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ABSTRACT

Ships that are moored at a berth in coastal waters are subject to various external forc-
ings, including the hydrodynamic loads that are induced by the local wave �eld. If the
ship motions resulting from these wave-induced loads become too large, they may ham-
per safe operations (e.g., the loading of a container ship). Accurate predictions of the
hydrodynamic loads are therefore desired to ensure safe operations of moored ships.

In a coastal environment, the wave �eld is generally dominated by short waves. The
majority of these waves originate from the open ocean, where they are generated by
the wind. If the short waves are energetic at a berth, they may cause a signi�cant re-
sponse of a moored ship. In addition, nonlinear wave effects can excite signi�cant ship
motions, which may even occur during relatively calm wave conditions or in a region
that is sheltered from energetic short waves. This signi�cant response is primarily re-
lated to the presence of infragravity waves, which are excited through nonlinear interac-
tions amongst pairs of short waves. An accurate description of this nonlinear wave �eld
is therefore indispensable when predicting the hydrodynamic loads that act on a ship
which is moored in coastal waters.

The range of scales and physical processes involved in such studies make this a chal-
lenging problem to solve using numerical models. At present, the existing models that
can predict the wave impact on a moored ship based on an offshore wave climate are
restricted to relatively mild wave conditions. This thesis set out to develop a new mod-
elling approach to advance our capabilities in solving this complex problem. The pro-
posed model aims to be applicable at the scale of a realistic coastal or harbour region
(say in the order of 1 £ 1 km2), while accounting for the relevant physical processes. This
includes the processes that govern the nonlinear wave evolution over a varying bottom
topography (e.g., the nonlinear interactions that excite infragravity waves), and the in-
teractions between the waves and a moored ship (e.g., the scattering of waves by a �xed
�oating body). The approach is based on the recently developed non-hydrostatic wave-
�ow model SWASH, which has been successfully applied to simulate a range of wave
related processes. This work pursues the development of a new modelling approach
through a further development and evaluation of the SWASH model in (i) simulating
the nonlinear wave dynamics in a coastal region, and (ii) simulating the interactions be-
tween waves and a restrained ship.

The �rst crucial step in this development is to determine if the model can resolve
the nonlinear wave �eld in a coastal environment. Previous studies showed that mod-
els like SWASH can resolve the short-wave dynamics in coastal waters. However, they
did not address if such models can resolve the dynamics of the infragravity-wave �eld.
Furthermore, most of these studies focussed on laboratory applications due to computa-
tional limitations, whereas �eld scale applications of non-hydrostatic models have been
rarely reported. With the ever increasing computational capabilities, such scales are now
within the reach of the state-of-the-art computer systems. To advance the capability of
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the non-hydrostatic approach towards such realistic applications, this work presents a
thorough evaluation of the SWASH model in resolving the nonlinear wave dynamics at
the scale of a realistic coastal region. Given the importance of infragravity waves with re-
spect to the wave-induced response of a moored ship, this work particularly determines
if the model can resolve their nearshore evolution.

The model was validated using both laboratory and �eld experiments, covering a
range of wave conditions (varying from bichromatic waves to short-crested sea states).
A comparison between model predictions and laboratory measurements showed that
the model captures the frequency dependent cross-shore evolution of infragravity waves
with a coarse vertical resolution (2 layers), including their steepening and eventual break-
ing close to the shoreline. These results demonstrate that the model can ef�ciently re-
solve the dominant processes that affect their nearshore evolution (e.g., nonlinear inter-
actions, shoreline re�ections, and dissipation), permitting applications at the scale of a
realistic harbour or coastal region.

To determine the capability of the model at such scales, SWASH was applied to study
the infragravity wave dynamics at a �eld site near Egmond aan Zee (the Netherlands),
which is characterised by a complex bottom topography. The model was used to repro-
duce a total of six sea states (including mild and storm conditions), which were measured
as part of a two month �eld campaign. For all conditions, the predicted wave �eld gave
a good representation of the natural conditions, supporting a further study into the in-
fragravity wave dynamics. A unique feature of these predictions is their extensive spatial
coverage, allowing analyses of the wave dynamics at scales not easily covered by in-situ
measurement devices. Amongst others, this study showed that a signi�cant portion (up
to 50%) of the infragravity wave motion can be trapped at a nearshore bar. This shows the
potential of the model to improve our understanding of such complex wave dynamics.

The �ndings of the �ume and �eld studies further show that the SWASH model pro-
vides a powerful tool to predict the nonlinear wave �eld at a coastal berth based on an
offshore wave climate. To predict the impact of this wave �eld on a ship that is moored
at such a berth, the next crucial step in the model development is to account for the in-
teractions between the waves and a restrained ship. For this purpose, a �xed �oating
body was schematised within SWASH. The model was validated by comparing model re-
sults with an analytical solution, a numerical solution, and two laboratory experiments
that consider the wave impact on a restrained ship for a range of wave conditions (vary-
ing from a solitary wave to a short-crested wave �eld). These comparisons showed that
the model captures the scattering of waves, and the hydrodynamic loads that act on the
body. Remarkably, a coarse vertical resolution suf�ced to resolve these dynamics. This
shows the potential of the model in ef�ciently simulating the wave-ship interactions.

The �ndings of this thesis demonstrate that, with the inclusion of a �xed �oating
body in SWASH, a novel modelling approach has been developed that can ef�ciently re-
solve the key dynamics that govern the nearshore evolution of waves and their interac-
tions with a restrained ship. Although further work is required, for example, accounting
for the motions of a moored ship, this demonstrates the approach has the potential to
simulate the wave-induced response of a ship that is moored in coastal waters. This the-
sis thereby sets the stage to advance our modelling capabilities towards such realistic
applications in a complex coastal environment.



SAMENVATTING

Een schip dat is afgemeerd in een kustgebied wordt beïnvloed door een verscheidenheid
aan externe factoren, waaronder de golf-geïnduceerde krachten. Wanneer de scheeps-
bewegingen door deze golven te groot worden belemmeren ze het laden en lossen van
het schip. Nauwkeurige voorspellingen van de golfkrachten zijn daarom van groot be-
lang om vast te stellen dat deze processen al dan niet ongestoord kunnen plaatsvinden.

In kustgebieden wordt het golfveld veelal gedomineerd door zogenaamde korte gol-
ven. Het merendeel van deze golven is afkomstig uit oceanen, waar ze worden opgewekt
door de wind. Als deze golven energierijk zijn kunnen ze signi�cante scheepsbewegin-
gen veroorzaken. Naast deze korte golven kunnen niet-lineaire golfeffecten tevens voor
ongewenste scheepsbewegingen zorgen. Deze problemen kunnen zelfs optreden gedu-
rende kalme golfcondities, bijvoorbeeld in een haven die is afgeschermd van hoge gol-
ven. Dergelijke ongewenste bewegingen worden met name geassocieerd met de aanwe-
zigheid van relatief lange golven, zogenaamde infragravity waves , welke worden gegene-
reerd door interacties tussen paren van korte golven. Om die reden is een nauwkeurige
beschrijving van het niet-lineaire golfveld van groot belang wanneer men de krachten
op een afgemeerd schip wenst te voorspellen.

De verscheidenheid aan fysische processen met uiteenlopende tijd- en ruimtescha-
len die van belang zijn in dergelijke studies maakt dit een uitdagend probleem om op
te lossen met behulp van een computer model. De huidige generatie modellen die dit
probleem kunnen oplossen zijn alleen geschikt voor relatief kalme golfcondities. Dit
proefschrift stelt zich ten doel om een alternatieve numerieke methode te ontwikkelen,
met het streven om ons begrip om dit complexe probleem op te lossen uit te breiden.
Het te ontwikkelen model dient toepasbaar te zijn op de schaal van een realistisch kust
of haven gebied (in de orde van 1 £ 1 km2), en dient de relevante fysische processen te
kunnen beschrijven. Dit betreft zowel de evolutie van het golfveld (inclusief de excita-
tie van de lange golven), als de interacties tussen de golven en het afgemeerde schip.
Het in dit proefschrift ontwikkelde model is gebaseerd op het niet-hydrostatische mo-
del SWASH, dat tot nu toe succesvol is toegepast in verscheidene golf gerelateerde stu-
dies. Dit werk beschrijft de ontwikkeling van een nieuwe modeleer techniek door middel
van een verdere uitbreiding en validatie van het SWASH model in (i) het simuleren van
de niet-lineaire golfdynamica in een kustgebied, en (ii) het simuleren van de interacties
tussen de golven en een ge�xeerd schip.

De eerste cruciale ontwikkeling is om te bepalen of het model een adequate weergave
geeft van het niet-lineaire golfveld in een kustgebied. Voorgaande studies hebben aan-
getoond dat modellen zoals SWASH in staat zijn om de dynamica van de korte golven te
beschrijven. De dynamica van de lange golven is echter nog niet onderzocht met behulp
van dit soort modellen. Bovendien beperkten de meeste studies zich tot geïdealiseerde
condities in, bijvoorbeeld, een golfgoot. Toepassingen op de schaal van een realistisch
kustgebied zijn daarentegen slechts zelden uitgevoerd. Echter, met de continue ontwik-
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keling van de computer technologie zijn zulke grootschalige toepassingen tegenwoordig
uitvoerbaar op de meer geavanceerde computer systemen. Om de toepasbaarheid van
het model voor zulke realistische applicaties in kaart te brengen, presenteert dit werk
een nauwgezette validatie van het SWASH model in het simuleren van de niet-lineaire
golfdynamica op de schaal van een realistisch kustgebied. Dit werk besteedt met name
aandacht aan de correcte beschrijving van de lange golven, aangezien deze van groot
belang zijn met betrekking tot de respons van een afgemeerd schip.

Het model was geveri�eerd aan de hand van zowel proeven in golfgoten als een meet-
campagne in het veld, welke een verscheidenheid aan golfcondities beslaan (variërend
van bi-chromatische tot kortkammige golven). De vergelijkingen tussen de modelresul-
taten en de gootproeven toonden aan dat het model een nauwkeurige beschrijving geeft
van de evolutie van het lange golfveld, inclusief het opsteilen en breken van deze gol-
ven nabij de vloedlijn. Uit deze resultaten blijkt dat het model een correcte weergave
geeft van de lange golfdynamica. Tevens maakt de ef�ciëntie waarmee dit model deze
processen weergeeft grootschalige applicaties in een haven of kustgebied mogelijk.

Om het model op dergelijke schalen te toetsen was het toegepast om de lange golf-
dynamica bij de kust van Egmond aan Zee te bestuderen. In totaal zijn er zes golfcondi-
ties doorgerekend (variërend van milde tot stormachtige condities), welke eerder waren
gemeten als onderdeel van een meetcampagne. Voor alle zes condities gaf het model
een goede weergave van de gemeten golfcondities. Een bijzondere eigenschap van deze
voorspellingen is dat ze een groot gebied beslaan, wat de mogelijkheid biedt om de golf-
dynamica te analyseren op een schaal die niet eenvoudig kan worden geïnstrumenteerd
met behulp van in situ meetapparatuur. Aan de hand van de voorspellingen is onder
meer aangetoond dat een signi�cant gedeelte (tot wel 50%) van de lange golfbeweging
gevangen kan zijn boven een zandbank. Dit demonstreert dat het model de mogelijkheid
biedt om onze kennis van zulke complexe golfdynamica te vergroten.

De bevindingen van deze studies laten bovendien zien dat SWASH een effectief mo-
del is om het niet-lineaire golfveld ter plaatse van een afgemeerd schip te voorspellen aan
de hand van een golfklimaat op zee. De volgende cruciale stap in de model ontwikke-
ling was om een ge�xeerd drijvend object in het model te schematiseren, om zodoende
de impact van de golven op het schip te kunnen simuleren. Het hiermee ontwikkelde
model was gevalideerd aan de hand van een analytische oplossing, een numerieke op-
lossing, en twee lab experimenten die de gol�mpact op een ge�xeerd schip beschouwen
voor een verscheidenheid aan golfcondities (variërend van een soliton tot kortkammige
golven). Uit deze validatie blijkt dat het ontwikkelde model een correcte beschrijving
geeft van de interacties tussen de golven en het schip, en de resulterende golfkrachten.
Bovendien bleek dat het model deze interacties op een ef�ciënte wijze kan simuleren.

Met deze bevindingen presenteert dit proefschrift een nieuw model dat op een ef�ci-
ënte manier zowel de evolutie van de golven als hun interacties met een ge�xeerd schip
kan simuleren. Alhoewel er meer werk nodig is, zoals het verdisconteren van de bewe-
gingen van het afgemeerde schip, toont dit proefschrift aan dat deze aanpak de potentie
heeft om de golf geïnduceerde respons van een afgemeerd schip te voorspellen. Hiermee
legt dit werk de basis voor de uitbreiding van onze modelleer capaciteiten in de richting
van dergelijke realistische applicaties in een complex kustgebied.
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1
I NTRODUCTION

1.1. BACKGROUND
Ships that are moored at a berth located in a harbour or coastal region are subject to a
range of external forcing terms, which may cause the ship to move. For example, envi-
ronmental conditions such as waves, currents and wind, but also the mooring system
itself induce loads that act on a moored ship. If the ship motions resulting from these
loads are large, they may hamper safe operations (e.g., loading of a container ship). In
extreme environmental conditions, signi�cant loads may even cause mooring lines to
break. Such unfavourable conditions may require ships to leave the berth, resulting in
undesired economic losses. Traditionally, berths have been located in sheltered regions
to reduce the wave-induced response of a moored ship. However, recent developments
have led to the construction of berths at locations that are exposed to more energetic
waves. For example, the increase of the ship dimensions has resulted in the construction
of berths which are located closer to the harbour entrance (e.g., Van der Molen , 2006),
and the growth of the Lique�ed Natural Gas industry has motivated the construction of
marine terminals (e.g., De Jong et al., 2009). Furthermore, harbours and maritime termi-
nals have to continuously improve their ef�ciency to cope with the increasing demand
for maritime transport (e.g., González-Marco et al. , 2008). This highlights that accurate
predictions of the wave-induced loads and the resulting ship motions are desired to en-
sure safe and continuous operations.

In a harbour or coastal region, the wave �eld is generally dominated by waves with
typical periods of 2-20 s, commonly referred to as short waves or wind generated waves
(e.g.,Holthuijsen , 2007). At exposed berths like maritime terminals, signi�cant ship mo-
tions are expected in the case of energetic short waves. In contrast, the short-wave in-
duced response of a moored ship is typically small at sheltered berths. However, the
response of a moored ship is not only determined by the short waves. In coastal waters,
nonlinear wave effects can also cause signi�cant ship motions, which may even occur
during relatively calm wave conditions in sheltered regions. This signi�cant response
is linked to the presence of so-called infragravity waves. Infragravity waves, with typ-
ical periods of 20 ¡ 250 s, are generated through nonlinear interactions between pairs
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of short waves (e.g., Longuet-Higgins and Stewart , 1960; Hasselmann, 1962; Symonds
et al., 1982). At the typical water depths where ships are moored, their amplitudes are
generally an order of magnitude smaller compared to the short waves. Despite their
small amplitudes, infragravity waves can induce signi�cant motions of a moored ship
(e.g.,González-Marco et al. , 2008; Sakakibara and Kubo , 2008; López and Iglesias, 2014).
This is primarily caused by the relative low frequency of infragravity waves, which may
lie close to the natural frequency of a mooring system. If the frequencies approximately
align, the waves cause a (near) resonant response of the moored ship. In addition, in-
fragravity waves may cause harbour resonance (e.g., Bowers, 1977; Okihiro et al. , 1993),
which can adversely affect the operability of a harbour.

The foregoing illustrates that an accurate description of the nonlinear wave �eld at
the berth is critical when predicting the wave-induced response of a ship that is moored
in a coastal environment. In this context, two scales can be distinguished. In general,
the majority of the waves that dominate the nearshore wave �eld originate from waves
that are generated by the wind on the open ocean. After their generation on the ocean,
a range of physical processes affect the evolution of the waves as they propagate in the
shoreward direction. This includes processes like shoaling, refraction, diffraction, non-
linear interactions, and wave breaking (e.g., Holthuijsen , 2007). We refer to these wave
related processes as the far �eld problem. In the vicinity of the ship, the physical pro-
cesses that dominate the interactions between the waves and the moored ship are im-
portant, which we call the near �eld problem. These interactions occur on relatively
small scale, and include the scattering of waves due to the presence of the ship, and the
radiation of waves due to the motions of the �oating body (e.g., Newman , 1977).

A vast body of literature exists that focusses on the numerical modelling of either
the far �eld or the near �eld problem (see Chapter 2 for a comprehensive overview). To
solve the far �eld problem, a number of wave models of varying complexity have been
developed. These models can be grouped in two main model categories: the stochas-
tic (phase-averaging) and the deterministic (phase-resolving) model class (e.g., Battjes
et al., 2004).

Stochastic (or spectral) wave models describe the spatial and temporal variation of
the wave �eld by means of the wave spectrum. They represent the wave dynamics such
as the generation by wind, nonlinear interactions, and breaking of waves by so-called
source terms, which rely on different levels of parametrisations. At ocean basin and
regional scales, spectral models have been widely applied to simulate the evolution of
waves in oceanic waters (e.g., Tolman , 1991; Booij et al. , 1999; Holthuijsen , 2007). At
present, they represent the only model class that is routinely applied at such large scales,
and that accounts for the wind generation of waves. Stochastic models typically provide
reasonable predictions of the bulk wave parameters, such as the signi�cant wave height
and mean wave period (e.g., Cavaleri et al., 2007). However, their inherent limitations
restrict their applicability in coastal waters and harbour regions, where waves are non-
linear and inhomogeneous effects can be important. For example, they do not account
for the excitation of infragravity waves, and do not intrinsically account for the effect of
wave diffraction.

An alternative to the stochastic approach is the deterministic approach, which re-
solves the evolution of the individual waves rather than a spectral representation thereof.
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Depending on the underlying formulations, such phase-resolving wave models can in-
trinsically account for a range of wave processes; including shoaling, refraction, diffrac-
tion, and nonlinear interactions. One of the �rst deterministic models that was able to
resolve both refraction and diffraction effects over variable bottom topography is based
on the mild-slope equations ( Berkhoff , 1972). In their original form, mild-slope models
are restricted to linear monochromatic waves and gently sloping bottoms. Since their
introduction, efforts have been made to extend their applicability to resolve weak wave
nonlinearity, the effect of wave breaking, and the evolution of short-crested wave �elds
(e.g.,Kirby and Dalrymple , 1983, 1986; Chawla et al., 1998).

Besides mild-slope models, the nonlinear evolution of waves in a coastal environ-
ment can be simulated using the more advanced deterministic models based on the
well known Boussinesq approach (e.g., Peregrine, 1967; Madsen and Sørensen, 1992; Wei
et al., 1995; Bonneton et al. , 2011) or the recently developed non-hydrostatic approach
(e.g., Stelling and Zijlema , 2003; Yamazaki et al., 2009; Zijlema et al. , 2011; Cui et al. ,
2012; Ma et al. , 2012). These models can resolve the evolution of an arbitrary wave �eld
(ranging from monochromatic to short-crested waves), and intrinsically account for the
relevant processes that affect its nearshore transformation (although they necessarily
parametrise some processes such as bottom friction, wave breaking, and lateral mixing).
Such phase-resolving models require a signi�cant computational effort compared to the
stochastic wave models or mild-slope models. Nonetheless, advances in computer tech-
nology permit the use of such models at the typical scale of a coastal or harbour region
(e.g., a spatial scale of O(10) wave lengths, and a temporal scale of O(100) wave periods).
This makes them the most advanced modelling tool that is currently available to predict
the nonlinear wave �eld at a coastal berth based on an offshore wave climate.

Admittedly, more detailed numerical models are available to simulate the evolution
of waves in a coastal region. This includes models based on the V olume o f Fluid (VOF)
and Smooth P article H ydrodynamic (SPH) approach. Such models have shown great
potential in resolving the nonlinear wave dynamics in the surf zone, even including the
turbulent details of a breaking wave (e.g., Lin and Liu , 1998; Dalrymple and Rogers , 2006;
Farahani and Dalrymple , 2014; Zhou et al. , 2014). However, they are not applicable at the
spatial and temporal scales that are considered in this thesis, as computational limita-
tions restrict their application to scales of a few wave lengths and wave periods.

To solve the interactions between waves and �oating bodies, numerous near �eld
models have been developed (see Bertram , 2012, for a concise overview). The �rst effort
to simulate such interactions were based on potential �ow theory in which the �ow is
assumed to be irrotational and inviscid (e.g., Korvin-Kroukovsky and Jacobs , 1957; Hess
and Smith , 1962). In this context, the B oundary E lement M ethod (BEM) has been a pop-
ular method to solve the potential �ow equations, in which the �ow problem is mapped
onto the boundaries of the �uid (e.g., the hull of the ship). To simulate the wave-ship
interactions, numerous BEM models (which are also known as panel models) have been
developed that vary in complexity. Amongst others, this includes panel models based on
linear, higher-order, and fully nonlinear potential theory (e.g., Eatock Taylor and Chau ,
1992; Liu et al. , 2001; You and Faltinsen , 2015). More recently, models based on the F inite
Element M ethod (FEM) have been developed to solve the nonlinear potential �ow prob-
lem (e.g., Ma et al. , 2001a; Ma and Yan, 2009). In contrast with the BEM, the whole �uid
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domain is discretised in the FEM. These potential �ow models share that they rely on
predictions of the wave �eld in the vicinity of the ship as they are not designed to sim-
ulate the evolution of waves at relatively large scales. Furthermore, they are not suited
for large wave impacts and signi�cant ship motions, when the assumptions of potential
�ow are violated.

In such conditions, an alternative approach is required to simulate the interactions
between waves and ships. With the continuous increase of computational powers, vari-
ous models have been developed that can resolve the turbulent �ow �eld in the vicinity
of a ship. This includes models based on the R eynolds averaged Navier Stokes (RANS)
equations (e.g., Had�ić et al. , 2005; Wilson et al. , 2006; Stern et al., 2013; Mousaviraad
et al., 2016), and SPH models (e.g., Bouscasse et al., 2013; Ren et al., 2015). For exam-
ple, such models have shown great potential in resolving the self propelled seakeeping
of ships, including the detailed �ow patterns in the wake of a rotating propeller (e.g.,
Carrica et al. , 2010; Mo�di and Carrica , 2014). Due to their great complexity, compu-
tational restraints limit the application of such detailed models to scales of a few wave
lengths and periods. At present, they are therefore primarily suited to solve the near �eld
problem.

In contrast to the vast body of literature that focusses on either the far �eld or the
near �eld problem, less research attempted to solve the combined problem. To solve this
complicated problem, the most advanced method presented so far combined a Boussi-
nesq or non-hydrostatic model with a panel model based on linear potential theory
(Bingham , 2000; Van der Molen and Wenneker , 2008; Dobrochinski , 2014). This coupled
approach combines the advantages of both methods: The wave model captures the non-
linear evolution of waves in a coastal or harbour region, and the panel model accounts
for the interactions between the waves and the moored ship. However, the wave-ship
interactions are computed using linear potential theory, which restricts this approach to
weakly nonlinear wave conditions.

For more energetic waves, a more accurate – but computationally intensive – near
�eld model is required to accurately simulate the wave-ship interactions. For exam-
ple, panel models based on nonlinear potential theory or RANS models can be used
to resolve these interactions. Although such near �eld models are available, they were
not used in conjunction with a wave model to solve the combined problem. Conse-
quently, predictions of the wave-induced response of a moored ship in coastal waters
are restricted to relatively mild wave conditions (e.g., when a ship is moored in a har-
bour basin).

1.2. OBJECTIVE AND OUTLINE
This thesis pursues an alternative approach to solve the combined far and near �eld
problem. The ultimate goal is to develop a single model that can simulate the wave-
induced response of a ship that is moored in coastal waters based on an offshore wave
climate. In this context, an accurate description of the nonlinear wave �eld and the hy-
drodynamic loads that act on a restrained (i.e., non-moving) ship are of vital importance.
The aim of this thesis is to develop a new model that seamlessly accounts for the evolu-
tion of waves, and their impact on a restrained ship. The model aims to be applicable at
the scale of a realistic harbour or coastal region, while accounting for the relevant pro-
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cesses that determine the wave-induced loads on a restrained ship. This includes the
processes that affect the evolution of waves in coastal waters, and the processes that
govern the interactions between the waves and a �xed �oating body.

Given the importance of accurately describing the nonlinear wave �eld, the model is
based on the non-hydrostatic approach. More speci�cally, this work is based on the re-
cently developed non-hydrostatic wave-�ow model SWASH 1 (Zijlema et al. , 2011). This
thesis works towards the development of a new modelling approach through (i) a fur-
ther development and evaluation of the SWASH model in resolving the nonlinear wave
dynamics in a coastal environment, and (ii) a further development of the model to ac-
count for the interactions between the waves and a restrained ship.

So far, several studies demonstrated the capability of the non-hydrostatic approach
in simulating the evolution of nonlinear waves over variable bottom topographies (e.g.,
Ma et al. , 2012; Smit et al. , 2013, 2014). However, these studies focussed on the nearshore
evolution of the short waves and their super harmonics, but did not address the evolu-
tion of infragravity waves. Furthermore, such studies primarily focussed on laboratory
conditions, whereas �eld scale applications have not been widely reported due to com-
putational limitations. With the ever increasing computational capabilities, such �eld
scale applications are now feasible on multi-core computer systems. To advance the ca-
pability of the non-hydrostatic approach, this work evaluates the potential of the SWASH
model in resolving the nonlinear wave dynamics, and in particular the infragravity wave
�eld, in a realistic coastal region.

The structure of this thesis is as follows. First, Chapter 2 discusses the computational
tools that have been developed to simulate the evolution of waves in coastal waters, and
to simulate the wave-ship interactions. This chapter, in combination with the present
chapter, provides the background and the motivation of this thesis.

The two following chapters, Chapter 3 and 4, focus on the modelling of the nonlin-
ear wave transformation in a coastal region. Given the importance of infragravity waves
with respect to the wave-induced response of a moored ship, Chapters 3 and 4 address
the ability of SWASH in resolving the evolution of infragravity waves in a coastal envi-
ronment. First, Chapter 3 presents a thorough assessment of the model capability in re-
solving the cross-shore evolution of infragravity waves over a sloping bottom. The model
was used to reproduce two �ume experiments, which cover the evolution of bichromatic
wave groups over a plane beach, and the evolution of spectral waves over a barred beach.
Chapter 4 continues on this work, and presents a �eld scale application of the model to
study the nearshore evolution of infragravity waves at a natural site.

Subsequently, Chapter 5 presents a further development of the SWASH model to re-
solve the wave-ship interactions. To account for the interactions between the waves and
a restrained ship, a �xed �oating body was schematised in the numerical domain. The
model was veri�ed using an analytical solution, a numerical solution, and two experi-
mental campaign that were conducted in a wave basin. These four test cases consider
the wave impact on a restrained ship, and focus on the wave scattering and the hydro-
dynamic loads that act on the body.

In Chapter 6, the conclusions of the individual chapters are summarised, followed by

1Simulating WA ves till SHore (SWASH), available under the GNU GPL license at http://swash.
sourceforge.net/ .

http://swash.sourceforge.net/
http://swash.sourceforge.net/
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a discussion concerning the implications of this work. This chapter �nishes with an out-
look for future developments that concern the non-hydrostatic modelling of nonlinear
waves and their impact on moored ships.



2
M ODELLING WAVES AND THEIR

INTERACTIONS WITH SHIPS

This chapter presents an overview of the computational methods that have been devel-
oped to simulate waves, and their interactions with moored ships. Research into this
topic has typically focussed on one of the two �elds, that is, either the modelling of
waves, or the modelling of wave-ship interactions. The �rst two sections of this chapter
discuss the separate developments in these two �elds. This is followed by a section that
presents an overview of several recent studies that attempted to bridge the gap between
these two �elds, including an introduction to the methodology that has been developed
in this thesis, in order to predict the wave-induced response of a moored ship in coastal
waters.

2.1. WAVE MODELS

During the past decades, various modelling techniques have been developed to simulate
the evolution of waves over variable bottom topographies. These models can be grouped
into two main model classes: the deterministic and the stochastic model class (e.g., Bat-
tjes, 1994). Deterministic models solve the basic equations (i.e., the N avier Stokes (NS),
or the Euler equations), or simpli�cations thereof (e.g., the RANS equations, and linear
potential theory). They resolve the evolution of the individual waves, while accounting
for a number of physical processes that affect their dynamics, depending on the assump-
tions of the underlying equations. As an alternative to directly solving the deterministic
equations, stochastic evolution equations can be derived from the basic equations. The
resulting stochastic wave models do not resolve the evolution of the individual waves,
but describe the spatial and temporal variation of statistical wave properties (e.g., the
wave spectrum).

7
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STOCHASTIC WAVE MODELS

Present-day operational stochastic wave models (or spectral wave models) are based on
the assumption that the waves can be represented by a quasi-homogeneous and a quasi-
stationary Gaussian process. With this assumption, the wave �eld is fully described by
the variance density spectrum, and its spatial and temporal evolution can be solved by
means of the action balance equation (e.g., Holthuijsen , 2007). This equation includes
so-called source terms, which account for the effect of various wave related processes.
Over the past decades, a number of source terms have been developed (based on vary-
ing degrees of parametrisations) to account for most relevant physical processes that
occur in oceanic and coastal waters. This includes processes like wave generation by
wind (e.g., Miles , 1957; Phillips , 1957), white capping (e.g., Hasselmann, 1974), nonlin-
ear wave interactions (e.g., Hasselmann and Hasselmann , 1985; Eldeberky, 1996), and
wave breaking (e.g., Battjes and Janssen, 1978; Janssen and Battjes, 2007; Salmon et al. ,
2015).

So far, most studies focussed on the development and improvement of the source
terms, whereas the underlying assumptions of the action balance equation remained
unchanged (i.e., a near homogeneous Gaussian wave �eld). Recently, Smit et al. (2013)
derived an extension of the action balance equation to resolve coherent wave effects
like refractive wave focussing. Although this approach successfully simulated coherent
effects on the bulk wave statistics for waves propagating over a variable bottom topog-
raphy ( Smit et al. , 2015a,b), it assumes that depth variations are small with respect to a
wave length. Consequently, this approach does not intrinsically resolve diffraction ef-
fects caused by the presence of breakwaters (which can be interpreted as strong bottom
variations).

Since their introduction, stochastic models have been widely applied for research
and engineering purposes (e.g., Tolman , 1991; Booij et al. , 1999; Holthuijsen , 2007), and
have been successfully used to predict the (bulk) wave statistics in oceanic and coastal
regions (e.g., Cavaleri et al., 2007). At present, stochastic models represent the only
model class that is routinely used at the scale of an ocean basin, and which can in-
clude the effect of wind generation (albeit parametrised). However, the assumptions
of a (quasi) homogeneous and Gaussian wave �eld restricts their validity in coastal re-
gions (where waves are nonlinear), and in harbour regions (where coherent effects, such
as wave diffraction can be important).

Furthermore, stochastic models do not account for the excitation and propagation
of infragravity waves. To account for the effect of these waves on processes in a coastal
region (e.g., dune erosion), several authors combined a (stochastic) wave group model
with a deterministic model based on the N onlinear Shallow W ater Equations (NSWE)
(e.g., Van Dongeren et al. , 2003; Reniers, 2004; Roelvink et al. , 2009). In this approach,
the stochastic model, which accounts for the evolution of short-wave groups over a vari-
able bottom topography, provides the forcing for the deterministic model that resolves
the evolution of infragravity waves. However, the use of a stochastic approach to resolve
the short-wave groups implies that this methodology does not fully capture nonlinear
wave effects, and does not account for wave diffraction. For a more complete descrip-
tion of the nonlinear wave �eld, deterministic models that solve the basic equations are
preferable over the stochastic approach.
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DETERMINISTIC WAVE MODELS
Numerous deterministic models have been developed to resolve the evolution of waves
in a coastal region. With the introduction of digital computers in the second half of the
20th century, the �rst efforts were made to solve the deterministic equations, but the
computational power at that time was not suf�cient to directly solve the basic equa-
tions. To cope with this limitation, the �rst deterministic models were based on simpli-
�cations of the basic equations (e.g., Peregrine, 1967; Berkhoff , 1972; Hibberd and Pere-
grine, 1979).

To simplify the problem, the equations were typically scaled using two wave param-
eters. The �rst parameter represents the frequency dispersion of the waves, which is
expressed as the ratio of the water depth h over the wave length L

¡
¹ Æh/ L

¢
. The sec-

ond parameter characterises the wave nonlinearity as the ratio of the wave amplitude a
over the water depth (± Æa/ h). In coastal waters, dispersive effects weaken as the wa-
ter depth decreases, ¹ ! 0, whereas nonlinear effects become increasingly important,
± ! O(1). If the wave nonlinearity dominates, the basic equations reduce to the NSWE.
Models based on the NSWE can be used to simulate the wave evolution in shallow water,
including breaking waves and the wave run-up at the shoreline (e.g., Hibberd and Pere-
grine, 1979; Kobayashi et al., 1989). However, this approach is not valid in progressively
deeper water, where nonlinear effects weaken and dispersive effects become signi�cant.

The former condition gave rise to one of the �rst deterministic methods that was
able to resolve both refraction and diffraction effects over a variable bottom topogra-
phy (Berkhoff , 1972). This method is based on the M ild Slope Equation (MSE), which
is derived from linear potential theory assuming that the vertical variation of the wave
motion on a sloping bottom can be described by the linear wave theory for a constant
depth (e.g., Dingemans , 1994). This assumption holds if the mild slope condition is sat-
is�ed: ¯ h / kh ÇÇ 1, where ¯ h is the bottom slope, and k is the wavenumber. The MSE
describes the evolution of a monochromatic wave over mildly sloping bottoms, without
any restrictions concerning ¹ . Several extensions of the MSE have been proposed to re-
solve, for example, weak wave nonlinearity (e.g., Kirby and Dalrymple , 1983), the effect
of wave breaking (e.g., Kirby and Dalrymple , 1986), and the evolution of spectral waves
(e.g.,Chawla et al., 1998). Such developments have led to the formulation of various mild
slope models, which have been typically used for engineering purposes, and, in partic-
ular, to study the wave agitation in a harbour region (e.g., Morison and Imberger , 1992;
Panchang et al., 2000; Diaz-Hernandez et al. , 2015).

However, in relatively shallow water depths, mild slope models do not give a proper
description of the wave �eld as they assume that ± is small. To accurately resolve the
wave dynamics in a nearshore region, a model has to account for both the nonlinear and
the dispersive effects. Assuming that nonlinear effects are small and of similar impor-
tance as dispersive effects, ± ÆO

¡
¹ 2

¢
, Peregrine (1967) derived the classical Boussinesq

formulation to simulate the evolution of waves over a sloping bottom. 1 The resulting
equations are almost identical to the NSWE, but include some additional terms that ac-
count for the wave dispersion. However, this classical formulation breaks down when
nonlinear wave effects become signi�cant, for example, in coastal regions where waves

1The classical Boussinesq formulation can be derived from the Euler equations by using a po wer series to
remove the vertical dependence of the �ow, and omitting the terms of O

¡
±¹ 2¢

and higher (e.g., Kirby , 1997).
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are breaking.

Since the pioneering work of Peregrine (1967), the applicability of the Boussinesq
approach was extended towards realistic coastal applications (e.g., Kirby , 2003; Broc-
chini , 2013). This includes various extensions that pushed their capabilities towards the
coast, where waves become nonlinear, break, and inundate the shore. To capture the
nonlinear evolution of the wave �eld, the original assumption of weak nonlinearity was
relaxed with the derivation and development of fully nonlinear Boussinesq models (e.g.,
Wei et al., 1995; Bonneton et al. , 2011). Furthermore, various parametrisations were sug-
gested to account for the bulk dissipation of a breaking wave (e.g., Karambas and Kouti-
tas, 1992; Schäffer et al., 1993; Tonelli and Petti , 2012), and several numerical techniques
were developed to capture the wave runup at the shore (e.g., Zelt, 1991; Kennedy et al. ,
2000; Lynett et al. , 2002). Besides a push towards shallower water, several authors ex-
tended the Boussinesq framework towards deeper water (or shorter waves), by deriving
new sets of Boussinesq equations with improved dispersive properties (e.g., Madsen and
Sørensen, 1992; Lynett and Liu , 2004).

Since their introduction, various Boussinesq-type wave models have been devel-
oped to simulate the evolution of waves in a coastal environment, of which the accu-
racy depends on the underlying formulations (e.g., weakly nonlinear versus fully nonlin-
ear equations). They have been widely used for scienti�c and engineering purposes to
simulate waves (and their related processes) in a coastal environment (e.g., Kirby , 2003;
Brocchini , 2013). Their success is in part related to their computational ef�ciency, as
only the horizontal domain needs to be discretised. This allows for simulations of the
wave dynamics at relatively large spatial scales of » 1£ 1 km. For example, Boussinesq
models have been used to simulate wave oscillations in a harbour region (e.g., Abbott
et al., 1978), the evolution of waves over variable bottom topography (e.g., Madsen et al. ,
1997), and wave-induced currents in a coastal environment (e.g., Chen et al., 1999; Fed-
dersen, 2014).

With the ever increasing computational powers, new modelling techniques were de-
veloped that solve the basic equations, rather than simpli�cations thereof. Such models
solve the (RA)NS equations on �ne spatial and temporal scales, and intrinsically account
for the relevant processes that govern the nearshore evolution of waves. This includes
processes like shoaling, refraction, diffraction, nonlinear interactions and wave break-
ing. Several methodologies were developed to solve the RANS equations, which mainly
differ in the treatment of the free surface. Several techniques have been proposed to cap-
ture the free surface, for example, the marker and cell method (e.g., Harlow and Welch ,
1965), the VOF method ( Hirt and Nichols , 1981), and the level set method (e.g., Osher
and Sethian , 1988). As an alternative to such models which are solved on a computa-
tional mesh, the meshfree SPH method was developed more recently, which computes
the trajectory of particles of �uid that interact based on the NS equations ( Monaghan ,
1994).

Such detailed models have been successfully applied to simulate the evolution of
waves in the surf zone (e.g., Lin and Liu , 1998; Dalrymple and Rogers , 2006; Farahani
and Dalrymple , 2014; Zhou et al. , 2014). However, solving the wave dynamics at such
great detail requires a signi�cant computational effort. At present, computational limi-
tations restrict such models to relatively small scales (e.g., a spatial scale of a few wave
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lengths and a time scale of a few wave periods). Barring revolutionary developments in
computing techniques (e.g., the quantum computer), such methods will likely remain
restricted to small scales in the foreseeable future.

As an alternative to solving the RANS equations while accounting for the complex
dynamics of the free surface in the presence of, for example, breaking waves; a signif-
icant simpli�cation can be made by assuming that the free surface can be represented
by a single valued function. This simpli�cation has led to the development of the so-
called non-hydrostatic approach, which provides a more ef�cient method to solve the
RANS equations (Mahadevan et al. , 1996; Stansby and Zhou , 1998; Casulli and Stelling ,
1998). Non-hydrostatic models have been developed to simulate a variety of physical
processes, including both barotropic (e.g., Casulli and Stelling , 1998; Fang et al., 2015)
and baroclinic applications (e.g., Marshall et al. , 1997; Vitousek and Fringer , 2014). The
following focusses on the developments that have been pursued to simulate the evolu-
tion of surface waves.

In the non-hydrostatic approach, a fractional step technique is used to solve the pres-
sure �eld. With this technique, a provisional velocity �eld is �rst computed based on
the NSWE (in which the pressure is assumed to be hydrostatic), followed by a correc-
tion of the velocities by solving a Poisson type equation for the non-hydrostatic pressure
(to ensure that the velocity �eld is divergence free). The accuracy with which the non-
hydrostatic approach resolves the nonlinear wave dynamics primarily depends on the
grid resolution. In horizontal direction, this imposes similar requirements on the grid
resolution as Boussinesq type models (which is determined by the wave length of inter-
est). In the vertical direction, the use of standard numerical techniques would require
�ne vertical resolutions (in the order of 10 vertical layers) to resolve the wave dynamics.
Such vertical resolutions imply a signi�cant computational effort, and would make non-
hydrostatic models an order of magnitude slower compared to Boussinesq-type wave
models.

To improve the ef�ciency of the method in resolving the wave dynamics, Stelling
and Zijlema (2003) proposed to use the Keller-box scheme ( Lam and Simpson , 1976)
to discretise the vertical non-hydrostatic pressure gradient. In this scheme, the non-
hydrostatic pressure is positioned at a cell face, which allows for a straightforward inclu-
sion of the zero pressure condition at the free surface. With this scheme, Stelling and
Zijlema (2003) found that a coarse vertical resolution (1 ¡ 3 layers) is suf�cient to capture
the dispersion of waves in coastal waters.

However, a non-hydrostatic wave model based on these principles does not neces-
sarily capture the discontinuities of the �ow �eld that are associated with a breaking
wave, and the wave runup at the shoreline. To capture such discontinuities, the gov-
erning equations must be solved by means of a shock capturing numerical scheme (e.g.,
Stelling and Duinmeijer , 2003; Yamazaki et al., 2009; Ma et al. , 2012). Although a shock
capturing non-hydrostatic model does not resolve the detailed dynamics of a breaking
wave (e.g., wave overturning, and wave generated turbulence), it does capture the initia-
tion and subsequent dissipation of a breaking wave without the need for any additional
model parameters ( Smit et al. , 2013). However, a �ne vertical resolution (10 ¡ 20 layers) is
required to capture the onset of breaking, especially compared to the resolution that can
be used outside the surf zone (1 ¡ 3 layers). As an alternative, Smit et al. (2013) proposed
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a breaking formulation, which parametrises the initiation of wave breaking, to capture
the onset of wave breaking with a coarse vertical resolution.

In the last decade, a number of wave models have been developed based on the non-
hydrostatic framework, albeit with different numerical techniques. This includes mod-
els that solve the equations on structured grids (e.g., Yamazaki et al., 2009; Zijlema et al. ,
2011; Ma et al. , 2012), but also models that solve the equations on unstructured grids
using the �nite volume (e.g., Cui et al. , 2012) or the �nite element method (e.g., Wei and
Jia, 2014). Furthermore, recent studies improved the ef�ciency of the framework by en-
hancing its dispersive properties ( Bai and Cheung , 2013; Cui et al. , 2014).

Since their introduction, non-hydrostatic wave models have become a popular al-
ternative for the Boussinesq approach to simulate the evolution of waves over a vari-
able bottom topography. The success of the non-hydrostatic framework is, amongst
others, related to several of its key features (e.g., Smit , 2014). One of these features is
the computational ef�ciency of this approach, which is comparable to Boussinesq-type
models. Furthermore, the dispersive properties of non-hydrostatic models can be easily
improved by using more vertical layers, which extends their applicability towards deeper
water (or shorter waves). Thereby, it provides a �exible modelling framework to simulate
a range of wave related processes.

So far, non-hydrostatic wave models have been successfully used to simulate a range
of wave phenomena at various spatial and temporal scales. For example, they have been
applied to simulate the propagation of tsunamis at oceanic scales (e.g., Walters, 2005;
Yamazaki et al., 2011; Shimozono et al. , 2014). At smaller scales, they have been used to
simulate a range of wave processes in a coastal environment. This includes the evolution
of waves over sloping bottoms (e.g., Zijlema and Stelling , 2008; Ai et al., 2011; Ma et al. ,
2012), the nonlinear wave dynamics in a surf zone ( Smit et al. , 2014), and the wave runup
at a beach (Ruju et al. , 2014).

2.2. WAVE-BODY INTERACTIONS
Most models that aim to resolve the interactions between waves and ships are based on
the potential �ow equations, which can be derived from the Euler equations assuming
that the �ow is irrotational (e.g., Mei et al. , 2005). A further simpli�cation is often made
by linearising the boundary conditions at the free surface, which forms the basis of the
linear potential theory. Using this theory, the �rst techniques to model the interactions
between waves and �oating bodies were developed in the 1950's (e.g., Beck and Reed,
2001). For example, Korvin-Kroukovsky and Jacobs (1957) initiated the development of
a slender body theory known as the strip theory to simulate wave-ship interactions. In
this approach, the ship is divided into a number of cross sections (or strips), which re-
duces the three-dimensional problem to a summation of two dimensional problems.
This theory is only valid for linear waves with a length in the order of the ship's beam.
Despite this limitation, strip theory is still used in the early design stage of ships to anal-
yse their seakeeping properties even though far more advanced computational methods
have been developed (Beck and Reed, 2001; Bertram , 2012).

Following these initial developments, more sophisticated three dimensional tech-
niques were introduced in the following decades. Hess and Smith (1962) introduced the
�rst three-dimensional technique based on the BEM to simulate incompressible poten-
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tial �ows without a free surface. In this approach, the �ow problem is not solved in the
interior of the �ow, but it is mapped onto the boundaries of the �uid using Green's the-
orem. This requires a discretisation of the boundaries (such as the bottom, the free sur-
face, and the hull of the ship) by a number of elements, or panels. The �rst applications
of this method, also known as the panel method, to problems involving a free surface
were based on linear potential theory, and used quadrilateral �at panels to discretise the
boundaries. For a horizontal bottom of arbitrary depth, Green functions were derived
that exactly satisfy the boundary condition at the bottom and the linearised boundary
conditions at the free surface (e.g., Newman , 1985). This greatly simpli�es the problem,
because only the hull of the ship needs to be discretised.

When the primary wave �eld is well represented by linear potential theory (which
is the case if the wave amplitudes are small), such panel methods can be successfully
used to predict the linear wave-induced response of a �oating body in deep water (e.g.,
Newman and Lee , 2002; Newman , 2005) and in relatively shallow water (e.g., Van Oort-
merssen, 1976). However, in coastal regions nonlinear wave effects such as infragravity
waves can cause a signi�cant response of a moored ship. Formally, panel methods based
on linear potential theory do not account for such higher-order effects, and one has to
rely on methods that solve higher-order 2 or fully nonlinear potential theory. As an alter-
native to solve such higher-order theories, a number of approximate methods have been
developed to estimate the second-order wave load based on the �rst-order solution (e.g.,
Newman , 1974; Molin , 1979; Pinkster , 1980). Such approximations can successfully pre-
dict the magnitude of the low-frequency second-order wave load (e.g., De Hauteclocque
et al., 2012; Pessoa and Fonseca, 2013; You and Faltinsen , 2015). However, for a com-
plete description of the nonlinear response of a moored ship, panel models based on
higher-order or fully nonlinear potential theory are required.

Following the development of models based on linear potential theory, various panel
models based on higher-order or fully nonlinear panel theory have been developed to
intrinsically account for nonlinear wave effects (e.g., Eatock Taylor and Chau , 1992; Liu
et al., 2001; You and Faltinsen , 2015). The main dif�culty in solving the higher-order or
fully nonlinear problem is attributed to the nonlinearity of the boundary conditions at
the free surface. To compute a higher-order or fully nonlinear solution, the free surface
has to be discretised as well, because the Green function does not satisfy the nonlinear
boundary conditions at the free surface.

In addition, a large number of panels are required to compute accurate higher-order
solutions using the panel method, increasing the computational burden. This motivated
the development of higher-order accurate panel methods, which require less panels to
obtain accurate solutions compared to the original (lower-order) panel method, thereby
improving the computational ef�ciency. In such methods, the panels and potential on
the hull are represented by a continuous function, rather than the constant potential
on a quadrilateral �at panel as used in the original panel method (e.g., Eatock Taylor

2In higher-order potential theory, the velocity potential Á is expanded using a perturbation expansion in the
wave steepness² (Æa/ L): Á Æ²Á (1)Å² 2Á(2)Å.. . , where the superscript indicates the order of Á (e.g.,Kevorkian
and Cole, 1981). Substitution of the expanded velocity potential in the potential �ow equations, and grouping
the terms of equal order in ² , results in a set of equations for the �rst-order potential (equivalent to linear
potential theory), and a set of equations for each higher-order potential (of which the solution depends upon
the lower order solutions).
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and Chau, 1992; Newman and Lee , 2002; Newman , 2005). However, higher-order and
fully nonlinear solutions still require a discretisation of the free surface, resulting in a
signi�cant increase in the number of unknowns. The solution of the resulting system
of unknowns, which yields a large and dense matrix, involves a signi�cant computa-
tional effort compared to a panel method based on linear potential theory. Since their
introduction, panel models have become a popular tool to simulate the interactions be-
tween waves and �oating bodies in both offshore and coastal waters. For example, they
have been used to study the hydrodynamics of side-by-side moored vessels (e.g., Hui-
jsmans et al., 2001; Hong et al. , 2005), higher-order wave effects on offshore structures
(e.g., Zhou and Wu , 2014), and second-order wave effects on ships moored in shallow
water (e.g., You and Faltinsen , 2015).

As an alternative to the panel method, the nonlinear potential �ow problem has been
solved by means of the FEM to study interactions between waves and structures (e.g.,
Ma et al. , 2001a,b; Ma and Yan, 2009). In contrast to the BEM, the interior of the �uid
domain is discretised in the FEM. Although this results in a larger number of unknowns,
the resulting matrix is sparse and may require less storage space compared to the dense
matrix that results from the BEM. For interactions between waves and moving bodies,
Wu and Eatock Taylor (1995) found that the FEM can be computationally more ef�cient
than the BEM when solving the fully nonlinear potential �ow problem.

Although they differ in solution technique, all near �eld methods discussed so far
were based on potential �ow theory, limiting their applicability to conditions in which
turbulent effects are negligible. However, in the case of large wave impacts or signi�cant
ship motions, the assumptions of potential theory are violated and alternative meth-
ods are required to simulate the wave-ship interactions. As discussed previously in § 2.1,
RANS and SPH type models can capture the turbulent effects which are important in
such conditions. These models are not only suited to resolve the evolution of waves over
sloping bottoms, but can also be used to simulate the interactions between waves and
(�oating) structures. For example, these methods have been used to simulate the green
water on a deck (e.g., Kleefsman et al. , 2005; Gómez-Gesteira et al., 2005), to study the
interactions between waves and �oating bodies (e.g., Had�ić et al. , 2005; Bouscasse et al.,
2013), and to simulate the seakeeping of ships (e.g., Wilson et al. , 2006; Stern et al., 2013).
Given their great detail and complexity, the RANS and SPH approach are computation-
ally more expensive compared to the potential �ow models. This makes them particu-
larly suited for conditions in which turbulent effects are important, such as large wave
impacts on structures (e.g., Veldman et al. , 2011) and the (self-propelled) seakeeping of
ships (e.g., Carrica et al. , 2006; Mo�di and Carrica , 2014).

2.3. M OORED SHIPS IN COASTAL WATERS

To predict the wave-induced response of a ship that is moored in coastal waters based on
an offshore wave climate, a numerical model should account for the wave evolution in
a coastal or harbour region, and for the interactions between the waves and the moored
ship. Compared to the vast body of literature that focusses on either the far �eld prob-
lem (§2.1) or the near �eld problem (§ 2.2), less research has focussed on the combined
problem.
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Ohyama and Tsuchida (1997) presented one of the �rst approaches to simulate the
wave-induced motions of a ship that is moored inside a harbour region based on off-
shore wave conditions. They derived an extension to the original MSE, to account for
the interactions between the waves and a moored ship. As this method is based on the
MSE, it only captures the evolution of the linear wave �eld and their interactions with
a moored ship, and does not account for nonlinear wave effects. This approach is thus
only suited to predict the linear response of a moored ship when nonlinear wave effects
are negligible. However, in coastal environments this is typically not the case as, for
example, the presence of infragravity waves may lead to a disruption of harbour opera-
tions.

Van der Molen et al. (2006) coupled a wave model with a near �eld model to simulate
the response of a moored ship to the infragravity wave �eld. The wave �eld at the berth
(undisturbed by the presence of the moored ship) was predicted using a wave model that
combines a stochastic approach to solve the wave groups and a deterministic approach
to solve the infragravity wave �eld (previously discussed in § 2.1). The wave-induced re-
sponse of the moored ship was subsequently computed assuming that the waves are
long (which is a valid assumption for the infragravity waves). Consequently, this ap-
proach is restricted to conditions in which the response of a moored ship is dominated
by infragravity waves.

To simulate the response of a moored ship to the combined short and infragravity
wave �eld, several authors combined a deterministic model based on the Boussinesq
or non-hydrostatic approach with a panel method ( Bingham , 2000; Van der Molen and
Wenneker, 2008; Dobrochinski , 2014). In this approach, the undisturbed wave �eld at
a berth is predicted using a wave model that accounts for the nonlinear evolution of
waves over a variable bottom topography. Based on this wave �eld, the interactions be-
tween the waves and the ship were computed using a lower-order panel method based
on linear potential theory. This coupled model can simulate the nonlinear response of a
moored ship in coastal waters if the wave nonlinearity is small ( ak / tanh (kh ) ¿ 1, which
reduces to ak ¿ 1 in deep water and a/ h ¿ 1 in the shallow water limit) in the vicinity
of the ship ( Bingham , 2000).

For wave conditions that do not satisfy this constraint, more accurate but computa-
tionally intensive methods are likely necessary to capture the nonlinear wave-ship in-
teractions (e.g., a nonlinear potential �ow model or a RANS model). In principal, such
methods can be used in conjunction with a wave model, but, to the author's knowledge,
such efforts to simulate wave-ship interactions have not been reported yet. At present,
predictions of the wave-induced response of moored ship in coastal waters are thus re-
stricted to weakly nonlinear wave conditions. This limits such predictions to relatively
calm wave conditions, for example, when a ship is moored in a harbour basin.

This thesis aims to develop an alternative approach to simulate the nonlinear evolu-
tion of waves and their impact on a moored ship in a realistic coastal or harbour region.
Here, the development of a single numerical model is pursued, rather than a coupled ap-
proach, to solve the combined far and near �eld problem. This development is based on
the non-hydrostatic approach, and the SWASH model in particular ( Zijlema et al. , 2011).

The non-hydrostatic approach is essentially a numerical implementation of the RANS
equations, and provides a �exible modelling framework to simulate a range of wave re-
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lated processes. As it is based on the basic equations that govern the hydrodynamics
of an incompressible �uid, there are no inherent limitations to apply this method for
�ows that are bounded by the hull of a ship. As such, the non-hydrostatic approach can
be naturally extended to account for the interactions between the waves and a moored
ship. Conceptually, the resulting model captures the fully nonlinear wave-ship interac-
tions, as it makes no a-priori assumptions on the characteristics of the wave and �ow
�eld. However, it is unclear if this approach can accurately capture these interactions
at acceptable computational costs, which would allow for applications at the scales of a
realistic coastal or harbour region.

In the context of simulating the wave-induced response of a moored ship, this thesis
pursues a further development and veri�cation of the SWASH model to simulate the
nearshore evolution of waves and their interactions with a restrained ship. First, this
work studies whether the model can simulate the evolution of waves – and infragravity
waves in particular – at the scale of a realistic coastal region (Chapter 3 and 4). Next,
the model is further developed to resolve the interactions between the waves and a �xed
�oating body (Chapter 5). With these efforts, this thesis explores the potential of the non-
hydrostatic approach to resolve the evolution of waves and their impact on a moored
ship at the scale of a realistic coastal or harbour region.



3
NON-HYDROSTATIC MODELLING OF

INFRAGRAVITY WAVES UNDER

LABORATORY CONDITIONS*

ABSTRACT
The non-hydrostatic wave model SWASH is compared to �ume observations of infra-
gravity waves propagating over a plane slope and barred beach. The experiments cover
a range of infragravity wave conditions, including forcing by bichromatic and irregu-
lar waves, varying from strongly dissipative to strongly re�ective, so that model perfor-
mance can be assessed for a wide range of conditions. The predicted bulk wave parame-
ters, such as wave height and mean wave period, are found to be in good agreement with
the observations. Moreover, the model captures the observed breaking of infragravity
waves. These results demonstrate that SWASH can be used to model the nearshore evo-
lution of infragravity waves, including nonlinear interactions, dissipation and shoreline
re�ections.

3.1. I NTRODUCTION
As short-wave groups propagate towards the shore they force longer waves with peri-
ods ranging from 20s to 250s. Such low-frequency motions are commonly referred to
as infragravity waves. Infragravity waves are found to be signi�cant for harbour reso-
nance (e.g., Bowers, 1977), moored vessel motions (e.g., Naciri et al. , 2004), collapse of
ice shelves (Bromirski et al. , 2010) and dune erosion (e.g., Van Thiel de Vries et al. , 2008),
which makes them an important subject for coastal and harbour engineers.

Two main mechanisms for the generation of infragravity waves have been identi-
�ed. Longuet-Higgins and Stewart (1962, 1964) proposed that groups of short waves

*This chapter has been published as Rijnsdorp, D. P., Smit, P. B., and Zijlema, M. (2014): Non-hydrostatic mod -
elling of infragravity waves under laboratory conditions. Coastal Engineering, 85, 30–42
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force infragravity waves through spatial gradients in the radiation stress. These infra-
gravity waves propagate with the velocity of the short-wave envelope and are known
as bound infragravity waves. Furthermore, Symonds et al. (1982) showed that the time
variation of the breakpoint, induced by short-wave groups, generates a shoreward and
seaward directed free infragravity wave which propagate with the free wave celerity. The
cross-shore propagation of infragravity waves over an uneven bottom has been studied
extensively by means of �eld experiments, laboratory experiments and numerical mod-
els. Such studies revealed that, as waves approach the shore, bound infragravity waves
grow with a rate greater than for energy conservative shoaling, due to weakly nonlinear
interactions between short waves and bound infragravity waves (e.g., List, 1992; Mas-
selink, 1995; Janssen et al., 2003; Battjes et al., 2004). In the nearshore, because infra-
gravity waves are generally much longer than the short waves which generate them, in-
fragravity waves can loose energy due to bottom friction ( Henderson and Bowen , 2002).
This is particularly important in case of an extensive �at and shallow region, such as a
coral reef (Pomeroy et al. , 2012), but less signi�cant on sloping beaches (e.g., Hender-
son et al., 2006; Van Dongeren et al. , 2007). Once infragravity waves enter the surf zone,
the wave motion becomes strongly nonlinear, energy is exchanged rapidly between the
short waves and the infragravity waves ( Henderson et al. , 2006; Thomson et al. , 2006)
and strong dissipation can occur due to infragravity wave breaking ( Van Dongeren et al. ,
2007). Ruju et al. (2012) suggested that, based on a numerical study, nonlinear inter-
actions are strongest in the outer surf zone, whereas – if it occurs – infragravity wave
breaking appears to be the dominant process in the inner surf zone. For weakly dis-
sipative conditions, infragravity waves (partially) re�ect at the beach and subsequently
propagate in seaward direction. Because the short-wave motion is mostly destroyed in
the surf zone, such seaward directed waves are free waves, which may either propagate
towards deeper water, known as leaky waves, or become trapped in the coastal region by
refraction, known as edge waves. The simultaneous presence of incoming, and outgoing
infragravity waves can result in a (partially) standing infragravity wave pattern near the
surf zone.

The large difference in scales and the various physical phenomena (e.g., friction,
wave-breaking) involved in the evolution of infragravity waves places stringent demands
on numerical models. In the surf-zone, a full representation of the infragravity wave
dynamics not only involves resolving the wave groups, but also the individual waves, in-
cluding small scale processes due to wave breaking. Resolving all relevant scales over rel-
atively short temporal and spatial scales is now within reach of RANS type models (e.g.,
Lin and Liu , 1998), as is exempli�ed by the successful application of such a model to
simulate low-frequency motions under laboratory conditions (e.g., Torres-Freyermuth
et al., 2010; Lara et al., 2011). However, models applicable for larger scale engineering
and scienti�c applications often do not explicitly resolve the short waves. Instead, a so
called phase-averaged approach is often used, in which a model that accounts for the
nearshore transformation of short waves, providing the forcing on the wave group scale,
is combined with a model based on the shallow-water equations, which accounts for the
nearshore transformation of infragravity waves (e.g., Roelvink et al. , 2009). These models
have been applied to simulate infragravity waves under �eld conditions and obtained
reasonable agreement between model results and �eld data (e.g., List, 1992; Van Don-
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geren et al., 2003; Reniers et al., 2002, 2006, 2010; Van Dongeren et al. , 2013). However,
because they invariably use linear theory for the evolution of the short waves, they are
less accurate under strongly nonlinear conditions. Moreover, they usually only include a
one way coupling, in which wave energy can be transferred from the short waves to the
infragravity waves, but not vice-versa.

Models based on a Boussinesq type formulation (e.g., Madsen et al. , 1991; Nwogu ,
1993; Wei et al., 1995) or based on the non-hydrostatic approach (e.g., Stelling and Zi-
jlema , 2003; Ma et al. , 2012) are an alternative to the RANS and phase-averaged ap-
proach. These models aspire to resolve both the individual waves, including all the rele-
vant processes (e.g., shoaling, refraction, diffraction, and nonlinearity) and the bulk dis-
sipation associated with wave breaking, but not the detailed breaking process itself (e.g.,
wave overturning). Compared to RANS models this allows them to ef�ciently compute
free surface �ows by considering the free surface as a single-valued function. Boussi-
nesq type models, introduced for variable depths by Peregrine (1967), have been applied
extensively to the cross-shore evolution of short-wave motions, including wave break-
ing (e.g Schäffer et al., 1993; Kennedy et al. , 2000; Cienfuegos et al., 2010; Tonelli and
Petti , 2012; Tissier et al., 2012) and to a lesser extent to ig-motions (e.g Madsen and
Sørensen, 1993; Madsen et al. , 1997). Non-hydrostatic models were introduced more
recently and have shown great potential for resolving the short-wave dynamics, includ-
ing wave breaking (e.g., Zijlema and Stelling , 2008; Ma et al. , 2012; Smit et al. , 2013) and
the nonlinear wave-dynamics in a surf zone ( Smit et al. , 2014). Similar to RANS mod-
els, non-hydrostatic models are essentially implementations of the basic conservation
equations for mass and momentum, that by using a reduced vertical resolution (two to
three layers) have a similar computational effort and accuracy compared with Boussi-
nesq models, whereas their implementation is less complex thereby improving robust-
ness and maintenance. However, thus far, at coarse vertical resolutions non-hydrostatic
models have not been veri�ed for infragravity waves.

In this study we show the capabilities of SWASH ( Zijlema et al. , 2011), a non hydro-
static type model, in reproducing the nearshore transformation of infragravity waves. To
include the generation of incident bound infragravity waves, a wave-generating bound-
ary condition – based on second order wave theory – has been implemented. Model re-
sults are compared with measurements of the �ume experiment of Van Noorloos (2003)
and Boers (1996).

The outline of this paper is as follows: § 3.2 gives an overview of the governing equa-
tions of SWASH, including relevant details of its numerical implementation. In § 3.3 we
present the second-order boundary condition. The model validation for the Van Noor-
loos (2003) and Boers (1996) experiment is presented in § 3.4 and §3.5, respectively. To
conclude the paper, we discuss and summarise our main �ndings in § 3.6 and §3.7.

3.2. NUMERICAL MODEL

GOVERNING EQUATIONS1

The non-hydrostatic model SWASH ( Zijlema et al. , 2011) is a numerical implementation
of the RANS equations for an incompressible �uid with a constant density and a free

1Parts of this section closely follow the description of SWASH in Smit et al. (2013).
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surface. In a two-dimensional framework that is bounded by the free surface z Æ³ (x, t )
and the bottom z Æ ¡d(x), where t is time and x and z are Cartesian co-ordinates ( z Æ0
is located at the still water level), the governing equations read
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where u(x,z, t ) is the horizontal velocity, w (x,z, t ) is the vertical velocity, º h and º v are
the horizontal and vertical kinematic eddy viscosity, respectively, g is the gravitational
acceleration, and ph and pnh are the hydrostatic and non-hydrostatic pressure, respec-
tively. The hydrostatic pressure is expressed in terms of the free surface as ph Æ½g (³ ¡ z)
such that @zph Æ ¡½g (where @z is short for @/ @z) and @x ph Æ½g@x ³ . An expression for
the free surface is obtained by considering the (global) mass balance for the entire water
column
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For waves propagating over intermediate distances (say O(10) wave lengths), in the ab-
sence of strongly sheared currents, turbulence has only marginal effects on the wave mo-
tion and can – to a good approximation – be neglected. Furthermore, the above equa-
tions (excluding the turbulence terms) can be directly applied to estimate the overall
characteristics of a quasi-steady breaking bore in the surf zone, without the need to re-
solve complex phenomena such as the wave generated turbulence. Therefore, turbulent
stresses can be neglected in this study. However, to increase numerical stability and to
allow the in�uence of bottom friction to extend over the vertical, we introduce some ver-
tical mixing by means of the vertical exchange of momentum due to turbulent stresses
with a constant º v

¡
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¢
.

Kinematic and dynamic boundary conditions are prescribed at the free surface and
bottom, given by
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These boundary conditions ensure that no particle leaves the surface and no particle
penetrates the �xed bottom. At the free surface the dynamic boundary condition pre-
scribes a constant pressure ( pnh Æph Æ0) and no surface stresses. At the bottom bound-
ary a bottom stress term is added to the horizontal momentum equation ( 3.1) as bottom
friction is important for the low-frequency motions, for which it is one of the mech-
anisms of energy dissipation. The bottom stress is based on a quadratic friction law
¿b Æcf

U jU j
h , where h Æd Å³ is the total water depth, cf is a dimensionless friction coef�-

cient and U is the depth-averaged velocity. Feddersen et al. (2003) found that the friction
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coef�cient is enhanced in the surf zone due to the presence of breaking waves. In this
study we compute the friction coef�cient based on the Manning-Strickler formulation,
which reads cf Æ0.015(dr / h)1/3 where dr is an (apparent) roughness value. Although
this formulation was derived for slowly varying open-channel �ows and not for rapidly
varying �ows such as in the surf zone, it gives increasing values of cf for decreasing
depths which makes it a suitable proxy to mimic the wave breaking enhanced rough-
ness. The disadvantage of this formulation is that the roughness value cannot easily be
estimated a priori and instead – as will be done in this study – needs to be calibrated.

Waves are generated at the wavemaker boundary (situated at x Æ0m) by prescrib-
ing the horizontal velocity u(x Æ0,z, t ) obtained from second-order wave theory, which
will be described in detail in § 3.3. At the shore we employ a moving shoreline bound-
ary condition to accurately simulate wave run-up and �ooding and drying ( Stelling and
Duinmeijer , 2003).

NUMERICAL IMPLEMENTATION

The numerical implementation is based on an explicit, second-order accurate (in space
and time) �nite difference method that conserves both global mass and momentum at
the numerical level. Local mass conservation, corresponding to a divergence-free veloc-
ity �eld, is obtained by means of a pressure correction technique. A structured grid is
employed to discretise the physical domain. In x-direction the grid has a constant width
whereas in vertical direction the physical domain is divided into a �xed number of layers
(K ) between the bottom and the free surface, which results in a (spatially varying) layer
thickness of ¢ z Æh/ K . A more detailed overview of the numerical implementation is
given in Zijlema et al. (2011) and references therein. With the numerical implementa-
tion used in the SWASH model, good wave dispersive properties are found even for low
vertical resolutions ( Zijlema et al. , 2011; Smit et al. , 2014). For instance, with two vertical
layers (as used in this study) the relative error in the phase velocity (compared with the
linear dispersion relation) is approximately 1% up to kd ¼8, where k is the wave number.
This allows SWASH to account for the relevant physics outside the surf zone (refraction,
shoaling, diffraction, non-linear interactions) with a relative coarse vertical resolution.

In the surf zone, SWASH intrinsically accounts for the energy dissipation of a break-
ing wave. Once the wave height over depth ratio becomes O(1), a discontinuity develops
as a wave steepens up and develops a vertical face. In such a situation, as the model
conserves momentum over the discontinuity using shock-capturing dynamics, energy
is dissipated at a rate analogous with that of a bore ( Lamb, 1932). However, compared
with the resolution outside the surf zone, this requires a high vertical resolution ( O(10)
vertical layers) to reproduce the observed locations of incipient wave breaking, whereas
at low vertical resolutions wave breaking is delayed ( Smit et al. , 2013). At present, such
high vertical resolutions are not feasible for relatively large horizontal domains (e.g.,
10£ 10 wavelengths). To capture wave breaking with only a few vertical layers, Smit et al.
(2013) proposed an approach with which the non-hydrostatic pressure is neglected in
the vicinity of a breaking wave. This (locally) reduces the governing equations to the
nonlinear shallow water equations and ensures that a wave develops a vertical face. This
approach is initiated once the rate of change of the free surface exceeds a certain thresh-
old (@t ³ /

p
gh È ®, where ® is the threshold). Once initiated, ® is reduced to ¯ (with
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¯ Ç ®) in neighbouring points to allow breaker persistence. In this study we use the val-
ues for ®(Æ0.6) and ¯ (Æ0.3) found by Smit et al. (2013) for two vertical layers, for which
good results were obtained for various �ume and basin experiments.

3.3. A SECOND-ORDER BOUNDARY CONDITION TO GENERATE

INCIDENT BOUND INFRAGRAVITY WAVES
At the model wavemaker the normal horizontal velocity based on second-order wave
theory is prescribed to generate incident waves. In this study we only incorporate the dif-
ference interactions (i.e. bound infragravity waves) and we exclude the sum interactions
(i.e. bound super harmonics) for ef�ciency reasons. 2 The incident (target) horizontal
velocity u t at the boundary is given by

u t (x Æ0,z, t ) Æ
NX

nÆ1
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where N is the number of free wave components. The �rst term on the right-hand-side
of (3.6) represents the linear free wave contribution, where fn is the frequency, Án is the
phase and ûn (z) is the vertically varying velocity amplitude of the nth wave component
which is related to the short-wave amplitude an by linear wave theory (e.g., Holthui-
jsen, 2007). The second summation is the second-order correction which represents the
contribution of the incident bound infragravity waves, where fnm

¡
Æfm ¡ fn

¢
is the fre-

quency, Ánm Æ
¡
Án ¡ Ám Å ¼

¢
is the phase and ûnm is the vertically varying velocity am-

plitude of the bound infragravity wave component forced by the difference interaction
between the nth and mth free wave component. In coastal waters, infragravity waves
are essentially shallow-water waves for which the vertical variation of ûnm is negligible.
Therefore, we approximate ûnm with a vertically constant velocity amplitude, which is
computed based on the free wave components following Hasselmann (1962), see Ap-
pendix 3.A.

To prevent re-re�ections at the wavemaker a weakly re�ective boundary condition is
adopted in which the total velocity signal u(x Æ0,z, t ) is a superposition of incident, or
target, velocity signal ( u t ) and a velocity signal of the re�ected waves ( u r ), i.e. u Æu t Åu r .
To estimate the velocity of the re�ected wave signal we assume that the re�ected waves
are shallow water waves, which implies that all short waves have dissipated inside the
domain. This allows us to compute the depth averaged horizontal velocity u r based on
the surface elevation of the outgoing waves, which is detected as the difference between
the target surface elevation ³ t and the instantaneous surface elevation ³ computed by
SWASH. Theu r follows from mass conservation in combination with the assumption

2The exclusion of the sum interactions at the model boundary does not imply that the bound super harmonics
are absent, instead, in addition to the bound higher harmonics, spurious free waves are generated at the sum
frequencies (see also Appendix 3.B). Because the energy contained in such spurious modes is comparable
to the bound energy (which is small compared with the energy in the primary waves), the in�uence of the
additional spurious energy is small, and will not adversely affect the nearshore transformation of the high
frequency band.
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that outgoing waves are progressive and of constant form,

u r Æ
c

d
(³ ¡ ³ t ) , (3.7)

where c is the phase velocity, which is taken as the shallow water phase velocity c Æ
p

gd.
We have veri�ed the accuracy of the second-order weakly-re�ective boundary con-

dition in reproducing the classical �nite depth solution of Longuet-Higgins and Stewart
(1960) for bound infragravity waves, induced by a bichromatic wave group which propa-
gates over a �at bottom. With two or more vertical layers the solution of Longuet-Higgins
and Stewart (1960) is reproduced well if the short waves that form the wave group are in
shallow to intermediate water depths ( kd Ç 2.5) (Appendix 3.B).

3.4. I NFRAGRAVITY WAVES INDUCED BY BICHROMATIC WAVES

OVER A PLANE SLOPE
Van Noorloos (2003) considered the evolution of bichromatic wave groups as they prop-
agate in a 40m long �ume over a 1/35 plane slope (see Fig. 3.1). An interesting feature
of these experiments is that they con�rmed that dissipation due to infragravity wave
breaking can be one of the primary mechanisms of infragravity wave dissipation ( Van
Dongeren et al. , 2007). In these experiments the �ume was equipped with a piston-type
wave board, which included second-order wave control and re�ection compensation.
Van Noorloos (2003) considered eight bichromatic wave conditions which varied in wave
magnitude (B1-4, see Table 3.1) and in bound infragravity wave frequency ( fb) (A1-4, see
Table 3.1), where the latter in particular is associated with varying infragravity wave con-
ditions. In these experiments infragravity wave conditions ranged between strong infra-
gravity wave dissipation (due to infragravity wave breaking) and small infragravity wave
re�ections near the shoreline (experiment A1) to strong infragravity wave re�ections (ex-
periment A4) ( Van Dongeren et al. , 2007). Measurements of the free surface were taken
at 80 locations, with a spacing varying from 0.5m to 0.3m, for a duration of 10 minutes.

SWASH is employed with two vertical layers to accurately capture the wave disper-
sion, and the bound infragravity wave response (Appendix 3.B), for the range of kd val-
ues encountered (see Table 3.1). The grid resolution is set at ¢ x Æ0.01m, which corre-

0 10 20 30 40

0.7

0

x (m)

d
(m

)

Figure 3.1: Van Noorloos (2003) experimental set-up. The still water level is located at z Æ0m and the vertical
lines indicate the gauge locations.
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Table 3.1: Wave parameters at the boundary for the bichromatic wave experiments. Listed are the primary
wave frequencies f and amplitudes a; bound wave frequency fb and the maximum normalised water depth
kd .

f1 (Hz) f2 (Hz) fb (Hz) a1 (m) a2 (m) kd
A1 0.67 0.48 0.19 0.06 0.012 2.00
A2 0.65 0.50 0.15 0.06 0.012 1.94
A3 0.64 0.51 0.13 0.06 0.012 1.90
A4 0.62 0.53 0.09 0.06 0.012 1.81
B1 0.65 0.50 0.15 0.06 0.018 1.95
B2 0.65 0.50 0.15 0.06 0.024 1.95
B3 0.65 0.50 0.15 0.06 0.030 1.95
B4 0.65 0.50 0.15 0.06 0.036 1.95

sponds to at least 20 points per wave length for the super harmonic wave components,
and the time step is set at ¢ t Æ0.002s. The incoming boundary is located at the �rst wave
gauge (x Æ6m) and we employ a second-order accurate weakly-re�ective boundary to
generate incident waves (§ 3.3), according to the target wave conditions (Table 3.1). The
roughness coef�cient dr (Æ0.0075m) was calibrated for the experiment which featured
the strongest infragravity wave re�ections (A4), where we expect a signi�cant in�uence
of the bottom friction on the infragravity wave dynamics. In the following, the analysis
is based on the measured and computed free surface elevation records after steady state
conditions were observed, �ve minutes after the start of the simulation ( Van Dongeren
et al., 2007).

RESULTS

First we compare the predicted and measured cross-shore transformation of the bulk
wave parameters for experiment A1, A4, B1 and B4. Here, we compare measured and
predicted root-mean-square wave heights Hrms , which are computed from the variance
of linearly detrended surface elevation signals, Hr ms Æ

p
8h³ 2i , where h...i indicates time

averaging. To analyse the nearshore transformation of infragravity waves, the surface
elevation signals have to be �ltered. The occurrence of infragravity wave breaking in
some of the experiments indicates that strong nonlinear effects play a dominant role in
the evolution of the infragravity waves close to the shoreline. Near the shore not only
the high-frequency waves, but also the infragravity waves transition into sawtooth like-
shapes, which in the spectral domain is associated with the generation of signi�cant
energy at the higher harmonics of the infragravity wave frequencies. For this reason, we
�lter the surface elevation signal using a band pass �lter that includes the difference fre-
quency (¢ f Æf1 ¡ f2) and integer multiples thereof ( m¢ f for m Æ2...fnyq / ¢ f , where
fnyq is the Nyquist frequency). This method is applicable as the variance at the m¢ f fre-
quencies is attributed to infragravity wave self-self interactions and not to (interactions
of) higher-frequency components ( Van Dongeren et al. , 2007). In the remaining of this
section we use a tilde accent (e) to denote variables computed from the �ltered signal.

The variation of the measured wave height Hrms is similar in experiment A1, A4, B1
and B4 (see Fig. 3.2a-b and Fig. 3.3a-b). In all four cases Hrms remains nearly constant
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Figure 3.2: Cross-shore variation of the Hrms (upper panels) and the eHrms (lower panels) for experiment A1
(left panels) and A4 (right panels). Comparison between measured (circles) and computed values (lines). The
grey region gives the range in wave heights found when varying the roughness coef�cient.

on the �at ( x Ç 8.5m) and at the start of the slope, and reduces rapidly in the surf zone
once breaking is initiated ( x ¼25m). For all cases predicted and measured Hrms are in
agreement, except for B4 where the predicted position of incipient short-wave breaking
is located further shoreward than the observed location (Fig. 3.3b). For B4, the predicted
location of wave breaking can be improved with a slightly smaller breaking threshold
(®=0.5), see Fig.3.3b.

The aforementioned difference in infragravity wave behaviour for the different inci-
dent wave conditions, i.e. re�ective or dissipative, can be seen by comparing the cross-
shore variation of the measured infragravity wave height eHrms for experiment A1 and A4
(see Fig.3.2c-d). In A1, eHrms increases in shoreward direction with a small oscillation for
x Ç 25m. As the short waves start to break ( x ¼25m) eHrms decreases, up to x ¼27m where
it increases again. For x È 31m, eHrms decreases signi�cantly. In experiment A4 the cross-
shore variation of eHrms has a nodal structure with an increasing magnitude towards the
shore. The nodal structure is associated with the occurrence of a standing infragravity
wave. For experiment B1 and B4 the nearshore transformation of the eHrms is similar to
A1 (see Fig.3.3c-d). For all cases predicted and measured eHrms are in agreement, except
for a discrepancy for 26m Ç x Ç 32m in A1 and B1 , where eHrms is over estimated due to
an over prediction of the incoming infragravity wave height, and in B1 and (especially)
B4, where the predicted oscillation of eHrms for x Ç 25m is more pronounced than in the
measurements due to an over prediction of the outgoing infragravity wave height.

Incoming infragravity waves are generally bound to the wave group, such that their
behaviour no longer corresponds to that of a free wave. In contrast re�ected infragravity
waves are free waves as the high-frequency motion is almost entirely destroyed in the
surf zone. The different character of the incoming and outgoing low-frequency motion
makes it interesting to consider them separately. To distinguish between these two com-
ponents, we decompose the infragravity wave signal with the decomposition method of
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Figure 3.3: Cross-shore variation of the Hrms (upper panels) and the eHrms (lower panels) for experiment B1
(left panels) and B4 (right panels). Comparison between measured (circles) and computed values (lines). The
grey region gives the range in wave heights found when varying the roughness coef�cient. The thin black line
in panel b and d is calculated with ® Æ0.5.

Battjes et al. (2004), as used by Van Dongeren et al. (2007). In A1, B1 and B4 measured
outgoing infragravity wave heights eH ¡

rms are small compared to measured incoming in-
fragravity wave heights eH Å

rms (Fig. 3.4a,c-d), which indicates that the shoreline re�ection
and the contribution of breakpoint induced infragravity waves is small. In the measure-
ments, incoming infragravity waves grow towards the shore with a growth rate which
exceeds Green's law for energy conservative shoaling ( H / d ¡ 1/4 ). For x È 25m mea-
sured eH Å

rms decreases, up to x ¼27m where it increases again. Close to the shore eH Å
rms

starts to decrease signi�cantly, which is associated with infragravity wave breaking ( Van
Dongeren et al. , 2007). The cross-shore variation of eH Å

rms and eHrms are very similar which
further illustrates the dominance of incoming infragravity waves. For A4 the growth of
eH Å

rms is small compared to the other three experiments, whereas the magnitude of eH ¡
rms

is larger (Fig. 3.4b). Predicted and measured incoming and outgoing wave heights are
in agreement throughout the domain for all experiments, apart from an over prediction
of eH Å

rms inside the surf zone ( x È 26m) in A1 and B1, a local over prediction of eH ¡
rms at

x ¼ 26m in A4, and a signi�cant over prediction of eH ¡
rms throughout the domain in B1

and B4. Discrepancies between predicted and measured infragravity wave heights are
most signi�cant for experiment B4, for which we previously observed that short-wave
breaking is delayed in SWASH (Fig. 3.3b). Not only does reducing the breaking threshold
(® Æ0.5) improves predicted Hrms (Fig. 3.3b), it also improves predictions of eHrms , eH Å

rms
and eH ¡

rms (Fig. 3.3d and 3.4d), which indicates that the over prediction of eH ¡
rms is related

to the delayed short-wave breaking.

To investigate the in�uence of the roughness coef�cient on the model results, ad-
ditional simulations were executed with a roughness coef�cient ranging dr Æ0.001¡
0.02m. The shaded regions in Fig. 3.2-3.4 are the regions between the maximum and
minimum of Hrms , eHrms and eH §

rms for the simulations with the various roughness co-
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Figure 3.4: Cross-shore variation of incoming eH Å
rms and outgoing infragravity wave heights eH ¡

rms for exper-
iment A1 (panel a), A4 (panel b), B1 (panel c) and B4 (panel d). Comparison between measured (incoming
component: black triangles, outgoing component: red circles) and predicted values (incoming component:
solid black line, outgoing component: dashed red line). The black dashed curve indicates Green's law for
energy conservative shoaling ( H / d ¡ 1/4 ), initiated with the predicted incident incoming infragravity wave
height. The shaded regions give the range in wave heights found when varying the roughness coef�cient (in-
coming component: grey, outgoing component: light red). The thin blue lines panel d are calculated with
® Æ0.5.

ef�cients. The low sensitivity of Hrms to variations in dr implies that bottom friction –
as anticipated – has only a marginal in�uence on the nearshore transformation of short
waves (Fig. 3.2-3.3). Similarly, if infragravity waves are breaking, infragravity wave en-
ergy losses are dominated by infragravity wave breaking and the in�uence of variations
in dr is small (Fig. 3.4a,c-d). Only for a strong re�ective condition (A4), variations in
dr signi�cantly in�uence infragravity wave heights. Nevertheless, the nodal pattern is
correctly reproduced for all values of dr (Fig. 3.2d). In all experiments, but most sig-
ni�cantly for A4, bottom friction predominantly in�uences outgoing infragravity wave
heights (Fig. 3.4b), which indicates that friction is primarily of signi�cance in the inner
surf zone ( x È 30m).

Infragravity wave breaking can be observed when inspecting the time signals of the
infragravity wave surface elevation at several gauge locations near the shoreline, which
is similar to an analysis in Van Dongeren et al. (2007). In experiment A1, as the infragrav-
ity waves enter progressively shallower water, the infragravity wave front develops an
almost vertical face and subsequently rapidly decays in height (Fig. 3.5). This pattern is
very similar to that of a breaking wave and suggests that infragravity waves are breaking.
A similar analysis for experiment A4 shows no sign of infragravity wave breaking in both
measured and computed surface elevation signals (Fig. 3.5). For both cases, computed
wave signals are in agreement with the observations.
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Figure 3.5: Time series of the infragravity wave signal ³̃ at several gauge locations close to the shoreline for
experiment A1 (left panel) and A4 (right panel). Measurements (markers); SWASH results (solid line). The grey
line is the computed surface elevation. The top panel shows the bathymetry and gauge locations.
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Table 3.2: Skill factors for the van Noorloos experiments.

Hrms eHrms eH Å
rms

eH ¡
rms

A1-4 0.95 0.85 0.85 0.70
B1-4 0.92 0.87 0.89 -0.07
Overall 0.94 0.86 0.87 0.32

Finally, we consider the model performance for all bichromatic wave experiments.
To quantify the accuracy of the model we compute the model skill as (e.g., Reniers et al.,
2006),

Skill Æ1¡

vu
u
u
u
u
u
t

1
N

NP

nÆ1

¡
Xp ¡ Xo

¢2

1
N

NP

nÆ1
(Xo)2

, (3.8)

where N is the total number of observations and X is the considered quantity with sub-
script p and subscript o denoting predicted and observed values. Predicted Hrms agree
well with the observations, as indicated by the overall skill factor of 0.94 (Table 3.2).
Similarly, predicted and observed eHrms agree for all experiments, although the scatter
is larger and the overall skill is lower compared to the results for Hrms . Predicted and
measured eH Å

rms agree well and the skill is similar to that of eHrms . In contrast, errors in
predicted eH ¡

rms are large as indicated by the low overall skill. Errors in predicted eH ¡
rms

are largest for the results of experiment B1-4, for which the skill factor is negative which
indicates that errors in predicted eH ¡

rms are larger than measured eH ¡
rms . For these dissi-

pative infragravity wave conditions, outgoing infragravity wave energies are very small
and minor errors in the modelled dissipation can result in large errors in outgoing in-
fragravity wave energies. To illustrate this we consider the relative difference between
the incoming and outgoing infragravity energy �ux D. If we assume the group velocity
of the incoming and outgoing infragravity waves are approximately equal in magnitude,
we can de�ne D as

D Æ100
j eEÅ ¡ eE¡ j

eEÅ
, (3.9)

where eE§ is the energy of an incoming ( Å) or outgoing ( ¡ ) infragravity wave component
at the outer edge of the surf zone ( x Æ25m). This shows that in experiment A1, B1-4 in-
fragravity wave energy losses are large and that errors in predicted D are small (¼3%, see

Table 3.3: Relative infragravity wave energy losses D (%) in the surf zone for the van Noorloos experiments.

A1 A2 A3 A4 B1 B2 B3 B4
Measurements 98.5 95.9 80.2 37.2 98.4 98.5 99.3 99.7
SWASH 98.3 92.8 76.8 45.5 95.2 95.1 96.7 96.6
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Table 3.3), which indicates that SWASH captures the bulk energy dissipation of a break-
ing infragravity wave. Although errors in the bulk dissipation are small for experiment
B1-4, the model skill for the outgoing infragravity wave heights is low, which indicates
that small errors in the predicted bulk dissipation of a breaking infragravity wave can
result in large errors in the predicted outgoing infragravity wave heights.
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Figure 3.6: Predicted (subscript S) versus measured (subscript M) wave heights for the total wave height Hrms
(a), infragravity wave height eHrms (b), incoming infragravity wave height eH Å

rms (c) and outgoing infragravity
wave height eH ¡

rms (d). In panel c and d, a distinction is made between the various infragravity wave conditions,
ranging from dissipative (A1) to re�ective (A4), using the following colors: A1 (blue); A2 (red); A3 (green); A4
(cyan) and B1-4 (black). The solid line indicates one to one correspondence and the dashed lines are the 10 %
error bands).

3.5. I NFRAGRAVITY WAVES INDUCED BY RANDOM WAVES OVER

A BARRED BEACH
The second �ume experiment we consider in this study was performed by Boers (1996),
who considered irregular waves propagating over a barred beach (see Fig. 3.7) in the
same �ume as Van Noorloos (2003). A variety of incident wave conditions were simu-
lated with this set-up of which the lowest steepness wave condition (1C) has been anal-
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Figure 3.7: Boers (1996) experimental set-up. The still water level is located at z Æ0m and the vertical lines
indicate the gauge locations.

ysed extensively in other studies (e.g., Janssen et al., 2003; Battjes et al., 2004). Here we
shall also analyse this case, in which the shoaling of infragravity waves was most distinct,
as it is the most relevant wave condition for studying the infragravity wave dynamics.
In experiment 1C waves were generated at the wavemaker based on a target JONSWAP
spectrum with a signi�cant wave height of 0.103m and a peak period of 3.33s. Measure-
ment of the free surface were taken at 70 locations, with intervals varying from 1m to
0.18m, for a duration of 28 minutes.

SWASH is employed with two vertical layers to capture the bound infragravity wave
response (Appendix 3.B) and the propagation of short waves with frequencies up to three
times the peak frequency fp (with kd Æ2.5). The grid resolution is set at ¢ x Æ0.02m,
which corresponds to at least 20 points per wave length for waves up to 3 fp , and the time
step is set at ¢ t Æ0.002s. The incoming boundary is located at the �rst wave gauge and
we employ a second-order accurate weakly re�ective boundary condition (§ 3.3) based
on the free wave components. The target free wave components with which the wave-
maker in the �ume is forced are not available and no velocities were measured near the
wavemaker. Therefore, the incident free wave components can only be obtained based
on measurements of the free surface at the �rst wave gauge. We estimate these com-
ponents using the Fourier transform and a high-pass �lter of f È fp /2 to remove most
bound infragravity wave components, since their contribution is accounted for by in-
cluding the theoretical second-order response. The roughness coef�cient is set at the
same value as in the previous laboratory case ( dr Æ0.0075m). Model and measured sig-
nals are analysed excluding a spin-up time of 60s ( È 4Ls/ cg ), where Ls is the length of the
�ume and cg is the group velocity according to the peak frequency at the wavemaker.

RESULTS

First we compare measured and predicted signi�cant wave heights Hm0
¡
Æ4

p
m0

¢
and

wave periods Tm01
¡
Æ

p
m0/ m1

¢
of short- and infragravity waves. In these de�nitions,

the moments mn
¡
Æ

R
f n E

¡
f

¢
d f

¢
are computed from the variance density spectra E

¡
f

¢

of the free surface elevation. The variance density spectra are computed with smooth-
ing in the frequency domain and have 30 degrees of freedom. To distinct between short
and infragravity waves, we compute their bulk parameters from the band-passed �ltered
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Figure 3.8: Cross-shore variation of the signi�cant wave heights Hm0 (a,c) and mean wave periods Tm01 (b,d) of
short waves (panel a and b) and infragravity waves (panel c and d). Comparison between measured (markers)
and predicted values (line). The grey region gives the range in wave heights found when varying the roughness
coef�cient.

variance density with a band pass of 0.5 fp Ç f · 4fp and 0.1 fp Ç f · 0.5fp , respectively.
We take the peak frequency as the peak frequency at the wavemaker ( fp Æ0.3Hz). In the
remainder of this section parameters calculated from the high-frequency band are de-
noted with a prime accent

¡
0
¢
, and parameters computed from the low-frequency band

with a tilde accent (e).

Predicted bulk wave parameters (signi�cant wave height and mean wave period) of
both short and infragravity waves are in agreement with the measurements throughout
the domain (Fig. 3.8), despite of an under prediction of T̃m01 for 8m Ç x Ç 20m.

To quantify the magnitude of incoming and outgoing infragravity wave components,
we employ the improved signal decomposition method ( Van Dongeren et al. , 2003) of
Battjes et al. (2004) with nine sensors for lower frequencies ( f · 0.11Hz) and �ve for the
remaining higher frequencies ( f · fp /2). This is the same number of sensors as Battjes
et al. (2004) used in their analysis of the same data set. The measured eH Å

m0 increases in
shoreward direction with a rate which exceeds Green's law for energy conservative shoal-
ing (Fig. 3.9a). As the short waves break (x È 25m), the growth rate of incoming infra-
gravity waves reduces but remains positive throughout most of the surf zone ( x È 25m).
Outgoing infragravity waves decrease in height as they propagate in off-shore direction,
in accordance with Green's law. Throughout the domain measured eH Å

m0 are larger than
measured eH ¡

m0 , especially for x È 25m where the difference is largest. Computed eH Å
m0

are in agreement with observation for x È 22m, whereas they are under predicted for
x Ç 22m. The eH ¡

m0 is over predicted throughout the domain, but the overall pattern and
magnitude is in reasonable agreement with the measurements. To identify the cause of
the under prediction of eH ¡

m0 for x Ç 22m, we compare the results with the target bound
wave height, which is computed as the integral of the theoretical bound wave energies
over the ig-frequency range, based on the incident free-wave components. To compare
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the target bound wave height with the most seaward located prediction of eH Å
m0 , we as-

sume that for x Ç 10m the amplitude increase of the incoming infragravity waves is in the
order of Green's law (which is in agreement with the mild amplitude increase observed
for x Ç 20m). The resulting target bound wave height at x Æ9m is of similar magnitude
as the predicted eH Å

m0 , whereas it is smaller than the measured eH Å
m0 at this position. This

is in accordance with Battjes et al. (2004), who observed that the measured incident eH Å
m0

is larger than the equilibrium bound wave height. Discrepancies between model results
and the measurements are therefore related to differences between the wave forcing in
the �ume and in the numerical model. A possible explanation is that, in the �ume, the
wavemaker generated some (spurious) free-wave energy at infragravity wave frequen-
cies, for example, due to re-re�ections of outgoing infragravity waves.

The previous analysis was restricted to the total infragravity band
¡
fc/10 Ç f Ç fc/2

¢
.

Now, we consider the incoming and outgoing infragravity wave heights for two sepa-
rate frequency bands, which range between the ig-frequency limits with a �xed width of
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Figure 3.9: Cross-shore variation of incident eH Å
m0 and outgoing infragravity wave heights eH ¡

m0 , computed by
integration over different frequency bands. Comparison between measured (incoming component: black tri-
angles, outgoing component: red circles) and predicted values (incoming component: black line, outgoing
component: dashed red line). The shaded regions indicate the maximal and minimal wave heights encoun-
tered in the simulations with a variation in the roughness coef�cient (incoming component: grey, outgoing
component: light red). The shaded triangle is the target bound infragravity wave height and the thin black

black curves indicates Green's law for energy conservative shoaling
³
H / d ¡ 1/4

´
, initiated with either the pre-

dicted incoming infragravity wave height at x Æ9m (full line), or the target bound infragravity wave height
(dashed line).
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6Hz. For the higher frequencies (Fig. 3.9c), the growth of incoming infragravity waves
is relatively strong and they are more energetic than the outgoing infragravity waves. In
contrast, for lower frequencies the incoming infragravity waves are less energetic (Fig.
3.9b), compared to the outgoing infragravity waves, and have a smaller growth rate com-
pared to their counterparts at higher frequencies. Predicted wave heights are in agree-
ment with the measurements for both frequency bands, although eH Å

m0 is under and eH ¡
m0

is over predicted for the lower frequency band.
Similar to the previous laboratory case we investigate the in�uence of the roughness

coef�cient for a coef�cient ranging dr Æ0.001¡ 0.02m. Again, the roughness coef�cient
has a small in�uence on the magnitude of short waves (Fig. 3.8) and incoming infra-
gravity waves, whereas it has a signi�cant in�uence on the outgoing infragravity wave
height (Fig. 3.9a). The in�uence of the roughness coef�cient is most pronounced for
infragravity waves with relatively low frequencies (Fig. 3.9b).

It is well established that in waters of constant depth the wave envelope and bound
infragravity waves are in equilibrium and out of phase with one-another (e.g., Longuet-
Higgins and Stewart , 1960). However, as waves propagate over regions with varying
depths, a phase shift away from the 180 ± equilibrium difference develops as the bound
waves lag behind the wave envelope (e.g., Janssen et al., 2003, and references therein).
This can be illustrated using a cross-correlation analysis, which determines the relation
between short-wave envelope and infragravity waves. This technique has been applied
to the Boers data set by several authors (e.g Janssen et al., 2003; Torres-Freyermuth et al. ,
2010) to analyse the propagation and re�ection of infragravity waves.

The normalised cross-correlation function between two real signals V (t ) and Y (t ) is
de�ned as

RV Y (¿) Æ
hV (t )Y (t Å ¿)i

¾V ¾Y
, (3.10)

where ¿ is a time shift and ¾V and ¾Y are standard deviations of V (t ) and Y (t ), respec-
tively. We de�ne the short-wave envelope as the absolute value of ( Janssen et al., 2003)

A(t ) Æ
¯
¯³ 0(t ) Å i H

©
³ 0(t )

ª¯
¯
lp , (3.11)

where H {...} is the Hilbert transform operator and j...j lp denotes a low pass �lter opera-
tion ( f Ç 0.5fp ).

Here, we evaluate the cross-correlation between the squared wave envelope and in-
fragravity wave surface elevation signal for the measurements and the model predic-
tions. Fig. 3.10 shows the measured (panel a) and computed (panel b) cross-correlation
function. In the measurements, a clear trough of negative correlation is present around
zero time lags for x Ç 30m, consistent with the theory of Longuet-Higgins and Stewart
(1962), which predicts a bound infragravity wave which is out of phase with the wave
groups. For x È 25m the correlation increases as the short waves are breaking and fur-
ther shoreward ( x È 30m) the correlation is eventually reversed. This positive correla-
tion is associated with the fact that infragravity waves modulate the total water depth
(Janssen et al., 2003), as the presence of an infragravity wave crest increases the wa-
ter depth whereas an infragravity wave trough decreases the water depth. This allows
depth-limited short waves to enter shallow water on the crest of an infragravity wave,
which results in a positive correlation. A second trough of negative correlation is present
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at greater time lags, which is linked to the re�ected infragravity wave (e.g., Janssen et al.,
2003). Close to the wavemaker ( x Æ5m) the minimum value of correlation that is asso-
ciated with an incoming bound infragravity wave is located at ¿ Æ0s, whereas closer to
the shore the minimum value is located at increased time lags. This is further illustrated
in Fig. 3.10c, which shows the time lag, normalised with a representative bound wave
period Tb

¡
Æ1/0.3 fp

¢
, of the minimum correlation value between ¡ 5sÇ ¿ Ç 5s (which

corresponds to the incoming bound infragravity wave) up to the location of the second
breaker bar ( x ¼ 30m). The measured normalised phase lag increases signi�cantly for
x È 20m and reaches a value of ¼0.4 for x È 27m, which corresponds to a phase differ-
ence of 36± between the wave envelope and a representative bound wave. Model predic-
tions agree with the measurements, both in a qualitative manner (Fig. 3.10a and b) and
a quantitative manner (Fig. 3.10c).

Figure 3.10: Cross-correlation between the squared wave envelope and the infragravity wave surface elevation
signal for the measurements (panel a), and computations (panel b). Panel c shows the measured (grey circles)
and computed (�lled black circles) time lags, normalised with a representative bound period, between the
wave envelope and bound infragravity waves.

3.6. D ISCUSSION
The overall good correspondence between model results and measurements found in
this study demonstrates that SWASH – which is essentially an intermediate approach be-
tween RANS and phase-averaged models – is able to resolve the cross-shore evolution of
infragravity waves. SWASH accounts for the dominant processes that affect the energy
balance at the ig-frequencies: the nonlinear energy exchange with the high-frequency
waves, the loss of energy due to friction and infragravity wave breaking. The energy ex-
change with the hf-waves outside the surf zone is best represented in the model, as it is
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an intrinsic property of the governing equations. However, the accuracy of the modelled
nonlinear interactions depends on the spatial resolution that is used (see e.g., Fig. 3.B1).
On the other hand, bottom friction and (infragravity wave) breaking are parametrized
and with that model performance depends on how sensitive predictions are to (small)
errors in the modelled dissipation related to these processes.

In this study predictions of the incoming wave �eld proved to be insensitive to vari-
ations in the bottom friction (by means of the roughness coef�cient). In contrast, under
(mildy) re�ective wave conditions the outgoing infragravity wave heights are sensitive to
the bottom friction. In such cases, an accurate prediction of the outgoing infragravity
wave �eld requires calibration of the roughness coef�cient. Although a different friction
formulation might reduce model sensitivity, it is unlikely that the need to calibrate the
friction coef�cient can be avoided without taking the effect of enhanced turbulence due
to wave breaking into account ( Feddersen et al., 2003).

Depth-induced wave breaking of the short waves is well resolved within SWASH as
the relatively simple model used (bore dissipation with an enforced hydrostatic pres-
sure distribution) is able to resolve the evolution of bulk wave parameters and wave
spectra, including nonlinear wave-interactions, in high-detail throughout the surf zone
(e.g., Smit et al. , 2014). This gives con�dence that SWASH accounts for the energy ex-
change between ig- and hf-waves in the surf zone. Moreover, the present study shows
that SWASH captures the bulk energy dissipation of a breaking infragravity wave. How-
ever, for such dissipative infragravity wave conditions errors in predicted outgoing in-
fragravity wave heights are large, because the relatively small outgoing energies are sen-
sitive to minor errors in the predicted bulk energy dissipation. Nonetheless, the model
has good skill in predicting the total infragravity wave heights demonstrating that the
low skill regarding the outgoing infragravity waves does not inhibit the use of SWASH for
the prediction of infragravity waves.

The primary advantage of SWASH compared to RANS models is that the accuracy of
predicted bulk wave parameters (including sea, swell and ig-contributions) is compa-
rable, whereas the computational effort is much smaller. For example, the agreement
with observed (ig-) wave heights for the Boers experiment (§ 3.5) is similar to the results
of Torres-Freyermuth et al. (2010), who used a RANS model with 82 cells in the vertical,
as opposed to two vertical layers used here, to reproduce this experiment. Naturally, if
more detail with regard to the vertical structure is required, for instance to capture the
wave-induced cross-shore circulation, SWASH may be employed with a �ner vertical res-
olution (at larger computational costs). However, if only bulk parameters are of interest,
the present approach forms an attractive alternative. Moreover, the non-hydrostatic ap-
proach is more �exible compared to Boussinesq-type models, which operate on a sim-
ilar intermediate scale, as it can �exibly adapt itself to allow for an optimum balance
between accuracy and computational effort.

Nevertheless, the prediction of infragravity wave conditions in a two-dimensional
surf zone, for routine applications, will likely remain in the class of models that com-
bine a wave driver with the nonlinear shallow water equations. Such models, although
more approximate, remain an order of magnitude faster as they do not resolve individ-
ual waves, but calculate on the wave-group scale. On the other hand, the use of lin-
ear wave theory for the evolution of the short waves and the absence of phase informa-
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tion implies that in regions where the waves are strongly nonlinear, or where re�ection
and/or diffraction (e.g., a harbour) are important, the present approach is preferable to
the phase-averaged approach. We stress that there are no fundamental barriers to apply
SWASH to two-dimensional infragravity wave propagation cases. For instance, when the
calculations are performed on present-day large-scale multi-processor machines (with
O(100) processors), the application of the present model to study infragravity wave con-
ditions in, for example, a large harbour, for select engineering (e.g., calculating extreme
conditions) or scienti�c purposes, is viable.

3.7. CONCLUSIONS
In the present study we considered the modelling of infragravity wave dynamics using
the non-hydrostatic model SWASH. Hereto we extended SWASH with a second-order
weakly-re�ective wavemaker, based on weakly nonlinear wave theory, in order to in-
clude the incident (bound) infragravity wave contributions. Model results were com-
pared with �ume observations of the nearshore transformation of infragravity waves.
Our results demonstrate that SWASH is able to reproduce the phenomena commonly as-
sociated with the evolution of infragravity waves in the nearshore, including the shoaling
of bound infragravity waves, shoreline re�ections, the phase lag between the wave en-
velope and the incoming infragravity waves, nonlinear (self-self ) interactions and the
occurrence of infragravity wave breaking. In particular, our analysis shows that the total
and incoming infragravity wave heights are well predicted. Errors in predicted outgo-
ing infragravity wave heights are larger compared to the total and incoming infragravity
wave height, and are found to be sensitive to the roughness coef�cient (which controls
the dissipation due to bottom friction) and to the location of incipient short-wave break-
ing (which is controlled by the breaking threshold). Model results further indicate that
bottom friction has a marginal in�uence on the incoming wave �eld and only affects the
magnitude of outgoing infragravity waves in case of (mildly) re�ective infragravity wave
conditions. This study suggests that SWASH can be a valuable tool, for engineering and
scienti�c purposes, to study the evolution of cross-shore propagating infragravity waves.
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3.A. SECOND-ORDER BOUNDARY CONDITION
To include the ig-response into our boundary signal, we make use of weakly nonlin-
ear, second-order, �nite-depth theory (e.g., Longuet-Higgins and Stewart , 1960; Hassel-
mann , 1962). Herein the wave �eld is composed of �rst-order, or primary waves that
corresponds to the free wave response (single summation in Eq. ( 3.6)), and a small sec-
ond order correction that is associated with the bound waves (double summation in Eq.
(3.6)). Here, we estimate the amplitude of the second order response, due to the primary
waves at fm and fn , following Hasselmann (1962)

anm ÆDnm am an , (3.A1)

where anm is the amplitude of a bound wave component, an and am denote the am-
plitudes of the associated primary waves, and Dnm is the interaction coef�cient. In
this study we are primarily interested in the difference interactions, with difference fre-
quency fnm Æfm ¡ fn and difference wave number knm Ækm ¡ kn , for which the inter-
action coef�cient can be expressed as
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gkn km
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is the radial frequency and coef�cient C is de�ned as

C Æ(! n ¡ ! m )

µ
(! n ! m )2

g2 Å kn km

¶
¡

1

2

µ
! n k2

m

cosh2 (km d)
¡

! m k2
n

cosh2 (kn d)

¶
. (3.A3)

Because SWASH is forced by means of the horizontal particle velocity, the free surface
amplitudes need to be related to the horizontal velocity amplitudes. In principle, this
can be done using second-order theory. However, because in this study the long wave
response is generally in shallow water ( knm d ¿ 1), a good approximation of the depth
averaged second-order velocity amplitude ûnm follows from mass conservation in com-
bination with the assumption that bound infragravity waves are progressive and of con-
stant form,

ûnm Æ
cg

d
anm , (3.A4)

where cg is the group velocity which is expressed as cg Æ2¼fb / knm . This form is easier to
implement and more ef�cient to compute compared to the full second-order theory. The
above boundary condition, valid for unidirectional waves perpendicular to the bound-
ary, can be extended to short-crested waves (directional seas) as the original interaction
coef�cient of Hasselmann (1962) puts no restriction on wave directions.
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The interaction coef�cient is derived with the assumption of weak nonlinearity, there-
fore, the above boundary condition is only valid for small wave amplitudes a/ d ¿ 1.
Furthermore, the assumption of a depth averaged second-order velocity amplitude re-
quires knm d ¿ 1. These considerations imply that the proposed boundary condition
cannot be used in the surf zone ( a/ d Ç 1) and in deep water ( knm d È 1). Nevertheless,
for most practical applications, including the simulations considered in this study, the
boundary will be located in intermediate water depths where these limitations are not
met. Furthermore, in deep water the second-order response is small can – to a good ap-
proximation – be neglected. In such case, a boundary condition based on linear wave
theory is likely suf�cient.

3.B. SWASHSECOND-ORDER RESPONSE
To verify the second-order boundary condition, and to investigate the sensitivity with
regard to the vertical resolution, we compare the model response with the classical �-
nite depth solution of Longuet-Higgins and Stewart (1960). Here we consider a situation
where a bound infragravity wave is forced by, and in equilibrium with, two free waves
which propagate over a �at bottom. The accuracy with which the bound-solution is re-
produced by SWASH is likely related to the number of vertical layers, as the dispersive
and nonlinear properties of SWASH improve with an increased number of layers. Fur-
thermore, at low resolutions a spurious free wave with the same frequency as the bound
infragravity wave might be generated. Such a spurious free wave is most pronounced
when the second order response is not incorporated. In this case a spurious free wave
is generated, out of phase with but of equal amplitude as the bound wave, which ex-
actly cancels the bound wave at the wavemaker. Hence, inclusion of the second-order
response is vital to avoid generating arti�cial free-energy at the ig-frequencies. However,
because SWASH will not exactly reproduce second-order theory some spurious free-
energy is still generated, even when the infragravity waves are included at the boundary.

To properly estimate the bound energy which is generated, and to investigate the
magnitude of the spurious free wave, we need to decompose the energy associated with
the low-frequency motion into bound and free energy. Given that the free and bound
wave have identical frequencies, this decomposition cannot be done in the frequency
domain. Instead, we will perform the decomposition in the wave number domain as
a bound wave and its spurious counterpart have different wave numbers (the bound
wave number is equal to the difference wave number and the free wave number follows
from the difference frequency and the linear dispersion relationship). We estimate their
respective energies using a spatial Fourier transform, which results in the complex wave
amplitude ak at wave numbers k . In this manner we can estimate the energy associated
with the free or bound wave components ( eE f and eEb , respectively) with

eE f Æ
X

±k f

1

2
ak a¤

k , eEb Æ
X

±kb

1

2
ak a¤

k , (3.B1)

where ¤ denotes the complex conjugate and ±kb/ f denote the wave number range around
the free (subscript f ) or bound (subscript b) wave numbers.



3

40 APPENDICES

Model results and analytical solutions are analysed for �xed free-wave amplitudes
(a1 Æa2 Æ0.01m), �xed free-wave frequencies ( f1 Æ0.10Hz and f2 Æ0.11Hz) and varying
still water depths which range from 7.5 to 65m. This range of still water depths results
in a minimum and maximum kd value of 0.5 and 2.5, respectively. Numerical simula-
tions are performed with one to four vertical layers and a grid resolution of ¢ x Ç ¸ /100,
where ¸ is the wave length of the second free wave component (which corresponds to
the shortest wave length). A radiation condition, in combination with a sponge layer,
was employed to minimise wave re�ections at the outlet of the domain. The roughness
coef�cient and vertical viscosity are equal to zero to prevent wave damping. Numeri-
cal and analytical surface elevations were outputted for a domain length of L, such that
the signals contain at least 75 bound waves, with a resolution of ¢ x. A visual inspec-
tion of the computed complex amplitudes showed that with a wave number range of
±kb/f Ækb/f § 5¢ k, where ¢ k Æ1/ L, most bound and spurious wave energies were in-
cluded in the estimation of eE f / b .
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Figure 3.B1: The ratio of the numerical spurious free and the analytical bound energy (markers) and ratio
of the numerical and analytical bound energy (marked lines), for a simulation with 1 (circles), 2 (squares), 3
(triangles) and 4 (crosses) vertical layers.

The second-order boundary condition successfully suppresses the generation of spu-
rious free infragravity waves, although some spurious energy is present for simulations
with one vertical layer (Fig. 3.B1). Predicted and analytical bound infragravity wave en-
ergies are in good agreement for two to four vertical layers, whereas it is over predicted
by the one layer model. This indicates that the response of the depth-averaged model
is different than the response of a multi-layer model. A multi-layer model under pre-
dicts the bound wave height for greater kd values, which is largest in case of two vertical
layers. Furthermore, with two vertical layers the bound energies are overestimated for
lower kd values. Nevertheless, numerical results are in agreement with the analytical
solutions. These results indicate that at least two vertical layers are required to predict a
bound infragravity wave response which is in accordance with the classical �nite depth
theory of Longuet-Higgins and Stewart (1960).
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I NFRAGRAVITY-WAVE DYNAMICS IN

A BARRED COASTAL REGION, A

NUMERICAL STUDY *

ABSTRACT
This paper presents a comprehensive numerical study into the infragravity-wave dy-
namics at a �eld site, characterised by a gently-sloping barred beach. The non hydro-
static wave-�ow model SWASH was used to simulate the local wave �eld for a range of
wave conditions (including mild and storm conditions). The extensive spatial coverage
of the model allowed us to analyse the infragravity-wave dynamics at spatial scales not
often covered before. Overall, the model predicted a wave �eld that was representative
of the natural conditions, supporting the model application to analyse the wave dynam-
ics. The infragravity-wave �eld was typically dominated by leaky waves, except near the
outer bar where bar-trapped edge waves were observed. Relative contributions of bar-
trapped waves peaked during mild conditions, when they explained up to 50% of the
infragravity variance. Near the outer bar, the infragravity wave growth was partly ex-
plained by nonlinear energy transfers from short-waves. This growth was strongest for
mild conditions, and decreased for more energetic conditions when short-waves were
breaking at the outer bar. Further shoreward, infragravity waves lost most of their en-
ergy, due to a combination of nonlinear transfers, bottom friction, and infragravity-wave
breaking. Nonlinear transfers were only effective near the inner bar, whereas near the
shoreline (where losses were strongest) the dissipation was caused by the combined ef-
fect of bottom friction and breaking. This study demonstrated the model's potential to
study wave dynamics at �eld scales not easily covered by in-situ observations.

*This chapter has been published as Rijnsdorp, D. P., Ruessink, G., and Zijlema, M. (2015a): Infragravity-wave
dynamics in a barred coastal region, a numerical study. Journal of Geophysical Research: Oceans, 120 (6), 4068–
4089
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4.1. I NTRODUCTION
In coastal regions, the wave �eld is a composite of short waves, with periods ranging
2–20s, and infragravity waves, with periods ranging 20–200s (e.g., Munk , 1949; Tucker,
1950). Infragravity waves have small heights ( Ç 1cm) in deep water (e.g., Webb et al.,
1991), but their magnitude increases with decreasing water depth. Close to the shore,
their height can increase to the order of 1m, especially during storm conditions (e.g.,
Guza and Thornton , 1982). Numerous studies have shown the relevance of infragravity
waves in nearshore regions. For example, infragravity waves are important in the pro-
cess of beach (e.g.,Russell, 1993) and dune erosion (e.g., Van Thiel de Vries et al. , 2008),
may cause harbour resonance (e.g., Bowers, 1977), and can have a signi�cant impact on
moored ships (e.g., Naciri et al. , 2004; Van der Molen et al. , 2006).

The dynamics of infragravity waves have been extensively investigated by means of
theoretical, �eld, laboratory and numerical studies. Theoretical studies have shown that
infragravity waves are generated by nonlinear interactions between pairs of short-waves
(e.g.,Longuet-Higgins and Stewart , 1960; Hasselmann, 1962; Symonds et al., 1982). When
shoreward-propagating infragravity waves do not fully dissipate, infragravity waves re-
�ect at the shoreline, resulting in a standing infragravity wave pattern in the nearshore
(e.g.,Guza and Thornton , 1985). Recent studies have shown that infragravity-waves can
dissipate a signi�cant amount of their energy close to the shore (e.g., Van Dongeren et al. ,
2007; Pomeroy et al. , 2012; De Bakker et al., 2014). Three mechanisms have been pro-
posed in the literature that can cause energy losses at the infragravity frequencies. First,
studies have indicated that energy can be transferred from the infragravity waves to the
short waves (Thomson et al. , 2006; Henderson et al. , 2006; Ruju et al. , 2012; Guedes et al.,
2013). Second, infragravity waves can break and lose most of their energy in a region
close to the shore ( Van Dongeren et al. , 2007; De Bakker et al., 2014, 2015). Third, infra-
gravity waves can lose energy due to bottom friction, although this mechanism is mainly
signi�cant in the case of extensive shallow regions such as coral reefs ( Pomeroy et al. ,
2012; Van Dongeren et al. , 2013).

Seaward directed infragravity waves can propagate to deep water (i.e., leaky waves)
or can be trapped in the nearshore by refraction (i.e., edge waves). Several �eld stud-
ies have indicated that most seaward directed infragravity waves are trapped nearshore
(e.g.,Okihiro et al. , 1992; Herbers et al. , 1995). At beaches with relative monotonic depth
variations, �eld observations of edge waves were in agreement with analytical solutions
of edge waves on a plane beach (e.g., Oltman-Shay and Guza , 1987; Huntley et al. , 1981).
These edge wave solutions are characterised by a maximum amplitude at the shore-
line, and an exponential decay in seaward direction. However, edge wave solutions are
signi�cantly altered on beaches with bars ( Kirby et al. , 1981; Schönfeldt , 1994; Bryan
and Bowen , 1996; Bryan et al. , 1998), and in the presence of strong longshore currents
(Kenyon, 1972; Howd et al. , 1992; Bryan and Bowen , 1998). In the case of a barred beach,
edge waves can be trapped at the location of a bar. Such bar-trapped edge waves have
a cross-shore structure that is characterised by a maximum amplitude near the crest of
the bar, and an exponential decay away from this location. Bryan et al. (1998) found that
bar-trapped edge waves dominated the edge-wave motion near the bar. Strong long-
shore currents can have a similar effect on the edge wave solution, and their effect is
analogous to a modi�cation of the actual bottom pro�le ( Howd et al. , 1992; Bryan and
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Bowen, 1998). However, in the case of a pronounced bar, Bryan and Bowen (1998) found
that the effect of the longshore current was generally not strong enough to signi�cantly
alter edge-wave trapping.

Numerous observational studies have been conducted at natural beaches using rel-
atively short and sparse – but expensive – alongshore arrays of current and/or pressure
sensors, combined with sophisticated estimation techniques to facilitate an analyses at
infragravity-wave scales (e.g., Oltman-Shay and Guza , 1987). Although laboratory stud-
ies are easier instrumented, the scales over which infragravity-waves occur, and their
sensitivity to bathymetric features and alongshore currents complicates a realistic repli-
cation of their nearshore dynamics in a laboratory setting. As an alternative, we use a
wave resolving model to study the complex nearshore infragravity-wave evolution that
occurs in a natural environment. The extensive spatial coverage of the model output
supplemented spatially sparse in-situ observations, allowing us to study the variability
of the infragravity-wave dynamics on a scale that was not often covered before. Amongst
others, this allowed us to differentiate between the contribution of trapping and dissipa-
tion to the nearshore infragravity energy balance.

In this study, we used the recently developed SWASH model ( Zijlema et al. , 2011) to
simulate a range of wave conditions that were measured at a �eld site near Egmond aan
Zee (The Netherlands) as part of the Coast3D �eld campaign (e.g., Ruessink et al., 2001).
The simulated wave conditions were varied from relatively mild to severe conditions, to
gain insight in the spatial variability of the infragravity-wave dynamics for various wave
conditions. Section 4.2 presents a description of the experimental data set, followed by
a description of the numerical model. As a prerequisite to analyse the wave dynam-
ics based on the model results, § 4.3 compares predicted and observed wave parame-
ters (e.g., wave heights), to assess if the predicted wave �eld represented the observed
wave conditions. Section 4.4 presents a comprehensive analysis of the infragravity-wave
dynamics. This includes an analysis of the spatial structure of the infragravity-wave
�eld (e.g., identifying the presence of leaky and edge waves); and an analysis of the
nearshore infragravity energy balance, to quantify energy exchanges between the short
and infragravity-waves, and to determine which dissipation mechanisms were signi�-
cant. The results of this study are discussed in § 4.5 and summarised in § 4.6.

4.2. M ETHODOLOGY

FIELD EXPERIMENT

Measurements of the wave �eld were obtained from October to November 1998 at a
sandy beach near Egmond aan Zee, The Netherlands ( Ruessink et al., 2001). Four bidi-
rectional current meters and ten pressure sensors were positioned at the experimental
site, which is characterised by a double bar system and a gentle slope (see Fig. 4.1). The
instruments acquired data for approximately 34min every hour, at a sampling rate of 2
or 4Hz. A directional wave rider buoy, located 5km offshore at a depth of 16m, mea-
sured offshore wave conditions (the signi�cant wave height Hm0,d, peak period Tp,d , and
energy-weighted mean direction µ̄d (Kuik et al. , 1988), which we refer to as the deep-
water wave parameters). Wind speeds and directions were measured at position 7a, 10m
above mean sea level. Surveys of the local bathymetry were conducted every few days,
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