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ABSTRACT
It is of vital importance to maintain at least some network
functionality after a disaster, for example by temporarily
replacing damaged nodes by emergency nodes. We propose a
framework to evaluate different node replacement strategies,
based on a large set of representative disasters.

We prove that computing the optimal choice of nodes to
replace is an NP-hard problem and propose several simple
strategies. We evaluate these strategies on two U.S. topolo-
gies and show that a simple greedy strategy can perform
close to optimal.

1. INTRODUCTION
In the last decades communities worldwide have become

more and more dependent on communication networks to
communicate, coordinate and stay informed, even more so
during and after disasters [9]. Yet, the disaster itself can
cause significant damage to network infrastructure, discon-
necting whole portions of the network.

Repairing a network can take days to months, during
which functionality is only slowly restored. Thus, there
is a need for a simultaneous quick response to recover a
bare amount of network functionality in the affected areas
as quickly as possible.

In this paper, we consider the possibility of temporarily
replacing some of the failed network components by emer-
gency equipment, such as MDRUs [8]. We propose a frame-
work to evaluate different recovery strategies, based on a
set of representative disasters. The evaluation only consid-
ers the effect of the recovery on the network area enclosing
the disaster region, as the focus of these recovery efforts is
to restore vital network functionality to the affected area.

Using our framework, network operators can decide be-
forehand which strategy they want to employ, such that af-
ter a disaster the strategy can be implemented immediately.

Our main contributions are as follows:

• We propose a model (section 2) and algorithm (section
4) for evaluating the effectiveness of a quick recovery
strategy.

• We describe an optimal strategy as an optimization
problem (section 3.1), and prove that it is NP-hard
(appendix A).
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• As computation resources in and communication
within and from a disaster region are limited, we pro-
pose alternative simple strategies (section 3.2).

• We apply our framework to two U.S. topologies, and
evaluate our strategies.

While there has been other work on network recovery
strategies after a large-scale disaster (e.g., [4, 5, 10]), to the
best of our knowledge we are the first to propose an evalu-
ation framework for different strategies, as well as the first
to focus on a local area enclosing the disaster region.

2. EVALUATION MODEL

2.1 Model
We model a telecommunications network as an undirected

graph G = {V,E} of nodes V connected by links E. The
nodes of the network are the routing and computing nodes
of the network, as well as its base stations, while the edges
are the cables (or radio links) connecting them.

To evaluate different strategies to a wide range of possi-
ble situations, we work with a representative set of disaster
scenarios D, as was done in [7]. These can for example be
historical disasters, randomly sampled disasters, or specific
scenarios created by experts.

Each disaster d ∈ D affects a region of the network, called
the disaster region. We assume all nodes in the affected re-
gion fail. Links remain unaffected in our model, as (under-
ground) cables have been proven to be relatively resistant to
earthquakes and tsunamis [8]. However, our methodology is
easily extended to other damage patterns as well.

We assume exactly one disasters occurs and that we are
given the occurrence probability P (d) of each disaster d ∈ D.
We use these probabilities to weigh the relative importance
of each disaster to the overall evaluation of a recovery strat-
egy.

To quickly recover the functionality of the network, dam-
aged nodes can be replaced by temporary emergency nodes,
such as MDRUs [8]. The exact functionality (e.g. base sta-
tion, router, edge computing) of these nodes would depend
on the node it replaces. To connect the emergency node to
the rest of the network, the cable to the old node will be
digged up, spliced, and connected to the emergency node.
The emergency nodes can have a smaller capacity as the
node they replace, as long as it at least takes over some
bare minimum of its functionality.

In the case of a disaster, large amounts of manpower will
be made available to recover the network. However, the



number of other resources available might be more limited.
As such, we assume that only K temporary nodes can be
placed, but the process of placing these K nodes can be
worked on simultaneously.

The time it takes to place and connect an emergency node
depends on both the reachability of its intended location, as
well as the properties of the area and soil around it. For
example, it could take much more time to place a device on
top of a mountain than on an area of farmland. We assume
we are given a cost(v) for each v ∈ V , where cost(v) is the
time it takes to replace node v.

Let A(d) be all nodes affected by disaster d ∈ D. The
choice to be made after a disaster, using a recovery strategy,
is the set of at most K nodes out of |A(d)| to replace.

Given such a choice of actions, the state of the network
after a disaster d can be described by a vector

s(d) = [(G1, 0), (G2, t2), . . . , (GK+1, tK+1)] (1)

of length K + 1. Where G1 is the topology of the network
directly after the disaster, i.e. the graph G minus the af-
fected nodes. G2 is the topology of the network at time t2,
directly after the first recovery action has been completed,
G3 is the topology of the network at time t3, directly after
the second recovery action has been completed, etc.

2.2 Local Area
The focus of recovery efforts is to restore vital network

functionality to the local affected area. However, it is also
important to consider those nodes that are disconnected by
the disaster, but are not in the disaster region, and are thus
still functioning. The most effective method to reconnect
these nodes will be through the disaster region.

As such, we only consider the placement of emergency
equipment and the effect of this equipment in a local area
around the disaster region. By limiting ourselves to a smaller
area, we also limit the size of the graph we need to consider
when determining where to place the emergency nodes and
when evaluating the effectiveness of the approach, thus re-
ducing the amount of processing time required, and increas-
ing the level of network details that can be considered.

Specifically, we define the local nodes VL ⊆ V after a
disaster as the nodes of the network that are directly af-
fected by the disaster (A(d)), or are distanced only 1 hop
from an affected node. Thus the local network of interest is
{VL, EL}, where EL = {(v, x) ∈ E|v, x ∈ VL}.

2.3 Evaluation Metrics
Nodes that are cut off by the disaster, but are not part

of the local area, still need to be reconnected to the rest of
the network. This is taken into account by increasing the
weights of nodes on the border in proportion to the portion
of the network they connect to the local area.

Let p(v) be the weight of node v in G. Define

C(v) := {x ∈ V |h(v, x) ≤ h(y, x), ∀y ∈ VL} (2)

as the nodes closest to node v, where h(v, x) is the smallest
number of hops from v to x in G.

Now, the weight of node v ∈ VL is set to

w(v) =
∑

x∈C(v)

n(x)p(x) (3)

where

n(x) =
1

|{v ∈ VL|x ∈ C(v)| (4)

Note that w(v) = p(v) for all nodes in the disaster region
itself. These weights can be seen as representative for the
amount of traffic demand we expect to/from the nodes.

Functioning nodes in the large connected component will
have a much higher weight than other functioning nodes,
which in turn generally have a higher weight than the nodes
in the disaster area. Thus, by setting these weights, we pri-
oritize connecting areas to the core network and connecting
the smaller components to the giant connected component.

Our framework can be used with any network metric. In
this paper we consider a weighted version of the Average
Two-Terminal Reliability (ATTR).

Definition 1. Weighted Average 2-Terminal Reliability
(WATTR)
Let

I(v, x) =

{
1 if node v is connected to node x
0 otherwise

The weighted average 2-terminal reliability (WATTR) is
defined as

WATTR :=
1

W

∑
v∈VL

∑
x∈VL−{v}

w(v)w(x)I(v, x) (5)

where W :=
∑

v∈VL

∑
x∈VL−{vi}

w(v)w(x).

WATTR can be seen as a measure of the proportion of
(potential) connections in a network that are still function-
ing.

If we let C ⊆ VL be the set of all connected components
of the network in VL and define sum(c) :=

∑
v∈c

w(v) for all

c ⊆ VL. Then

W =
∑
v∈VL

w(v) ∗ (sum(VL)− w(v)) (6)

and

WATTR =
1

W

∑
c∈C

∑
v∈c

w(v) ∗ (sum(c)− w(v)) (7)

The metric evaluates the network at a specific state. To
evaluate the complete emergency recovery process, we use a

weight function W : R+ → R+ such that
∞∫
0

W(t)dt = 1

We then evaluate the vector s(d) after the disaster as

M(d) =

K+1∑
k=1

M(Gk)−M(G1)

1−M(G1)

tk+1∫
tk

W(t)dt, (8)

where M(Gk) is the value of the metric (in our case WATTR)
on the graph Gk, t1 := 0 and tK+2 := ∞. The value
M(Gk)−M(G1)

1−M(G1)
measures the effect of the recovery operations

in the local network and ranges from 0 (no effect) to 1 (full
recovery). In case A(d) = ∅, i.e. the disaster does not affect
the network, we define M(d) = 1.



3. RECOVERY STRATEGIES

3.1 Optimal Strategy
If we let V = {v1, v2, . . . , v|V |}, and describe the choice

of nodes as a vector of binary values x such that xi = 1 if
and only if vi is replaced, then an optimal strategy is the
solution to the problem

max M(d|x) (9)

s.t.

|V |∑
i=1

xi ≤ K (10)

xi = 0 ∀ vi /∈ A(d) (11)

xi ∈ {0, 1} ∀ i (12)

where M(d|x) is the value of M(d) given the choice x of
nodes to replace.

Theorem 1. When using the WATTR as the evaluation
metric, computing the optimal strategy is strongly NP-hard
even for the 0 cost case. i.e., when repair time is not con-
sidered.

Proof. See appendix A

As computing the optimal strategy is an NP-hard prob-
lem and there might only be a limited amount of resources
available after a disaster due to the destruction and chaos,
computing the optimal choice of nodes might take too much
time. In addition, the choice of which nodes to replace has
to be made as quickly as possible after a disaster, at which
point the complete state of the network might not be known.
As such, it might be preferable to make some quick decisions
based on a simple rule of thumb instead.

These rule of thumbs, or simple strategies, might be sub-
optimal for the specific situation, but give good results in
general, whatever state the network might be in. In the
following section, we propose several simple strategies.

3.2 Simple Strategies
We use R ⊆ A(d) to indicate the nodes that will be re-

placed.
The basic idea of these strategies is as follows. Choose

some node-metricM, then iteratively select nodes to replace
with the highest value of M:

1. R← ∅

2. Let B ⊆ A(d) be all nodes v ∈ A(d) such that v is at
most 1 hop away from (i.e .directly connected to) at
least one node in VL−A(d). That is, B is the intersec-
tion of the neighborhood of VL − A(d) and A(d). We
want to limit ourselves to only replacing nodes in B, as
otherwise we would replace nodes without connecting
them to a connected component.

3. Pick a v ∈ B−R such thatM(v) ≥M(y)∀y ∈ B−R.

4. R← R ∪ {v}

5. B ← B ∪ {y ∈ A(d)|{v, y} ∈ EL}

6. If |R| < K and |R| < |A(d)|, repeat steps 3-6

We consider 4 node-selection strategies:

• Greedy, that is, pick the node that has the largest
effect on M : M(v) := M(d|R ∪ {v})−M(d|R).

• Pick the node with the highest weight-to-cost ratio:

M(v) := w(v)
cost(v)

• Pick the node with the highest neighbors-to-cost ratio:

M(v) := |y∈VL|{v,y}∈EL|
cost(v)

• Pick a node randomly. This strategy might not per-
form very well, but is very easy to execute after a dis-
aster.

If M(d) can be computed in polynomial time, the node-
metrics can also be computed in polynomial time. As such,
the simple node-selection strategies are all of polynomial
complexity.

4. ALGORITHM
Let M be the random value of the evaluation metric af-

ter one of the disasters in D randomly occurs. Given a
(general) recovery strategy, we want to compute the distri-
bution over all possible values of M . Then, by comparing
these distributions and the comparative effort to implement
each strategy, a general recovery strategy can be chosen by
the network operator and other involved parties. As soon as
a disaster actually occurs, this strategy can then be imple-
mented immediately, thus wasting no time on deciding on
how to best recover the network.

For the purpose of our evaluation algorithm, we consider
each possible recovery strategy as a function R : V → V
from the damaged nodes A(d) to a choice of nodes to replace
with emergency nodes. Our algorithm is given in figure 1.
We start by computing the set of affected nodes (the out-
come) A(d) for each disaster. As the state vector s will be
the same for each disaster affecting the same nodes, i.e.

A(d1) = A(d2)⇒ s(d1) = s(d2) ∀d1, d2 ∈ D (13)

we can compute these states, and M , for each possible out-
come instead of for each possible disaster to reduce the com-
putation time.

Next, we go over each possible set of affected nodes and
compute the corresponding local network, choose the nodes
to recover, create the final state vector s and compute the
value of M .

Using these properties, we can easily compute P (M = m)
for each m ∈ R by taking the sum of the probabilities of all
disasters/outcomes resulting in this value of M . Computing
all possible outcomes requires us to iterate over each disaster
and each node, which takes O(|D||V |) time (assuming we
can determine if a node is in the disaster region in constant
time). The process can be sped up by using an R-tree.

Creating the local network takes O(|V |+ |E|) time. How-
ever, computing the weights of the local nodes takes more
time, as we need to find the closest nodes in VL of each node
in V . This can be accomplished by doing |VL| breadth-first
searches, and thus takes O(|VL||V |+ |VL||E|) time.

The time it takes to compute the choice of nodes to re-
cover depends on the strategy that is used. For example,
the weight-to-cost ratio strategy takes O(|K||VL|+ |K||EL|)
time to compute R(G1).

Finally, assuming integrating the weight function can be
accomplished in constant-time, and the metric used is the
WATTR, computing M takes O(|K||VL|+ |K||EL|) time.



Input: undirected graph G = {V,E}, disaster set D, Re-
covery strategy function R : V → V

Output: P (M = m) ∀m ∈ R
O ← ∅
for all d ∈ D do

Determine A(d) ⊆ V
if A(d) ∈ O then

P (A(d))← P (A(d)) + P (d)
else

P (A(d))← P (d)
O ← O ∪ {A(d)}

end if
end for
for all o ∈ O do

G1 ← G− o {o ⊆ V }
VL ← {v ∈ V |∃x ∈ o h(x, v) ≤ 1}
Compute R(o)
Order [v1, v2, . . . ] = R(G1) such that
cost(v1) ≤ cost(v2) ≤ cost(v3) ≤ · · ·
t1 ← 0
for i = 1 to i = |R(G1)| do

Gi+1 ← Gi+vi {Where {Vi, Ei}+vi = {Vi∪{vi}, Ei∪
{(x, y) ∈ E|x, y ∈ Vi ∪ {vi}}}
ti+1 ← cost(vi)

end for
s← [(G1, t1), (G2, t2), . . . ]
Compute M(s)
M(o)←M(s)

end for
∀m ∈ R P (M = m) =

∑
o∈O|M(o)=m

P (o)

Figure 1: Recovery strategy evaluation algorithm

Thus, the time complexity of the algorithm is

O(|D||V |2 + |D||V ||E|+ |D|F (|V |, |E|, |K|)) (14)

where F (G) is the time-complexity of the strategy.

5. EXPERIMENTS
We apply the framework to two U.S. topologies from the

Topology Zoo [6]: Kentucky Datalink and ITC Deltacom.
We ignore all nodes without any geographical coordinates.

ITC Deltacom consists of 101 nodes connected by 151
links, while Kentucky Datalink consists of 726 nodes con-
nected by 822 links. Both networks are concentrated in the
eastern half of the United States.

For each node v of these networks, we set p(v) to the
population of the county containing this node, based on the
2010 US Census [2].

The replacement costs cost(v) of each node are set ran-
domly to a value between 6 hours and 120 hours (5 days).
We use a weight function that decreases linearly to 0 at
t = 120 hours, and is constant from then on. After 5 days
the emergency recovery operations should be over, and re-
pair operations should be in full swing.

As a use case, we consider a scenario where the network
operator knows a hurricane will make landfall in a few days,
but not the exact path it will take. Thus, his goal will be
to decide on both a strategy and the number of emergency
nodes to prepare. We generate a disaster set based on the
5 AM EDT THU AUG 25 2005 hurricane Katrina track

K=1 K=2 K=3 K=6 K=10
Optimal 0.067 0.098 0.127 - -
Greedy 0.067 0.095 0.122 0.180 0.215

Weight/Cost 0.022 0.043 0.063 0.134 0.191
Neighbors/Cost 0.035 0.064 0.083 0.128 0.189

Random 0.006 0.013 0.020 0.041 0.082

(a) ITC Deltacom

K=1 K=2 K=3 K=6 K=10
Optimal 0.076 0.101 0.123 - -
Greedy 0.076 0.099 0.118 0.149 0.161

Weight/Cost 0.064 0.088 0.105 0.138 0.153
Neighbors/Cost 0.063 0.082 0.096 0.130 0.151

Random 0.030 0.038 0.046 0.074 0.101

(b) Kentucky Datalink

Table 1: Expected value of M for different strategies,
and different number K of temporary nodes, after
hurricane Katrina, based on the 5 AM EDT THU
AUG 25 2005 hurricane Katrina track prediction.

prediction of the National Hurricane Center (NHC) [3].
To predict potential storm surge flooding, and to assess

the probability of wind surface probabilities, the NHC per-
forms Monte Carlo simulations based on the predicted hurri-
cane track and historical errors in their predictions. We pro-
pose using these Monte Carlo simulations as representative
disaster set. As we do not have access to these simulations,
and to demonstrate our approach, we use a simpler hurri-
cane model, based on the NHC Track Forecast Cone. The
“Tropical Cyclone Track Forecast Cone” shows the probable
path of the center of a tropical cyclone. The cone is formed
by simply placing a circle around each predicted track po-
sition and connecting them. The size of each circle is set
so that two-thirds of historical official forecast errors over a
5-year sample fall within the circle.

We assume the actual track positions (in 2D projected
coordinates) are distributed around the predicted positions
according to a bivariate Normal distribution. This distribu-
tion is composed of normal distributions for the horizontal
and vertical positions, each with a standard deviation of√

( r2

ln(10000/1225)
), where r is the radius of the corresponding

circle, to ensure 65% of samples lie inside the cone.
We can randomly sample hurricane tracks for our own

Monte Carlo approach by sampling the track positions and
then connecting them with a straight line segment. This
only leaves us with the problem of computing the disaster
region based on a hurricane track. The strike circle of a
hurricane, based on the typical extent of hurricane force
winds, is a circle with diameter 231.5 km, centered 23.15 km
to the right of the hurricane center (based on its motion) [1].
In our approach we take this circle as the disaster region.
Because the hurricane moves through the network area, the
complete disaster region of each sampled track takes the
form of a union of hippodromes.

Thus the complete approach to generating D is as follows:

1. Sample N sets of track positions.

2. For each track: compute the resulting disaster region.

3. Set all occurrence probabilities to 1
N

.

The potential hurricane realizations affect between 5 and



38 nodes of the ITC Deltacom network, and between 0 and
89 nodes of the Kentucky Datalink network, depending on
their track through the network. On average, around 16 ITC
Deltacom nodes and around 18 Kentucky Datalink nodes
fail.

Table 1 shows the expected values of M utilizing each
strategy for a number of different values of K. Due to its
high computation cost, we did not compute the expected
values of the optimal strategy for K > 3. The randomized
node selection was evaluated by taking the average of 20
random recovery choices for each possible disaster outcome.

Selecting nodes at random performs very badly compared
to the other strategies, especially on the ITC Deltacom
topology. This shows how much of a difference it can make
to recover nodes according to a suitable strategy.

In this use case, and for these topologies, the greedy strat-
egy performs very close to optimal (at least for K ≤ 3). As
this strategy has polynomial complexity, it seems like a suit-
able choice.
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APPENDIX
A. NP-HARDNESS OF THE

OPTIMAL STRATEGY
Our proof is inspired by the proof of theorem 1 in [10].
We prove theorem 1 by giving a reduction from the well-

known NP-complete SET COVER problem to the decision
version of the optimization problem (with costs 0).

Note that the weight functionW is irrelevant if all replace-
ment costs are 0, thus, we will not include further mentions
of the weight function in the proof.

The SET COVER problem can be described as follows:
given a set U = {u1, u2,3 , . . . , un}, a family
S = {S1, S2, S3, . . . , Sm} of subsets of U s.t. ∪m

i=1Si = U
and an integer k ≤ m, is there a cover C ⊆ S such that
∪c∈Cc = U and |C| ≤ k?

Given an instance of the SET COVER problem, we con-
struct a (local) graph with nodes VL = {b} ∪ U ∪ S. That
is, VL consists of a (base) node b, a node for each element
in U and a node for each set in S.

We directly connect b to all nodes in S. In addition, for
all nodes Si ∈ S we add the links {{Si, uj}|uj ∈ Si} to EL.
More formally, EL = ({b}×S)∪{{Si, uj} ∈ S×U|uj ∈ Si}.

The weight of all nodes in S is set to 0, and the weight of
all other nodes to 1. We let A(d) = S, i.e. a node Si is in
the disaster region of the disaster iff Si ∈ S.

Note that this is a valid local selection of nodes and links,
as all nodes in VL are within 1 hop of the failed nodes.

Now, let K = k, the decision problem will be to determine
if there exists a choice of at most K nodes of A(d) to be
replaced such that M(d) = WATTR(GK) will be greater or
equal than 1.

Suppose there is a solution to the problem instance of SET
COVER. That is, there exists a C ⊆ S such that ∪c∈Cc = U
and |C| ≤ k. By replacing all corresponding nodes Si ∈ C,
all nodes with a weight greater than zero will be connected
to each other (through b). Thus, C is also a solution to the
optimal strategy instance.

Conversely, suppose there is a solution to the optimal-
strategy instance. That is, we have a set C of at most K
nodes in A(d), such that when these nodes are replaced, the
WATTR of the local network will be 1. So every node Ui ∈ U
must be connected to b through at least 1 node Sj ∈ C.
That is, ∀ui ∈ U ∃Sj ∈ C s.t. ui ∈ Sj . Or alternatively,
∪c∈Cc = U . So C is also a solution to the SET COVER
instance.

We have provided a (polynomial) reduction from the
strongly NP-complete SET COVER problem to the decision
variant of the optimal-strategy problem with costs 0. As a
result, we can conclude that the optimal strategy problem
for the 0 cost case is strongly NP-hard.


