COPR is also able to solve
phase estimation problems with larger numbers of parameters.

The required computations are favourable both in computation time and accuracy
(they have simple analytic solutions) and in worst-case scaling behaviour O

¡
ny na

¢
for

every ADMM iteration, where ny is the number of pixels and na is the number of basis
functions.

We discussed convergence properties of the COPR algorithm in Section 2.5 and showed
that for selected problems this convergence is linear or faster.

Finally, COPR has been shown to be robust against measurement noise, and outper-
form the two projection-based methods whose naive forms are often sensitive to noise
as expected.

We are aware that in practice the performance of projection methods can be sub-
stantially better than what we have observed in this study provided that appropriate de-
noising techniques are also applied. Keeping aside from the matter of using denoising
techniques, we have chosen to compare the algorithms in their very definition forms.

2.9. FUNDING INFORMATION
The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement No. 339681.

REFERENCES
[1] R. Doelman, N. H. Thao, and M. Verhaegen, “Solving large-scale general phase re-

trieval problems via a sequence of convex relaxations,” J. Opt. Soc. Am. A, vol. 35,
pp. 1410–1419, Aug 2018.

[2] J. Antonello and M. Verhaegen, “Modal-based phase retrieval for adaptive optics,”
JOSA A, vol. 32, no. 6, pp. 1160–1170, 2015.

[3] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase
retrieval with application to optical imaging,” IEEE Signal Processing Magazine,
vol. May, pp. 87–109, 2015.

[4] J. R. Fienup, “Phase retrieval algorithms: a comparison,” Applied optics, vol. 21,
no. 15, pp. 2758–2769, 1982.

[5] D. R. Luke, J. V. Burke, and R. G. Lyon, “Optical wavefront reconstruction: theory
and numerical methods,” SIAM Rev., vol. 44, no. 2, pp. 169–224, 2002.



REFERENCES

2

61

[6] Y. Shechtman, A. Beck, and Y. C. Eldar, “GESPAR: Efficient phase retrieval of sparse
signals,” IEEE transactions on signal processing, vol. 62, no. 4, pp. 928–938, 2014.

[7] D. Sayre, “Some implications of a theorem due to Shannon,” Acta Crystallography
[Online], vol. 5, no. 6, p. 843, 1952.

[8] H. Hauptman, “The direct methods of X-ray crystallography,” Science, vol. 233,
no. 4760, pp. 178–183, 1986.

[9] R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase
from image and diffraction plane pictures,” Optik, vol. 35, pp. 237–246, 1972.

[10] H. Bauschke, P. Combetters, and D. Luke, “Phase retrieval, error reduction algo-
rithm and Fienup variants: a view from convex optimization,” JOSA A, vol. 19, no. 7,
pp. 1334–1345, 2002.

[11] E. J. Candes, X. Li, and M. Soltanolkotabi, “Phase retrieval via Wirtinger flow: Theory
and algorithms,” IEEE Transactions on Information Theory, vol. 61, no. 4, pp. 1985–
2007, 2015.

[12] H. Ohlsson, A. Y. Yang, R. Dong, and S. S. Sastry, “Compressive phase retrieval
from squared output measurements via semidefinite programming,” arXiv preprint
arXiv:1111.6323, 2011.

[13] E. J. Candes, T. Strohmer, and V. Voroninski, “Phaselift: Exact and sta-
ble signal recovery from magnitude measurements via convex programming,”
Communications on Pure and Applied Mathematics, vol. 66, no. 8, pp. 1241–1274,
2013.

[14] M. Fazel, H. Hindi, and S. P. Boyd, “A rank minimization heuristic with application
to minimum order system approximation,” in American Control Conference, 2001.
Proceedings of the 2001, vol. 6, pp. 4734–4739, IEEE, 2001.

[15] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm for ma-
trix completion,” SIAM Journal on Optimization, vol. 20, no. 4, pp. 1956–1982, 2010.

[16] J. Goodman, Introduction to Fourier optics. McGraw-hill, 2008.

[17] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual. Version 7.1
(Revision 28)., 2015.

[18] L. Vandenberghe, V. R. Balakrishnan, R. Wallin, A. Hansson, and T. Roh, “Interior-
point algorithms for semidefinite programming problems derived from the KYP
lemma,” Positive polynomials in control, pp. 579–579, 2005.

[19] A. Martinez-Finkelshtein, D. Ramos-Lopez, and D. Iskander, “Computation of 2D
Fourier transforms and diffraction integrals using Gaussian radial basis functions,”
Applied and Computational Harmonic Analysis, 2016.

[20] P. J. Piscaer, A. Gupta, O. Soloviev, and M. Verhaegen, “Modal-based phase retrieval
using Gaussian radial basis functions,” In preparation, 2018.



2

62 REFERENCES

[21] A. J. Janssen, “Extended Nijboer–Zernike approach for the computation of optical
point-spread functions,” JOSA A, vol. 19, no. 5, pp. 849–857, 2002.

[22] J. Braat, P. Dirksen, and A. J. Janssen, “Assessment of an extended Nijboer–Zernike
approach for the computation of optical point-spread functions,” JOSA A, vol. 19,
no. 5, pp. 858–870, 2002.

[23] R. Doelman and M. Verhaegen, “Sequential convex relaxation for convex opti-
mization with bilinear matrix equalities,” in Proceedings of the European Control
Conference, 2016.

[24] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions of lin-
ear matrix equations via nuclear norm minimization,” SIAM review, vol. 52, no. 3,
pp. 471–501, 2010.

[25] J. Löfberg, “YALMIP : A toolbox for modeling and optimization in MATLAB,” in In
Proceedings of the CACSD Conference, (Taipei, Taiwan), 2004.

[26] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming,
version 2.1.” http://cvxr.com/cvx, Mar. 2014.

[27] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[28] V. Larsson and C. Olsson, “Convex low rank approximation,” International Journal
of Computer Vision, vol. 120, no. 2, pp. 194–214, 2016.

[29] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. CMS Books Math./Ouvrages Math. SMC, New York:
Springer, 2011.

[30] D. R. Luke, N. H. Thao, and M. K. Tam, “Quantitative convergence analysis of iter-
ated expansive, set-valued mappings,” Math. Oper. Res. to appear.

[31] D. R. Luke, M. Teboulle, and N. H. Thao, “Necessary conditions for linear conver-
gence of iterated expansive, set-valued mappings with application to alternating
projections.” under peer-review.

[32] D. R. Luke, “Matlab Proxtoolbox,” 2018. http://http://num.math.uni-
goettingen.de/proxtoolbox/.

[33] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of
phase from image and diffraction plane pictures,” Optik, vol. 35, p. 237, 1972.

[34] C.-C. Chen, J. Miao, C. Wang, and T. Lee, “Application of optimization technique to
noncrystalline x-ray diffraction microscopy: Guided hybrid input-output method,”
Physical Review B, vol. 76, no. 6, p. 064113, 2007.

http://cvxr.com/cvx


REFERENCES

2

63

[35] V. Elser, “Solution of the crystallographic phase problem by iterated projections,”
Acta Crystallographica Section A: Foundations of Crystallography, vol. 59, no. 3,
pp. 201–209, 2003.

[36] F. Roddier, Adaptive optics in astronomy. Cambridge university press, 1999.

[37] N. H. Thao, O. Soloviev, and M. Verhaegen, “Convex combination of alternating pro-
jection and Douglas-Rachford algorithm for phase retrieval,” 08 2018.





3
IDENTIFICATION OF THE DYNAMICS

OF TIME-VARYING PHASE

ABERRATIONS FROM TIME

HISTORIES OF THE POINT-SPREAD

FUNCTION

To optimally compensate time-varying phase aberrations with Adaptive Optics (AO), a
model of the dynamics of the aberrations is required to predict the phase aberration at the
next time step. We model the time-varying behaviour of the phase aberration, expressed in
Zernike modes, by assuming that the temporal dynamics of the Zernike coefficients can be
described by a vector-autoregressive (Vector Auto-Regressive (VAR)) model. We propose an
iterative method based on a convex heuristic for a rank constrained optimization prob-
lem, to jointly estimate the parameters of the VAR model and the Zernike coefficients from
a time series of measurements of the Point Spread Function (PSF) of the optical system.
By assuming the phase aberration is small, the relation between aberration and PSF mea-
surements can be approximated by a quadratic function. As such, our method is a blind
identification method for linear dynamics in a stochastic Wiener system with a quadratic
nonlinearity at the output and a phase retrieval method that uses a time-evolution-model
constraint and a single image at every time step.

This chapter has been published as a journal publication, “Reinier Doelman, Måns Klingspor, Anders Hansson,
Johan Löfberg and Michel Verhaegen, Identification of the dynamics of time-varying phase aberrations from
time histories of the point-spread function. Journal of the Optical Society of America A, 2019."
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3.1. INTRODUCTION
Phase aberrations in optical systems cause blurring in the images taken with these sys-
tems. In order to improve the degraded image quality due to aberrations in an opti-
cal system, Adaptive Optics (AO) can be used to compensate for these aberrations on-
line, or post-processing techniques can be used. For example, in (most) high perfor-
mance telescopes these aberrations are wavefront (phase) aberrations induced by tur-
bulence, misalignment, etc. To compensate for the phase aberration, both for online
computations as well as for post processing of image data, information on this aberra-
tion is required. A classical method to obtain these phase aberrations is using a Shack-
Hartmann (SH) wavefront sensor [1], see Figure 3.1. This sensor measures the spatial

Figure 3.1: The classical optical setup for estimating temporal dynamics of an aberrated wavefront. This setup
includes three lenses with focal length f .

derivatives of the wavefront and from these measurements the wavefront aberration it-
self can be estimated, as for example used in [2, 3] for (quasi-)static phase aberrations.
To optimally compensate a dynamic aberration, a prediction of future aberrations has to
be made. To predict the phase aberration at a future time step, a model is required which
describes the (time) dynamics of the aberration. This model can be obtained from, for
example, physical modelling [4, 5], which is not always possible and/or not always accu-
rate. Also, [4] lists a number of different model assumptions. A different way to obtain
a model is from identification [6, 7] based on data from the SH wavefront sensor. How-
ever, the use of a Shack-Hartmann wavefront sensor does not allow for the identification
of (dynamic) non-common path errors; as can be seen in Figure 3.1, the optical paths
between the incoming wavefront and the wavefront sensor, respectively the camera, are
different. Any additional aberration that occurs in only one of the two paths gives a mis-
match between the estimated aberration and the aberration as seen by the camera. This
issue is encountered in for example astronomy [8–10] and ophthalmic imaging [11–13].

The phase aberration can be estimated from the camera measurements by using
phase retrieval methods [2, 3, 9, 10, 14, 15]. These techniques use two (or more) images,
of which one usually has an added phase diversity. The phase diversity is often a defocus
[16, 17], since this diversity image can be obtained by simply moving the camera out-
of-focus. From the time series of estimated phase aberrations a model can be identified
using the same techniques as with the SH wavefront sensor measurements. However,
taking multiple images with different phase diversities but the same aberration, might be
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yk

Measurement
Á̂k ,®̂k

Phase estimate

f̂ (®̂k , ŵk )
Model estimate

Ák ,®k

Phase measurement

f̂ (®k , ŵk )
Model estimate

yk

Measurement
®̂k , f̂ (®̂k , ŵk )
Model estimate

I.

II.

III.

Figure 3.2: An overview of identification methods. y denotes the measurement, Á is the phase aberration, ® is
the vector of Zernike coefficients, w a noise signal, k is a time index, and f (¢) is the model function. I. Phase-
retrieval first, then model estimate. II. Model estimate based on phase measurements. III. Our method: model
estimation and phase retrieval from PSF measurements.

impossible in a dynamical setting, without introducing non-common paths in the setup.
In addition to the drawback of taking multiple images, the approach to first reconstruct
at each time instance the phase aberration and subsequently modeling the temporal
dynamics of these reconstructed aberrations may suffer from accumulation of the esti-
mation errors in the two–step process. Identification of the phase aberration dynamics
based on measurements by the camera directly, has not yet been investigated. The prior
knowledge that the phase aberration behaves in a non-specific dynamical manner (i.e.
the dynamics are contained in a specific model set), has to our knowledge not previously
been incorporated in a phase aberration estimation procedure.

In this chapter we introduce a method to both estimate the phase aberrations and
the aberration dynamics directly from intensity measurements of the PSF, when the
phase aberration dynamics can be described with a Vector Auto-Regressive (VAR) model,
driven by a stochastic input, see Figure 3.2. Hereby we circumvent the problem of non-
common paths by requiring multiple images for every time-step and avoid the accumu-
lation of errors that the two-step process has.

To accomplish this, we assume the phase aberrations are small and the PSF can be
well-approximated by a second-order Taylor series expansion of the image intensities
as a function of the Zernike coefficients of the wavefront aberration. We show how the
estimation problem has a convex heuristic from which we can iteratively estimate both
the phase aberrations and their temporal dynamics.

Since we estimate both the aberrations and dynamics, one way to view this method
is as a system identification method with PSF data. A second way to view this method is
as a phase retrieval method with a time-evolution model constraint in the pupil plane.
In this sense it also differs from the method in [18, 19], where linear, but known, con-
straints on the phase aberration are used to reduce the parameter search space; our
constraints are bilinear. The available literature applicable to specifically noise driven
linear systems with nonlinear outputs, seems to be quite sparse. In [20] an identifica-
tion method is proposed for blind identification of Wiener systems, but an invertible
nonlinearity is assumed. Applicable identification methods for these type of systems are
based on a Bayesian approaches [21–24] using Maximum Likelihood (ML) and Expec-
tation Maximization (EM) algorithms to jointly estimate the dynamics and nonlinearity
itself. However, since the type of nonlinearity is known, we exploit the fact that our esti-
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mation problem has a convex heuristic in the sought-after parameters.

Article overview In Section 3.2 we set out the mathematical notation, the optical con-
ventions and the problem statement. Section 3.3 contains a reformulation of the estima-
tion problem, and introduces its convex heuristic. Furthermore, we propose an iterative
algorithm that uses the heuristic to compute an estimated model and phase. In Sec-
tion 3.4 we conduct a numerical experiment to compare the performance of our method
to two straightforward approaches. Section 3.5 contains the conclusion and some sug-
gestions for future research.

3.1.1. NOTATION
In this paper we make use of the vectorization function vect(¢) : X ! x, X 2 Rm£ n , x 2
Rmn , i.e. a linear transformation of a matrix X into a column vector x, stacking the
columns of X . This transformation is invertible, and we thus also define vect¡ 1 (¢) : x !
X . The nuclear norm of a matrix X is defined as kX k¤ Æ

P
i ¾i (X ), the sum of the singular

values of X . kX kF denotes the Frobenius norm of X . As a performance measure, given a
true sequence {®k }K

kÆ1 and an estimated sequence {®̂k }K
kÆ1, we define

VAF(®,®̂) Æmax

Ã

0,

Ã

1 ¡

P K
kÆ1 k®k ¡ ®̂kk2

2
P K

kÆ1 k®kk2
2

!!

(3.1)

where VAF is abbreviation for Variance Accounted For. Finally, given matrices X1, ..., Xn
we define the matrix direct sum as

L
nÆ1,...,N Xn :Æblkdiag(X1, X2, . . . , XN ), so e.g.

M

nÆ1,2
Xn :Æblkdiag(X1, X2) Æ

µ
X1 0
0 X2

¶
. (3.2)

3.2. PROBLEM DESCRIPTION
3.2.1. LINEAR AND QUADRATIC APPROXIMATIONS OF THE PSF FOR SMALL

PHASE ABERRATIONS
We follow the description of the optical setup in [25], where a linear quadratic controller
is designed using quadratic output measurements based on Taylor series expansions of
the PSF. The controller is based on an Linear Time-Invariant (LTI) model of the distur-
bance. We consider the same optical problem and Taylor approximation setting, but
focus on the model identification.

The Point Spread Function of an optical system is the inverse Fourier transform of
the Generalized Pupil Function (GPF). The GPF is the complex-valued function

P (x, y) ÆA(x, y)exp
¡

j Á(x, y)
¢
, (3.3)

where (x, y) are the Cartesian coordinates in the pupil plane, A(x, y) is the real-valued
aperture apodisation function, Á(x, y) is the real-valued phase function, and j 2 Æ ¡1.
We assume that Á(x, y) ÆÁa(x, y) Å Ád (x, y) where Áa(x, y) is the phase aberration func-
tion and Ád (x, y) is the phase diversity function. We assume that Áa(x, y) can be well-



3.2. PROBLEM DESCRIPTION

3

69

approximated by a weighted sum of Zernike basis functions,

Áa(x, y,®) :Æ
sX

r Æ1
Zr (x, y)®r (3.4)

where Zr (x, y) is the r ’th basis function, and ®r 2 R are the weights. Similarly, but with
different weights, Ád (x, y, ¯ ) approximates Ád (x, y). Hence

Á(x, y,®, ¯ ) ÆÁa(x, y,®) Å Ád (x, y, ¯ )

and it follows from the definition in (3.4) that

Á(x, y,®, ¯ ) ÆÁ(x, y,®Å ¯ ,0)

because of linearity in the weights. Now, we define a grid of points x̃ £ ỹ where x̃ Æ
{x1, . . . , xm}, ỹ Æ{y1, . . . , ym},. Over this grid, we define

©(®, ¯ ) Æ

2

6
6
4

Á(x1, y1,®, ¯ ) . . . Á(xm , y1,®, ¯ )
... . . .

...
Á(x1, ym ,®, ¯ ) . . . Á(xm , ym ,®, ¯ )

3

7
7
5 (3.5)

and with this definition we can express the vectorization of ©(®, ¯ ) as a matrix multipli-
cation

vect
¡
©(®, ¯ )

¢
ÆZ (®Å ¯ ), (3.6)

where Z 2 Rm2£ s for a matrix Z composed of Zr (xk , yk ). Similarly we define

¡ Æ

2

6
4

A(x1, y1) . . . A(xm , y1)
... . . .

...
A(x1, ym) . . . A(xm , ym)

3

7
5 (3.7)

The complex field in the imaging plane with incoherent illumination is the inverse
Fourier transform of the GPF. Taking intensity measurements with a noise-free camera
gives the PSF, the squared amplitude of this field:

y(®, ¯ ) Ævect
³¯
¯F ¡ 1 ©

¡ ¯ exp
¡

j vect ¡ 1 ¡
Z (®Å ¯ )

¢¢ª̄̄2
´

, (3.8)

where y(®, ¯ ) 2 Rp2

Å and p2 is the number of pixels, ¯ denotes the Hadamard product,
exp(¢) denotes the element-wise exponential function and j¢ j2 denotes the square of the
absolute value of the elements of the matrix.

A linear approximation of the PSF measurements for the i ’th pixel is given by a first-
order Taylor expansion of a small aberration ® about the diversity ¯ [25]:

yi (®, ¯ ) ÆD0,i (¯ ) Å D1,i (¯ )®Å O
¡
k®k2¢

, (3.9)

where O
¡
k®k2¢

denotes terms of order 2 and higher. The matrices D0,i and D1,i are given
by

D0,i (¯ ) Æyi (®, ¯ )
¯
¯
®Æ0 2 R,

D1,i (¯ ) Æ
@yi (®, ¯ )

@®

¯
¯
¯
¯
®Æ0

2 R1£ s .
(3.10)
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The first-order approximation has limited approximation power. For larger aberrations
a second order Taylor expansion can be used [25],

yi (®, ¯ ) ÆD0,i (¯ ) Å D1,i (¯ )®

Å
1
2

®T D2,i (¯ )®Å O
¡
k®k3¢

,
(3.11)

where

D2,i (¯ ) Æ
@2yi (®, ¯ )

@®T @®

¯
¯
¯
¯
®Æ0

2 Rs£ s . (3.12)

Since the quadratic approximation holds for aberrations of larger magnitudes, and an
identification method that is designed for this approximation would therefore be valid
for a larger number of cases, we continue with the model with a quadratic approximation
of the PSF and assume D2,i to be non-zero. We use Zernike polynomials normalized to 1
radian amplitude. To give an indication of the validity of the approximation, consider the
Zernike modes with OSA/ANSI-index 3 to 9. Drawing Zernike coefficients from a normal
distribution, the quadratic approximation of the PSF is a good approximation with

VAF(yi (®, ¯ ) ¡ D0,i (¯ ),D1,i (¯ )®Å
1
2

®T D2,i (¯ )®)) È 0.9, (3.13)

where VAF stands for Variance Accounted For (defined in the notation section), for k®k2 Ç
1.0 to 1.4 with a defocus diversity ¯ ranging between 0 and 0.5. The linear approxima-
tion is invalid without defocus and only valid up to k®k2 Ç 0.3 for ¯ Æ0.5. This trend
also holds for similar values of ¯ . Aberrations of small magnitudes can for example be
encountered in adaptive optics systems operating in closed loop. See also [26] for a dis-
cussion.

3.2.2. VAR MODELS AND THE IDENTIFICATION PROBLEM
We assume that the total phase ©(®, ¯ ) is time dependent. In vectorized form this be-
comes

vect
¡
©(®k , ¯ k )

¢
ÆZ (®k Å ¯ k ), (3.14)

where we use k as the time index. Similarly, the i ’th pixel at time k is denoted with
yi (®k , ¯ k ).

The assumption on the model structure is that the vector of Zernike coefficients of
the phase aberration evolves according to a vector valued autonomous auto-regressive
model of order N (VAR(N )):

®k Æf (®k¡ 1, . . . ,®k¡ N , wk )

ÆA1®k¡ 1 Å . . . Å AN ®k¡ N Å wk ,
(3.15)

where An 2 Rs£ s are coefficient matrices and wk 2 Rs is driving, white noise. This is a
common dynamic model for, for example, turbulent phase [4, 5, 27, 28].

The system that generates the measurements
©

yi (®k , ¯ k )
ª iÆ1,...,p2

kÆ1,...,K becomes

®k Æf (®k¡ 1, . . . ,®N , wk )

ÆA1®k¡ 1 Å . . . Å AN ®k¡ N Å wk ,

yi (®k , ¯ k ) ÆD0,i (¯ k ) Å D1,i (¯ k )®k Å ®T
k D2,i (¯ k )®k Å vi ,k ,

(3.16)
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where vi ,k is a noise signal consisting of measurement noise and the approximation error
O

¡
k®k3¢

in the Taylor expansion of Áa .

The identification problem to find {®k }K
kÆ1, {An}N

nÆ1, {wk }K
kÆ1 and

©
vi ,k

ªkÆ1,...,K
iÆ1,...,p2 in

(3.16) is cast into a minimization problem:

minimize
KX

iÆ1
kwkk2

2 Å °
KX

kÆ1

p2
X

iÆ1

°
° vi ,k

°
° 2

2

over An ,®k , wk , vi ,k

subject to ®k Æf (®k¡ 1, . . . ,®N , wk ),

yi (®k , ¯ k ) ÆD0,i (¯ k ) Å D1,i (¯ k )®k

Å ®T
k D2,i (¯ k )®k Å vi ,k ,

for n Æ1, . . . , N , i Æ1, . . . , p2,

k Æ1, . . . ,K ,

(3.17)

for a trade-off parameter ° 2 RÅ . This formulation can be seen as a generalization of a
standard state reconstruction problem (see for example [29]), where the difference lies
in the quadratic term in the output and the unknown parameter values of the model.

In the following section, we reformulate the equality constraints, which are both bi-
linear, into rank constraints. Subsequently we use a heuristic formulation for the rank
constraints and create a convex optimization problem.

3.3. BLIND IDENTIFICATION FROM QUADRATIC MEASUREMENTS

3.3.1. REFORMULATING (3.17) INTO A RANK CONSTRAINED PROBLEM

The time-evolution of the Zernike coefficients can be written as a matrix equation in the
following manner.

¡
®K . . . ®NÅ1

¢

| {z }
A K

Æ
¡

A1 . . . AN
¢

| {z }
A

0

B
B
B
B
@

®K ¡ 1 ®K ¡ 2 . . . ®N
®K ¡ 2 ®K ¡ 3 . . . ®N ¡ 1

...
...

...
...

®K ¡ N . . . . . . ®1

1

C
C
C
C
A

| {z }
H

ÅW
(3.18)

where H is a Hankel matrix and W Æ
¡
wK ¢¢¢ wNÅ1

¢
. Now, the measurement equa-

tions in (3.16) can be rearranged to

yi (®k , ¯ k ) ¡ D0,i (¯ k ) ¡ D1,i (¯ k )®k ¡ vi ,k Æ®T
k D2,i (¯ k )®k . (3.19)
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Furthermore, let Ŵ be the estimate of W and

D y Æ
M

i ,k
yi (®k , ¯ k ) ¡ D0,i (¯ k ) ¡ D1,i (¯ k )®k ,

D® Æ
M

i ,k
®k ,

D2 Æ
M

i ,k
D2,i (¯ k ),

V̂ Æ
M

i ,k
vi ,k .

(3.20)

Now, (3.17) can be rewritten compactly as

minimize
°
° Ŵ

°
° 2

F Å °
°
° V̂

°
° 2

F

over ®k , A, Ŵ , V̂

subject to A K ¡ Ŵ ÆAH

Dy ¡ V̂ ÆDT
®D2D®,

(3.21)

The optimization problem in (3.21) is an optimization problem with two bilinear
equality constraints. Following [30], we will convert these constraints into equivalent
rank constraints using Lemma 3.3.1.

Lemma 3.3.1 ([30]). Let the matrix-valued function L(¢) be defined as

L(A,P,B ,C ,X,Y) Æ
µ
C Å APY Å XPB Å XPY (A Å X)P

P (B Å Y) P

¶
.

(3.22)

For this matrix it holds that

rankL(A,P,B ,C ,X,Y) ÆrankP () APB ÆC (3.23)

for any choice of X,Y and any non-zero P of appropriate size.

Define now the two matrices MV AR and Mmeas :

MV AR :ÆL
¡

A, IN s ,H ,A K ¡ Ŵ ,X1,Y1
¢

,

Mmeas :ÆL
¡
DT

® ,D2,D®,Dy ¡ V̂ ,X2,Y2
¢

.
(3.24)

Here IN s is an identity matrix of size N s £ N s. Applying Lemma (3.3.1) to the two con-
straints in problem (3.21) gives us

rank MV AR Ærank IN s ÆN s

rank Mmeas ÆrankD2
(3.25)

as equivalent constraints. Problem (3.21) can now be formulated as

minimize
°
° Ŵ

°
° 2

F Å °
°
° V̂

°
° 2

F

over ®k , A, Ŵ , V̂

subject to rank MV AR Ærank IN s ÆN s

rank Mmeas ÆrankD2

(3.26)
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3.3.2. A CONVEX HEURISTIC FOR (3.26)
Rank constrained problems (or problems with bilinear matrix equalities) are in general
Non-deterministic Polynomial-time (NP)-hard to solve [31]. The proposed solution is
to solve a convex heuristic for the problem by adding the sum of the nuclear norms of
the matrices MV AR and Mmeas in (3.25) to the objective function and verifying their rank
afterwards. The fact that the two matrices are affinely parameterized by the decision
variables A, ®k , wk and vi ,k , even though problem (3.17) is not, allows the application
of the nuclear norm to make the problem convex. The advantage of using the nuclear
norm is that standard software like YALMIP [32] or CVX [33] is available to implement
the convex optimization problem. Alternatively to employing the nuclear norm, other
rank-minimizing heuristics could be applied, like for example the use of the truncated
nuclear norm, [34].

We introduce a regularization parameter ¸ to weigh the nuclear norms, following
from the two rank constraints in (3.26), against each other and a parameter » to weigh
the original objective function with the low rank inducing terms, and obtain the convex
problem:

minimize
A,®k ,Ŵ , V̂

°
° Ŵ

°
° 2

F Å °
°
° V̂

°
° 2

F Å »(¸ jj MV AR jj¤ Åjj Mmeas jj¤ ) . (3.27)

In this optimization problem Ŵ appears in the first and third term (see (3.24)) and V̂
likewise in the second and third term, and there are three parameters (° ,», ¸ ) to tune.

We found it more efficient to work with the following simplified optimization prob-
lem with only one single regularization parameter. Define the two matrices QV AR and
Qmeas :

QV AR :ÆL (A, IN s ,H ,A K ,X1,Y1) ,

Qmeas :ÆL
¡
DT

® ,D2,D®,Dy,X2,Y2
¢

.
(3.28)

The objective function is simplified to

minimize
A,®k

¸ jjQV AR jj¤ Åjj Qmeas jj¤ . (3.29)

The noise terms Ŵ and V̂ are simply interpreted as the feasibility gap of the Bilinear
Matrix Equalitys (BMEs) with the optimal A¤ and ®¤

k ,

Ŵ ¤ :ÆA ¤
K ¡ A¤H ¤

V̂ ¤ :ÆDy ¡
¡
D¤

®

¢T D2D¤
®.

(3.30)

We observe (3.29) minimizes the feasibility gap (interpreted as the norms of Ŵ and V̂ ),
and we therefore drop the two terms in (3.27) that have become redundant.

Since the problem in (3.29) is convex in the parameters A and ®k , it is easy to include
several forms of prior information through the use of convex constraints, or regulariza-
tion of the objective function. Examples are constraints expressing an affine parameter
dependence of the matrix A, or the inclusion of an additional term to the objective func-
tion such as ¹ kAk2

F , for some regularization parameter ¹ , to prevent elements of the
matrix A from having large magnitudes.

The optimization in (3.29) can be performed for different choices of the parameters
X1,Y1,X2 and Y2. This freedom can be used in an iterative manner, as outlined in Algo-
rithm 3.
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Algorithm 3 Sequential Convex Optimization-based Identification (SCOBI)

1: procedure SCOBI
2: while not converged do
3: Solve (3.29) with parameters X1,Y1,X2,Y2 to obtain optimal A¤ ,A ¤

K ,D¤
® and

D¤
y .

4: Set
XÅ

1 Æ ¡ A¤ , YÅ
1 Æ ¡A ¤

K ,

XÅ
2 Æ ¡ (D¤

®)T , YÅ
2 Æ ¡D¤

®.
(3.31)

5: end while
6: end procedure

3.4. NUMERICAL EXPERIMENTS
3.4.1. EXPERIMENTAL SETTING
To test the performance of Algorithm 1 we generate data for two separate identification
experiments as follows.

We assume that the time-varying aberration consists of oblique astigmatism and
coma and the diversity of only a defocus. That is, we consider a case with s Æ3 aber-
rated Zernike modes, so

Á(®k , ¯ k ) ÆZ ¡ 2
2 ®k (1) Å Z ¡ 1

3 ®k (2) Å Z 1
3 ®k (3) Å Z 0

2 ¯ k . (3.32)

The first mode, Z ¡ 2
2 , is an even mode and the effect is that without an added diversity,

®(1) and ¡ ®(1) are indistinguishable from a single PSF measurement.
In the first experiment every tenth measurement is taken with a defocus diversity

and the remaining 90% of images are taken without diversity (¯ k Æ0). That is,

¯ k Æ

(
0.5 k Æ1, 11, 21, . . .
0 otherwise

. (Experiment 1) (3.33)

The motivation is that the out-of-focus images are used to distinguish between ®k (1) and
¡ ®k (1), and the use of the model-set constraint determines the sign for the remaining
in-focus images.

In the second experiment every image is taken out of focus, i.e.

¯ k Æ0.5 8 k. (Experiment 2) (3.34)

For both experiments, the coefficients ® evolve according to a VAR(2) model. The
state-space formulation of the VAR model has the system matrix

As Æ
µ

Atrue
1 Atrue

2
I 0

¶
(3.35)

where the block matrix
¡

Atrue
1 Atrue

2
¢

is random and the poles of As have absolute value
between 0.75 and 0.9. Thus, the poles are chosen to be relatively ‘slow’ (towards the



3.4. NUMERICAL EXPERIMENTS

3

75

Property Experiment 1 Experiment 2

wk N (0,3 ¢10¡ 2I ) N (0,2 ¢10¡ 1I )
measurement noise in vk N (0,1 ¢10¡ 7I ) N (0,1 ¢10¡ 5I )
time series K 100 100
VAR order N 2 2
pixels p2 25 25
Iterations Alg. 3 150 150
Repetitions 100 100

Table 3.1: Settings for the two numerical experiments

Figure 3.3: On the left, the PSF at time step k Æ100. Outlined in red, the 25 pixel values used in the identifi-
cation. On the right, top, the Zernike coefficients for an example dataset for k Æ1, . . . ,100. Bottom, the time
series for k Æ1, . . . ,100 for the corresponding pixel values.

edge of the unit circle). The effect of this choice is that their corresponding dynam-
ics are more clearly present in a relatively short dataset. The decorrelation time of the
states of a representative randomly generated system is approximately 40 to 50 samples.
These two experiments are repeated 100 times with different system matrices As , state
and measurement noise sequences for every repetition. Parameter settings are listed
in Table 3.1. In both experiments the driving noise w has a noise power that ensures
that O

¡
k®k3¢

is small. Both driving noise and measurement noise are Gaussian white
noise with the mean and variance as specified in Table 3.1. From the PSF generated ac-
cording to (3.8) we use a subset of (only) 25 pixels, see Figure 3.3. The number of pixels
that are used is limited to reduce the computation time of the optimization, which is
roughly 800 seconds on a desktop computer. The initial guess for X1,X2,Y1,Y2 is drawn
randomly from a normal distribution N (0,1 ¢10¡ 5I ). The problem in (3.29) is solved for
¸ Æ0.25,0.5, . . . ,0.25 ¢(z ¡ 1),0.25 ¢z where ¸ Æ0.25 ¢z corresponds to the first solution
that worsens Variance Accounted For (VAF) of the states compared to the corresponding
solution for ¸ Æ0.25 ¢(z ¡ 1). A small regularization is added of the form 0.005kAk2

F to
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avoid over-fitting of the model to the estimated state sequence. A side effect is that it
reduces the spectral radius [35].

3.4.2. ALTERNATIVE METHODS
For benchmarking purposes, we consider two alternative methods to our proposed method
for solving (3.17).

Two-Step Least Squares The first alternative is to estimate the system dynamics in a
two-step method based on the linear approximation. It has the following two steps:

I) ®̂k Æargmin
®k

X

i ,k

°
° yi (®k , ¯ k ) ¡ D0,i (¯ k ) ¡ D1,i (¯ k )®k

°
° 2

F

II) Â1, Â2 Æarg min
A1,A2

X

k
k®̂k ¡ A1®̂k¡ 1 ¡ A2®̂k¡ 2k2

F .
(3.36)

For images taken without diversity, the first problem is ill-conditioned, and this method
is not applicable.

Separable non-linear least squares (SNLLS) The second method minimizes a non-
linear least squares cost function, that exploits the separability of the optimization prob-
lem. For the minimization we use MATLAB’s built-in nonlinear least-squares optimizer,
where we can make use of an exact or approximate gradient (for settings, see Appendix B.2).
That is, the identification problem can also be formulated as

minimize
A,®

jjG(®)Ā Å h(®)jj 2
2 (3.37)

where Ā Ævect(A) and G , h are given in Appendix B.1.
The first step is to optimize over Ā and then substitute the optimal solution Ā(®) Æ

¡ G†(®)h(®) into (3.37) which yields the problem

minimize
A,®

jjG Ā Å hjj 2
2

Æminimize
®

jj (I ¡ GG†)hjj 2
2

Æminimize
®

jjP?
G hjj 2

2

(3.38)

which may be solved using a nonlinear least square solver. With the residual, r ÆG Ā(®)Å
h ÆP?

G h, the solver can either be fed the exact gradient

@r
@®

Æ
@P?

G

@®
h Å P?

G
@h
@®

(3.39)

or an approximate gradient
@r
@®

¼P?
G

µ
@G
@®

Å
@h
@®

¶
. (3.40)

which is considerably faster computationally [36]. The solver was initialized in three dif-
ferent ways: first with the results from the Two-Step Least Squares, and second with the
result of our proposed method and third with 100 random initial guesses. This number
corresponds to solving the same problem with the proposed method in terms of com-
putational time.
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Figure 3.4: The VAF of the estimated state sequences for the first experiment. T-S is for initial guess from Two-
Step Least Squares (LS) and pr.m. is for initial guess from the solution of proposed method. Note that from
this figure it is apparent that the first least squares problem of the Two-step LS solution (3.36) fails to produce
a good estimate of the states.

3.4.3. PERFORMANCE MEASURES
We compare the estimation results in two ways. First, we compare the estimated state
sequence (Zernike coefficients). Second, we compare how well the estimated dynamics
can be used to predict a state of an independent data set generated under the same cir-
cumstances as the data set used for identification. The estimation error for an estimated
Â1 and Â2 is defined as

ek Æ®k ¡ Â1®k¡ 1 ¡ Â2®k¡ 2. (3.41)

3.4.4. RESULTS AND DISCUSSION
Despite the benefit of several random initial guesses for each experiment, the SNLLS
consistently failed to produce good results for any of the experiments. Thus, the results
of random initial guesses are omitted from the results. In the experiments it was noted
that initialization with the correct solution in the SNLLS algorithm yields the correct so-
lution. However, with small perturbations of this initialization the solution will instead
converge to a different local minimum with the SNLLS method. We conclude that the
SNLLS method is very sensitive to the initialization. The VAF of the estimated states are
displayed in the histogram in figures 3.4 and 3.5. We draw two conclusions from this
figure.

First, the proposed method is the only one that can correctly identify the states in
Experiment 1 (top histogram). In most instances the estimated states were close to the
true states, even though 90% of the images were taken without added phase diversity.
The use of the model-set prior information enables this good performance.

Secondly, the proposed method, with its quadratic approximation of the measure-
ments, outperforms the linear model of the measurements (bottom histogram) in Ex-
periment 2.

In Figure 3.6 and 3.7 we compare the average root mean square error of the state
estimates for the validation datasets. The SNLLS method produced bad estimates in the
terms of RMS, on average about 1000 times worse compared to the proposed method.
Thus, it is left out of these figures. We give the Root Mean Square (RMS) of the estima-
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Figure 3.5: The VAF of the estimated state sequences for the second experiment. T-S is for initial guess from
Two-Step LS and pr.m. is for initial guess from the solution of proposed method.

Figure 3.6: Comparison of RMS for the next predicted state by proposed method, states remain constant and
true model for the first experiment.

tion error produced by the true model, and the average RMS estimation error produced
by the static model ®kÅ1 Æ®k for comparison. From these figures we conclude that
the proposed method can identify the true model with good performance, since its per-
formance is close to that of the true model, and that it significantly improves upon the
assumption of a static aberration.

Some of the limitations we found that worsened the estimation results were increas-
ing noise levels, the limitations of the quadratic approximation when the aberration in-
creases in strength. Also, with the relatively short dataset we used, it was more difficult
to estimate fast dynamics.

3.5. CONCLUSION AND FUTURE RESEARCH
We presented a method to jointly estimate the temporal dynamics of the phase aberra-
tion and the phase aberration itself of an optical system based on measurements of the
Point Spread Function of this optical system. The approach is novel firstly in the sense
that a model set of temporal dynamics is used as prior information for phase retrieval,
and secondly uses a convex heuristic approach with good results to a blind system iden-



REFERENCES

3

79

Figure 3.7: Comparison of RMS for the next predicted state by proposed method, states remain constant and
true model for the first experiment.

tification problem with a nonlinear output function. Future research lines include mod-
elling spatial dynamics in anisoplanatism instead of temporal dynamics and increasing
the accuracy of the (small) phase approximation for larger phase aberrations.
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4
CONVEX OPTIMIZATION-BASED

BLIND DECONVOLUTION FOR

IMAGES TAKEN WITH COHERENT

ILLUMINATION

A rank-constrained reformulation of the blind deconvolution problem on images taken
with coherent illumination is proposed. Since in the reformulation the rank constraint
is imposed on a matrix that is affine in the decision variables, we propose a novel con-
vex heuristic for the blind deconvolution problem. The proposed heuristic allows for easy
incorporation of prior information on the decision variables and the use of the phase di-
versity concept. The convex optimization problem can be iteratively re-parameterized to
obtain better estimates. The proposed methods are demonstrated on numerically illustra-
tive examples.

Parts of this chapter have been published as a journal publication, “Reinier Doelman and Michel Verhaegen,
Convex optimization-based blind deconvolution for images taken with coherent illumination. Journal of the
Optical Society of America A, 2019."
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4.1. INTRODUCTION
In application areas such as Coherent Diffraction Imaging (CDI) [1], long range hori-
zontal imaging [2], imaging of layered metamaterials [3], or ptychography [4] the image
formation process can be described using the expressions for imaging with coherent il-
lumination [5],

y Æ
¯
¯go ? h

¯
¯2 , (4.1)

where y denotes the (noiseless) measurement (recorded discretized image), j¢j2 denotes
the element-wise squared absolute value of the complex-valued argument, in this case
the complex field in the imaging plane. go is the object-plane complex amplitude, and h
denotes the amplitude impulse response. ? is the (discrete) convolution operator. The
amplitude impulse response is sometimes called the coherent Point Spread Function
(coherent PSF). In for example ptychography, the quantity of interests are the Fourier
transforms of go or h.

If either go or h is known, and the other is to be estimated based on the measure-
ments y, then this problem is called a phase retrieval problem. If both quantities are to
be estimated based on y, then the problem is called a blind deconvolution problem. The
method proposed in this paper can be seen as an extension of a method we proposed
in [6] for phase retrieval, where that algorithm is compared to other standard phase re-
trieval methods.

In this paper we consider the blind deconvolution problem for images taken with
coherent illumination, that is

find go , h

subject to y Æ
¯
¯go ? h

¯
¯2

go 2 M go

h 2 M h

(4.2)

where M denotes a set of (convex) constraints on the variables that encodes the avail-
able prior information.

This blind deconvolution problem is different from what is typically encountered in
literature, the blind deconvolution problem for images taken with incoherent illumina-
tion [5],

find f, s

subject to y Æf ? s

f 2 M f

s 2 M s

(4.3)

where f Æ
¯
¯go

¯
¯2 is the (real and positive valued) intensity of the object in the object plane,

and s Æjhj2 is the intensity impulse response, more often called the Point Spread Func-
tion. For the incoherent illumination case, there are several categories of blind decon-
volution methods in the literature. Classic iterative projection methods [7–11] use al-
ternating projections of the estimates and their Fourier transform on their respective
constraints in the constraint sets. A second group is that of (non-convex,) gradient-
based optimization approaches [12], including Bayesian estimation approaches [13–15].
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A downside of gradient-based approaches is the initial guess is often crucial for perfor-
mance. Recently a third group of algorithms is being developed, based on convex op-
timization of a ‘lifted’ problem [16–19]. The ‘lifting’ of the problem hinders the use of
phase diversity [20], a powerful type of prior information, which can be described as a
linear constraint on h for different images with different phase diversities.

For the coherent illumination blind deconvolution problem, we can make the same
classifications.

In the first category there is [21, 22], where the extended Ptychographical Iterative
Engine (ePIE) is proposed, an iterative transform algorithm for ptychography. Other it-
erative Fourier transform-based techniques are [23–29].

In the second category, there are the methods proposed in [30, 31] for the estimation
of wavefront errors in CDIs and in ptychography [32–34]. [35] compares the performance
of several gradient descent schemes showing superior robustness to noise for amplitude
based metrics. Refinement of a guessed object and wavefront aberration in a Maximum
Likelihood context can be found in [36]. Related to this, gradient-descent schemes are
also popular in ptychography for compensating positioning errors [37].

A convex optimization-based approach has to the best of our knowledge not been
applied to the coherent blind deconvolution problem in the literature. For example in
ptychography, [38] only solves the deconvolution problem, not the blind deconvolution
problem, using convex optimization-based heuristic methods.

In this article we propose a blind deconvolution method for the coherent illumina-
tion case, based on a rank constrained reformulation of problem (4.2). The reformula-
tion is such, that the use of multiple images and phase diversity is easily incorporated
into the reformulation and subsequent optimization problem. To attempt to find a so-
lution with rank constraints satisfied, we propose to use the nuclear norm as a convex
heuristic for the rank constraint. An iterative extension of the subsequent convex opti-
mization problem is proposed to possibly improve the convex heuristic approximation.
This iterative extension has shown in the validation studies to improve the results. To
anticipate the problem that the convex optimization problem results in an unsatisfac-
tory solution, we propose an iterative scheme of convex optimization problems, that
produces in our experience iteratively improved results.

The organization of this paper is as follows. In Section 4.2 we formulate the blind de-
convolution problem as a problem to estimate a complex-valued object and the affinely
parameterized pupil function of the optical system with unknown phase aberration.
Section 4.3 explains how to reformulate the blind deconvolution into a rank constraint
problem with constraints on matrices affinely parameterized in the object and ampli-
tude impulse response. Section 4.3.4 describes the convex heuristic for the problem
and Section 4.3.6 how to incorporate several types of prior information. In Section 4.4
we demonstrate the algorithm on an illustrative numerical example and compare our
method to a gradient descent scheme.

4.1.1. NOTATION
The operation x Ævect(X ) stacks the columns from left to right of matrix X on top of
each other to obtain the vector x.  denotes the Kronecker product. In denotes an n £ n
identity matrix. X Æd(x) is the diagonal matrix with the values of the vector x on its
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diagonal. The Hermitian transpose of X is denoted by X H . The nuclear norm is denoted
as kX k¤ and the Frobenius norm as kX kF .

4.2. PROBLEM DESCRIPTION
The Generalized Pupil Function (GPF) characterizing an optical system [5] is the complex-
valued function

P (½,µ) ÆA(½,µ)exp
¡

j Á(½,µ)
¢

, (4.4)

where (½,µ) are the radius and angle of the polar coordinates, respectively.
¯
¯½

¯
¯ · 1 and

µ 2 [0,2¼). A(½,µ) is the amplitude apodisation function, and Á(½,µ) 2 R is the phase
aberration function of the optical system.

To obtain more measurements of the same object go with different Point Spread
Functions (PSFs), a phase diversity Ád may be introduced into the system by means of,
for example, a deformable mirror. The GPF then becomes

P d(½,µ) ÆA(½,µ)exp
¡

j Á(½,µ)
¢

exp
¡

j Ád(½,µ)
¢

. (4.5)

In this paper we consider the problem in modal form: we assume that the GPF can
be well-approximated with a weighted sum of basis functions. We use real-valued radial
basis functions and complex coefficients to approximate the GPF [39]. Switching from
polar coordinates (½,µ) to Cartesian coordinates (x, y), the radial basis functions and
approximate GPF are given by

Gi ÆÂ(x, y)exp
¡
¡ ¸ i

¡
(x ¡ xi )2 Å (y ¡ yi )2¢¢

,

P (x, y) ¼P̃ (x, y,v) Æ
sX

iÆ1
vi Gi (x, y),

(4.6)

with (xi , yi ) being the centers of the radial basis functions, and vi 2 C. Â(x, y) is the
aperture support function, ¸ i is the spread of the radial basis function, and v 2 Cs is the
complex-valued vector of coefficients vi . Including an introduced diversity Ád(x, y), the
approximate pupil function reads

P̃ d(x, y,v) Æ
sX

iÆ1
vi Gi (x, y)exp

¡
j Ád(x, y)

¢
. (4.7)

The amplitude impulse response, also called the coherent Point Spread Function (co-
herent PSF), hd(u, v) is the (2-dimensional) inverse Fourier transform of the GPF:

hd(u, v) Æ
sX

iÆ1
vi F

¡ 1 ©
Gi (x, y)exp

¡
j Ád(x, y)

¢ª
Æ

sX

iÆ1
vi Bd,i (u, v). (4.8)

Here the coordinates (u, v) are the Cartesian coordinates in the image plane of the optical
system.

A complex amplitude in the object plane go , imaged through this optical system
gives, in the case of coherent illumination, the complex amplitude gi in the image plane
[5]:

gi (u, v) Ægo(u, v) ? hd(u, v). (4.9)
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In the noise-free case the intensity of the complex field gi is recorded to produce the
measurements y:

y(u, v) Æ
¯
¯gi (u, v)

¯
¯2 . (4.10)

We now drop the notation for the dependency on coordinates and assume the signals
y, gi , go and hd are sampled on square grids of sizes r £ t , r £ t , m £ n and p £ q respec-
tively, such that we obtain matrices of the corresponding size. Throughout this paper we
assume that edges of go and hd are zero-padded, which for the discrete two-dimensional
convolution results in the relation r Æm Å p ¡ 1, t Æn Å q ¡ 1.

With slight abuse of notation, the blind deconvolution problem (4.2) has now turned
into the problem to identify go and v from measurements y:

find go , v, h, gi

subject to y Æ
¯
¯gi

¯
¯2

gi Ægo ? h

h ÆBv

go 2 M go

h 2 M h

(4.11)

4.3. BLIND DECONVOLUTION AS A RANK-CONSTRAINED FEASI-
BILITY PROBLEM

The aim of this section is to rewrite (4.11) into a feasibility problem with rank constraints;
one rank constraint to replace y Æ

¯
¯gi

¯
¯2, and one rank constraint to replace gi Ægo ? h.

In the following two subsections we use the following lemma.

Lemma 4.3.1. [40] Define the matrix

M(C , A,B ,Q, X ,Y ,W1,W2) Æ
µ
W1 0

0 I

¶
£

µ
C Å AQY Å XQB Å XQY (A Å X )Q

Q(B Å Y ) Q

¶µ
W2 0

0 I

¶
,

(4.12)

where I is the identity matrix.
For any X of the same size as A, for any Y of the same size as B , for any invertible

matrices W1,W2 of a size corresponding to the sizes of matrix C , and for nonzero Q, it
holds that the equality

rank(M(C , A,B ,Q, X ,Y ,W1,W2)) Ærank(Q)

is equivalent to the equality
C ÆAQB. (4.13)

Note that variables A and B appear in a product in (4.13), but they do not appear in
a product in the matrix M in (4.12).
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4.3.1. THE CONVOLUTION CONSTRAINT gi Ægo ? h
The two-dimensional (discrete) convolution of go and Bv gives the matrix gi . The ele-
ments of the matrix gi are given by the summation of products of individual elements of
go with individual elements of Bv. Lemma 4.3.2 states how this can be cast into a bilinear
matrix equality.

Lemma 4.3.2. The constraint gi Ægo ? h is equivalent to the bilinear equality

vect
¡
gi

¢
Æ

³
vect

¡
go

¢T  Ir t

´
V vect(Bv) . (4.14)

for a matrix of zeros and ones V 2 Bmnr t£ pq .

Proof. See Appendix C.

In (4.14) the general bilinear form C ÆAQB of Lemma 4.3.1 shows through, with

C Ævect
¡
gi

¢
, A Æ

³
vect

¡
go

¢T  Ir t

´
,

Q ÆV , B Ævect(Bv) .
(4.15)

We can therefore replace the constraint gi Ægo ? h with the rank constraint

rank
³
M

³
vect

¡
gi

¢
,vect

¡
go

¢T  Ir t ,vect(Bv) ,V , X ,Y ,W1,W2

´´
Ærank(V ) . (4.16)

The matrices X ,Y ,W1 and W2 are here further specified to

X Æ ¡ vect
¡
ĝo

¢T  Ir t ,

Y Æ ¡ vect(Bv̂) ,

W1 ÆI ,

W2 ÆI ,

(4.17)

where ĝo and v̂ are – for the moment – some guess for go and v respectively. The expres-
sion for the matrix-valued function M we now abbreviate for notational convenience
and call this specific abbreviation Mc ,

Mc
¡
gi ,go ,v,V , ĝo , v̂

¢
Æ

M
³
vect

¡
gi

¢
,vect

¡
go

¢T  Ir t ,vect(Bv) ,V , X ,Y ,W1,W2

´
,

(4.18)

where Mc 2 C(r tÅmnr t )£ (1Åpq).

4.3.2. THE MEASUREMENT CONSTRAINT y Æ
¯
¯gi

¯
¯2

The treatment of the measurement constraints is similar to [6]. The constraint y Æ
¯
¯gi

¯
¯2

uses the element-wise operator j¢j. To obtain the relation between y and gi in matrix
format, we place the values on a matrix diagonal:

y Æ
¯
¯gi

¯
¯2 , d

¡
vect

¡
y
¢¢

Æd
¡
vect

¡
gi

¢¢H d
¡
vect

¡
gi

¢¢
. (4.19)
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The related rank constraint is

rank
³
M

³
d

¡
vect

¡
y
¢¢

,d
¡
vect

¡
gi

¢¢H ,d
¡
vect

¡
gi

¢¢
, Ir t , X ,Y ,W1,W2

´´
Ær t . (4.20)

We further specify here that

X Æ ¡ d
¡
vect

¡
ĝi

¢¢H ,

Y Æ ¡ d
¡
vect

¡
ĝi

¢¢
,

W1 ÆI ,

W2 ÆI ,

(4.21)

where ĝi is some guess for gi . Furthermore, we abbreviate the arguments of M as

Mm
¡
y,gi , ĝi

¢
Æ

M
³
d

¡
vect

¡
y
¢¢

,d
¡
vect

¡
gi

¢¢H ,d
¡
vect

¡
gi

¢¢
, Ir t , X ,Y ,W1,W2

´
,

(4.22)

where Mm 2 C2r t£ 2r t .

4.3.3. THE RANK-CONSTRAINED BLIND DECONVOLUTION PROBLEM
Using (4.16) and (4.20) the blind deconvolution problem (4.11) can be expressed as

find go ,v,gi (4.23a)

subject to rank
¡
Mm

¡
y,gi , ĝi

¢¢
Ær t , (4.23b)

rank
¡
Mc

¡
gi ,go ,v,V , ĝo , v̂

¢¢
Ærank(V ) , (4.23c)

go 2 M go (4.23d)

h ÆBv 2 M h (4.23e)

The caveat is that rank-constrained problems are in general Non-deterministic Polynomial-
time (NP) hard, that is (informally), in general there do not exist algorithms that can
compute a feasible solution, guaranteed, within a time that is bounded by a polynomial
in the number of variables. However, we can attempt to compute a solution {go

¤ ,gi
¤ ,v¤ }

and check whether the matrices Mm
¡
y,gi

¤ , ĝi
¢

and Mc
¡
gi

¤ ,go
¤ ,v¤ ,V , ĝo , v̂

¢
have the cor-

rect rank.

4.3.4. A CONVEX HEURISTIC FOR BLIND DECONVOLUTION
Even though the reformulated problem with its rank constraints is still non-convex, we
propose to use a convex heuristic, the nuclear norm [41], to attempt to minimize the
ranks of the matrices involved. The nuclear norm of a matrix is defined as the sum of the
singular values of a matrix:

kX k¤ Æ
X

i
¾i (X ), (4.24)

where ¾i (X ) is the i ’th largest singular value of X . We can therefore use the nuclear norm
as a convex heuristic for the blind deconvolution problem to attempt to find a solution,
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but success is not guaranteed. The convex optimization approach for (4.23) is

min
go ,v,gi

¹
°
° Mm

¡
y,gi , ĝi

¢°°
¤ Å

°
° Mc (gi ,go ,v,V , ĝo , v̂)

°
°

¤ ,

go 2 M go

h ÆBv 2 M h

(4.25)

where the parameter ¹ È 0 is a tuning parameter that weighs the nuclear norm of the
matrix Mm with the nuclear norm of the matrix Mc .

Optimization problem (4.25) is parametrized in (4.17) and (4.21) by ĝo , v̂ and ĝi . The
interpretation is that, given some guess {ĝo , v̂, ĝi }, (4.25) produces a new estimate {ĝo

Å ,
v̂Å , ĝi

Å}. Motivated by [6, 40], (4.25) can be used in an iterative update scheme, see
Algorithm 4.

Algorithm 4 Convex Optimization-based blind deconvolution (COBBD) for images
taken with coherent illumination

1: procedure
2: k Æ0
3: while not converged do
4: Let {ĝi

kÅ1, ĝo
kÅ1, v̂kÅ1} be the arguments that minimize (4.25).

5: k Æk Å 1
6: end while
7: end procedure

Such an iterative scheme gives rise to three questions. First, do the estimates con-
verge to a fixed point? Second, are the resulting estimates correct solutions to the blind
deconvolution problem? Third, if it converges, how fast does it converge? Unfortunately,
all three questions are very difficult to answer and we cannot provide a theoretical proof
of convergence. We do notice however, that correct solutions of the blind deconvolu-
tion problem are fixed points of Algorithm 4. For solutions {go

¤ , v¤ , gi
¤ } of the blind

deconvolution problem, we verify that by substitution

¹
°
° Mm(y,gi

¤ ,gi
¤ )

°
°

¤ Å
°
° Mc (gi

¤ ,go
¤ ,v¤ ,V ,go

¤ ,v¤ )
°
°

¤

Æ¹

°
°
°
°

µ
0 0
0 Ir t

¶°
°
°
°

¤
Å

°
°
°
°

µ
0 0
0 V

¶°
°
°
°

¤
Æ¹ r t Å kV k¤ ,

(4.26)

which does not depend on any of the variables. So if {ĝo , v̂, ĝi } Æ{go
¤ , v¤ , gi

¤ } in (4.25),
the optimal parameters for (4.25) are {go

¤ , v¤ , gi
¤ }.

The convergence speed properties and success rate of Algorithm 4 depend on the
initialization {ĝo

0, v̂0, ĝi
0} and tuning of ¹ and the matrices W1,W2 in (4.17) and (4.21).

To show the difference that tuning of W1 and W2 in (4.17) and (4.21) can make, we solve
a small, 1-dimensional blind deconvolution problem with three different sets of tuning
parameters.1 We set W1 ÆW2 Æm1I in (4.21) , W1 Æc1I , W2 Æc2I in (4.17) and ¹ Æ1.
The three sets of parameters (m1,c1,c2) are (1,1,1), (2,1,4) and (0.6,1,0.6). The different
convergence speeds can be seen in Figure 4.1. It can be seen that the effect of tuning
1See https://bitbucket.org/rdoelman/blinddeconvolution.
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Figure 4.1: The convergence of the constraint violations, k y ¡
¯
¯ĝi

¯
¯2 k2

F (measurement fit) and k ĝi ¡ ĝo ? Bv̂ k2
F

(convolution fit) through updates in Algorithm 4 for three different sets of tuning parameters.

on the convergence speed can be very large. Unfortunately we cannot provide general
tuning rules that optimize convergence speed.

4.3.5. COMPUTATIONAL COMPLEXITY OF (4.25)
The computational complexity of the nuclear norm minimization in (4.25) can be es-
timated as follows. If we assume that minimizing the nuclear norm of a matrix with
n variables is of approximately O

¡
n6¢

when using a standard Semidefite Programming
(SDP) solver [42], then solving (4.25) is of complexity O

¡
(r t Å mn Å pq)6¢

which is very
unfavourable for practical applications. An Alternating Direction Method of Multipli-
ers (ADMM), [43, 44] solution for problem (4.25) consists of the singular value decom-
position of the matrices Mc 2 C(r tÅmnr t )£ (1Åpq) and Mm 2 C2r t£ 2r t that are of
O

¡
r t (1 Å mn)(1 Å pq)2 Å (1 Å pq)3¢

and O
¡
(r t )3¢

respectively.
Exploiting parallelization opportunities similar to [6], this can be reduced to r t Sin-

gular Value Decompositions (SVDs) with complexity O
¡
max(mn, pq)3¢

and r t SVDs of
matrices of size 2 with complexity O (1) that can be computed in parallel.

The convergence speed properties and success rate of Algorithm 4 depend on the
initialization {ĝo

0, v̂0, ĝi
0} and tuning of ¹ and the matrices W1,W2 in (4.17) and (4.21),

but we cannot provide successful general tuning rules.

4.3.6. INCLUDING PRIOR INFORMATION AND REGULARIZATION
The optimization in (4.25) is a convex optimization problem in the decision parameters
gi ,go and v. This makes the addition of prior information and regularization very simple,
if these can be expressed as convex constraints or convex penalty functions. The convex
optimization-based blind deconvolution (for incoherent illumination) techniques such
as [17] are based on directly estimating

¯
¯gi

¯
¯2 and jhj2, making it difficult to apply con-

straints on gi and h.
We here list some examples of prior information that can be included.
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1. The imaged object has a known support (known non-zero-valued pixels). This can
be expressed as the constraint Q vect

¡
go

¢
Æ0 for a selection matrix Q.

2. The imaged object is sparse, in the sense that many pixels of go have value 0. This
can be expressed through the addition of a penalty term ¿

P
i
¯
¯go i

¯
¯ with regulariza-

tion parameter ¿ and i denotes the i ’th pixel.

3. The extension to the use of multiple images (multi-frame blind deconvolution),
taken with different phase diversities, can be done by adding additional terms to
the objective function corresponding to the different images, and with addition of
the constraints hn ÆBn v 2 M hn for the n’th image.

4. In ptychography, overlapping parts of an object positioned in the pupil plane are
imaged with the same ‘probe’ or amplitude transfer function. If we write the Fourier
transform as a linear mapping with a matrix F, vect(F {x}) ÆFvect(x), then a
shift in the position of the illuminated object can be represented by the constraint
F1 vect

¡
go 1

¢
ÆF2 vect

¡
go 2

¢
, where F1 and F2 are those parts of the Fourier trans-

form matrices that correspond to the overlapping part of the object. This con-
straint addresses the problem that a phase aberration of the probe can be attributed
to the phase of the object and the other way around. For results on uniqueness and
ambiguities, see e.g. [45].

4.4. NUMERICAL EXPERIMENTS
We implemented an ADMM algorithm in MATLAB to compute the updates in Algo-
rithm 4. Although this allows for parallel computations of r td SVDs with complexity
O

¡
max(mn, pq)3¢

, where d is the number of images taken, and r td SVDs with complex-
ity O (1) we computed these in series. Due to the computational complexity, we tested
the algorithm for two cases with small dimensions. Furthermore, the ADMM algorithm
that iteratively finds the optimal solution to (4.25) is terminated after only 10 iterations.

For comparison, we implemented a gradient descent method comparable to [30, 31,
36], but adapted to our formulation with decision variables defined in the focal plane.
An accelerated gradient descent scheme, ADAM [46], is used to speed up the procedure
and automatically determine step size. The step size ´ is tuned once up front to ensure
convergence. The settings are: ¯ 1 Æ0.8, ¯ 2 Æ0.999, ² Æ1 ¢10¡ 8, ´ Æ2 ¢10¡ 4.

The experiment models an unknown aberration, consisting of 8 basis functions as
in (4.6), that approximate a small defocus, Á Æ0.2Z 0

2 , where Z 0
2 is the defocus Zernike

polynomial. We take three images with phase diversities that are defoci with coefficients
¼ ¡ 2,0 and 2. Due to the computational complexity the aperture is undersampled when
the amplitude impulse response is computed and the resulting matrix is cut to a size of
5 £ 5. The object go is a complex-valued matrix of dimensions 8 £ 8 and the resulting
measurements y are of size 12 £ 12, see Figures 4.2 and 4.3. The value of ¹ in (4.25) is
tuned to 0.55.

Both Algorithm 4 and the gradient descent method are tested on a noiseless case
and the same case where measurement noise has been added with a Signal-to-Noise
Ratio (SNR) of 20dB. Both algorithms in both cases are initialized with the same initial
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Figure 4.2: Top: the three 12£ 12 (noiseless) measured intensities y Æ
¯
¯go ? h

¯
¯2. Bottom: the three 5£ 5 intensity

impulse response functions (point spread functions) s Æjhj2 corresponding to the three different diversities
that generate the different h.

Figure 4.3: Left: the amplitude of the object. Right, the phase in radians of the object.

guess, where the pixels of the initial object estimate are randomly drawn from a Gaus-
sian distribution, and the initial guess for the coefficients are those that best approxi-
mate zero aberration. The computation time for the proposed method, implemented
without taking advantage of parallel computation of SVDs, is approximately 10 hours for
the 15000 iterations as shown here. The computation time consists of roughly 5 hours
for computation of SVDs, 40 minutes for solving least squares problems, and the rest be-
ing overhead. The gradient descent method is much faster with approximately 18 min-
utes for 100000 iterations. The resulting norms of the residual between measurements
and convolution of the estimated object and amplitude impulse response are plotted in
Figure 4.4. As can be seen in this figure, the gradient descent method gets stuck in the
noiseless case, whereas the proposed method converges to a feasible solution.

The estimated values v̂ and ĝo have an ambiguity, since for a complex scalar c, cBv̂ ?
ĝo ÆBv̂ ? cĝo . We can remove the ambiguity from for example v̂ when reporting the
estimation error by computing

min
c2C

kc v̂ ¡ vk2 . (4.27)

After removal of the ambiguity of the estimated values of go and v, we plot in in Fig-
ure 4.5 the norms of the residuals between the actual complex amplitude of the object
go and coefficients v and their estimated values. As can be seen in this figure, the pro-
posed method converges in the noiseless case not just to a feasible solutions, but to the
correct solution, whereas the gradient descent method stops progressing towards the
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Figure 4.4: The measurement fit generated by the two algorithms. Black: Algorithm 4. Red: gradient descent.
Solid lines show the case with noisy measurements (SNR: 20dB), dashed lines show the noiseless case.

solution. In the noisy case Algorithm 4 computes the solution with the best estimated
measurements (see Figure 4.4), and with the best estimated object (Figure 4.5, top). The
coefficients v have an estimate that is further from the real coefficients than the estimate
of the gradient descent method, but given the measurement fit and fit of go , the effect
of this error is small. The estimates resulting from Algorithm 4 and from the gradient
descent method of the object go are displayed in Figure 4.6. From Figure 4.6 it becomes
clear that even though in the noisy case the proposed method does not converge to the
exact solution, it converges to a solution that resembles the original object quite well.
Inspecting Figure 4.5 shows that the gradient descent method provides estimates of go
that are far from it. The resulting estimates of jhj are shown in Figure 4.7.

4.5. CONCLUSION AND FUTURE RESEARCH

We derived a convex heuristic for the blind deconvolution problem for images taken
with coherent illumination that is also able to incorporate the concept of phase diver-
sity. We suggested an update scheme and demonstrated on a numerically illustrative
example that it is capable of retrieving the object and PSF from a random initialization,
thereby overcoming local minima. At the moment, the method is computationally bur-
densome, but we expect computational improvements similar to [6] by fully exploiting
parallelization opportunities and the structure in the optimization problems. Apart from
the nuclear norm heuristic, there are also other methods that attempt to find low rank
results, like difference of convex programming (e.g. [47]), or application of the truncated
nuclear norm (e.g. [48]), but we leave the evaluation of their performance for future
research. Several questions still remain open, concerning optimal tuning rules for the
different parameters in the optimization, the conditions on the variables that guaran-
tee uniqueness of the solution, the performance of other non-convex low-rank inducing
norms, bounds on convergence speed and the computational speed-up by exploiting
parallelization opportunities.
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Figure 4.5: The Frobenius norm of the residual between the true variables go , the complex-valued object, and
v, the Radial Basis Function coefficients, and the (ambiguity removed) estimated variables ĝo and v̂. Top figure:
residuals for go . Bottom figure: residuals for v Black: Algorithm 4. Red: gradient descent. Solid lines show the
case with noisy measurements (SNR: 20dB), dashed lines show the noiseless case.
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5
SYSTEMATICALLY STRUCTURED H 2

OPTIMAL CONTROL FOR

TRUSS-SUPPORTED SEGMENTED

MIRRORS

A systematic distributed optimal control design procedure is proposed for the rejection of
wind load induced disturbances on a truss-supported segmented mirror. The distributed
nature of the controller is achieved by weighing of the interaction matrices between local
(per-segment) controllers in a global H 2 optimization. The procedure allows a tradeoff
analysis between the controller implementation complexity versus the improved perfor-
mance the extra communication brings.

The procedure is demonstrated on a finite-element model of a segmented mirror on a flex-
ible supporting truss to which we apply the combined closed-loop performance and lo-
cal controller interconnection structure optimization. The resulting set of controllers is
compared to a set of baseline controllers including Linear Quadratic Gaussian (LQG) con-
trol, Singular Value Decomposition (SVD) control, and a distributed controller where local
controllers of neighbouring segments communicate.

The tradeoff analysis for the segmented mirror demonstrates that the communication be-
tween the local controllers can be greatly reduced without significantly compromising the
rejection of wind-induced wavefront errors.

This chapter is based on Doelman, “Reinier Doelman, Sander Dominicus, Renaud Bastaits and Michel Verhae-
gen, Systematically structured H 2 optimal control for truss-supported segmented mirrors. IEEE Transactions
on Control Systems Technology 99, pp. 1–8. IEEE 2018.", [1]. The segmented mirror model was developed
thanks to the support of Fonds National de la Recherche Scientifique, via the grant FRIA FC76554.
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5.1. INTRODUCTION
The primary, segmented mirror in large ground-based astronomical telescopes requires
active control to compensate for the dynamic disturbance of wind loading on the seg-
ments.

As such, the modelling of segmented mirrors, the modelling of dynamical distur-
bance, design of controllers and the evaluation of the closed loop performance are stud-
ied during the design phase of telescopes. See for example for the Keck telescope [2],
the European Extremely Large Telescope (E-ELT) [3–5] or for the Thirty Meter Telescope
(TMT) [6–9].

The dynamics of the identical segments are not necessarily decoupled. If the seg-
ments are mounted on a supporting truss, the backstructure causes interaction between
the dynamics of the individual segments. This backstructure interaction is taken into
account in the control design [3, 7]. The effect of the backstructure interaction increases
with telescope size [10] and depends too on the structural damping in the supporting
truss.

From the perspective of the entire closed loop system, not only the backstructure
causes spatial dynamics. A second source of the dynamical interaction is the way the
position of the mirror segments are measured, which is through edge sensors that mea-
sure the relative displacement between neighbouring segments. A third source is spatial
correlation in the disturbance model (the force of the wind acting on the segments).

A fourth source are the dynamics of the control loop. For example, [3, 11] feature
SVD-based modal controllers. In [12] local (per-segment) controllers are designed that
are connected to the controllers of neighbouring segments. In [13] a centralized H 2
optimal controller is designed and a distributed controller based on spatial invariance
assumptions.

We observe that, conceptually, the choice of the structure of the controller (central-
ized, decentralized, hierarchical) is made first, and subsequently the controller is de-
signed to meet a performance criterion. We propose in this article to see the choice of
the segmented mirror controller structure and the meeting of a performance criterion
as something that should and could be done in a single controller design procedure. In
this procedure, there is a multi-criterion optimization that results in a tradeoff curve of
controller complexity versus performance.

Even if current design methods can reach the desired performance, the use of opti-
mal control theory and controller structure optimization might open up the possibility
of less stringent design criteria for other parts of the system, or might improve the end
result of the whole optical system.

Several related approaches for static (state or output) feedback that search for a sparse
controller structure regardless of model structure can be found in [14–17].

Instead of static output output feedback, we focus our attention on dynamic output
feedback. We analyze the closed loop performance of the system in the case that each
segment has a local, low order, dynamic output feedback controller, and and a decision
has to be taken on if and how these local controllers should be interconnected.

If the structure of the controllers is fixed up front, existing non-convex (gradient de-
scent) optimization methods could be applied [18, 19] to optimize the controller.

We can apply the relevant theory in [14] on appropriate addition of regularization
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on the decision variables to the objective function to induce sparsity in the resulting
controller matrices.

We build on the work in [14, 18, 19] to derive analytic expressions to compute the
gradients of the multi-criterion performance measure with respect to the controller ma-
trices.

The result of this approach is that the off-line, up front computational cost to design
the controller is high, but the on-line computations are light, see also Section 5.6. The
gradient descent procedure requires the solution of Lyapunov equations, whose compu-
tational complexity grows cubically with the number of states of the closed loop system.
The on-line computations are of a computational complexity that grows linearly with the
number of interconnections between local controllers, and quadratically with the num-
ber of states in a local controller. If the computations are done centrally, the optimization
of the interconnection structure leads to scalable on-line computations as well. This is
an advantage over an standard optimal LQG controller, whose on-line computational
requirements grow with the number of segments and system states.

In this paper we discuss the multi-criterion design procedure in Section 5.2. The
controller design procedure is demonstrated on an accurate, but numerically challeng-
ing Finite Element-based virtual model of a segmented mirror on a flexible supporting
truss. The model is discussed in Section 5.3, the necessary adaptations and transfor-
mations for optimal control design in Section 5.4. The complete model includes edge
sensors, backstructure interaction and a spatially correlated wind disturbance model. In
Section 5.5 we show the results of the multi-criterion tradeoff analysis for this segmented
mirror model. The results are discussed in Section 5.6.

5.2. DISTRIBUTED CONTROL APPROACH
As will be discussed in Section 5.4, the combined segmented mirror and wind loading
model used for control design can be transformed into the following standard discrete
time system description:

0

@
x[k Å 1]

z[k]
y[k]

1

AÆ

0

@
A B1 B

C1 0 0
C F 0

1

A

0

@
x[k]
w[k]
u[k]

1

A, (5.1)

with x 2 Rn , z 2 Rrz , y 2 Rry , w 2 Rmw , u 2 Rmu . For notational simplicity time postscripts
will be dropped, i.e. x is short for x[k], z, y , w ,u are defined similarly, and xÅ is short
for x[k Å 1]. The system matrices have dimensions that can be inferred from the sig-
nal dimensions. The vector y contains the edge sensor measurements, the vector u are
the segment position actuator inputs. For the segmented mirror system the disturbance
vector w is the white Gaussian noise that drives the wind model and the sensor noise.
The output vector z describes the mirror shape. The global mirror shape is determined
by the top position of each hexagonal segment’s 3 position actuators, and the channels
of z comprise the deviation of the position of the top of each actuator from the mean of
the top positions of all the actuators.

For a system driven by white noise, w » N (0, I ), with rz output channels (indexed



5

104
5. SYSTEMATICALLY STRUCTURED H 2 OPTIMAL CONTROL FOR TRUSS-SUPPORTED

SEGMENTED MIRRORS

z j ), the squared H 2 norm of the system equals the output variance:

kTw ! zk2
H 2

Æ
rzX

j Æ1
E

h
z2

j

i
,

where Tw ! z is the transfer function from the disturbance vector w to performance chan-
nel z. If we use the linear approximation of the wavefront error of segmented mirrors
[20], then the Root Mean Square (RMS) wavefront error e is related to the H 2 norm by

e Æ
2

p
rz

kTw ! zkH 2 ,

where the factor of 2 comes from the fact that the RMS wavefront error is twice the RMS
surface error. Standard Linear Time-Invariant (LTI) optimal control methods can be used
to minimize the effects of wind on the error e.

We concentrate on dynamic output feedback controllers without a direct feedthrough
term, i.e. controllers of the form:

µ
xÅ

c
u

¶
Æ

µ
Ac Bc
Cc 0

¶µ
xc
y

¶
, (5.2)

where xc 2 Rnc are the controller states. Closing the loop we obtain the system
µ

xÅ

z

¶
Æ

µ
A B
C 0

¶µ
x
w

¶
, (5.3)

where
µ

A B
C 0

¶
Æ

0

@
A BCc B1

BcC Ac Bc F
C1 0 0

1

A

and x Æ
¡
xT xT

c
¢T .

With a closed loop transfer function Tcl ,w ! z , the optimization problem becomes

min
Ac ,Bc ,Cc

J (Ac ,Bc ,Cc ), (5.4)

where J (Ac ,Bc ,Cc ) :Æ
°
° Tcl ,w ! z

°
° 2

H 2
.

With Ac ,Bc and Cc known, the controllability and observability Gramians Wc and Wo
are respectively determined by solving the Lyapunov equations

A Wc A T ¡ Wc Å BB T Æ0,

A T WoA ¡ Wo Å C T C Æ0.
(5.5)

The squared H 2 norm of this system can be computed as follows (see in this context
[18, 19]): °

° Tcl ,w ! z
°
° 2

H 2
Ætrace

¡
C Wc C T ¢

Ætrace
¡
B T WoB

¢
.

Eq. (5.5) shows that this criterion is not convex in the controller parameters, even if the
controller parametrization is affine. Transformations exist that render the computation
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of an H 2 controller a convex problem [21] through appropriate substitution of products
of decision variables, but such a substitution would hamper imposing a desired sparsity
structure on the controller matrices.

The squared H 2 norm of the system is however differentiable and analytical expres-
sions can be derived for the gradients of the norm with respect to the controller matrices
in (5.2). This also allows us to iteratively update the controller matrices during a gra-
dient descent optimization. The disadvantage is that due to the non-convex nature of
the problem it cannot be guaranteed that the global optimum will be found. This conse-
quence can be mitigated by trying multiple different starting points for the optimization.

5.2.1. OPTIMIZATION APPROACH
Using the results in [18, 19] we can derive the following gradients of J (Ac ,Bc ,Cc ) in (5.4)
with respect to the controller matrices:

@J (Ac ,Bc ,Cc )
@Ac

Æ2
¡
0 I

¢
WoA Wc

µ
0
I

¶
,

@J (Ac ,Bc ,Cc )
@Bc

Æ

2
¡
0 I

¢
WoA Wc

µ
C T

0

¶
Å 2

¡
0 I

¢
WoB F T ,

@J (Ac ,Bc ,Cc )
@Cc

Æ

2
¡
B T 0

¢
WoA Wc

µ
0
I

¶
Å 2E T C Wc

µ
0
I

¶
.

(5.6)

The derivation of these expressions can be found in Appendix D.
The gradients in (5.6) can be used in a gradient descent scheme to find a locally op-

timal dynamic output feedback controller.
In our implementation we used the accelerated gradient descent method ADAM [22],

because the method selects the step sizes automatically, and the method is efficient in
both memory usage and the amount of required additional computations. For a gradient
descent procedure with nv variables, the required computations are of O (nv ) complexity
and the additional required memory of O (nv ) size. The advantage of a gradient-based
optimization is that structure can be imposed on the controller system matrices. This
will be discussed in the next subsection.

5.2.2. DISCOVERING A SPARSELY CONNECTED CONTROLLER IN A USER-MOTIVATED
GLOBAL STRUCTURE

From a distributed controller-design point-of-view we can assume that there are N sub-
systems, with either one or more mirror segments per subsystem, and we would like
to assign a local controller to each subsystem. If we assume that each local controller
is connected only to the inputs and outputs of its own subsystem and controller states
of other local controllers, then we can state that the matrices Bc and Cc have a block-
diagonal structure after proper renumbering of system inputs and outputs. Denote this
as Bc 2 M Bc , Cc 2 M Cc .
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The matrix Ac can be written in the form

Ac Æ

0

B
@

Ac,11 ¢¢¢ Ac,1N
...

...
Ac,N 1 ¢¢¢ Ac,N N

1

C
A, (5.7)

where Ac,i i , i Æ1, . . . , N constitutes the local controller dynamics of subsystem i and
Ac,i j , i 6Æj describes together with Ac, j i the interaction between local controllers i and
j . That is, the local controller update xÅ

c,i can be described as

xÅ
c,i ÆAc,i i xc,i Å

NX

j Æ1, j 6Æi
Ac,i j xc, j Å Bc,i yi , (5.8)

where xT
c Æ

¡
xT

c,1 ¢¢¢ xT
c,N

¢
is the controller state, yi are local measurements and Bc,i

is the appropriate block on the diagonal of Bc . The number of connections between the
states of local controllers is computed by

1
2

X

i , j , i6Æj
card

Ã°
°
°
°

µ
Ac,i j
AT

c, j i

¶°
°
°
°

F

!

, (5.9)

where the function card(¢) denotes the cardinality operator:

card
¡
q

¢
Æ

(
1 q 6Æ0,
0 q Æ0.

The argument of the cardinality operator in (5.9) accounts for the fact that the local con-
troller state information can flow both ways if there is an interconnection between the
states of controller i and j .

To find a distributed controller, one could force the matrix Ac to have blocks equal
to zero, indicating that there is no possibility for communication between two local con-
trollers. Two examples are decentralized control and controllers where states of local
controllers of neighbouring segments are connected.

Based on [17, 23] we propose to add the block-sparsity promoting term

H(Ac ) :Æ
1
2

X

i , j , i6Æj
¡ i , j

°
°
°
°

µ
Ac,i j
AT

c, j i

¶°
°
°
°

F
,

as a weighted convex relaxation of (5.9), to the objective function (5.4), in order to trade
off performance of the closed loop system with the number of interconnections be-
tween local controllers. The block weights ¡ i , j influence the optimization’s preference
for having certain blocks put to 0. Using this weighting term, it is possible to systemati-
cally weigh the relative ease of implementation of connections between local controllers
against an improved performance of the closed-loop system by varying the parameter ° .

The resulting optimization problem is

min
Ac ,Bc ,Cc

J (Ac ,Bc ,Cc ) Å ° H(Ac ),

s.t. Bc 2 M Bc ,

Cc 2 M Cc .

(5.10)
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where ° is a regularization term whereby we can influence the (general) level of block-
sparsity in Ac .

The derivative of H(Ac ) with respect to the blocks in Ac is

@H(Ac )
@Ac,kl

Æ
¡ k,l Ac,kl

°
°
°
°

µ
Ac,kl
AT

c,lk

¶°
°
°
°

F

, l 6Æk,
°
°
°
°

µ
Ac,kl
AT

c,lk

¶°
°
°
°

F
6Æ0

From the derivatives with respect to the blocks of Ac the entire gradient of the objec-
tive function in (5.10) with respect to Ac can be constructed.

When in addition to the sets M Bc ,M Cc the set M Ac is similarly defined as the nonzero
block-pattern of the matrix Ac , (5.10) can be optimized with ° Æ0 and the additional
constraint Ac 2 M Ac :

min
Ac ,Bc ,Cc

J (Ac ,Bc ,Cc ),

s.t. Ac 2 M Ac ,

Bc 2 M Bc ,

Cc 2 M Cc .

(5.11)

The sets M Ac ,M Bc ,M Cc can be specified by the user. However, the set M Ac can also be
derived from the solution to (5.10) by thresholding the Frobenius norm of the blocks of
Ac . The subsequent optimization is called ‘polishing’ [14].

5.3. A SEGMENTED MIRROR ON A FLEXIBLE SUPPORTING TRUSS
5.3.1. MIRROR MODEL
We use the mirror model as described in [11] and [10] Section 4.3. The mirror model has
segments with a diameter of 1.8 m and consists of 2 rings and 18 segments.

The model is created using SAMCEF Finite Element Method (FEM) software and a
Craig-Bampton reduction. The FEM model reads:

µ
M̂11 M̂12
M̂21 I

¶

| {z }
M̂

µ
ẍ1
®̈

¶
Å

µ
C11 0

0 0

¶

| {z }
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ẋ1
®̇

¶

Å
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K̂11 0

0  2

¶
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K̂

µ
x1
®

¶
Æ

µ
F1
0

¶
.

(5.12)

The state x1 contains the bottom and top positions of the actuators, x1 Æ
¡
xT

bottom xT
top

¢
.

® is the vector of modal amplitudes of the fixed boundary modes resulting from the
Craig-Bampton reduction.

Forces F1 are external forces on the truss, either through loading of the mirror seg-
ments or reaction forces in the truss support. Modal damping is added to the model
as in [11] with a damping ratio of 1%, which is a standard value in segmented mirror
research [10, 12, 24].
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The matrices M̂11, M̂12, M̂21,  and K̂11 are obtained from the Craig-Bampton reduc-
tion. The diagonal matrix  contains the natural frequencies of the fixed boundary
modes.

The three actuators that suspend each segment are mounted on top of the support-
ing truss. The edge sensors are located on the edges of the mirror segments. Up to six
sensors are present per segment, depending on the number of neighbouring segments.
All sensors measure the relative displacement with respect to the neighbouring segment,
in the out-of-plane direction. The six sensors pointing towards the middle, where there
is no segment, measure the displacement with respect to the supporting truss.

5.3.2. WIND LOAD DISTURBANCE AND CONTROL OBJECTIVE
The control objective is to minimize the effect of wind loading on the shape of the mirror.

Many different disturbances act on the telescope structure, e.g. wind loading, edge
sensor noise and structural vibrations [5, 13, 25, 26]. From these, we incorporate only
wind loading and edge sensor noise in the model. Other disturbances can be dealt with
by the adaptive optics systems, separate control systems, or are of very little influence
on the wavefront.

The wind disturbance considered is the along-wind response of the mirror, modelled
with a classic random vibration approach. The turbulent wind force is assumed to fol-
low Davenport’s spectrum [27] and act on the model through the force F1 in (5.12). The
reference mean velocity of the wind is 10 ms¡ 1 in the direction perpendicular to the mir-
ror with a constant wind profile over the height of the mirror, and cross-correlation of
the disturbance on the different segments is assumed to be non-zero and computed ac-
cording to [10]. The analytically computed cross power spectral density of Davenport’s
spectrum is approximated by a ninth order band-limited white Gaussian noise driven
LTI system using the method in [28].

The edge sensors are assumed to have a noise level of 1nm/
p

Hz.
The Maréchal criterion [29] states that the performance of an optical element is lim-

ited by diffraction when the RMS wavefront error is lower than
q

¸ 2
l /180 ¼¸ l /13.4, where

¸ l is the wavelength of light. Since the smallest ¸ l observed by the science instruments in
for example E-ELT [30] is ¸ l Æ370nm, the objective for the controller design is a closed-
loop RMS wavefront error below 27.6nm. Any performance below this value we consider
to be sufficient, though lower values indicate that other system requirements could be
set more lenient. We do not consider frequency weighting of errors or the possibility of
subsequent error compensation through Adaptive Optics in the performance compari-
son between different controllers.

5.4. MODEL ADAPTATIONS FOR OPTIMAL CONTROL ENGINEER-
ING

We can write the FEM model into a descriptor (with the subscript d) state-space form:

Ed ẋ ÆAd x Å Bd u Å Bv v

y ÆCd x Å e
(5.13)
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Here x 2 Rnd is the system state of the descriptor system, Ad , Ed 2 Rnd £ nd , y 2 Rny is
the measurement, e is the sensor noise, and u 2 Rnu the input. The matrix Saka in Bd
describes the actuator topology and influence of actuator inputs (displacements) u on
the system. v is the output of the LTI wind model. The matrix Sy in Cd describes the
sensor topology. The descriptor system in (5.13) is from a numerical point of view badly
conditioned and not immediately suitable for simulation, optimization and control with
standard MATLAB toolboxes. We use the toolbox by Binder et al. [31] to transform system
(5.13) in series with the wind model that produces v , into the staircase canonical form,
which transforms the matrix Ed into a diagonal matrix. The resulting state-space mirror
model can be simulated accurately but still has a badly conditioned E matrix. We make
a minimal realization of the system which removes all uncontrollable and unobservable
poles. Since for this mirror models at hand this removes the generalized eigenvalues at
infinity, Ed is no longer badly conditioned and the model can be rewritten into a stan-
dard continuous-time state-space model.

Since the implementation of a controller is expected to be in discrete time, the model
is converted to a discrete time-model. All dominant dynamics are contained in a band-
width of 200Hz, so the model is discretized with a sampling frequency of 1kHz.

After this series of transformations, the model is in the form of (5.1) and the tech-
niques outlined in Section 5.2 can be applied. A (numerically stable) square-root covari-
ance filter [32] is used to compute a Kalman gain.

5.5. NUMERICAL RESULTS
The gradient descent procedure described in Section 5.2 was applied to a model of the
segmented mirror with 2 rings, for a total number of N Æ18 segments. This gives n Æ221
system states, ry Æ78 sensors and rz Æmu Æ54 actuators. Several baseline controllers
are generated for comparison purposes.

1. First of all, a (globally optimal) LQG controller was created.

2. Secondly, an SVD controller similar to the controller in [10] was implemented to
compare the performance of the optimal controllers to a controller based on a
modal approach.

A range of differently structured dynamic output feedback controllers were obtained.

3. A dynamic output feedback controller with full matrices Ac , Bc and Cc and a re-
duced number of controller states was designed using the gradient descent pro-
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Controller nc Ac , Bc , Cc RMS WF error
(nm)

1. LQG 221 f, f, f 6.32
2. SVD controller - - 127.96
3. Unstruct. red. order 54 f, f, f 6.52
4. Fully interconnected 54 f, b, b 14.52
5. Neighbours connected 54 s, b, b 20.26

Table 5.1: Performance of different control strategies of the 2-ring mirror model. The system matrix columns
feature an ‘f’ for ‘ full matrix’, ‘b’ for ‘block-diagonal’ or ‘s’ for ‘block sparse’.

cedure. Since each segment has 6 degrees of freedom, we choose each local con-
troller to have 3 states, for a total nc Æ3N Æ54 controller states. We refer to this
controller as an unstructured, reduced order controller.

4. All the structured, reduced order (nc Æ54) controllers have block diagonal matri-
ces Bc and Cc . The fully interconnected version (all local controllers are connected
to all other local controllers) therefore has a full matrix Ac , and block diagonal ma-
trices Bc and Cc .

5. Finally, a structured, reduced order (nc Æ54) controller is created where local con-
trollers are connected to those local controllers that are associated with neigh-
bouring segments, which is reflected in the block-structure of Ac . The matrices
Bc and Cc are still block diagonal.

Table 5.1 records the RMS wavefront (WF) errors of controllers 1 through 5.
Figure 5.1 displays the performance of the structured, reduced order controllers ob-

tained through optimization of (5.10) for different values of ° , resulting in the points
marked ‘x’. The values ¡ i j we chose to increase proportional to the square root of the
Euclidean distance between the centers of segments i and j . A square root was used to
not overly penalize the formation of longer distance connections but reflect a preference
for shorter connections. The structure of Bc and Cc are fixed to block-diagonal.

For the optimization of (5.10) using gradient descent, different initialization strate-
gies can be applied. First, stabilizing controllers with near-zero values in the system
matrices are used. In this way the closed loop system is stable, and a solution to the Lya-
punov equations in (5.5) can be found. Secondly, instead of a controller with near-zero
matrices, the matrices of baseline controller 4 could have been used. A third option is
that the value of ° could have been gradually changed and the optimization started with
the controller from the previous optimization. We found that the second option gave the
best results.

Once the gradient descent procedure converged, blocks with Frobenius norm below
a threshold of 10¡ 4 were deemed to not be in the interconnection structure. That is, there
is no connection between segment i and j if

°
°
°
°

µ
Ac,kl
AT

c,lk

¶°
°
°
°

F
Ç 10¡ 4. (5.14)
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Figure 5.1: The tradeoff between number of interconnections and wavefront error. Controllers marked by
‘x’ obtained using (5.10). Controllers marked by a diamond are solutions to (5.11). The horizontal axis gives
the value of (5.9) (the number of interconnections between local controllers). The vertical axis is the RMS
wavefront error as explained in Section 5.3.2. The penalty paid for the use of the L1 norm as stand in for the
cardinality operator is indicated by the vertical dotted lines.
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The resulting interconnection structure defines M Ac , and (5.11) can be used to com-
pute a locally optimal value for the performance of the structured controller. However,
given that proper initialization can make a difference for the result in non-convex op-
timization, we utilized the availability of the matrices of baseline controller number 4.
By setting ° high and ¡ i j to zero if segments i and j should be connected according to
M Ac , and initializing the gradient descent procedure with the matrices of baseline con-
troller 4, the ‘fully interconnected’ controller transforms into a controller with the proper
structure during the gradient descent procedure. The resulting performance is marked
in Figure 5.1 by a diamond marker. Corresponding ‘discovery’ and ‘polishing’ controllers
are connected by a vertical dotted line. Apart from this initialization, a gradient descent
method for problem (5.11) could also have been initialized, like the method for (5.10),
with a controller with near-zero matrices, or the controller found in the ‘discovery‘ pro-
cedure.

In the same figure, some of the baseline controllers are also indicated by horizontal
lines, baseline controller number 5 is indicated with a star. Even though the ‘fully in-
terconnected’ controller should be plotted by a point in this graph, for comparison with
controllers with a sparser interconnection structure, a line is drawn.

In Figure 5.2 one of the discovered interconnection patterns (with 18 connections)
is plotted on top of an image of the segmented mirror. A dashed line between two seg-
ment centres indicates that the local controllers are connected according to the sparsity
structure in Ac .

5.6. DISCUSSION
Immediately apparent from Table 5.1 is the small difference between the global opti-
mum (controller 1, the LQG controller) and the reduced order unstructured controller
(controller 3). When controller 3 is compared to controller number 4, where the differ-
ence is the structure in Bc and Cc , we see the wavefront error more than doubles.

The points marked with ‘x’ are the performances of the best controllers found by
optimizing (5.10) for different values of ° and different initial guesses for the controller
matrices. A tradeoff can clearly be seen between the number of interconnections and
performance. The identified interconnection structures for these controllers were used
in a structured controller optimization (problem (5.11)), and the resulting performances
are indicated with diamond markers. The difference between the tradeoff curves for the
discovery procedure (marked with ‘x’) and the subsequent structured optimization (dia-
mond markers) is relatively large and the resulting curves are not smooth. The large dif-
ferences in performance clearly show the penalty paid for using the Frobenius-norm as
a differentiable substitute for the cardinality operator. What is clear from the ‘polished’
curve is that fewer than half of the interconnections between mirror segment controllers
are not necessary for approximately the same performance as the baseline controller 4.
This observation is not clear from the ‘discovery’-curve, and neither is it from fixing the
controller structure heuristically like in the baseline controllers.

The relatively small degradation in performance for controllers with approximately
a third of possible interconnections not only justifies a search for optimal interconnec-
tion structures in distributed systems, but is also relevant for situations where the online
computation time of the input signal is critical. Even though the block-sparse matrices
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Figure 5.2: An example of an interconnection pattern generated by the discovery procedure.
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Ac have an interpretation as being a controller that is distributed, see (5.8), one might
choose to do the controller computations in a centralized manner. Let nlc be the dimen-
sion of the local controller, such that nc ÆN nl c , and let p be the maximum number of
blocks on a block-row of Ac ,

p Æmax
i

NX

j
card

¡°° Ac,i j
°
°

F

¢
.

The multiplication of Ac xc has a computational complexity of O
¡
n2

c
¢

ÆO
¡
N 2n2

lc

¢
for a

dense matrix Ac . For a block sparse matrix Ac it is possible to exploit the sparsity and
parallellize the computation like in (5.8), and compute the result with computational
complexity O

¡
pn2

l c

¢
. The multiplication Bc y can be computed with computational com-

plexity O
¡
nc ry

¢
ÆO

¡
nlc N ry

¢
. However, for block diagonal Bc this can be efficiently

parallelized and computed in O
¡
nl c rl y

¢
, where rl y are the maximum number of mea-

surements per segment. A similar argument can be given for the computation of Cc xc .
Through efficient use of the sparsity in the controller matrices in a centralized imple-
mentation of the controller, the online computation time is not related to the number
of subsystems, but to the pre-chosen number of states nlc , and through p to the intro-
duced level of sparsity. We see that for the analyzed segmented mirror there can be a
strong improvement in online computation time with only a small loss in performance.
By optimizing the interconnection structure, the online computation time can be traded
off against system performance.

In Figure 5.2, one of the discovered sparsity patterns is displayed. One thing to notice
is the absence of (rotational) symmetry and difference with a controller where neigh-
bouring segments are connected. In a sense such a symmetry was expected, since the
segment configuration is rotationally symmetric, all segments are the same, and a flat
mean wind velocity profile perpendicular to the mirror plane was assumed for the dis-
turbance. We do see that for this sparsity level, optimization (5.10) resulted in a master-
slave type of controller, where the controller of segment 11 connects to nearly all other
controllers, and there are only few connections among the other local controllers. Sim-
ilar master-slave type of controllers can be observed for larger number of interconnec-
tions, with a few more local controllers with a ‘master’ role.

Another interesting property of the controllers is that the computation of the control
action does not feature the numerical issues of the original model.

Finally, it is important to note that many of the structured controllers in Figure 5.1
have a remaining wavefront error that is lower than the maximum allowed wavefront
error of 27.6nm, meaning that the tradeoff analysis can and should play a role in system
design.

5.7. CONCLUSIONS
We demonstrated how the performance – the residual wavefront error of the closed loop
system – of a structured controller, with an interpretation as a distributed controller,
can be systematically traded off with the complexity of the distributed controller - in-
terpreted as the number of interconnections between the local controllers. The method
was applied to a challenging virtual model of a segmented mirror on a flexible support
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truss, and a wind disturbance model with spatial correlation. For this system a range of
structured controllers were computed. The results show that compared to the perfor-
mance of fully interconnected local controllers – controller 4 in Table 5.1 – the amount
of interconnections can be greatly reduced without significant loss of performance. Fur-
thermore, for small amounts of interconnections and the particular weighting of inter-
connections we chose, controllers with a centralized aspect seem to be preferred over
controllers where interconnections are distributed in a spatial sense.

For many different amounts of interconnections, the designed controllers have resid-
ual wavefront errors below the maximum allowed error and a performance improvement
can be found by optimizing the interconnection structure of local controllers with re-
spect to heuristic interconnection structures.

5.8. FUTURE WORK
As future work, we recommend that robustness against modelling uncertainty is inves-
tigated. That is, do the resulting interconnection patterns change if model uncertainty
is taken into account? Or if the mirror design parameters change? Furthermore, is the
centralized character of the optimal interconnection pattern, observed in Figure 5.2, also
present in the interconnection pattern of mirrors with more segments? The gap in per-
formance between the controllers with (nearly) full Ac matrices and structured Bc and
Cc matrices on the one hand and the unstructured, reduced order controller on the other
hand, would motivate the further inclusion of block-sparsity promoting terms in Bc and
Cc in the objective function of optimization in the discovery procedure. It also leads to
the question whether this inclusion affects the identified interconnection structures to a
significant degree.
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6
CONCLUSIONS AND

RECOMMENDATIONS

This thesis discusses a number of estimation and control problems related to optical
imaging. Chapter 2 proposes an algorithm to estimate the wavefront aberration based
on measurements of the point spread function of the system. Chapter 3 proposes an
algorithm to identify the temporal dynamics of the wavefront aberration based on mea-
surements of the points spread function of the system. Chapter 4 proposes a convex
optimization-based algorithm to estimate the wavefront aberration based on images
taken with coherent illumination. Chapter 5 proposes an algorithm to design distributed
locally H 2 optimal controllers to reduce the effect of wind load on wavefront aberrations
in telescopes.

In this chapter we summarize the conclusions and propose several lines of research
based on the work in this thesis.

6.1. CONCLUSIONS
In this thesis we have proposed a method to solve a range of estimation problems, based
on iterative convex optimizations. The method allows for a different approach to a num-
ber of problems - not only in the field of optics, but also in the fields of control and
identification, as demonstrated in this thesis. From the applications demonstrated here,
we conclude that the approach is effective and that there is an opportunity to apply and
test these methods to different problems.

Phase retrieval The Convex Optimization-based Phase Retrieval (COPR) algorihm is
based on an iteratively applied heuristic convex optimization problem, the nuclear norm.
Importantly, the coefficients that are sought-after appear affinely in the optimization
problem, enabling the easy incorporation of common types of prior knowledge, such
as sparsity. Since the nuclear norm is typically an optimization problem with a high
computational complexity, we showed how the Alternating Direction Method of Mul-

119
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tipliers (ADMM) algorithm reduces to updates based on matrix-vector multiplications
(solving a least squares problem using a pseudo-inverse) and singular value decompo-
sitions of 2-by-2 matrices. We provided some proofs of convergence for specific cases,
and demonstrated general applicability on synthetic and experimental phase retrieval
problems.

Blind identification of wavefront dynamics A powerful concept in phase retrieval is
phase diversity, the availability of several images with a known difference in phase (for
example a different defocus). If the phase is time-varying, it is difficult to capture these
different images without introducing different optical paths in the system. In Chapter 3
we introduced the use of a model set for the dynamics of the time-varying phase aber-
ration as prior information in the phase retrieval problem. From a system identification
perspective, where the dynamic model is of interest and not necessarily the aberration
itself, this is the blind identification problem for a Wiener system with squared output
measurements. We demonstrated the proposed method on an example and compared
its performance with a standard nonlinear least-squared-error minimization method.

Blind deconvolution for coherent imaging Standard phase retrieval algororithms as-
sume that either the image taken with an optical system is that of the point spread func-
tion, or that between the imaged object and the point spread function, one of these is
known. If this problem is generalized to both object and PSF unknown, we obtain a
blind deconvolution problem. Chapter 4 introduced a reformulation of the blind de-
convolution problem for images taken with coherent illumination to a rank constrained
problem, and proposed the use of a convex heuristic, the nuclear norm, to obtain a so-
lution. We demonstrated how this new method can take into account phase diversity
- by which it sets itself apart from other algorithms in its class - and is able to obtain a
solution where a standard gradient descent algorithm could not.

Distributed control for telescopes with wind load disturbance Typically the controller
for the primary segmented mirror in telescopes is one that is centralized, and in practice
based on modal analysis of the dynamics. Given the increasing scale of segemented mir-
rors in future telescopes, bringing with it an increased amount of communication over-
head for the control loop, it is worthwile to consider distributed controllers to address
this issue. By their nature a segmented mirror can be seen as a collection of subsystems
- the segments -, but not all sources of dynamics are similarly decomposable. For ex-
ample, the measurements are relative, the wind load is correlated and the supporting
structure couples the dynamics of the subsystems. In Chapter 5 we research the design
of a distributed, locally H 2 optimal controller, that takes into account explicitly these
global dynamics and the amount of interconnections necessary between the different
controllers. This gives a trade-off curve between on one hand the optical performance
of the telescope and on the other hand the amount of interconnections between the local
controllers of the segments.
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6.2. RECOMMENDATIONS
Convergence speed: theoretical bounds, tuning rules and low rank inducing norms
The sequential application of the nuclear norm on inherently bilinear problems has
great practical applicability for a large number of problems in the field of systems and
control. Problems are easily reformulated and implementation is facilitated by the use of
standard middleware and standard convex optimization software. Feasible solutions to
the bilinear problem are not required as starting points and in its most basic form it fea-
tures a single tuning parameter. Practical use not withstanding, there is not a proof for
convergence to a stationary point or to a feasible solution in the most general formula-
tion. Neither general results on convergence speed are obtained and what their relation
is to the tuning parameters, even though in practice a clear link can be observed. Fi-
nally, the performance related to the use of the nuclear norm can be compared to the
performance of different low rank inducing norms.

Parallel processing Several aspects benefit the adoption of a proposed algorithm. Prac-
tical applicability, speed and performance on hard optimization problems are some of
these. Some of the proposed algorithms in this thesis have the property that their ADMM
implementations consist of least squares problems and fully paralellizable singular value
decompositions, see also Appendix E. COPRs in Chapter 2 for example requires the com-
putation of a 2-by-2 Singular Value Decomposition (SVD) for every measured pixel, for
every ADMM iteration. The blind identification problem likewise has SVDs for every
pixel. SVDs of this very small size can be implemented in Graphics Processing Unit
(GPU) kernel functions, so that the GPU can compute the ADMM updates in parallel.
So far, the SVD is the bottleneck of the computation time of COPRs and an interisting
question would be what a potential computational speedup could be accomplished by
a GPU. Likewise for the blind deconvolution problem, the SVDs could be distributed
across computing cores of a cluster, instead of being computed sequentially on a single
computer. Hopefully this would allow for experimental validation with computing times
with reasonable limits.

Prior information: anisoplanatism and power series for phase approximations In
Chapter 3 the temporal correlation of phase aberrations was taken into account in the
estimation. In Chapter 4, we assumed that the image was taken under isoplanatic con-
ditions, i.e. the amplitude transfer function is constant throughout the image. Under
anisoplanatic conditions, the amplitude transfer function varies throughout an image.
If there is a spatial correlation, it would be interesting to use a spatial dynamics model-
set constraints in order to reconstruct the aberrations for different points in an image.

Another crucial assumption in Chapter 4 was the assumption called the ‘small phase‘
approximation. The assumption is based on the first two terms of the Taylor (Maclaurin)
series approximating the exponential function. The validity of the method is inherently
dependent on the validity of the approximation. Larger phase aberrations require more
terms of the power series for the approximation to hold. The insight here that would
warrant further investigation is that these truncated power series can be reformulated as
bilinear constraints, something that not just holds for scalar functions, but also matrix
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functions like the matrix exponential. The question is, would the methods proposed in
this thesis also produce good results for these higher order approximations?

Optimal interconnections, robustness and LPV systems Chapter 5 focused on H 2
optimal controllers. The issues of robustness were not addressed. Robustness can be
interpreted in two ways. First, the model did not incorporate for example slight dif-
ferences in masses of the segments, the changing wind conditions, or the presence of
other modelling errors. How the model of Chapter 5 should be modified to obtain for
example a Linear Paramater-Varying (LPV) system is still to be investigated. But sec-
ondly, what effect do these model changes have on the interconnection structure that
was deemed to be optimal for a specific model? The H 2 optimal solutions were opti-
mized using gradient descent. This is partly due to the problem size and the numerical
stability of controller design software, but also because the H 1 performance is not nec-
essarily differentiable with respect to its controller. The methods proposed in this thesis
can facilitate the design of structured robust controllers, but how the resulting structure
changes under changing parameters is something left to be investigated.



A
APPENDIX FOR CHAPTER 2

A.1. PROOF OF LEMMA 2.5.1
Proof. Let a satisfy y Æ jU aj2. It suffices to check that a 2 T (a). We first observe that

rank
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M(U ,a, ¡ a,y)
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Ærank

µ
0 0
0 Iny
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This means that a is a global minimizer of rank M(U ,x, ¡ a,y) as a function of x 2 Cna .
Since the nuclear norm
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¤ is the convex envelop of the rank M(U ,x, ¡ a,y),
they have the same global minimizers. Hence, a is also a global minimizer of
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as a function of x, that is
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In other words, a 2 T (a) and the proof is complete.

A.2. PROOF OF THEOREM 2.5.2
Lemma A.2.1 will serve as the basic step for proving Theorem 2.5.2.

Lemma A.2.1. Let U ÆIna and a¤ 2 Cna be such that jU a¤ j2 Æy. Then every Picard
iteration akÅ1 2 T (ak ) starting sufficiently close to a¤ converges linearly to a point ã 2
Fix T satisfying jU ãj2 Æy.

Proof. Since U ÆIna , the nuclear norm of M(Ina ,x, ¡ a,y) can be calculated from the nu-
clear norms of na matrices M(1, xi , ¡ ai , yi ) 2 C2£ 2 (1 · i · na). Let us do the calculation
for an arbitrary a 2 Cna . We first calculate the nuclear norm of each 2 £ 2 matrix

M(1, xi , ¡ ai , yi ) Æ
µ

yi ¡ 2R (xi ai ) Åj ai j2 xi ¡ ai
xi ¡ ai 1

¶
.
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Indeed, we have by direct calculation that
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where
r :Æyi ¡ 2R (xi ai ) Åj ai j

2, s :Æ jxi ¡ ai j.

Let us denote
Ti (ai ) :Æargmin

xi 2C
fi (xi ). (A.2)

Solving analytically the minimization problem on the right-hand side of (A.2), we
obtain the explicit form of Ti as follows
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where ¸ i is the unique real positive root of the real polynomial gi (t ) :Æt 3 Å 2(1 ¡ yi ) t 2 Å
(y2

i ¡ 6yi Å 1)t ¡ 4yi .
We need to take care of the two possible cases of yi .
Case 1. yi 2 (0,1]. Then we have 3

2
p yi Ç

p
¸ i Ç 2p yi since gi

¡ 9
4 yi

¢
Ç 0 and gi

¡
4yi

¢
È

0. The following properties of Ti can be verified.

• Fix Ti Æ
©

z 2 C j j z j Æ
p yi

ª
[ {0}, where 0 is an inhomogeneous fixed point of Ti , that

is, Ti (0) * Fix Ti .

• The set of homogeneous fixed points of Ti is Si :Æ
©

z 2 C j j z j Æ
p yi

ª
.

• Ti is pointwise averaging at every point of Si on Wi :Æ{z 2 C j j z j ¸
p yi /2} with

constant 3/4.

• The set-valued mapping Ã i :ÆTi ¡ Id is metrically subregular on Wi for 0 with
constant 1/2.

• The technical assumption dist(z,Si ) · dist(z,Fix Ti ) holds for all z 2 Wi .

Case 2. yi Æ0. Then ¸ i Æ0. Note also that a¤
i Æ0 and the formula (A.3) becomes

Ti (ai ) Æ1
2 ai . The following properties of Ti can be verified.

• Fix Ti Æ{0}, where 0 is a homogeneous fixed point of Ti .

• Ti is pointwise averaging at every point of Si on C with constant 1/4.

• The set-valued mapping Ã i :ÆTi ¡ Id is metrically subregular on C for 0 with con-
stant 1/2.
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• The technical assumption dist(z,Si ) · dist(z,Fix Ti ) holds for all z 2 C.

In this case, we denote Si :Æ{0} and Wi :ÆC.

The operator T can be calculated explicitly

T (a) Æarg min
x2Cna

naX

iÆ1

q
fi (xi ), 8 a 2 Cna , (A.4)

where the constituent functions fi (xi ) are given by (A.1).
Minimizing fi (i Æ1,2. . . ,na) separately yields the explicit form of T as a Cartesian

product
T (a) ÆT1(a1) £ T2(a2)¢¢¢£Tna (ana ), (A.5)

where the component operators Ti are given by (A.3).
Thanks to the separability structure of T as a Cartesian product at (A.5), the following

properties of T in relation to Proposition 2.5.1 can be deduced from the corresponding
ones of the component operators Ti .

• Fix T Æ
Qna

iÆ1 Fix Ti and the set of homogeneous fixed points of T is S :Æ
Qna

iÆ1 Si . It
is clear that jU aj2 Æy for U ÆIna and all a 2 S.

• T is pointwise averaging at every point of S on W :Æ
Qna

iÆ1 Wi with constant ® Æ3/4.

• The set-valued mapping Ã :ÆT ¡ Id is metrically subregular on W for 0 with con-
stant · Æ1/2.

• The technical assumption (i i i ) of Proposition 2.5.1 is satisfied on W . That is,

dist(w,S) · dist(w,Fix T ), 8 w 2 W. (A.6)

Now we can apply Proposition 2.5.1 to conclude that every Picard iteration akÅ1 2 T (ak )
starting in W converges linearly to a point in S as claimed.

Remark A.2.1. Under the assumption that yi È 0 for all 1 · i · na , then the linear con-
vergence result established in Lemma A.2.1 can be sharpened to finite convergence.

In order to distinguish the fixed point operator (2.25) corresponding to a general
unitary matrix U from the one analyzed in Lemma A.2.1 corresponding to the identity
matrix Ina , in the following proof, we will use the notation bT for one specified in Theo-
rem 2.5.2.

Proof. Let T be the fixed point operator (2.25) which corresponds to the identity matrix
and has been analyzed in Lemma A.2.1. We start the proof by proving that

bT (a) ÆU ¡ 1T (U a), 8 a 2 Cna . (A.7)
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Indeed, let us take an arbitrary a 2 Cna and denote a0ÆU a. Then we have

bT (a) Æarg min
x2Cna

°
° M(U ,x, ¡ a,y)

°
°

¤

Æarg min
x2Cna

°
° M(Ina ,U x, ¡ a0,y)

°
°

¤

ÆU ¡ 1
µ
arg min

x2Cna

°
° M(Ina ,x, ¡ a0,y)

°
°

¤

¶

ÆU ¡ 1 ¡
T (a0)

¢
ÆU ¡ 1 (T (U a)) .

(A.8)

We have proved (A.7). As a consequence,

Fix bT Æ{a 2 Cna j a 2 bT (a)}

Æ{a 2 Cna j a 2 U ¡ 1T (U a)}

Æ{a 2 Cna j U a 2 T (U a)}

Æ{a 2 Cna j U a 2 Fix T } ÆU ¡ 1 (Fix T ) .

(A.9)

For the sets S and W determined in the proof of Lemma A.2.1, we denote bS :ÆU ¡ 1(S)
and cW :ÆU ¡ 1(W ). Since U is a unitary matrix, the set of homogeneous fixed points of bT
is bS :ÆU ¡ 1(S). It also holds by the definition of projection and (A.9) that, for all w 2 W ,

PU ¡ 1(S)
¡
U ¡ 1w

¢
ÆU ¡ 1 (PS (w)) , (A.10)

dist
¡
U ¡ 1w,U ¡ 1(S)

¢
Ædist

¡
U ¡ 1w,U ¡ 1(Fix T )

¢
. (A.11)

By direct calculation one can verify the three assumptions on bT imposed in Proposition
2.5.1.

• bT is point-wise averaging at every point of bS on cW with constant ® Æ3/4.

• The set-valued mapping bÃ :ÆbT ¡ Id is metrically subregular on cW for 0 with con-
stant ° Æ1/2.

• The technical assumption (i i i ) of Proposition 2.5.1 is satisfied on cW .

Therefore, we can apply Proposition 2.5.1 to conclude that every Picard iteration
akÅ1 2 bT (ak ) generated by the COPR algorithm starting in cW converges linearly to a point
ã 2 bS. Finally, let ew 2 S such that ã ÆU ¡ 1 ew. It holds that jU ãj2 Æ jewj2 Æy by the structure
of S.

The proof is complete.
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B.1. THE MATRICES IN EQ. (3.37)

G Æ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

In  ®T
K ¡ 1 In  ®T

K ¡ 2 . . . In  ®T
K ¡ M

In  ®T
K ¡ 2 In  ®T

K ¡ 3 . . . In  ®T
K ¡ M ¡ 1

...
...

...
...

In  ®T
K ¡ N . . . . . . In  ®T

1
0 . . . . . . 0
...

...
...

...
0 . . . . . . 0
...

...
...

...
0 . . . . . . 0
...

...
...

...
0 . . . . . . 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

(B.1)

h Æ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

¡ ®K
¡ ®K ¡ 1

...
¡ ®NÅ1

y1,K ¡ D0,1(¯ k ) ¡ D1,1(¯ k )®K ¡ ®T
K D2,1(¯ k )®K

...
yp2,K ¡ D0,p2 (¯ k ) ¡ D1,p2 (¯ k )®K ¡ ®T

K D2,p2 (¯ k )®K
...

y1,1 ¡ D0,1(¯ k ) ¡ D1,1(¯ k )®K ¡ ®T
K D2,1(¯ k )®K

...
yp2,1 ¡ D0,p2 (¯ k ) ¡ D1,p2 (¯ k )®1 ¡ ®T

1 D2,p2 (¯ k )®1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

. (B.2)
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B.2. SETTINGS OF NONLINEAR SOLVER
Apart from SpecifyObjectiveGradient=’true’, default settings for lsqnonlin have
been used for all experiments involving SNLLS. For a complete list of the default settings,
we refer to MATLAB’s official documentation.
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C.1. PROOF OF LEMMA 4.3.2
The vector z Ævect

¡
vect

¡
go

¢
vect(Bv)T ¢

lists all possible products between elements of
go and elements of Bv. Since the elements of gi , the result of a discrete convolution,
are sums of specific elements of z, it is possible to construct a matrix of zeros and ones
L 2 Br t£ mnpq , such that

vect
¡
gi

¢
ÆL vect

¡
vect

¡
go

¢
vect(Bv)T ¢

. (C.1)

Application of the identity [1]

vect(AX B) Æ(B T  A)vect(X ) , (C.2)

allows us to rewrite (C.1) into

L
³
Ipq  vect

¡
go

¢T
´

vect(Bv) . (C.3)

Let li be the i ’th row of L. Then applying (C.2) on the i ’th row of (C.3) gives

li

³
Ipq  vect

¡
go

¢T
´

Ævect
¡
go

¢T Li , (C.4)

where l T
i Ævect(Li ) and Li 2 Bmn£ pq . Combining the expressions for all rows, the result

is

vect
¡
gi

¢
Æ

³
Ir t  vect

¡
go

¢T
´
0

B
@

L1
...

Lr t

1

C
Avect(Bv) . (C.5)

Using a row reordering of the matrix with blocks Li , [1, eq. 2.14], gives us V the expres-
sion in (4.14).

REFERENCES
[1] D. A. Turkington, Generalized vectorization, cross-products, and matrix calculus.

Cambridge University Press, 2013.
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D.1. GRADIENTS OF THE H 2 NORM WITH RESPECT TO THE CON-
TROLLER MATRICES FOR THE DISCRETE-TIME CASE

Using [1] and [2] we can derive that for the discrete time case the gradients of the squared
H 2 norm with respect to the closed loop system matrices are:

@trace
¡
C Wc C T ¢

@A
Æ2WoA Wc ,

@trace
¡
C Wc C T ¢

@B
Æ2WoB ,

@trace
¡
B T WoB

¢

@C
Æ2C Wc .

Using matrix calculus as described in [3] we have

@vect(B )
@vect(Bc )

Æ

@vect
µµ

0
I

¶
Bc F

¶

@vect(Bc )
ÆF 

¡
0 I

¢

and similarly
@vect(A )
@vect(Bc )

Æ
¡
C 0

¢


¡
0 I

¢
.

Using the Generalized Chain-Rule (see Thm 5.3 in [3]), we arrive at

@trace
¡
C Wc C T ¢

@Bc

Æ2
¡
0 I

¢
WoA Wc

µ
C T

0

¶
Å 2

¡
0 I

¢
WoB F T .

The results for the matrices Cc and Ac in (5.6) can be derived along the same lines.
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E
CONVEX RELAXATION OF BILINEAR

CONSTRAINTS

E.1. INTRODUCTION
The Chapters 2, 3 and 4 have in common that the problems they attempt to solve are par-
ticular cases of bilinearly (or just quadratically) constrained optimization problems.1 All
three chapters use the approach as given in [1], an article we submitted for the European
Control Conference 2016. In this appendix we discuss the approach in a general context,
partly based on [1]. The first three chapters are instances of this this approach, empha-
sizing its general applicability. We are not aware of any prior similar approaches, other
than those outlined in [1], in the field of optimization, identification, control engineer-
ing or for any of the applications we developed for optimization in the optical context as
in this thesis, or other applications we researched. For this reason we think the approach
is novel, even though the method is simple to apply and very versatile, and a summary
in the appendix of the different applications and different results throughout the thesis
is a useful addition to this thesis.

E.2. EQUIVALENCE OF BILINEAR CONSTRAINTS TO RANK CON-
STRAINTS ON MATRICES AFFINE IN THE VARIABLES.

The starting point is the following result on the generalized Schur complement.

Lemma E.2.1 (Carlson [2], generalized Schur complement). Let the matrix X be defined
as

X Æ
µ

X1 X2
X3 X4

¶
. (E.1)

then
rank(X ) Ærank(X4) Å rank

¡
X1 ¡ X2X Å

4 X3
¢

1Although the fourth chapter is also based on a bilinearly constrained optimization problem, the proposed
solution in that chapter is different in nature to those for the other chapters.
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if and only if

X2
¡
I ¡ X Å

4 X4
¢

Æ0, (E.2)
¡
I ¡ X4X Å

4
¢

X3 Æ0. (E.3)

The normal Schur complement requires X4 to be square and invertible. This result on
the generalized Schur complement also applies to non-square matrices. The lemma is
essential in proving the equivalence between a bilinear constraint and a rank constraint
on a matrix that is affine in the variables.

Theorem E.2.1. Given any matrices X 2 Rna £ nb , Y 2 Rnc £ nd and any full rank square
matrices W1 2 Rna £ na , W2 2 Rnd £ nd , define the matrix M :

M :Æ
µ
W1 0

0 I

¶
£

µ
C Å X PY Å APY Å X PB (A Å X )P

P (B Å Y ) P

¶

£
µ
W2 0

0 I

¶
.

The following two constraints are equivalent:

C ÆAPB () rank(M) Ærank(P ) . (E.4)

Proof. To start, notice that constraint C ÆAPB equals a rank constraint on the difference
between C and the product APB , i.e.

C ÆAPB () rank(C ¡ APB) Æ0.

Enforcing constraint rank(C ¡ APB) Æ0 is difficult for two reasons: it is a rank con-
straint, and the decision variables do not appear affinely in the constraint. However,
using Lemma E.2.1, we can rewrite this constraint.

What we know of matrix M is that the conditions of Lemma E.2.1, (E.2) and (E.3), are
fulfilled, since

W1(A Å X )P (I ¡ PÅP ) Æ0, and

(I ¡ PPÅ)P (B Å Y )W2 Æ0.

The generalized Schur complement of P in M is:

W1 (C Å X PY Å APY Å X PB)W2

¡ W1 ((A Å X )P )
¡
PÅ¢

(P (B Å Y ))W2

ÆW1 (C ¡ APB)W2,

so applying Lemma E.2.1 gives us

rank(M) Ærank(P ) Å rank(W1 (C ¡ APB)W2) .

Since W1,W2 are square and full rank we have the equivalence

rank(M) Ærank(P ) () rank(C ¡ APB) Æ0 () APB ÆC .
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As we noted in the proof, enforcing rank(C ¡ APB) Æ0 is difficult for two reasons:
it is a rank constraint, and C ¡ APB is not affine in A and B . However, the matrix M is
affine in all three decision variables. More often in semidefinite programming, we see
the normal Schur complement used to render a matrix inequality affine. In this case, its
use is slightly different, but not less useful when it comes to rendering expressions affine.

E.3. A CONVEX HEURISTIC FOR SOLVING BILINEAR PROBLEMS
In the previous section the equivalence was shown between a rank constraint on the
matrix M and the bilinear constraint. We can use this equivalence to formulate a convex
optimization problem as a heuristic for the problem where the bilinear term is causing
the non-convexity. We do this by following the following steps, assuming that we have
decision variables A and B that appear in the product APB , where P is some non-zero
matrix, but not a decision variable.

1. Replace the bilinear term APB with a variable C and add the constraint C ÆAPB ;

2. Replace the constraint C ÆAPB with the constraint rank(M) Ærank(P );

3. Drop the rank constraint on the matrix M , and add the convex, low-rank inducing
term ¸ kMk¤ to the objective function, where k¢k¤ denotes the nuclear norm and
¸ È 0 is a tuning parameter.

At this point it is important to discuss the parameters W1,W2, X and Y . They can be cho-
sen freely (with W1,W2 invertible), giving a whole range of convex optimization prob-
lems as heuristic approaches to the original problem. Even though the rank constraints
are equivalent, changing them influences the convex problem numerically, and (likely)
changes the solution that will be obtained. We will demonstrate this with an example.

Example E.3.1 (The constraint z2 Æ1). The constraint z2 Æ1 is a quadratic constraint2,
and can therefore be reformulated into a rank constraint. Set W1 ÆW2 Æ1 and x ÆX Æ
Y Æ0. We obtain the matrix

M(z, x) ÆM(z,0) Æ
µ

1 z
z 1

¶
. (E.5)

The nuclear norm of this matrix can be found analytically, and attains its minimum on
the interval z 2 (¡ 1,1). Typically a numerical solver will return only one optimal value
for z, not the interval. In our experience this optimal value that is returned is z¤ Æ0. The
use of a different choice of x will lead to different and single-valued optimal solutions,
that can also be computed analytically. The optimal solution is

z¤ Æ

8
>>>><

>>>>:

(¡ 1,1) x Æ0,
¡ 1 0 Ç x Ç x̄,
1 ¡ x̄ Ç x Ç 0,
¡ x3¡ 2x
2x2Å2 jx j È x̄,

(E.6)

2This is equivalent to a constraint s 2 {0,1} for z Æ2s ¡ 1.
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where the value for x̄ is

x̄ Æ
1
3

Ã

2 Å
3
q

17 Å 3
p

33 ¡
2

3
p

17 Å 3
p

33

!

and is approximately equal to 1.5439. This means that for choices of x close enough (in
the intervals [¡ x̄,0) and (0, x̄]) to a feasible solution, we will obtain a feasible solution by
minimizing the convex relaxation. ç

Example E.3.2 (Choice of ¸ ). The convex optimization problem can have an unbounded
objective function. For example, if we have the optimization problem

min
z

z

subject to z2 Æ1,
(E.7)

we obtain the convex problem

min
z

z Å ¸ kM(z, x)k¤ . (E.8)

For jz j À 1 and jz j À jx j, the nuclear norm term has the approximate value of kM(z, x)k¤ ¼

2
p

1 Å x2 jz j. If ¸ Ç
³
2
p

1 Å x2
´ ¡ 1

· 1
2 , the objective function is unbounded from below. If

we consider a choice of x only in the range ¡ 1 Ç x Ç 1, it can be shown that the point
where the optimal z changes between Å1 and ¡ 1 lies at x Æ ¡ 1

2¸ . If x is picked randomly
in this range, then ¸ should be tuned as low as possible, i.e. ¸ Æ1

2 . ç

Example E.3.3 ([3] Sparse controller design). A slightly more involved problem than the
ones above is the following. Consider the continuous time linear, time-invariant (LTI)
system

ẋ ÆAx Å Bu (E.9)

and suppose we are looking for a stabilizing, sparse controller u ÆK x. This could be
formulated [4] as

min
K ,P

X

i , j

¯
¯K[i , j ]

¯
¯

subject to (A Å BK )T P Å P (A Å BK ) Á 0

P Â 0,

(E.10)

where the objective function induces sparsity in the controller and the constraints en-
sure stability. The bilinear term is the term E :ÆPBK , so the reformulated problem is

min
K ,P

X

i , j

¯
¯K[i , j ]

¯
¯

subject to AT P Å E T Å PA Å E Á 0

P Â 0

rank(M(E ,P,B ,K )) Ærank(B) ,

(E.11)



E.4. TWO ITERATIVE USES OF THE RELAXED PROBLEMS

E

137

and the resulting heuristic convex optimization problem is

min
K ,P

X

i , j

¯
¯K[i , j ]

¯
¯Å ¸ kM(E ,P,B ,K )k¤

subject to AT P Å E T Å PA Å E Á 0

P Â 0.

(E.12)

ç

E.4. TWO ITERATIVE USES OF THE RELAXED PROBLEMS
The freedom to parameterize the matrix M also allows for the search for a different, bet-
ter solution in case the solver returns an infeasible or unsatisfactory solution to the orig-
inal problem. Our suggestion is to parameterize the new relaxation with the optimal
variables from the current optimization problem. This leads to two iterative algorithm
variants. Given the convex problem

min
x,A,B ,C

f (x, A,B ,C ) Å ¸ kM(C , A,B ,P, X ,Y )k¤ , (E.13)

the first variant uses the updates

{xk , Ak ,Bk ,Ck } 2 arg min
x,A,B ,C

f (x, A,B ,C ) Å

¸ kM(C , A,B ,P, ¡ Ak¡ 1, ¡ Bk¡ 1)k¤ ,
(E.14)

and the second variant uses the updates

{A0
k ,B0

k } 2 arg min
x,A,B ,C

f (x, A,B ,C ) Å

¸ kM(C , A,B ,P, ¡ Ak¡ 1, ¡ Bk¡ 1)k¤ ,

subject to (A ¡ Ak¡ 1)P Æ0

{xk , Ak ,Bk ,Ck } 2 arg min
x,A,B ,C

f (x, A,B ,C ) Å

¸
°
° M(C , A,B ,P, ¡ A0

k , ¡ B0
k )

°
°

¤ ,

subject to P (B ¡ B0
k ) Æ0

(E.15)

The first variant is easier to implement. For the second variant we can provide a proof
of convergence of the iteration to a fixed point [1]. This fixed point is not necessarily
a feasible solution to the bilinearly constrained problem, nor is it necessarily a global
optimum of this problem. We will discuss convergence in the next section.

There are a number of advantages to this iterative convex approach.

1. Ease of implementation. The resulting problems are convex optimization prob-
lems (SDPs) for which solvers exist (for example SeDuMi and SCS) and middle-
ware (YALMIP, CVX or Convex.jl) that allows for easy implementation of the nu-
clear norm operator.
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2. No feasible starting point required An alternating minimization approach (fix A,
optimize for B , then fix B and optimize for A) typically needs a feasible solution to
the bilinear problem. A feasible solution is not always easy to obtain, for example
in structured controller design. For the approach we propose, there are no prior
conditions on X and Y .

3. Performance As shown in [1, 3, 5] the method shows very competitive perfor-
mance for a range of problems.

4. Efficiency The introduction of an extra variable C is relatively efficient, in terms of
the number of variables, compared to other approaches that introduce a matrix to
replace the product vect(A)vect(B)T [1] (called ‘lifting’).

5. A and B available The fact that A and B are available in the resulting optimization
problem –and are not substituted– enables constraints and objective functions to
easily influence their structure and final value.

There are also some downsides.

1. Convergence We cannot guarantee convergence (in general) to a feasible solution,
nor to a globally optimal solution. In fact, we have not found a general proof of
convergence to even a fixed point when using the update rule in (E.14).

2. Computational complexity The resulting convex relaxation is an SDP problem,
which have relatively high computational complexity of O(n6) [6].

3. Numerical accuracy The numerical solution to the optimization problem typically
produces a matrix M for which the rank(P ) Å 1’th singular value has a very small,
but non-zero value (for example 10¡ 8). When validating the solution on the origi-
nal problem, this might result in small but critical violations of constraints.

4. Tuning There are five variables that can be tuned: ¸ ,W1,W2, X and Y . These vari-
ables influence both the success rate and convergence speed in a non-transparent
manner.

E.5. A NOTE ON CONVERGENCE OF THE ITERATIVE SOLUTION
There are some results on convergence of the Sequential Convex Relaxation (SCR) algo-
rithms. For the scheme in (E.15), consider the sequence of values

gk Æf (xk , Ak ,Bk ,Ck ) Å kCk ¡ Ak PBkk¤ , k Æ1, . . . ,1 (E.16)

This series can be shown to be non-increasing (see [1]). Colloquially, it can be interpreted
as either the objective function improves, the constraint satisfaction improves, or both.
However, the updates in (E.15) make no sense for a quadratic form, since the variables
will be essentially fixed.

The proof is not valid for the update scheme in (E.14). However, in our experience the
performance of (E.14) is better, which is why it is the first choice throughout this thesis.
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For the case of Example E.3.1, it is easy to show using (E.6) that the updates in (E.14)
ensure global convergence of z¤

k to a feasible solution for any starting point x0. Further-
more, the number of iterations to convergence scales with log jx0j, since

¯
¯z¤

kÅ1

¯
¯ Ç

¯
¯z¤

k

¯
¯

x̄
(E.17)

as long as
¯
¯z¤

k

¯
¯ È x̄,3 and then it terminates with one more iteration.

The local convergence proof for COPR (Chapter 2) is slightly more elaborate and
shows local convergence to a fixed point, under some strong assumption on the under-
lying problem.

E.6. MULTIPLE BILINEAR CONSTRAINTS AND THE USE OF ADMM
A commonality for the problems in this thesis is that there is not just one bilinear con-
straint, but that there are many. That is, they are instances of the feasibility problem

find µ 2 Rn

subject to Ci (µ) ÆAi (µ)Pi Bi (µ)

for i Æ1, . . . , N

(E.18)

All the matrices Ai (µ), Bi (µ), Ci (µ) are affinely parameterized in µ, i.e. they can be writ-
ten as

vect(Ai (µ)) Æp Ai Å T Ai µ (E.19)

for a vector p Ai , a matrix T Ai , and similarly for Bi (µ) and Ci (µ).
The matrix

Mi (µ,Á) ÆM
¡

Ai (µ),Bi (µ),Ci (µ), ¡ Ai (Á), ¡ Bi (Á)
¢

(E.20)

is also affine in µ, but not in Á. This matrix can be vectorized to obtain

vect
¡
Mi (µ,Á)

¢
ÆpMi (Á) Å T Mi (Á)µ. (E.21)

Here we list some examples of problems with many bilinear constraints.

Example E.6.1 (Phase retrieval). [5] and Chapter 2. The phase retrieval problem can be
described as

find a

subject to yi ÆjUi aj2 ÆaHU H
i Ui a

for i Æ1, . . . ,ny

(E.22)

These constraints are quadratic, a subset of bilinear constrained problems, and there are
as many constraint as there are measurements. ç

3The gradient of
@z¤

kÅ1
@z¤

k
is approximately 0.5 for

¯
¯
¯z¤

k

¯
¯
¯ È x̄, whereas 1

x̄ ¼0.65.
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Example E.6.2 (Blind deconvolution, Chapter 4). The blind deconvolution problem for
the case of coherent illumination is the feasibility problem

find h, go, gi

subject to y Æ
¯
¯gi

¯
¯2 ) d

¡
vect

¡
y
¢¢

Æd
¡
gi

¢H d
¡
gi

¢

gi Æh ? go ) vect
¡
gi

¢
Æ(vect(h)T  I )V vect

¡
go

¢
.

(E.23)

These are two bilinear constraints, but a deeper analysis of the matrix V shows this can
be further split up into two constraints for every measured pixel, just as in the previous
example.

The case of coherent illumination is similar. Let f Æ
¯
¯go

¯
¯2 be the intensity of the object

distribution and s the intensity impulse response function. The feasibility problem is

find h, f, s

subject to s Æjhj2 ) d(vect(s)) Æd(vect(h))H d(vect(h))

y Æs ? f ) vect
¡
y
¢

Æ(vect(s)T  I )V vect(f) .

(E.24)

ç

Example E.6.3 (Parameter identification from input and output power spectra [7]). Let
µ be the unknown parameter vector, M(µ) a mass matrix, V (µ) a damping matrix and
K (µ) a stiffness matrix with the spring constants, all affine in µ, u an actuator force and

M(µ)ẍ Å V (µ)ẋ Å K (µ)x ÆBu

y ÆC x
(E.25)

the dynamic equations for a system with masses, springs, and dampers and measure-
ments y ÆC x, where x is the system state. Let the Fourier transforms of u(t ), x(t ), y(t )
be denoted as U ( j ! ), X ( j ! ) and Y ( j ! ) respectively. Denote the transfer function from
u to x as ¡ ( j ! ) and from u to y as H( j ! ). For a set of frequency points ! i , i Æ1, . . . , N ,
we have the N bilinear constraints

µ
M(µ) V (µ) K (µ)

0 0 C

¶
0

@
¡ ! 2

i I
j ! i I

I

1

A¡ (! i ) Æ
µ

B
H(! i )

¶
, i Æ1, . . . , N . (E.26)

Let the power spectrum of the input be denoted as ©uu( j ! ) and that of the output as
©y y ( j ! ) ÆH( j ! )©uu( j ! )H( j ! )H , where H denotes the Hermitian transpose. If both
power spectra are known or measured for frequency points ! i , we have 2N bilinear or
quadratic constraints in the variables µ, H( j ! i ), ¡ ( j ! i ). ç

Example E.6.4 (Closed loop parameter identification from reference input and output
power spectra). Consider the case of example E.6.3, but assume the system is controlled
by a known controller with transfer function K ( j ! ). Let the input to the system u be the
summation of a reference signal r and the output of the controller, see Figure E.1. The
reference signal has a known power spectrum denoted by ©r r ( j ! ).
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H( j ! ,µ)

K ( j ! )

r u y
Å

Figure E.1: The identification problem is to estimate µ based on the power spectral densities ©r r ( j ! i ) and
©y y ( j ! i ), and known controller dynamics K ( j ! i ) at a set of frequency points ! i , i Æ1, . . . , N .

For a set of frequency points ! i , i Æ1, . . . , N we have the constraints

¡
I Å K ( j ! i )H( j ! i ) H( j ! i )

¢
µ
©y y ( j ! i ) 0

0 ¡ ©r r ( j ! i )

¶µ¡
I Å K ( j ! i )H( j ! i )

¢H

H( j ! i )H

¶
Æ0.

(E.27)
Together with (E.26) these give 2N bilinear or quadratic constraints. ç

The bilinearly constrained problems above have the convex relaxation

min
µ

NX

iÆ1
¸ i

°
° M(

¡
Ai (µ),Bi (µ),Ci (µ), ¡ Ai (Á), ¡ Bi (Á)

¢°°
¤ . (E.28)

This optimization problem can be reformulated by introducing the additional variables
Xi ,

min
µ,X

NX

iÆ1
¸ i kXi k¤

subject to Xi ÆMi (µ,Á) :ÆM
¡

Ai (µ),Bi (µ),Ci (µ), ¡ Ai (Á), ¡ Bi (Á)
¢

for i Æ1, . . . , N

(E.29)

Following [8], we construct an Alternating Direction Method of Multipliers (ADMM)
algorithm [9] to solve this minimization problem. Introducing the dual variables Yi and
the ADMM parameter ½we obtain the updates

µkÅ1 2 argmin
µ

½

2

NX

iÆ1

°
°
°
° Xk

i ¡ Mi (µ,Á) Å
1
½

Yk
i

°
°
°
°

2

F

XkÅ1
i 2 argmin

Xi
kXi k¤ Å

½

2¸ i

°
°
°
° Xi ¡ Mi (µkÅ1,Á) Å

1
½

Yk
i

°
°
°
°

2

F

YkÅ1
i ÆYk

i Å ½
³
XkÅ1

i ¡ Mi (µkÅ1,Á)
´

(E.30)

The update of µk is an Ordinary Least Squares (OLS) problem, since Mi is affine in µ. The
update of each Xk

i is completely independent for i Æ1, . . . , N and can be computed using
singular value soft thresholding. The extension of the use of the nuclear norm to other
low-rank inducing norms, such as the truncated nuclear norm, that have similar ADMM
implementations, easily follows. The update of each Yk

i is also completely independent
from the others.
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The OLS problem in the update of µk can be written in standard form according to

µkÅ1 2 argmin
µ

°
°
°
°
°
°
°
°
°
°
°
°
°
°
°
°

0

B
B
B
@
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...
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| {z }
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¡

0

B
@

pM1 (Á)
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1
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¡

0
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T M1
...

T MN

1

C
A
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°
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°
°
°
°
°

2

2
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or simply

µkÅ1 2 argmin
µ

°
°
° bk

ADMM ¡ bSCR ¡ Hµ
°
°
°

2

2
. (E.32)

The fact that the matrix H does not change during the ADMM iterations, can be exploited
by computing for example its pseudo-inverse HÅ in advance and using the update

µkÅ1 ÆHÅ
³
bk

ADMM ¡ bSCR

´
. (E.33)
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LIST OF ACRONYMS

ADMM Alternating Direction Method of Multipliers

AO Adaptive Optics

BME Bilinear Matrix Equality

CCD Charge-Coupled Device

CDI Coherent Diffraction Imaging

CMOS Complementary Metal Oxide Semiconductor

COBBD Convex Optimization-based blind deconvolution

COPR Convex Optimization-based Phase Retrieval

CPRL Compressive Sensing Phase Retrieval

DM Deformable Mirror

E-ELT European Extremely Large Telescope

EM Expectation Maximization

ENZ Extended Nijboer-Zernike

ePIE extended Ptychographical Iterative Engine

ERC European Research Council

FEM Finite Element Method

FFT Fast Fourier Transform

GPF Generalized Pupil Function

GPU Graphics Processing Unit

GRBF Gaussian Radial Basis Function

GS Gerchberg-Saxton

HIO Hybrid Input-Output

LPV Linear Paramater-Varying

LQG Linear Quadratic Gaussian
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LTI Linear Time-Invariant

MAP Maximum a posteriori

ML Maximum Likelihood

NP Non-deterministic Polynomial-time

NCP Non-Common Path

OLS Ordinary Least Squares

OSA The Optical Society

OSS Oversampling Smoothness

OTF Optical Transfer Function

PSF Point Spread Function

RMS Root Mean Square

SCOBI Sequential Convex Optimization-based Identification

SCR Sequential Convex Relaxation

SDP Semidefite Programming

SH Shack-Hartmann

SNLLS Separable non-linear least squares

SNR Signal-to-Noise Ratio

SVD Singular Value Decomposition

TMT Thirty Meter Telescope

VAF Variance Accounted For

VAR Vector Auto-Regressive

VLT Very Large Telescope
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