
 
 

Delft University of Technology

Response of large-scale coastal basins to wind forcing
Influence of topography
Chen, Wen L.; Roos, Pieter C.; Schuttelaars, Henk; Kumar, Mohit; Zitman, Tjerk; Hulscher, SJMH

DOI
10.1007/s10236-016-0927-1
Publication date
2016
Document Version
Final published version
Published in
Ocean Dynamics: theoretical, computational oceanography and monitoring

Citation (APA)
Chen, W. L., Roos, P. C., Schuttelaars, H., Kumar, M., Zitman, T., & Hulscher, SJMH. (2016). Response of
large-scale coastal basins to wind forcing: Influence of topography. Ocean Dynamics: theoretical,
computational oceanography and monitoring, 66(4), 549-565. https://doi.org/10.1007/s10236-016-0927-1

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10236-016-0927-1
https://doi.org/10.1007/s10236-016-0927-1


Ocean Dynamics (2016) 66:549–565
DOI 10.1007/s10236-016-0927-1

Response of large-scale coastal basins to wind forcing:
influence of topography

Wen L. Chen1 · Pieter C. Roos1 ·Henk M. Schuttelaars2 ·Mohit Kumar2 ·
Tjerk J. Zitman3 · Suzanne J. M. H. Hulscher1

Received: 30 June 2015 / Accepted: 23 January 2016 / Published online: 27 February 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Because wind is one of the main forcings in
storm surge, we present an idealised process-based model
to study the influence of topographic variations on the
frequency response of large-scale coastal basins subject
to time-periodic wind forcing. Coastal basins are repre-
sented by a semi-enclosed rectangular inner region forced
by wind. It is connected to an outer region (represented
as an infinitely long channel) without wind forcing, which
allows waves to freely propagate outward. The model solves
the three-dimensional linearised shallow water equations on
the f plane, forced by a spatially uniform wind field that
has an arbitrary angle with respect to the along-basin direc-
tion. Turbulence is represented using a spatially uniform
vertical eddy viscosity, combined with a partial slip condi-
tion at the bed. The surface elevation amplitudes, and hence
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the vertical profiles of the velocity, are obtained using the
finite element method (FEM), extended to account for the
connection to the outer region. The results are then evalu-
ated in terms of the elevation amplitude averaged over the
basin’s landward end, as a function of the wind forcing
frequency. In general, the results point out that adding topo-
graphic elements in the inner region (such as a topographic
step, a linearly sloping bed or a parabolic cross-basin pro-
file), causes the resonance peaks to shift in the frequency
domain, through their effect on local wave speed. The
Coriolis effect causes the resonance peaks associated with
cross-basin modes (which without rotation only appear in
the response to cross-basin wind) to emerge also in the
response to along-basin wind and vice versa.

Keywords Wind-driven flow · Coastal basins ·
Resonance · Topography · Idealised process-based
modelling · Coriolis effect · Frequency response

1 Introduction

Wind-driven set-up is the main contribution to extreme high
water events, which may threaten coastal safety. This is par-
ticularly so when the combined characteristics of the wind
forcing and the basin trigger resonance (Abraham 1960). A
typical example is typhoon Winnie at the Korean coast of
the Yellow Sea in 1997. The unusually strong and extensive
coastal flooding was partly caused by resonant coupling of
the Yellow Sea and the predominant period of the forcing
(Moon et al. 2003).

Importantly, the resonance properties of coastal basins
can be affected by large-scale topographic elements. For
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example, shoals may protect the coast (Hanley et al. 2013).
Alternatively, the water body between a longshore bar and
the coast may display strong oscillations, depending on
the frequency of the incoming wave and local bathymetry
(Büsching 2003). Moreover, wind blowing in different
directions in a semi-enclosed basin may lead to signifi-
cantly different responses (Breaker et al. 2010). For coastal
safety, an overall practical goal is to be able to predict the
wind-driven water levels at any location in basins of arbi-
trary shape and size. This requires physical insight in the
influence of large-scale topography on resonance proper-
ties of large-scale coastal basins. Below, we will review the
literature on this topic.

The influence of topography on surge response has been
investigated in various site-specific studies using numerical
models. For example, Chen et al. (2008) suggested that the
record-high storm surge of Hurricane Katrina (NewOrleans,
Louisiana) was caused by the interaction of the surge with
the extremely shallow, ancient deltaic lobe of the Missis-
sippi river. For the surge caused by Hurricane Katrina, Irish
et al. (2008) found that a milder shelf slope would have led
to a higher surge. Alternatively, Weaver and Slinn (2010)
found that small-scale variations in nearshore bathymetry
of about 20 % produce smaller variations in storm surge
at the shoreline (less than 5 %). Using a one-dimensional
numerical model, Libicki and Bedford (1990) showed how
westward travelling storms over Lake Erie (approaching
shallower regions) produce higher surge levels than east-
ward travelling storms (approaching deeper regions). Since
these studies produce site-specific results, it is difficult to
draw generic conclusions.

On the other hand, more generic studies focus on the
frequency response of the systems to wind forcing. This
is because a wind event can be seen as the superposition
of periodic wind forcings at various frequencies ω (Craig
1989), i.e.

τw(x, y, t) =
∫ ∞

−∞
T̂ w(x, y) exp (−iωt)dω, (1)

where τw is wind stress, ω is the frequency and T̂ w(x, y)

is the corresponding complex amplitude of wind forcing,
which is in general a function of horizontal coordinates x

and y. Assuming linear dynamics, also the response, i.e. the
flow and elevation pattern, will be the superposition of the
responses at these individual frequencies. Hence, the basin’s
response to a wind event is contained in its so-called fre-
quency response. Chen et al. (2015) applied this principle to
different wind events over closed basins. They demonstrated
that strong oscillations (‘sloshing’) occurs whenever the
spectral response contains resonant peaks at frequencies that
are excited by the wind event. Proudman (1929) provided
analytical solutions for the response in narrow closed basins

with a single topographic step. Alternatively, Ponte (2010)
investigated the response of large-scale, elongated closed
basins with a parabolic cross-basin topography to along-
basin wind forcing. Recently, Chen et al. (2015) extended
this approach to closed basins with comparable length and
width but restricted to uniform depth. Other studies focused
on the eigenmodes of, e.g. closed basins with uniform
depth (Rao 1966) or small-scale semi-enclosed basins with
topography (Wilson 1972; Sobey 2005; Rabinovich 2009).

The goal of the present study is to investigate the influ-
ence of large-scale topography on the wind-driven fre-
quency response of large-scale coastal basins, measured in
terms of the set-up at the coast, and paying particular atten-
tion to the role of the Coriolis effect and wind angle. Here,
large-scale means that we consider topographic elements
with horizontal length scales of the scale of the basin, and
that the basin is large enough for Coriolis effect to be impor-
tant for phenomena with a time scale of the order of hours
to days.

To achieve this goal, we have developed an idealised
three-dimensional process-based model of a semi-enclosed
rectangular rotating coastal basin subject to periodic wind
forcing. The validity of linearization is debatable for very
shallow regions. Therefore, we have made sure that the
water depth is sufficiently large (10 m or more) in our
examples. Furthermore, by considering topographic ele-
ments with horizontal length scales of the scale of the basin,
we may safely ignore the associated nonlinearities (e.g.
Csanady 1968; Mathieu et al. 2002; Winant 2004). The ver-
tical profile of the flow field is resolved fully analytically
and expressed in terms of the free surface elevation. In
turn, the spatial pattern of free surface elevation amplitudes
follows from solving an elliptic problem using the finite ele-
ment method (FEM), extended to account for the connection
of the coastal basin to the outer sea.

With this model, the frequency response of a coastal
basin subject to spatially uniform periodic wind is investi-
gated, both without and with the Coriolis effect. As a first
step, we will consider a spatially uniform wind field with
directions ranging from along-basin to cross-basin. This
means that we ignore the dependency on x and y in Eq. 1.
The influence of topography on the frequency response
is then investigated by systematically adding topographic
details, expressing along-basin and cross-basin variations
(to be detailed in Section 2.1 and Fig. 1). This is a first
step which will be used in a follow-up study to investigate
realistic storms.

This paper is organised as follows. In Section 2, we
present the model. Next, Section 3 contains the solu-
tion method. The model results, showing the frequency
responses for the various topographic elements introduced
above, as well as the discussion are presented in Section 4.
Finally, Section 5 contains the discussions and conclusions.
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Fig. 1 Definition sketch of the model geometry of a rectangular rotat-
ing basin, subject to periodic wind forcing, which makes an angle θ

with the along-basin direction. a Top view, showing the outer region,
ramp-up region and inner region. b Side view in along-basin direc-
tion displaying the free surface elevation as well as vertical profile of
the along-basin component of the three-dimensional flow field. The
topography illustrated here is that of an abrupt step (type 2, here with
hc < h0), located at x = xstep. Dashed lines indicate three alterna-
tive topographies: uniform depth (type 1), smoothened step (type 3)
and linear profile (type 4). For type 5, see Fig. 9. c Ramp-up function
μ(x) used to describe the transition from no wind in the outer region
to spatially uniform wind conditions in the core of the inner region

2 Model formulation

2.1 Geometry

Our model geometry consists of two parts: an inner region
and an outer region (see Fig. 1).

– The inner region, of length L and uniform width B,
represents a rectangular semi-enclosed coastal basin.
This is where the wind forcing takes place and where
topographic elements will be added.

– The outer region, also of uniform width B, represents
an outer sea. It stretches to infinity and experiences
no wind forcing. By including the outer region, we

allow wave energy to travel away from the inner region
without reflecting at the interface with the outer region.

A ramp-up zone of length Lramp, part of the inner region,
serves as a transition zone where the wind gradually
increases from no wind in the outer region to a spatially
uniform wind in the core of the inner region. This spa-
tial transition is described by a so-called ramp-up function
μ(x), to be introduced in Section 2.2 and to be further
specified in Appendix A. Without ramp-up zone, a discon-
tinuity would occur in the wind field, which would produce
unrealistic model results.

The along-basin and cross-basin coordinates are denoted
by x and y, respectively, such that the closed boundaries are
located at x = L and y = 0, B and the interface between
outer and inner region at x = 0. The vertical coordinate z

points upward, with z = ηj (x, y, t) denoting the free sur-
face elevation with respect to the undisturbed water level
z = 0. The subscript j = 0 represents the outer region, the
inner region is labelled with j = 1. The bottom topography
is assumed to be spatially uniform in the outer region, and is
denoted by z = −h0. Over the inner region, the topography
is allowed to vary, i.e. z = −h1(x, y). We will consider the
following typical inner basin topographies (Fig. 1):

– uniform depth, which serves as a reference case (type
1 in Fig. 1). Note that Chen et al. (2015) also con-
sidered a uniform depth, but in a closed rather than a
semi-enclosed basin.

– along-basin variations, such as a topographic step at
x = xstep. Such a step divides the inner region into two
subcompartments: an offshore part with the same uni-
form depth h0 as the outer region, and a coastal part
with depth hc. We will consider situations with a shal-
lower coastal part (hc < h0, typical for many basins
such as the Gulf of California and the Adriatic Sea) as
well as with a deeper coastal part (hc > h0, as e.g.
in the Norwegian trench). The topographic step can be
both abrupt (type 2) and smoothened (type 3). In the lat-
ter case, the depth varies gradually from h0 to hc in a
region of length Lslope centred around x = xstep (pre-
cise shape to be detailed in Section 4.4). Finally, we will
also consider a linear profile from h0 at x = Lramp to
hc at x = L (type 4).

– cross-basin variations, such as a parabolic cross-basin
profile with a smooth transition over a length Lslope to
the spatially uniform depth h0 in the outer region and
ramp-up zone (type 5). Most natural basins are deepest
along their centerlines (as for the Gulf of California;
see Ponte et al. 2012). This profile will be detailed in
Section 4.6 and Fig. 9.

Our results will be quantified in terms of the water level
amplitude, integrated along the coastline at the head of the
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basin (i.e., at x = L). This produces a scalar quantity, which
reflects the basin’s response along the entire basin head
(instead of at a single point). This will be further specified
in Section 4.1.

2.2 Hydrodynamics

Let uj = (uj , vj , wj ) represent the flow velocity vector,
with components uj , vj and wj in the x, y and z−direction,
respectively (j = 0, 1). Assuming that the vertical displace-
ment of the free surface is small compared to the water
depth, conservation of momentum and mass is expressed by
the three-dimensional linearised shallow water equations on
the f plane according to

∂uj

∂t
− f vj = −g

∂ηj

∂x
+ K

∂2uj

∂z2
, (2)

∂vj

∂t
+ f uj = −g

∂ηj

∂y
+ K

∂2vj

∂z2
, (3)

∂uj

∂x
+ ∂vj

∂y
+ ∂wj

∂z
= 0. (4)

Here, f = 2� sinϑ is the Coriolis parameter (with � =
7.292 × 10−5 rad s−1 the angular frequency of the Earth’s
rotation and ϑ the latitude), g = 9.81 m s−2 the grav-
itational acceleration. Turbulence is represented using a
spatially uniform and time-independent vertical eddy vis-
cosity K (e.g. Winant 2004; Ponte 2010), combined with a
partial slip condition at the bed (e.g. Mass and Van Haren
1987; Hulscher 1996; Chernetsky et al. 2010). Horizontal
mixing of momentum is neglected. The above linearisation
further assumes that the effect of the advective terms around
topographic elements can be neglected.

The kinematic and dynamic boundary conditions at the
surface and bottom read, in linearised form:

wj = ∂ηj

∂t
, K

(
∂uj

∂z
,
∂vj

∂z

)
= (τ

(x)
w , τ

(y)
w )

ρ
at z= 0,(5)

wj = 0, K

(
∂uj

∂z
,
∂vj

∂z

)
= s(uj , vj ) at z = −hj . (6)

The linearisation procedure implies that the free surface
condition in Eq. 5 is imposed at z = 0 instead of at z = η.
Furthermore, (τ (x)

w , τ
(y)
w ) is the wind stress vector and ρ the

density of water. Assuming a frequency ω and a wind angle
θ with respect to the along-basin direction, we write
(
τ

(x)
w , τ

(y)
w

)

ρ
= μ(x)T̂ (cos θ, sin θ) cosωt. (7)

Here, the constant T̂ is the amplitude of the wind stress
divided by the water density. The ramp-up function μ(x)

introduced earlier, as sketched in Fig. 1, is specified in
Appendix A.

In Eq. 6, we have introduced a constant resistance param-
eter s, its value usually obtained from the analysis of field
data.

At the closed horizontal boundaries, we require zero
normal transports, i.e.

〈u1〉 = 0 at x = L and 〈vj 〉 = 0 at y = 0, B,

(8)

where j = 0, 1 and angle brackets denote vertical integra-
tion from bottom to surface, i.e. 〈·〉 = ∫ 0

−hj
·dz (with the

upper boundary z = 0 arising from the linearisation).
At the interfaces between the adjacent regions, we

require matching of surface elevation and normal transport:

η0 = η1, 〈u0〉 = 〈u1〉, at x = 0, (9)

where we note that the water depth is continuous across
both interfaces (and equal to h0). Finally, regarding the outer
region, we allow no wave energy coming in from infinity
(Sommerfeld type of condition). This means that the solu-
tion in the outer region will be written as a superposition
of outward propagating waves (in the negative x-direction).
Because we include the Coriolis effect, these waves include
Kelvin and Poincaré waves.

3 Solution method

3.1 Preliminary considerations: wind angle

The linearity of our model implies that the solution for arbi-
trary wind angle θ can be written as a linear combination of
the solutions ηalong for along-basin wind (θ = 0◦) and ηcross
for cross-basin wind (θ = 90◦):

η(x, y, t) = ηalong(x, y, t) cos θ + ηcross(x, y, t) sin θ. (10)

This similarly applies to the solution of the flow com-
ponents u, v and w. In our description of the solution
method, we will therefore distinguish between along-basin
and cross-basin wind only.

3.2 Differential problem for surface elevation amplitude

First, we write the solution in the outer and inner regions as
time-periodic functions according to

ηj (x, y, t) = � {
Nj(x, y) exp(−iωt)

}
, (11)

uj (x, y, z, t) = � {
Uj(x, y, z) exp(−iωt)

}
, (12)

with � denoting the real part and with complex amplitudes
Nj and Uj (j = 0, 1). Similar expressions hold for vj and
wj , with complex amplitudes Vj and Wj .

Next, we express the horizontal flow solution Uj and Vj

in terms of surface slopes ∇Nj and wind stress. Details of
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this derivation can be found in Appendix B. Substituting
these expressions into the continuity equation and inte-
grating from bottom to surface gives the following elliptic
equation for N :

∇h · [〈Dj 〉∇hNj

] − iωNj = −∇h · 〈rj 〉, (13)

with horizontal nabla operator ∇h = (∂/∂x, ∂/∂y)T as well
as 2 × 2-matrix Dj and 2 × 1-vector rj , given by

Dj =
[

C+
j C−

j

−C−
j C+

j

]
, rj =

[
R+

j

R−
j

]
. (14)

The coefficientsC+
j andC−

j as well as the forcing termsR+
j

and R−
j depend on topography and thus on x and y; they are

specified in Appendix B.2.
The no normal transport conditions at the closed bound-

aries, as given by Eq. 8, imply

〈
C+
1

〉∂N1

∂x
+ 〈

C−
1

〉∂N1

∂y
= −〈

R+
1

〉
at x = L, (15)

−
〈
C−

j

〉∂Nj

∂x
+

〈
C+

j

〉∂Nj

∂y
= −

〈
R−

j

〉
at y = 0, B. (16)

Finally, the vertical flow amplitude Wj at any vertical posi-
tion z can be expressed in terms of the free surface elevation
Nj and wind forcing. This follows from vertical integration
of the continuity equation (Appendix B.3).

The matching conditions at x = 0, as expressed in Eq. 9,
now becomes

N0 = N1 (17)
〈
C+
0

〉∂N0

∂x
+ 〈

C−
0

〉∂N0

∂y
= 〈

C+
1

〉∂N1

∂x
+ 〈

C−
1

〉∂N1

∂y
. (18)

Due to the continuity of the wind forcing across the inter-
face, the R+

j -contributions to the matching condition in
Eq. 18 cancel.

3.3 Finite element method

The problem in Eqs. 13–16 for the elevation amplitude Nj

is solved by applying the finite element method (FEM, for
the inner region), connected to a superposition of outward
propagating waves (in the outer region).

To this end, the inner region is discretised into a set of P

triangular elements. The solution is then written as

N1(x, y) =
P∑

p=0

N1,pφp(x, y), (19)

with coefficients N1,p and basis functions φp(x, y) which
are either linear or quadratic polynomials with a value of
1 at node (xp, yp) and 0 at all other nodes. To obtain the
coefficients N1,p, Eq. 13 is cast in weak form, and then inte-
grated over the domain using test functions. Details can be
found in Gockenbach (2006), and we also refer to Kumar

et al. (2015), who developed a similar model to study tidal
dynamics in estuaries.

The outer region deserves particular attention. Instead of
applying a FEM-grid, the solution in the outer region is
written as a truncated superposition of outward propagating
waves. We thus write

N0(x, y) =
M∑

m=0

c�
0,mN�

m (y) exp
(
ik�

mx
)
, (20)

with coefficients c�
0,m. As indicated by the � superscript,

this expression involves modes propagating in the negative
x-direction only. Their cross-basin structures N�

m (y), corre-
sponding to a Kelvin mode (m = 0) and Poincaré modes
(m = 1, 2, · · · ), and the associated wave numbers k�

m are
specified in Appendix E. Because the individual modes sat-
isfy the closed boundary conditions at y = 0, B in the outer
region, so does the superposition in Eq. 20.

To satisfy the matching conditions at the interface at x =
0, we must connect the solutions (19) and (20) in the inner
and outer region. This is done using a so-called collocation
technique. We introduce a set of M + 1 equidistant collo-
cation points (x, y) = (0, ym) with ym = mB/M for m =
0, 1, · · · , M . Eqs. 17–18 are then applied at each of these
collocation points, where the left-hand side follows from
Eq. 20 and the right-hand side follows from interpolation of
the FEM solution onto the collocation points.

This means that the FEM model is extended to account
for waves radiating away from the inner region. Indeed, the
linear matrix system contains conditions for the P coeffi-
cients N1,p in Eq. 19 as well as conditions for the M + 1
coefficients c�

0,m in Eq. 20. Effectively, the solution in the
outer region and the matching conditions at x = 0 pose a
non-reflecting boundary condition for the inner region, even
in the presence of the Coriolis effect.

Finally, in special cases, the solution can be obtained by
quick (semi-)analytical methods, which can furthermore be
used to test the FEM model. We distinguish two cases:

– For f = 0 and cross-basin wind (θ = 90◦), the solu-
tion for uniform depth and the abrupt step topography
can be found using a collocation technique also in the
inner region (COL). For the uniform depth case, the
solutions in the ramp-up zone and the rest of the inner
region are written as superpositions of a suitably cho-
sen particular solution and two truncated families of
M + 1 wave modes (one Kelvin mode and M Poincaré
modes) propagating in the positive and negative x-
direction, respectively. The particular solution is chosen
to homogenise the boundary conditions at y = 0, B
(which are nonhomogeneous due to the wind forcing).
To satisfy the closed boundary condition at x = L as
well as the matching conditions between ramp-up zone
and the rest of the inner region, we introduce two sets
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of M + 1 collocation points at x = L and x = Lramp,
respectively. See Appendix C (and also Chen et al.
2015).

– A two-dimensional vertical (2DV) analytical solution
can be found in the case without rotation (f = 0),
with along-basin wind (θ = 0◦), for the uniform
depth or abrupt step topographies. This is detailed in
Appendix D.

4 Results and discussion

4.1 Introduction

We consider a large-scale reference basin, with character-
istics as shown in Table 1. To quantify the influence of
wind and topography on the water levels along the coast
in the basin, we define the amplification factor A as the
dimensionless elevation amplitude averaged over the right
boundary at x = L, i.e.

A = |N |
Nref

, (21)

with average amplitude |N | and reference amplitude Nref

given by

|N | = 1

B

∫ B

0
|N1(L, y)|dy, Nref = T̂

ghckc
. (22)

Here, hc and kc are the depth and wave number, respectively,
that apply in the coastal part of the inner region (see Table 1
and Eq. 46 in Appendix D). For the uniform depth case, we
take hc = h0 and kc = k0. Physically, the reference ampli-
tude Nref follows from balancing the pressure gradient of a
shallow water wave gkcNref with the acceleration associated
with the wind stress (T̂ /hc).

In presenting the model results, the frequency response,
expressed in the quantity A, is plotted as a function of a

dimensionless forcing frequency ω/ωref, where the refer-
ence frequency is the frequency for which the shallow water
wavelength of a basin with uniform depth equals the length
of the basin:

ωref = √
gh0

2π

L
. (23)

This remainder of this section is organised as follows. First,
in Section 4.2, we show the influence of wind direction
on the frequency response for the uniform depth. Then, in
Section 4.3 and Section 4.4, we investigate the influence
of step height for the abrupt step case as well as the influ-
ence of the slope length in the smoothened step case. Then,
Section 4.5 and Section 4.6 contain the results for the linear
along-basin slope and the parabolic cross-basin profile. An
overview of test configurations is shown in Table 2.

4.2 Uniform depth; influence of wind direction

The influence of wind direction on frequency response is
shown in Fig. 2. The colour plots show the amplification
factor A for non-rotating basins of uniform depth (topogra-
phy type 1), as a function of the dimensionless frequency
and wind angle. Note that wind angle is important as the
open boundary introduces an essential difference between
along-basin dynamics and cross-basin dynamics (contrast-
ing the closed basin study by Chen et al. 2015). The
response to along-basin wind has been obtained with the
analytical 2DV solution, the response to cross-basin wind
with the collocation solution (as outlined at the end of
Section 3.3). Then, Eq. 10 has been applied to obtain the
response to wind with an arbitrary angle.

The response to along-basin wind is independent of
basin width. More specifically, the amplification factor A is
zero at ω/ωref ≈ 0, 1, · · · and local maxima in between.

Table 1 Overview of model
parameters and their reference
values

Description Symbol Value Unit

Basin width B 100, (200, 400) km

Total basin length L 400 km

Length of coastal part Lc 100 km

Water depth (outer region) h0 100 m

Water depth (coastal part) hc 15a m

Latitude ϑ 0b, 50c ◦N
Vertical eddy viscosity K 0.025 m2 s−1

Resistance parameter s 10−4 m s−1

aVaried from 10 − 1000 m for the topographic step (topography type 2) and from 10 − 100 m for the linear
profile (type 4)
bNon-rotating basin
cStrongly rotating basin
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Table 2 Overview of test
configurations Sec. Topographic elements Wind angle Solution method

Section 4.2 Uniform depth (type 1a) 0◦ ≤ θ ≤ 90◦ 2DV, COL, FEM

Section 4.3 Abrupt step (2a) θ = 0◦ 2DV, FEM

Section 4.4 Smoothened step (3a) θ = 0◦ 2DV, FEM

Section 4.5 Linear profile (4a) θ = 0◦ FEM

Section 4.6 Parabolic profile (5b) θ = 0◦ FEM

All test configurations include cases with and without Coriolis effect
aAlong-basin topography types are shown in Fig. 1b
bThe cross-basin parabolic profile is to be presented in Fig. 9

This amplification pattern can be explained by systemati-
cally discussing the contributions to the solution in a one-
dimensional case (ignoring the ramp-up region by taking the
limit Lramp → 0 and hence ϕramp → 0 in Appendix D).

The wind-driven flow at the closed boundary needs to
be compensated by adding a contribution ∝ cos(k[x − L])
to the flow field, which together produce zero velocity at
x = L (and also zero elevation). If kL = 0, 2π, · · · , i.e.
if ω/ωref = p, this superposition also has zero velocity
and elevation at the open boundary (x = 0), by which—
in this case—no outgoing wave occurs. On the other hand,
if kL �= 0, 2π, · · · , this superposition has nonzero velocity
and elevation at the open boundary (x = 0), which are 90
degrees out of phase and hence cannot be matched with an
outgoing propagating wave at that interface. Hence, a sec-
ond contribution ∝ sin(k[x −L]) must be added to the flow
field in order to construct a solution at x = 0 that can be
matched by an outgoing propagating wave. Note that this

leaves the velocity at x = L unaffected. This second con-
tribution to the velocity adds a nonzero contribution to the
elevation at x = L, which is maximum for kL = 0, 2π, · · · ,
i.e. if ω/ωref = p + 1

2 , thus explaining the amplification
pattern in the bottom panels of Fig. 2.

The slight deviation in the bottom panel of Fig. 2 from the
exact integer values of ω/ωref as explained above is due to
the ramp-up of the wind forcing from x = 0 to x = Lramp.
If the basin were closed at x = 0 (instead of connected to
an outer region where waves radiate away), the local max-
ima would be true resonance peaks with much higher values
(Chen et al. 2015).

Since both boundaries in the lateral direction at y =
0, B are closed, the response to cross-basin wind is much
stronger than that to along-basin wind. Furthermore, the
pattern strongly depends on basin width. To illustrate this,
we choose three different width-to-length ratios, ranging
from elongated (B/L = 1/4) to square (B/L = 1) (see

Fig. 2 Influence of wind angle
on frequency response for non-
rotating basin of uniform depth,
for three width-to-length ratios:
a B/L = 1/4, b B/L = 1/2
and c B/L = 1. The colour
plots show the amplification
factor A as a function of the
dimensionless frequency ω/ωref
and wind angle θ . The top and
bottom panels show the
frequency responses upon which
the colour plots are based
according to Eq. 10: Across for
cross-basin wind (θ = 90◦, red)
and Aalong for along-basin wind
(θ = 0◦, blue). As indicated by
the different vertical scales, the
peaks of the response to cross-
basin wind are much higher than
those for along-basin wind.
Parameter values as in Table 1
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Fig. 2a–c). As a general result, the cross-basin response
shows peaks at ω/ωref = L/B(1/2, 3/2, 5/2 · · · ). These
peaks are found to be cross-basin resonance (Chen et al.
2015). The cross-basin response is further influenced by the
connection to the outer region, leading to small wiggles to
the right of the peaks. This is different from a purely closed
basin case (Chen et al. 2015). Finally, the gradual ramp-
up of the wind field is crucial in the case of cross-basin
wind. An abrupt transition at x = 0 from no wind (x < 0)
to full wind (x > 0) would produce unrealistically strong
amplification around (x, y) = (0, 0) and (0, B).

The colour plots in the middle panels of Fig. 2 show how
the amplification factor A, according to Eq. 10, depends on
the wind angle θ . The response to cross-basin wind, due to
its higher peaks, appears to dominate this pattern already for
relatively small wind angles.

Figure 3 shows the influence of the Coriolis effect on
the frequency response to cross-basin wind (top panels)
and along-basin wind (bottom panels). Each plot contains
a curve without rotation (f = 0 for ϑ = 0◦) and with
rotation (f �= 0, as obtained for ϑ = 50◦N). Because
of the Coriolis-induced interaction between along-basin
and cross-basin dynamics, the cross-basin peaks emerge
also in the along-basin frequency responses. Further, peaks
arise exactly in between the already existing peaks, e.g. at
ω/ωref = 2 in Fig. 3b, which corresponds to a cross-basin
eigenmode. This mode, suppressed by symmetry for f = 0,
now emerges as the symmetry is broken by the Coriolis
effect. Finally, both responses display a peak close to the
inertial frequency (f = ω), which is invisible in the upper
plots as the magnitude of the peaks is relatively small.

4.3 Abrupt topographic step

We will now investigate the influence of an abrupt topo-
graphic step, i.e. type 2 of the topographies introduced in
Section 2.1 and Fig. 1. The solid lines in Fig. 4a show
the frequency response for a non-rotating reference basin

subject to along-basin wind. We present the following
examples:

I Uniform depth (pink curve), with a depth of h0 =
100 m, which is in fact identical to the blue curve in
the bottom panels of Fig. 2.

II Topographic step (black), i.e. the abrupt step case with
a shallow coastal part of depth hc = 15 m. Compared
to the curve for uniform depth changes, we now see
that the maxima become distorted and they furthermore
shift to lower frequencies.

II’ Same as example II, but now including the Coriolis
effect (taking a latitude ϑ = 50◦N). This case will be
discussed further below.

The influence of step height is then investigated by vary-
ing the coastal depth hc from 10 to 1000 m, while keeping
h0 = 100 m. This leads to a depth ratio hc/h0 ranging from
0.1 to 10. The resulting frequency response for this range of
hc/h0 values is shown in Fig. 4b, where the red and blue
colours indicate high and low amplification, respectively.
The hc/h0 values of examples I and II are indicated by the
pink and black dashed horizontal lines, respectively.

The thick white lines follow local maxima of the ampli-
fication factor |A|, for increasing values of hc/h0. In the
bottom part of the figure, i.e. for hc/h0  1, the peaks
align with the thin solid white curves, for which the length
Lc of the coastal part is an odd multiple of the quarter wave
length on the coastal step. These lines are characterised by

Lc = 1

4
(2p + 1)λc, λc = 2π

kc
, (24)

for p = 0, 1, · · · . Let us consider the case p = 1, which
corresponds to the three-quarter wavelength resonance of
the (shallow) coastal part. For increasing hc values, the
leftmost thick white line at first follows this thin white
line, but then shifts to a lower frequency. This is accom-
panied by an elevation node moving out of the coastal

Fig. 3 Influence of the Coriolis
effect on frequency response to
cross-basin wind (top panels)
and along-basin wind (bottom
panels), for three
width-to-length ratios: a
B/L = 1/4, b B/L = 1/2 and c
B/L = 1. The thick background
curves represent the responses of
the non-rotating basin (ϑ = 0◦),
the sharp lines represent the
rotating basin (ϑ = 50◦N). The
vertical dashed line indicates
the inertial frequency ω = f .
Parameter values as in Table 1
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Fig. 4 Frequency response for a
non-rotating basin with uniform
depth and abrupt step. a
Amplification factor A as a
function of dimensionless
frequency ω/ωref for two
examples: (I) uniform depth
(pink curve) and (II)
topographic step (black). The
dashed blue curve corresponds
to example II’ (same as example
II but now including Coriolis
effect). b Dependency of A on
depth ratio hc/h0. Thick white
lines follow the local maxima;
four cases denoted by circle,
square and triangles are further
illustrated in Fig. 5. This figure
has been obtained by varying ω

and the depth of coastal part hc.
Parameter values as in Table 1,
with ϑ = 0◦
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part because the wavelength in the coastal part becomes
larger as hc increases. This indicates the gradual transition
towards a spatially uniform elevation pattern in the coastal
part (‘pumping mode’). This gradual transition is illustrated
by the four plots in Fig. 5, showing the spatial structures
of the elevation amplitudes for each of the four cases in
Fig. 4. For the other thick white curves, obtained for p = 0
and p = 2, 3, · · · in Eq. 24, this gradual process is simi-
lar but involves a different number of elevation nodes that
subsequently move out of the coastal part. Note that, due to
friction, the elevation nodes referred to here have a small
nonzero amplitude rather than a zero value.

To illustrate the influence of the Coriolis effect on these
results, Fig. 4 also contains the frequency response for
example II’, which is the same as example II but now in
a rotating basin (latitude set to ϑ = 50◦N). The Corio-
lis effect introduces new peaks, associated with cross-basin
resonances in the (shallow) coastal part, with different
along-basin and cross-basin structures. It should be noted
that, to calculate this result in our FEM model, the abrupt
step had to be smoothened. We chose a slope length of
Lslope = 5 km. The effect of smoothening topographic steps
will be investigated in more detail in the next subsection.

4.4 Influence of slope length (smoothened step)

The topographic steps studied in Section 4.3 have a dis-
continuity in depth. In reality, however, such transitions are
more gradual. To investigate this, we now consider a more
smooth transition from h0 to hc over a length Lslope and
study this with the FEM model, restricting to a non-rotating

basin (f = 0). The topography around the smoothened step,
as depicted in Fig. 1 (type 3), is written as

h1(x) = h0 + (hc − h0)F (x − x1), (25)
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Fig. 5 Spatial structure of the absolute value of the dimensionless ele-
vation amplitude |N(x)|/Nref for the four cases denoted by a circle, a
square, an upward pointing triangle and a downward triangle in Fig. 4.
The vertical dashed line indicates the position of the topographic step.
For further explanation, see text. The ramp-up region has a length of
Lramp = 10 km
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Fig. 6 Influence of slope length
on frequency response. a
Amplification factor A as a
function of dimensionless
frequency ω/ωref and slope
length Lslope, as obtained with
our FEM model. b Frequency
response for an abrupt
topographic step (Lslope = 0), as
obtained with the 2DV solution
method, as indicated by the
black dashed curve in Fig. 4.
Parameter values: hc = 15 m,
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with dimensionless transition function F(ξ) chosen to be of
sinusoidal shape:

F(ξ) = 1

2
+ 1

2
sin

(
πξ

Lslope

)
, −Lslope

2
≤ ξ ≤ Lslope

2
.

(26)

Figure 6a shows the influence of varying the slope length
Lslope on the frequency response, as obtained with our FEM
model. We again consider the reference depths h0 = 100 m
and hc = 15 m as given in Table 1 and Lslope values rang-
ing from 5 to 40 km. Importantly, the average depth of the
inner region is the same for all Lslope values. The result
shows that, for increasing values of Lslope, the frequency
of the peaks shift to slightly higher values. This shift can
be explained as follows. The more smooth the step (while
maintaining the average depth), the larger the basin average
of

√
gh will be, which is a proxy for the wave speed in the

basin. Such an increase in effective wave speed reduces the
travel time of waves around the basin, which implies that
resonance occurs at higher frequencies.

Finally, in the limit of very small slope lengths, the
frequency response as obtained with our FEM model con-
verges to the results of the abrupt topographic step studied
in Section 4.3 (see Fig. 6b). On the other hand, for very large
slope lengths, the step becomes so gradual that it resembles
a linear profile, to be studied next.

4.5 Linear profile

The influence of a bed with a linear along-basin slope in the
inner region (type 4) on the frequency response of a coastal
basin, restricting to along-basin wind, is investigated by fix-
ing the depth in the outer and ramp-up region to its reference
value h0 = 100 m. The depth hc, that is attained at the coast
(x = L), is then varied from 100 to 10 m. Maintaining uni-
formity in the cross-basin direction, the bed slope S in the
inner region is thus given by

S = h0 − hc

L − Lramp
. (27)

Fig. 7 Influence of the bed
slope in the inner region on the
frequency response to
along-basin wind. Amplification
as a function of dimensionless
frequency ω/ωref and bed slope
S = (h0 − hc)/(L − Lramp) in
two cases: a without the Coriolis
effect and b with the Coriolis
effect. For S = 1.75 × 10−4, the
spatial elevation patterns of
three cases, i.e., ω/ωref = 1.8
(indicated by a triangle in
Fig. 7b), ω/ωref = 2.1 (square)
and ω/ωref = 2.31 (circle), are
plotted in Fig. 8
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Fig. 8 Spatial structure of the
absolute value of the
dimensionless elevation
amplitude |N(x, y)|/Nref for the
three cases, i.e., a
S = 1.75 × 10−4, ω/ωref = 1.8
(triangle in Fig. 7b), b
S = 1.75 × 10−4, ω/ωref = 2.1
(square in Fig. 7b) and c
S = 1.75 × 10−4, ω/ωref = 2.3
(circle in Fig. 7b)
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(a) S=1.75×10−4, ω/ωref=1.8 (triangle in Fig.7b)

 

 

|N
|/N

re
f [−

]

0

5

10

15

20

0 100 200 300 400
0

50

100
(b) S=1.75×10−4, ω/ωref=2.1 (square in Fig.7b)

y 
(k

m
)

0 100 200 300 400
0

50

100
(c) S=1.75×10−4, ω/ωref=2.3 (circle in Fig.7b)

y 
(k

m
)

x (km)

Figure 7 shows the frequency responses, both with and
without Coriolis effect, obtained with the FEM model. The
responses for zero slope (S = 0) are identical to the curves
in the bottom plot of Fig. 3a. With the Coriolis effect, the
frequency response includes peaks associated with cross-
basin resonances, the frequency of which becomes smaller
as S increases. Furthermore, as the slope is increased, more
peaks appear that are also associated with cross-basin reso-
nances, but differ in their along-basin structures (see Fig. 8).
Away from these resonance peaks and regardless of the
Coriolis effect, increasing the bed slope leads to higher
amplification, the maxima of which are shifted to slightly
lower frequencies. For increasing slope parameter S, the
peaks move to lower frequencies because the average depth
decreases, which effectively slows down the wave propa-
gation. Then, the splitting into more branches is due to the
fact that for increasing S, the basin covers a wider range of
depth values. As a result, cross-basin resonances may occur
at different locations along the basin axis.

4.6 Parabolic cross-basin profile

Finally, we investigate the influence of a parabolic cross-
basin depth profile (type 5) on the frequency response,
restricting to along-basin wind. The shape, depicted in
Fig. 9, is given by

h(x, y) = h0 + �h F(x − x2)

[
1 − 12

(
y

B
− 1

2

)2
]

, (28)

with parameter �h, dimensionless transition function F(ξ)

as already introduced in Eq. 26, to be centred around x = x2
with x2 = Lramp + 1

2Lslope. The profile is chosen such that

the width-averaged depth is equal to h0. The depth at the
centerline is given by h0 + �h, the depth at the banks y =
0, B is given by h0 − 2�h. Importantly, the dimensionless
transition function F(ξ) ensures a smooth transition from
the spatially uniform depth h0 in the outer region and ramp-
up region to our parabolic cross-basin profile in the inner
region.

(a) along−basin side view

2Δh

Δh

z=0

z=−h0

x=0 x=Lramp x=L

(b) cross−basin side view

Δh>0

y=0 y=B

Fig. 9 Definition sketch of parabolic profile. a Along-basin side view
showing gradual transition from uniform depth h0 in outer and ramp-
up region to parabolic cross-basin profile in inner region. The dashed
lines at z = −h0 − �h and z = −h0 + 2�h indicate the water depth
at the centerline and the banks, respectively. b Cross-basin side view
in the inner region, showing the parabolic profile according to Eq. 28
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Using the reference value h0 = 100 m, we vary �h

from 0 to 40 m, giving a ratio �h/h0 between 0 and 0.4.
Figure 10 shows the frequency responses, both with and
without Coriolis effect, obtained with the FEM model. The
responses for �h = 0, corresponding to a uniform depth,
are in fact identical to the curves in the bottom plot of
Fig. 3a.

Without Coriolis effect, for increasing values of |�h|, the
local maxima of the amplification shift to lower frequen-
cies. This can be explained by the effective wave speed that
is based on the cross-basin average of

√
gh, as mentioned

in Section 4.4. Indeed, the result of increasing |�h| is qual-
itatively similar to that of reducing the slope length Lslope

for the smoothened step case. The results with the Corio-
lis effect show a similar ‘background’ amplification pattern
as obtained for ϑ = 0◦. In addition to that, the Coriolis
effect introduces peaks associated with cross-basin reso-
nances with peak frequencies that shift to higher values for
increasing�h. The circulating wave over a parabolic profile
is more confined to the centerline than over a flat bottom,
which effectively reduces the travelling distance leading to
a higher resonant frequency.

5 Discussions and conclusions

We have developed an idealised process-based model to
analyse the influence of specific topographic elements on
the frequency response of semi-enclosed coastal basins
subject to time-periodic wind forcing. Coastal basins are
represented by a large-scale semi-enclosed rectangular inner
region where the wind forcing takes place and where a
variety of topographic elements have been included. It is
connected to an outer region, without wind forcing and
stretching to infinity, which allows waves to freely prop-
agate outward. The model solves the three-dimensional
linearised shallow water equations on the f plane, forced by
a wind field that ramps up to a spatially uniform pattern in

the core of the inner region. The wind field has an arbitrary
angle with respect to the along-basin direction. The model
solves a two-dimensional problem for the surface elevation
amplitudes by applying the finite element method (FEM),
extended to account for the outward propagating waves
in the outer region. In particular cases, alternative (semi-
)analytical solution techniques are used. Strictly speaking, a
FEM approach allowing for unstructured grids is not neces-
sary for the geometries considered in this study. However,
this FEM model allows us to consider more complicated
geometry and topography in later studies.

By restricting to linear dynamics, we have neglected
nonlinear effects. This facilitates our understanding in two
ways: (i) the response to any wind event is contained in the
frequency response (as will be discussed further below) and
(ii) the frequency response for arbitrary wind angle is in fact
a linear combination of the frequency responses to along-
basin and cross-basin wind. The responses to along-basin
and cross-basin wind are essentially different because of
the differences in the along-basin and cross-basin dynamics
caused by the open boundary.

To analyse our model, we focused on the elevation ampli-
tude averaged over the basin’s landward end, as a function
of the dimensionless frequency ω/ωref with reference fre-
quency ωref = √

gh02π/L for which the shallow water
wavelength (of the basin with uniform depth) equals the
length of the basin. For cases not including the Coriolis
effect, we conclude the following.

1. In the reference case of a uniform depth, the
response to along-basin wind is a pattern showing zero
amplification at ω/ωref ≈ 0, 1, 2, · · · and maximum
amplification in between. Due to the waves allowed
to propagate away into the outer sea, these maxima
are found to be much weaker than the peaks in the
frequency response to cross-basin wind.

2. For a topographic step with a shallow coastal part, we
observe the resonance frequencies associated with (odd

Fig. 10 a, b Same as Fig. 7, but
now the influence of parabolic
cross-basin profile on the
frequency response as a function
of �h/h0
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multiples of) the quarter wavelength, which are known
to increase when increasing the coastal depth. Con-
versely, when sufficiently deep, the coastal part displays
a spatially uniform elevation pattern (‘pumping mode’,
see top panel of Fig. 5).

3. Smoothening the steps shows that increasing the
slope length shifts the maximum to slightly higher
frequencies.

4. The response to a linear along-basin bed profile in
the inner region (along-basin wind only) shows higher
response for increasing slopes (while fixing the depth
in the outer region) because of the reduced depth in the
coastal part.

5. The response to a parabolic cross-basin profile (along-
basin wind only) shows that varying the central depth,
while keeping the average depth the same, only weakly
modifies the frequency response.

The Coriolis effect causes the (strong) resonance peaks
associated with cross-basin modes (which without rotation
only appear in the response to cross-basin wind) to emerge
also in response to along-basin wind. It also introduces
peaks at the inertial frequency.

As already expressed by Eq. 1 in the introduction, a real
storm event, e.g. showing a Gaussian pattern of wind stress
over time, can be built up with periodic signals at differ-
ent frequencies. By linearity, the response to such an event
will be the superposition of the responses to these individ-
ual frequencies, weighted with the relative importance of
this frequency in the event. If the resonant frequencies are
strongly represented in the spectral representation of the
wind event, large response will occur (Chen et al. 2015).
An implication of the present study is that large-scale topo-
graphic changes, e.g. due to human intervention (dredging,
land reclamation), may cause shifts in resonance peaks and,
hence, changes in the basin response to wind events.

This study is a first step towards understanding the
responses of natural basins to wind forcing. In particu-
lar, our modelling approach also applies to basins with a
topography that is more complicated than the schematised
representation used in this study. Furthermore, extending
the model with respect to atmospheric forcing (e.g. repre-
senting the moving low-pressure system of a hurricane) and
geometry (coastlines) is a subject of ongoing research.
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Appendix A: Ramp-up function

The ramp-up function μ(x) of the wind describes the transi-
tion from zero wind in the outer region to a spatially uniform
wind field, in a region of length Lramp (see Fig. 1c). It is
given by

μ(x) =

⎧⎪⎨
⎪⎩
0 if x < 0,

sin kx
sin kLramp

if 0 ≤ x ≤ Lramp,

1 if x > Lramp.

(29)

Here, k is the wave number as given in Eq. 46 in
Appendix D. The motivation for this particular shape of the
ramp-up function, which through k depends on the problem
parameters, lies in the solution method. In fact, only this
choice allows us to obtain analytical solutions (Appendix D)
and collocation solutions (Appendix C) for the cases indi-
cated in Section 3.3. To have a monotonically increasing
ramp-up function, i.e. without any oscillations, we choose
Lramp such that kLramp < π/2.

Appendix B: Details of the derivation

B. 1 Vertical profiles from horizontal momentum
equations

Here, we present the details of the vertical structure of the
flow. First, we define rotating flow components according
to q± = u ± iv with complex amplitudes Q±, such that
U = (Q+ + Q−)/2 and V = (Q+ − Q−)/(2i). The
rotating flow solution contains three contributions, propor-
tional to the surface gradient the wind stress and the pressure
gradient, respectively:

Q±(z) = Q±
η (z)L±N + Q±

w(z)T ±, (30)

with complex operators L± = ∂/∂x ± i∂/∂y and rotating
wind forcing amplitudes T ± = T (x) ± iT (y) (wind stress
divided by density). The vertical structures read

Q±
η (z) = g

[
cosh λ+z − α±

c

]
α±
c Kλ±2

, (31)

Q±
w(z) = α±

c sinh λ±z + α±
s cosh λ±z

α±
c Kλ± . (32)

http://creativecommons.org/licenses/by/4.0/
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with λ±2 = −i(ω ∓ f )/K and α±
c = cosh λ±h +

s−1Kλ± sinh λ±h and α±
s = sinh λ±h+s−1Kλ± cosh λ±h.

The vertical integral is given by

〈Q±〉 =
〈
Q±

η

〉
L±N + 〈

Q±
w

〉
T ±, (33)

with
〈
Q±

η

〉
= g

[
sinh λ±h − α±

c λ±h
]

α±
c Kλ±3

, (34)

〈
Q±

w

〉 = α±
c

[
1 − cosh λ±h

] + α±
s sinh λ±h

α±
c Kλ±2

. (35)

The two cases ω = ±f require alternative expressions for
either Q+ or Q−. If ω = +f , we must replace the Q+-
expressions in Eqs. 31–33; if ω = −f , we must replace the
Q−-expressions. They must be replaced with

Q±
η (z) = gh2

K

[
1

2

( z

h

)2 − 1

2
− K

sh

]
, (36)

Q±
w(z) =

[
1 +

( z

h

)
+ K

sh

]
, (37)

and

〈
Q±

η

〉
= −gh3

K

[
1

3
+ K

sh

]
,

〈
Q±

w

〉 = h2

K

[
1

2
+ K

sh

]
.

(38)

B. 2 Elliptical problem for N

Depth-integration of the continuity Eq. 4, with the aid of
boundary conditions (5) gives, in terms of the complex
amplitudes of surface elevation and the rotating velocity
components.

−iωN+ ∂

∂x

( 〈Q+〉 + 〈Q−〉
2

)
︸ ︷︷ ︸

〈U 〉

+ ∂

∂y

( 〈Q+〉 − 〈Q−〉
2i

)
︸ ︷︷ ︸

〈V 〉

= 0,

(39)

Substitution of Eq. 30 gives the elliptical equation for N

presented in Eq. 13 of the main text. The corresponding
coefficients are given by

C+ = 1

2

[
Q+

η + Q−
η

]
, C− = 1

2i

[
Q+

η − Q−
η

]
, (40)

The boundary conditions presented in Eqs. 15–16 of the
main text follow from depth-integration of the momentum
Eqs. 2–3. The coefficients in there are given by

R+ = 1

2

[
Q+

wT + + Q−
wT −] ,

R− = 1

2i

[
Q+

wT + − Q−
wT −] . (41)

B. 3 Vertical flow velocity

The vertical flow velocity amplitudes at any depth z are
given by

W(z) = − ⌊
C⊕⌋(∂2N

∂x2
+ ∂2N

∂y2

)

−〈C⊕〉
(⌊

∂R⊕

∂x

⌋
+

⌊
∂R�

∂y

⌋)
, (42)

where floor brackets indicate integration from bottom to z,
i.e. �·� = ∫ z

−h
·dz. This expression can be simplified fur-

ther by using the differential Eq. 13 for N to eliminate the
Laplacian of N .

Appendix C: Collocation method

This appendix describes the collocation method that we
apply for the uniform depth case, for cross-basin wind and
f = 0. The modifications necessary in the abrupt step case
are mentioned at the end of the analysis. For uniform depth,
we distinguish the solution in the ramp-up zone (N1) from
that in the core of the inner region (N2). The problem posed
in Eqs. 13–18, as derived in Appendix B, then reduces to a
nonhomogeneous Helmholtz problem:

∂2N0

∂x2
+ ∂2N0

∂y2
+ k2N0 = 0, (43)

∂2N1

∂x2
+ ∂2N1

∂y2
+ k2N1 = −

[
∂〈R+

1 〉
∂x

+ ∂〈R−
1 〉

∂y

]
, (44)

∂2N2

∂x2
+ ∂2N2

∂y2
+ k2N2 = 0. (45)

Only in the ramp-up zone there is a divergence of the wind
forcing, explaining the nonzero right-hand side of Eq. 44.
Furthermore, k is a wave number satisfying

k2 = −iω

〈C+s〉 , (46)

with the depth-integrated coefficient 〈C+〉 = 〈C+
0 〉 =

〈C+
1 〉 = 〈C+

2 〉 (uniform depth) as specified in Eq. 40.
The boundary and matching conditions remain as in
Eqs. 15–18.
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Analogous to our extended FEM model in Section 3.3,
the solution in the outer region is written as a superposition
of outgoing wave modes, i.e.

N0(x, y) =
M∑

m=0

c�
0,mN�

m (y) exp
(
ik�

mx
)
, (47)

with coefficients c�
0,m. The cross-basin structures N�

m (y)

and wave numbers k�
m are specified in Appendix E. The

solutions in the ramp-up region and the inner region are
written as a superposition of two families of wave modes
plus a particular solution:

Nj(x, y) = Nj,part(x, y) +
M∑

m=0

c⊕
j,mN⊕

m (y) exp
(
ik⊕

mx
)

+
M∑

m=0

c�
1,mN�

m (y) exp
(
ik�

mx
)
, (48)

The particular solutions Nj,part(x, y) for j = 1, 2 are intro-
duced to homogenise the cross-basin boundary conditions.
For the ramp-up zone and the core of the inner region, they
are given by

N1,part(x, y) = −
(

y − B

2

) 〈Q+
w〉 + 〈Q−

w〉
2〈C+〉

sin kx

sin kLramp
, (49)

N2,part(x, y) = −1

k

(
sin ky − 1 − cos kB

sin kB
cos ky

) 〈Q+
w〉

〈C+〉 . (50)

The solution in Eqs. 47–48 is thus contained in the five
families of in total 5(M + 1) coefficients c�

0,m, c⊕
1,m, c⊕

1,m,

c⊕
2,m, and c⊕

2,m (for m = 0, 1, · · · , M). Their values follow
from applying a collocation technique similar to that applied
by Roos and Schuttelaars (2011). To this end, we require
the matching of surface elevation and normal transport to be
satisfied at two sets of M+1 collocation points at x = 0 and
x = Lramp, and the closed boundary condition at another set
of collocation points x = L.

The analysis for the abrupt step case requires dividing the
inner region into three parts: the ramp-up zone denoted with
subscript j = 1, an offshore part of depth h0 (j = 2) and
a coastal part of depth hc (j = 3). The above analysis can
then be repeated, distinguishing a different wave number in
the coastal part and imposing similar matching conditions
also at x = xstep. For brevity, the analysis is not presented
here.

Appendix D: 2DV-solution

This appendix contains the analytical 2DV solution without
rotation (f =0), with along-basin wind (θ=0), for the uni-
form depth. The modifications necessary in the abrupt step

case are mentioned at the end of the analysis. This solution
is termed ‘2DV’ because there is neither flow in the cross-
basin direction nor dependency on the cross-basin coordi-
nate y. Hence, the flow amplitudes depend on x and z only,
and the elevation amplitude N(x) depends on the along-
basin coordinate only. The problem posed in Eqs. 43–45,
as presented in Appendix C for the uniform depth case, now
reduces to a one-dimensional Helmholtz problem. We thus
write

∂2N0

∂x2
+ k2N0 = 0, (51)

∂2N1

∂x2
+ k2N1 = −∂〈R⊕

1 〉
∂x

, (52)

∂2N2

∂x2
+ k2N2 = 0. (53)

Only in the ramp-up region there is a divergence of the
wind forcing, explaining the nonzero right-hand side of
Eq. 52. The wave number k is still as given by Eq. 46 in
Appendix C, and the boundary and matching conditions in
Eqs. 15–18 become

〈
C⊕
2

〉dN2

dx
= −〈

R⊕
2

〉
, (54)

at x = L and

Nj = Nj+1,
dNj

dx
= dNj+1

dx
, (55)

to be satisfied at x = 0 for j = 0 and at x = Lramp for
j = 1. The solution is given by

N0 = a exp(−ikx) (56)

N1 = a exp(−ikx) − c
kx sin kx

sinϕramp
(57)

N2 = b cos(k[x − L]) − 2c sin(k[x − L]), (58)

with coefficients a, b and c given by

a =
〈
Q+

w

〉
T̂

2k
〈
C⊕
1

〉

×
[

ϕramp(tan�ϕ − cotϕramp) − 1

(tan�ϕ − i) exp(iϕramp)
+ 2i exp(−iϕ)

]
, (59)

b =
〈
Q+

w

〉
T̂

2k
〈
C⊕
1

〉
× [−i exp(−i�ϕ)(1 + ϕramp cotϕramp − iϕramp) + 2i

]
, (60)

c =
〈
Q+

w

〉
T̂

2k
〈
C⊕
1

〉 , (61)

with ϕ = kL, ϕramp = kLramp, and �ϕ = k(L − Lramp).
The analysis for the abrupt step case requires dividing the

inner region into three parts: the ramp-up zone denoted with
subscript j = 1, an offshore part of depth h0 (j = 2) and a
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coastal part of depth hc (j = 3). The above analysis can then
be repeated, distinguishing a different wave number in the
coastal part and imposing similar matching conditions also
at x = xstep. For brevity, the analysis is not presented here.

Appendix E: Wave modes

Our solution technique makes use of families of so-called
Kelvin and Poincaré modes, which are eigenmodes in an
infinite channel of uniform depth and width. We distinguish
two families: those propagating (or exponentially decay-
ing) in the positive x-direction (termed ‘positive’ modes,
indicated with superscript ⊕) and those propagating (or
exponentially decaying) in the negative x-direction (termed
‘negative’ modes, indicated with superscript �).

More precisely, the solution in the outer region, as given
by Eq. 20, is written as a truncated superposition of ‘neg-
ative’ Kelvin and Poincaré modes. Furthermore, the collo-
cation technique described in Appendix C uses eigenmodes
also in the ramp-up and inner region. This involves both
positive and negative modes, but only in the f = 0 limit.

For arbitrary f , the Kelvin mode, propagating in the
positive x-direction, is given by

N0(y)⊕ = exp

( −y

Rdef

)
exp(ik⊕

0 x),

Rdef =
√√√√ 〈(C+

j )2〉 + 〈(C−
j )2〉

〈(C+
j )2〉k2 . (62)

with wave number

k⊕
0 =

√√√√ 〈(C−
j )2〉k2

〈(C+
j )2〉 + 〈(C−

j )2〉 . (63)

The Kelvin mode propagating in the negative x-direction
is obtained by a symmetry argument, which also implies
k�
0 = −k⊕

0 . In the f = 0 limit, for which 〈C−
j 〉 = 0, the

Kelvin mode effectively becomes a shallow water wave with
a uniform cross-basin structure.

The Poincaré modes, propagating or exponentially
decaying in the positive x-direction, are given by

N⊕
m (x, y) =

⎡
⎣cos (mπy

B

)
−

ik
〈
C⊕

j

〉
B

mπ
〈
C�

j

〉 sin (mπy

B

)⎤⎦ exp
(
ik⊕

mx
)
,

(64)

for m = 1, 2, · · · and with the wave number k⊕
m satisfying

k⊕2
m = k2 −

(mπ

B

)2
. (65)

The Poincaré modes propagating in the negative x-direction
are obtained by a symmetry argument, which also implies

k�
m = −k⊕

m . In the limit f = 0, the Poincaré modes obtain
an elevation structure proportonal to cos(mπy/B).

For brevity, the along-basin flow components of the
above modes are not presented here.
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