
 
 

Delft University of Technology

Assessing the quality of experience of SopCast

Lu, Y; Fallica, B; Kuipers, FA; Kooij, RE; Van Mieghem, PFA

DOI
doi:10.1504/IJIPT.2009.024166
Publication date
2009
Document Version
Accepted author manuscript
Published in
International Journal of Internet Protocol Technology

Citation (APA)
Lu, Y., Fallica, B., Kuipers, FA., Kooij, RE., & Van Mieghem, PFA. (2009). Assessing the quality of
experience of SopCast. International Journal of Internet Protocol Technology, 4(1), 11-23.
https://doi.org/doi:10.1504/IJIPT.2009.024166

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/doi:10.1504/IJIPT.2009.024166
https://doi.org/doi:10.1504/IJIPT.2009.024166


1

Assessing the Quality of Experience of SopCast
Yue Lu, Benny Fallica, Fernando Kuipers, Rob Kooij, and Piet Van Mieghem

Abstract—Recently, there has been a growing interest in
academic and commercial environments for live streaming using
P2P technology. A number of new P2P digital television (P2PTV)
applications have emerged. Such P2PTV applications are devel-
oped with proprietary technologies. Their traffic characteristics
and the Quality of Experience (QoE) provided by them are not
well known. Therefore, investigating their mechanisms, analyzing
their performance, and measuring their quality are important
objectives for researchers, developers and end users. In this
paper, we present results from a measurement study of a
BitTorrent-like P2PTV application called SopCast, using both
objective and subjective measurement technologies. The results
obtained in our study reveal the characteristics and important
design issues of SopCast, as well as the QoE that the end users
perceive.

I. INTRODUCTION

The success of peer-to-peer (P2P) BitTorrent (BitTorrent,
2001-2008) file-sharing is undisputed. Their idea of exchang-
ing fragments has also been applied to streaming applications
over a peer-to-peer network. In recent years, many such
peer-to-peer video streaming applications, e.g. CoolStreaming
(CoolStreaming, 2005-2008), PPLive (PPLive, 2004-2006),
Tribler (Pouwelse, 2006) and SopCast (SopCast, 2007), have
appeared and are receiving much attention. Measurements
on these systems show that more than 100,000 concurrent
users viewing a single channel is not uncommon. In this
paper, we will investigate a P2PTV system called SopCast
(Fallica, 2008). In order to understand the mechanisms of
this BitTorrent-based P2PTV system and its performance, we
will investigate by means of measurements the functionalities
and the traffic characteristics of SopCast and the Quality
of Experience (QoE) perceived by its end users. QoE can
be measured through objective and subjective measurements.
Measuring quality of user experience is important for both
users and developers.

The rest of this paper is organized as follows: In Section
II related work is discussed. In Section III we investigate the
basic mechanisms of SopCast via conducted lab experiments.
Section IV describes measurements on a much larger network,
PlanetLab (Planetlab, 2007), in order to assess performance
characteristics for end users, such as the upload and download
rate and the stream quality they experience. Besides the
objective measurements in Sections III and IV, subjective
measurements are also provided in Section V. We conclude
in Section VI.

II. RELATED WORK

Hei et al. (2007) have measured PPLive via passive packet
sniffing. Their measurement study focused on three important
aspects of PPLive: streaming performance, workload char-
acteristics, and overlay properties. They presented detailed

session statistics, such as session duration, packet size and
the correlation between them, and traffic breakdown among
sessions. Start-up times and video buffer dimensions were also
presented. Other work on PPLive, like (Vu, 2007) and (Wang
and Xiong, 2008), studied specific aspects of this P2P stream-
ing system. The node degrees of popular versus unpopular
channels and the stability of nodes were investigated.

Zhang et al. (2005) and Li, B. et al. (2008) focused on
Coolstreaming, and Wu, C. et al. (2008) considers UUSee.

Ali et al. (2006) evaluated the performance of both PPLive
and SopCast. They collected packet traces of the systems under
different conditions and analyzed the data on a single host
joining a system and then tuning into a channel, and collected
packet traces for these cases.

Silverston and Fourmaux (2007) analyzed the different
traffic patterns and underlying mechanisms of several P2PTV
applications. The results of this study were based on a single
measurements day where two soccer games were scheduled.

Most of the above mentioned previous work was executed
from a single point of observation, or from few nodes within
direct access and lacks an automatic mechanism for con-
ducting measurements. Also, the research was mainly aimed
at investigating the user behavior, without much analysis on
the traffic characteristics and various mechanisms of P2PTV.
Moreover, the final perception of the end user, i.e. the Quality
of Experience, is not taken into account. In our opinion,
it is important to investigate the Quality of Experience for
P2PTV systems, since P2PTV technology can be considered
a promising candidate for content distribution companies to
deploy flexible and interactive TV. In this paper we perform
such a study, through objective and subjective measurements,
for the P2PTV application SopCast.

III. LAB EXPERIMENTS

In this section we are going to investigate the basic mech-
anisms of SopCast by means of lab experiments.

A. SopCast

SopCast is a free BitTorrent-like P2PTV application, born
as a student project at Fundan University in China. The
bit rates of TV programs on SopCast typically range from
250 Kb/s to 400 Kb/s with a few channels as high as 800
Kb/s. The channels can be encoded in Windows Media Video
(WMV), Video file for Realplayer (RMVB), Real Media (RM),
Advanced Streaming Format (ASF), and MPEG Audio Stream
Layer III (MP3).

The SopCast Client has multiple choices of TV channels,
each of which forms its own overlay. Each channel streams
either live audio-video feeds, or loop-displayed movies accord-
ing to a preset schedule. The viewer tunes into a channel of



2

his choice and SopCast starts its own operations to retrieve the
stream. After some seconds a player pops up and the stream
can be seen. SopCast also allows a user to broadcast his own
channel.

B. Measurements infrastructure

Figure 1 presents our local P2P measurements infrastruc-
ture. It is composed of standard personal computers partici-
pating in a small network. Six nodes are running the SopCast
Client and the seventh one, as a SopCast broadcaster, is
broadcasting a TV channel.

Traffic collection and decoding is done with Wireshark
(Orebaugh, 2006). The nodes run Windows XP. Each node
is equipped with an Intel Pentium 2.4GHz processor, 512
MB RAM and a 10/100 FastEthernet network interface. The
network interfaces are connected to a 100Mbit switch, which
is further connected through a router to the Internet.

C. Results

We present some observations based on our lab experiments.
1) Transport protocol: The reports of Wireshark revealed

that SopCast relies on UDP traffic. We have observed two
peaks in the packet size distribution: one falls in the region
below 100 bytes and another one at 1320 data bytes. The
small packets with less than 100 bytes are considered non-
video packets, which are used for application-layer acknowl-
edgments of data packets delivered, requests for video chunks,
or initial connection establishment, and so on. We will further
explain these small packets in Section III-C3. The bigger
packets, with size approximately equal to the Maximum Trans-
mission Unit (MTU) for IP packets over Ethernet networks,
are the video packets.

We also observed that SopCast faces a high overhead, about
60% of non-video packets versus almost 40% of actual video
data packets (see Figure 2). This was expected since the
protocol works on top of UDP, which does not guarantee
reliability in the way that TCP does. For time-sensitive appli-
cations, UDP is a reasonable choice, because dropped packets
are considered no worse than delayed packets. However a
minimum control on the status of the chunks must be kept.
Since the chunks arrive out of order, a scheme is needed to
keep track of the video chunks that need to be reassembled in
order and buffered, and in case a chunk is missing, to retrieve
it. Nevertheless, various small packets are exchanged among
peers to keep the peer list up-to-date, to test the status of
peers (e.g., is enough bandwidth available) or to distribute the
chunk availability information and the keep-alive messages.
This explains the overhead in this kind of mesh-based P2PTV
system.

2) Peer exchange and architecture: When SopCast first
starts, it requires some time to search for peers and subse-
quently it tries to download data from the active peers. We
recorded two types of start-up delay: the delay from when one
channel is selected until the streaming player pops up, and the
delay from when the player pops up until the playback actually
starts. The player pop-up delay is in general 20 to 30 seconds.
This is the time for SopCast to retrieve the peer list and the

first video packets. The player buffering delay is around 10 to
15 seconds, which can vary from player to player and is not
related to SopCast. Therefore, the time that passes for a user
to enjoy the live streaming ranges between 30 and 45 seconds.

Examining the traffic generated by each node we found
that the first task of each viewer node is sending out a query
message to the SopCast channel server to obtain an updated
channel list. This server has been identified, with an IP locator,
to be located in China. After a peer selects one TV channel
to watch, it sends out multiple query messages to some root
servers (trackers) to retrieve an online peer list for this TV
channel.

After contacting the tracker, the nodes form a randomly
connected mesh that is used to deliver the content among
individual peers. The content of a TV channel is divided into
video chunks, each with equal size. A video chunk is delivered
from a parent to a child peer. Except for the source, each
peer in the overlay has multiple parents and multiple children.
The delivery is performed with pull requesting by child peers,
meaning that the chunks that a node has are notified peri-
odically to the neighbors. Then each node explicitly requests
the segments of interest from its neighbors according to their
notification.

3) Traffic Pattern: We have captured the traffic at peers and
analyzed how two peers communicate with each other and set
up the video transmission session.

Figure 3 displays this process. First, Peer A requests to
establish a link connection with Peer B (using a non-video
packet with 52 bytes of data). After receiving the acknowl-
edgement from Peer B, Peer A requests video chunks (using
a non-video packet with 46 bytes of data) from Peer B, based
on the chunk availability information. Afterwards, Peer B
transmits a sequence of video packets to Peer A (shown as
bold arrows in Figure 3). Similarly, Peer A can also upload
the packets requested by Peer B.

In the trace, we noticed that the non-video packet with 46
data bytes are transmitted periodically. Within the transmission
of two consecutive 46-byte packets, a sequence of video
packets with 1320 data bytes are sent to and acknowledged
(using a non-video packet with 28 data bytes) by another peer.
After the 1320-byte packets sequence, there is a smaller-sized
video packet (with 377; 497; 617; 1081 or 1201 data bytes)
following at the end for making up a rounding size of one or
multiple video chunks (we observed that a video chunk size
is equal to 10 Kbytes). The SopCast traffic pattern during a
video session between any two peers is shown in Figure 4.

4) Buffering techniques: Received chunks are stored in the
SopCast buffer. The buffer is responsible for downloading
video chunks from the network and streaming the downloaded
video to a local media player. The streaming process in
SopCast traverses two buffers: the SopCast buffer and the
media player buffer, as shown in Figure 5.

When the streaming file length in the SopCast buffer
exceeds a predefined threshold, SopCast launches a media
player, which downloads video content from the local Web
server listening on port 8902. Most media players have built-
in video buffering mechanisms. After the buffer of the media



3

player fills up to the required level, the actual video playback
starts.

The experiments presented in this section were carried out
in order to understand the basic mechanisms of SopCast. In
the next section we extend our measurement scenario to a
global one, to learn more about the QoE of SopCast in a larger
network.

IV. PLANETLAB EXPERIMENTS

In this section we present the results obtained via the
PlanetLab network, using 70 PlanetLab nodes.

A. Measurement set-up

We have used a standard personal computer located in
our campus network, as the source provider (SP) of a TV
channel content. With the SP, we registered and broadcasted
a dedicated TV channel to the SopCast network. In this
channel, a video with 480*384 resolution and at 45 KB/s is
continuously broadcast in a loop.

On the other hand, we have used scripts not only to remotely
control 70 PlanetLab nodes (as our Peers) to view the TV
channel we released, but also to monitor the QoE at them.

Thus, our experiment resembles a streaming system, as
shown in Figure 6.

Each of the 70 PlanetLab nodes under consideration runs
the following software: (1) SopCast in its Linux version, with
command line control; (2) Tcpdump; (3) Perl Scripts.

Passive monitoring by its nature is limited to information
acquired from the communications that are visible to the
monitoring stations. By accessing all of our PlanetLab nodes,
we attempt to capture data that is as complete as possible and
use it for our characterizations.

We make use of traced files of this SopCast network
captured during 10 months (May. 2007 – Nov. 2007; Aug.
2008 - Oct. 2008). In particular, we collected the traffic
logs for several one-hour intervals from the 70 peers under
investigation.

B. Upload and Download rate

Comparing the video data upload and download rates (the
rate here is the average value over one hour trace), we noticed
that only few nodes have higher upload rate compared to
their download rate. In Figure 7 the four nodes that have
higher upload than download rates have been identified as
“supernodes”.

The average download rate at each node is almost the same.
This suggests that the download rate at a peer seems to be
confined by SopCast.

C. Parent’s upload rate to one child

We define a parent as a peer that is uploading video packets
and define one child as a receiver of video packets.

The best choice for a peer is to download from the parent
who has enough “parent upload rate” per peer (the rate is
the average value over one hour trace). However, from Figure
8 it can be seen that the majority of the parents keeps the

same amount of upload rate per peer, which is approximately
24 KB/s. This behavior does not change with the addition of
more peers.

Based on the results of Figures 7 and 8, we can imagine that
a parent with larger upload rate probably has more children
than a parent with smaller upload rate.

D. Blocking

In Figure 9, we consider the download rate without any
buffering. We can notice the fluctuations in the download
rate and we compare them with the steady playback rate of
the video (45 KB/s). If the download rate is smaller than
the playback rate and no data has been buffered, the end
user is facing blocking or freezing of the video. In practice
buffering is used, so this can be considered as a worst-case
study (Lu, 2008).

The worst case blocking probability is calculated counting
the time tblock, where the download rate is smaller than the
playback rate, divided by the total amount t of the observed
time.

P r[block] =
tblock

t

From this assumption we calculated that blocking without
buffering happens during 22% of the time. Such a value is too
high for a smooth playback, which clearly illustrates the need
for a buffer.

Figure 9 proposed a scenario without a buffer, meaning that
the data will have been processed as soon as it arrives at the
destination. Of course such assumption is impractical since
the video packets are not arriving in order. And for the pull-
architecture of SopCast a buffer is needed to map video chunks
available and from that requesting the ones that are missing.

Sentinelli et al. (2007) observed that the SopCast buffer
contains one minute of video. We made the assumption that the
media player uses a buffer of m seconds, where m is usually
smaller than 10. When an end user starts up a SopCast TV
channel, basically once the SopCast buffer is full, it injects m
seconds of streaming content into the media player buffer. By
the time the media player consumes those m seconds of video
SopCast is downloading new video packets to refill the buffer.

If the SopCast buffer fails to collect enough data to feed
the media player buffer, blocking occurs.

In Figure 10 the buffer behavior of one peer is depicted. We
consider the SopCast buffer size as the streaming rate of the
video (45 KB/s) times one minute (Sentinelli, 2007), equal to
about 2700 Kbytes, which can be seen in Figure 10. We can
observe that after the start-up phase, the buffer maintains stable
and the playback is continuous. The average download rate for
this node is with 127 KB/s far higher than the streaming rate
of the video (45 KB/s). Hence, it was expected that blocking
would not happen. However, due to the fluctuation of the
download rate with time, the data stored in the buffer has major
drops in the intervals between 1040 – 1150 s, 1660 – 1730
s, 1840 – 1920 s. During these drops (meaning that in these
periods the data stored in the buffer is much less than the full
buffer size 2700 Kbytes), end users may face blocking (e.g.,
image freezing or loss), because in the worst case, the lacked



4

video chunks may be the ones which need to be displayed in
the next m seconds.

E. Overall video packet loss

As mentioned before, every peer can be downloading data
from other peers and at the same time be uploading data to
others. For instance, we have 4 peers viewing our TV channel,
PlanetLab nodes A, B, C and D. After analyzing the trace
file of node A, we know that he downloads data from nodes
B, C and D during the whole trace. We can calculate how
much video packets A received from B by analyzing the trace
file of A, as well as how much video packets B sends to A
by analyzing the trace file of B. Then in the video session
between A and B, we can get its packet loss ratio (same for
the video sessions between A and C, and between A and D).
To summarize the number of packets lost in all video sessions
of the receiver A, we can get the overall video packet loss
ratio at node A during the whole trace. The same approach is
applied to the other nodes and the distribution of the overall
video packet loss ratio is plotted in Figure 11.

In Figure 11, the x axis represents the overall packet loss
ratio during the whole trace at an end user and the y axis
represents the percentage of end users in our network. The
mean value of the packet loss ratio at an end user is over 4%,
which is high compared to the baseline SDTV packet loss ratio
requirement in IPTV of 0.4% (Agilent-Technologies, 2006).
Besides, we observed that the packet loss at a peer is mainly
caused in the beginning period of this peer entering this TV
channel network (maybe because the connections between him
and his parents are not optimized and not stable yet). However,
thanks to the buffer, this high video packet loss does not have
much affect on the video quality, which can be seen in Section
IV-F2.

F. Video Quality

In this section, we assess the video quality at the end user
with respect to their start-up freezing time, overall frame loss
ratio, image quality and audio-video synchronization.

1) Start-up freezing time: Many video decoders use “copy
previous” error concealment to hide missing frames in the
video stream from users. This means that in the event of not
receiving a certain frame, the last correctly rendered frame is
displayed on the screen, resulting in the frame freezes that are
often seen in Internet video playback.

Through our experiments on PlanetLab, we observed that
97.17% of nodes always first face a freezing image for a
period of time at the beginning of viewing the TV channel.
The reason could be that the node has just started downloading
chunks from other peer nodes and the video buffer of the
local SopCast webserver is created but not filled enough for
the media player to access. Therefore in the beginning of
viewing the TV channel, there usually exist severe frame losses
with frame loss ratio approaching 100%. During this period,
the media player handles the position of dropped frames by
displaying the nearest good frame (the first good frame in
this case) as a stagnating picture. The duration of this period
(the start-up freezing time) indicates, after the user sees the

first image, for how long (s)he has to wait before the video
playback starts playing smoothly.

Figure 12 shows that very few end users face a start-up
freezing time of more than 10 seconds. On average, end users
see the first freezing image for 4.07 seconds before seeing the
actual stream of the TV channel.

2) Overall frame loss : The frame loss discussed here
only considers lost frames, not damaged frames (frames
downloaded partially with some bytes lost) after the start-up
freezing phase.

In Figure 13, the x axis represents the overall frame loss
ratio during the whole trace at an end user and the y axis
represents the percentage of end users in our network. The
mean value of the frame loss ratio is 0.82%. It means that end
users could have a good video quality with low frame loss
ratio after experiencing the start-up freezing time.

3) Image Quality: In this section, after the start-up freezing
phase of peers, we cut the received video at them and
synchronized each frame of the cut received video with the cut
original video to get the average objective Mean Opinion Score
(MOS) (ITU-T, 1996), using VQM (Pinson and Wolf, 2004).

VQM (Video Quality Metric) is a software tool developed
by the Institute for Telecommunication Science to objectively
measure perceived video quality. It measures the perceptual ef-
fects of video impairments including blurring, jerky/unnatural
motion, global noise, block distortion and color distortion, and
combines them into a single metric.

VQM takes the original video and the processed video and
produces quality scores that reflect the predicted fidelity of the
impaired video with reference to its undistorted counterpart.
To do that, the sampled video needs to be calibrated. The
calibration consists of estimating and correcting the spatial and
temporal shift of the processed video sequence with respect to
the original video sequence. The final score is computed using
a linear combination of parameters that describe perceptual
changes in video quality by comparing features extracted from
the processed video with those extracted from the original
video. The final score is scaled to an objective MOS value,
a measure for user perceived quality, defined on a five-point
scale; 5 = excellent, 4 = good, 3 = fair, 2 = poor, 1 = bad.
MOS here does not take the audio quality, zapping time, etc.
into account.

We captured at selected nodes the stream retrieved from the
SopCast buffer with VLC (VideoLan-Client, 2008).

We broadcasted two videos at different data rates: one at
45 KB/s (the most common data rate used in SopCast) and
another one at 1 Mb/s. VQM provided the following scores
per node (see Figure 14):

The minimum threshold for acceptable quality corresponds
to the line MOS = 3.5. The average MOS scores are high for
both streaming rates, only a negligible degradation has been
observed. This also suggests that SopCast does not provide
any kind of encoding to the broadcasted video.

4) Audio-Video Synchronization: Audio-video synchroniza-
tion refers to the relative timing of sound and image portions
of a television program, or movie.

The International Telecommunications Union (ITU-R,
1998) recommendation states that the tolerance from the point



5

of capture to the viewer/listener shall be no more than 90 ms
audio leading video to 185 ms audio lagging behind video.

We decided to analyze the A/V synchronization in SopCast
with an “artificially generated” video test sample. The test
sample includes a video component and an audio component.
The video component and the audio component contain a
marker. The video marker displays between a first video state
and a second video state, a red full screen image. Similarly,
the audio waveform alternates between a first audio state and
a second audio state, an audio “beep”. The video and audio
waveforms are temporally synchronized to transition from one
state to another at the same time.

The video is broadcasted with SopCast. When the audio and
video tracks were extracted and compared, it turned out that
there was an average difference in time between the two tracks
of about 210 ms, which exceeds the ITU recommendation. The
reasons are twofold: (1) We believe that the main contribution
to this time shift is caused by the network. When the video
is sent into the network, due to its transport protocol (UDP),
some packets might get lost. Since the system is displaying in
real time, a loss of a video packet can cause the decoder to
adjust buffer allocations affecting the synchronization of audio
and video tracks. (2) The direct digital-to-digital conversion
from one (usually lossy) codec to another. We needed to
convert from the original video format to the streamed one,
passing through a final reconversion of the received file to
extract the tracks. This (re)conversion may also have affected
the synchronization.

G. Peer Synchronization

While watching a football match it could be disturbing
to hear the neighbors scream “GOAL” while still watching
the pre-goal action (Sentinelli, 2007). Such phenomena are
common in P2PTV systems and are referred to as peer lags.
While watching the same channel, peers’ content might not
be synchronized. We measured the different lag delays by
injecting in the SopCast network another artificial video that
mainly reproduced a timer. Each second a sequential number
is shown. Since SopCast builds a webserver that feeds the
player’s buffer, we connected 6 instantiations of VLC to the
webservers of the representative nodes and we gathered the
visualization on a PC, see Figure 15.

Clearly, some peer’s content lags behind that of others. In
the environment of PlanetLab, the lag went up to 3 seconds.
In reality, the lag is expected to grow even further. Hence, we
can conclude that SopCast clients are not likely to view an
exactly same frame of the stream at the same time. We can
say that SopCast nowadays is not yet suitable to distribute
a football-like content due to the low synchronization level
among users.

H. Zapping Time

While watching TV a common behavior is to change from
on channel to the other, the so-called “zapping”. If P2PTV
applications want to gain popularity in the field of home
entertainment it is necessary to look at the zapping perfor-
mance of P2PTV applications. While for analog TV, zapping

consists of scanning through different television channels or
radio frequencies, in P2PTV the initial list of hosts must be
retrieved, and the system tries to connect to some of the hosts
to get data.

To measure the SopCast zapping time we needed to calcu-
late the time that SopCast requires to fill its buffer and build
the local web server. To do that we developed a Perl script
that starts a counter when a channel is clicked and it stops
when enough data to be displayed has been fetched.

We let the script run when zapping among 20 popular and
less popular channels. Figure 16 shows the distribution of the
zapping times. It turns out that the zapping time in SopCast
is very high.

Changing channels in an analog TV network usually takes
about 1

2 to 1 second compared to Digital TV where zapping
times of more than 2 seconds might be experienced. Note
that according to the DSL Forum the zapping time should be
limited to a maximum of 2 seconds (DSL-Forum, 2006). In
the IPTV environment changing channels or zapping, has great
importance as this is very often regarded as the most important
parameter used to judge the overall quality of the network seen
from the end user perspective. With an average zapping time
of 50 seconds, SopCast (P2PTV) faces an unacceptable delay.
Customers expect information being delivered to their screen
as soon as possible. Hence, much improvement is needed in
the start up phase of SopCast.

V. SUBJECTIVE MEASUREMENTS

Subjective video quality is concerned with how video is
perceived by a viewer and designates his or her opinion on
a particular video sequence. Subjective video quality tests
are quite expensive in terms of time and human resources.
To evaluate the subjective video quality, a video sequence is
chosen. Under typical settings of the system, the sequence is
presented to the users and their opinions are collected. The
opinions are scored and an average value is computed.

A. Approach

The following steps were used for the subjective evaluation:

� 22 persons participated in the evaluation by viewing
SopCast TV channels and completing a questionnaire.

� The questionnaire contained 10 questions each addressing
the expected quality problems of SopCast.

The 10 questions were:
(1) How fast was the login process?
(2) How long did you have to wait before seeing the stream

after you started the channel?
(3) How long did you have to wait before seeing a stable

stream?
(4) Was the size of the video screen satisfactory (resolution,

stream bit rate)?
(5) During the observation period, did the video unexpect-

edly stop?
(6) Did you observe any bad frames in the video (a bad

frame refers to a mosaic-like image)?



6

(7) Did you observe any freezing frames in the video (a
freezing frame refers to a brief stop, say a second, in the video
playback after which it resumes to a normal playback)?

(8) How was the voice quality (cuts, clarity, volume) of the
channel?

(9) Were the audio and video synchronized throughout the
playback time?

(10) Are TV channels provided by SopCast interesting and
are the amount of TV channels enough?

The questionnaire used the standard MOS scale. The sub-
jective MOS does not only consider the quality of video, but
also the start-up time, the extent of the usage convenience, and
the feeling about the TV channel content itself.

� Every question had a weight (the weights of the questions
are also decided by end users) depending on the severity
of the issue and its influence on the QoE of SopCast.
Based on the weight given to each question, the overall
MOS of each questionnaire was calculated as follows:

MOS =

P10
x=1 W eightxScorexP10

x=1 W eightx

where W eightx represents the weight of question x and
Scorex represents the score of question x.

B. Result

The mean MOS over all the participants is 4.08 (see Figure
17). This means that the channel’s video quality is good. The
subjective MOS score is and was expected to be lower than
the objective score in Section IV-F, because more measures
than only video quality play a role.

VI. CONCLUSIONS

The aim of this work was to understand, with a series
of experiments, the behavior of a popular P2P streaming
system called SopCast. Through passive measurements, we
characterized SopCast’s behavior and evaluated users’ QoE.

Based on our measurement results on the traffic character-
istics of SopCast, the main conclusions are: (1) There is a
lot of overhead in the form of non-video packets; (2) The
average video download rate is almost the same at each peer;
(3) Peers’ upload rate differ substantially, but the majority of
the parents keeps the same amount of upload rate per peer;
(4) In the worst case, a peer will face video blocking very
frequently, but the situation can be much improved with the
help of buffers; (5) Overall packet loss ratio is high.

For QoE metrics, in other related works, researchers usually
only look at the video quality when making claims on the QoE.
However, in our work we have shown that more measures
should be taken into account, such as the blocking, the audio-
video synchronization, synchronization level among peers, the
TV channel zapping time, etc. Based on our measurement
results on the QoE of SopCast, the main conclusions are:
(1) SopCast can provide good quality video to peers: low
overall frame loss ratio and high MOS scores; (2) Audio
and video for SopCast can be out-of-sync, and may even
exceed the requirements from the ITU; (3) SopCast suffers

from peer lags, i.e. peers watching the same channel might not
be synchronized; (4) The zapping time in SopCast is extremely
high.

The innovative measurement methods and scripts mentioned
in our paper can also be applied to other measurement studies
and for other streaming applications.

REFERENCES

Agilent-Technologies (2006), ‘IPTV QoE: Understanding and interpreting
MDI values’, White paper .

Ali, S., M. A. and Zhang, H. (2006), ‘Measurement of commercial peer-
to-peer live video streaming’, ICST Workshop on Recent Advances in
Peer-to-Peer streaming . Waterloo, ON, Canada.

BitTorrent (2001-2008).
URL: http://www.bittorrent.com/

CoolStreaming (2005-2008).
URL: http://www.coolstreaming.us/hp.php?lang=nl

DSL-Forum (2006), ‘Triple play services Quality of Experience (QoE) re-
quirements and mechanisms’, Technical Report TR-126 .

Fallica, B. e. a. (2008), ‘On the Quality of Experience of SopCast’, 1st IEEE
International Workshop on Future Multimedia Networking FMN’08 .

Hei, X. e. a. (2007), ‘A measurement study of a large-scale P2P IPTV system’,
IEEE Transactions on Multimedia 9(8).

ITU-R (1998), ‘Relative timing of sound and vision for broadcasting’,
BT.1359-1 .

ITU-T (1996), ‘Methods for subjective determination of transmission quality’,
pp. 800–838.

Li, B. e. a. (2008), ‘Inside the new Coolstreaming: Principles, measurements
and performance implications’, IEEE INFOCOM’08 . Phoenix, AZ.

Lu, Y. e. a. (2008), ‘E2E blocking probability of IPTV and P2PTV’, IFIP
Networking . Singapore.

Orebaugh, A. e. a. (2006), ‘Wireshark & ethereal network protocol analyzer
toolkit (jay beale’s open source security)’, Syngress Publishing .

Pinson, M. H. and Wolf, S. (2004), ‘A new standardized method for objectively
measuring video quality’, IEEE Transactions on broadcasting 50, 312.

Planetlab (2007).
URL: http://www.planet-lab.org/

Pouwelse, J. e. a. (2006), ‘Tribler: A social based peer to peer system’, 5th
International Workshop on Peer-to-Peer Systems IPTPS .

PPLive (2004-2006).
URL: http://www.pplive.com/en/index.html

Sentinelli, A. e. a. (2007), ‘Will IPTV ride the peer-to-peer stream?’, Com-
munications Magazine 45(6), 86–92.

Silverston, T. and Fourmaux, O. (2007), ‘Measuring P2P IPTV systems’,
Network & Operating Systems Support for Digital Audio & Video
NOSSDAV . Urbana-Champaign, IL, USA.

SopCast (2007).
URL: http://www.sopcast.org/

VideoLan-Client (2008).
URL: http://www.videolan.org

Vu, L. e. a. (2007), ‘Measurement of a large-scale overlay for multimedia
streaming’, 16th International Symposium on High Performance Dis-
tributed Computing . Monterey, CA.

Wang, F., L. J. and Xiong, Y. (2008), ‘Stable peers: Existence, importance,
and application in peer-to-peer live video streaming’, IEEE Infocom’08
. Phoenix, AZ.

Wu, C., L. B. and Zhao, S. (2008), ‘Multi-channel live P2P streaming:
Refocusing on servers’, IEEE INFOCOM’08 . Phoenix, AZ.

Zhang, X. e. a. (2005), ‘Coolstreaming/donet: A data-driven overlay network
for peer-to-peer live media streaming’, 24th IEEE INFOCOM .



7

Fig. 1. Local measurements infrastructure.

Fig. 2. SopCast packet size distribution.

Fig. 3. Flow graph between 2 peers.

Fig. 4. Traffic pattern during a video session between 2 peers.

Fig. 5. The SopCast buffer.

Fig. 6. The SopCast player at the Peer side (left); The window of the SP
interface (right).

Fig. 7. Upload and download rates of the peers at 17 of the 70 PlanetLab
nodes.

Fig. 8. Parent’s upload rate per peer when the network size is 70. u represents
a parent and U represents a child of the parent.



8

0

100000

200000

300000

400000

500000

600000

700000

800000

0 500 1000 1500 2000 2500 3000

Seconds

B
yt

es

Video download rate Playback Rate

0

100000

200000

300000

400000

500000

600000

700000

800000

0 500 1000 1500 2000 2500 3000

Seconds

B
yt

es

Video download rate Playback Rate

Fig. 9. Download rate of the video packets.

Fig. 10. SopCast buffer content in bytes of node planetlab1.diku.dk.

Fig. 11. The overall video packet loss ratio during the whole trace.

Fig. 12. Start-up freezing time.

Fig. 13. The overall frame loss ratio during the whole trace.

Fig. 14. Objective MOS scores for the received videos.

Fig. 15. The video at different nodes.

Fig. 16. Distribution of zapping time.



9

Fig. 17. Subjective MOS scores.


