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Adaptive Real-Time Clustering Method for Dynamic Visual
Tracking of Very Flexible Wings
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Advancements in intelligent aircraft controller design, paired with increasingly �exible and
e�cient aircraft concepts, create the need for the development of novel (smart) adaptive sensing
suitable for aeroelastic state estimation. In contrast to rigid states, aeroelastic state estimation
requires more measurement points (displacements and forces) across the span to capture the
vibrational shapes of the wing undergoing excitations. A potentially universal and non-invasive
approach is visual tracking. However, many tracking methods require manual selection of
initial marker locations as the start of a tracking sequence. This study is part of a larger
study in the �eld of smart sensing and aims to cover the gap by investigating a robust machine
learning approach for unsupervised automatic labelling of visual markers. The method utilizes
fast DBSCAN and adaptive image segmentation pipeline with HSV colour �lter to extract and
label the marker centres under the presence of marker failure. A comparison is made with
Disjoint-set data structure for clustering of the data. The segmentation-clustering pipeline with
DBSCAN shows the capability to act as a visual tracking method on its own, capable of running
real-time at 250 fps on an image sequence of a single camera with a resolution of 1088 � 600
pixels. To increase the robustness against noise, a novel formulation of DBSCAN better suited
against noise, the inverse DBSCAN (DBSCAN�1), is proposed, allowing to cast the clustering
problem into noise �ltering problem with an additional MaxPts parameter. Furthermore,
observations are made regarding the frequency content of the image pixel intensities across
time, and how this can be utilized to estimate the natural frequency of the system and adjust
the segmentation-clustering pipeline with a sliding DFT (Discrete Fourier Transform).

Nomenclature

B„x 0; y0” = Kernel matrix O„:::” = Computational complexity
D = Dataset P„x; y” = Density distribution of particles (2D)
f „I„x; y”” = Filtering (sequence) operation p; q = Scatter points
fdilate„I„x; y”” = Dilate operation pn; qn = Scatter noise particles
ferode„I„x; y”” = Erode operation V1 = Wind tunnel �ow velocity
fg = Gust vane frequency w1; w2 = Class variance weights (Otsu)
fmor ph„I„x; y”” = Morphological operations (combined) Z� „pn” = � neighbourhood of noise points pn

fnorm = Global normalisation operation �g = Gust vane angle
G f „x; y” = Filtered image � = Radius of neighbouring points
I„x; y” = Input image �I = Mean of points in 2D image
MaxPts = DBSCAN�1 maximum points dense region �I = Standard deviation of points in 2D image
MinPts = DBSCAN minimum points dense region �2

w„�th” = Intra-class variance (Otsu)
N� „p” = � neighbourhood of points p �2

1 ; �2
2 = Class variances (Otsu)

N„x; y; t” = Random seed initialised noise mask �th = Threshold parameter
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Introduction

Visual modelFlexible AircraftIntelligent
Controller

Aeroelastic State
Estimation

(elastic states)

input

gust/turbulence
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[1088 � 600]

output

real-time
feedback

Figure 1 State estimation setup consisting of an intelligent controller, aircraft model, visual model and aeroelastic state
estimation using visual tracking. This study aims to contribute to the advancement in state estimation with the
dotted feedback loop.

In the context of aeroservoelastic control, monitoring the entire wingspan can be crucial for proper delegation of
control actions. This may involve installing many conventional accelerometers that are likely subject to noise and bias,

lack of space, certi�cation requirements and challenges associated with correct geometric placement. A smart sensing
approach is desired for these types of wing structures, that relies on novel types of sensors to provide feedback to an
intelligent controller.

A solution that can greatly reduce the complexity associated with hardware installation, and provide the �exibility
needed for using novel state estimation methods, is aeroelastic state estimation by visual methods. An illustration of
aeroelastic state estimation using visual data is shown in Fig. 1. Using visual information for observing deformations
has been successfully applied on wind tunnel models in early studies [1], and has also seen wide application in robot
manipulation [2]. However, in recent years, the capability in terms of on-board computation and camera quality has
immensely increased, while the hardware has become more compact [3, 4]. This opens the door for numerous embedded
applications using a camera as a sensor. In particular, fuselage-mounted camera systems can provide great advantages for
�exible aircraft systems, save costs associated with installation, certi�cation, and have the potential of being non-invasive
and universally applicable. More importantly, image data is a rich source of information; collected over a period of time,
it unlocks the opportunity to approach the state estimation from a new perspective using machine learning methods.
While many suitable tracking methods exist for marker detection, correctly labelling the initial markers in the visual
frame is still not a trivial task [5].

In this study, two machine learning methods are implemented for unsupervised clustering of marker labels, meaning
that they that do not require the number of clusters and initial guesses as input. The sequence of images is �ltered with
two image segmentation approaches to obtain a mask for clustering operations. A comparison is made between the
two machine learning methods, DBSCAN [6] and Disjoint-set data structure [7], and segmentation-clustering pipeline
is developed based on Hue-Saturation-Value (HSV) [8] and adaptive thresholding with Otsu’s method [9]. A novel
approach to DBSCAN is proposed, inverse DBSCAN (DBSCAN�1), were the clustering problem is reformulated into
noise �ltering problem and an additional MaxPts parameter is introduced in the formulation. The crux of DBSCAN�1

lies in isolating the group of desired clusters and classifying them as noise, i.e. points surrounded by too many other
points (�ltered by max MaxPts condition). Subsequently, the desired clusters of points are rejected as noise, while the
true noise in the data is identi�ed explicitly and removed from the dataset in a follow-up step.

To investigate the robustness of the method, the input images are subjected to Gaussian noise and both the nominal
DBSCAN as well as DBSCAN�1 are assessed in performance with less noise �ltering. It was observed that the proposed
method is capable of real-time tracking and achieving speeds of 250+ fps (frames-per-second), measured on image
sequence of a single camera with a resolution of 1088 � 600 pixels in a laboratory environment on standard Dell
Optiplex 7400 and 2.3 GHz Intel Core i5 16G MacBook. This makes the method suitable for on-line control applications.
The approach was tested on an image sequence of a �exible wing equipped with LED (light-emitting diode) markers,
undergoing oscillatory motion under gust excitations in the Open Jet Facility (OJF) wind tunnel of the Delft University
of Technology. In this experiment, the same gust generator was used as the one developed for OJF in a previous study
[10]. Furthermore, the e�ect of the frequency content is studied to investigate how this can be implemented in the
pipeline for adjusting the segmentation and clustering pipeline.
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I. Methodology
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Figure 2 Experimental setup with the wing facing the wind tunnel, equipped with visual markers.

The method proposed in this study describes a computer vision and machine learning approach composed of a
robust segmentation-clustering pipeline, that is capable of automatically detecting and extracting marker locations, and
dealing with temporary marker loss. An image �ltering pipeline (segmentation) is implemented consisting of HSV
�lter and the Otsu’s automatic thresholding method [9]. Two machine learning routines are then evaluated: (clustering)
DBSCAN [6] and Disjoint-set data structure [7]. The segmentation pipeline is used to extract the point data of the
markers and the clustering is used to correctly label the cluster centroids. The approach was tested on image sequence
of a �exible wing undergoing motion, equipped with active LED markers.

A. Segmentation
Segmentation approaches are generally focussed on �nding a �lter or a sequence of �lters f „I„x; y”” in order to

shape an input image I„x; y” to the desired output G f „x; y” by altering the pixel intensity values:

G f „x; y” = f „I„x; y”” fI„x; y” G f „x; y”

For a sequence of images, the process is a function of the number of frames and thus, implicitly, time [11]. When the
desired segments of the image contain colour information, a commonly applied technique is colour �ltering in the
HSV space. The main bene�t of processing in this colour space is that the image intensity and colour can be distinctly
separated. The method also has a wide use in video sequence processing and image extraction [8, 12].

1. HSV Filter
To separate the background from the markers, a HSV �ltering pipeline is used, composed of multiple �lters. First,

the image is segmented based on the colour temperature of distinct LED markers, based on distinct values of hue,
saturation and value, as shown in Fig. 2. The �lter is tuned to �nd the near optimal HSV values to minimize the noise in
the image. In Fig. 3 the result is show of such an operation.

The �gures, from left to right, show how the original image is �ltered based on its HSV values, obtaining a
Black-and-White (binary) (BW) colour-�ltered image. Then, default thresholding is applied to remove the scattered
noise from the light di�usion from LEDs and the remaining background. The result is a BW image, a binary mask with
distinct LEDs. Hereafter, contours of the shapes contained in the binary mask are extracted and the clustering can be
applied to identify individual markers. The contours extraction �lter is based on the Topological Structural Analysis
algorithm of binary images and shapes [13], where a border following technique is applied with the aid of topological
analysis of the contours of a border shape.

In Fig. 3, HSV operation is shown when the images are tracked in low lighting conditions. When lighting conditions
change, HSV �ltering operation may produce a noisy mask, meaning that aside from a distinct mask with LEDs,
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Figure 3 Result of a single HSV �ltering operation. The images are from left to right: original, HSV, Black-and-White
(binary) (BW) threshold image after colour �ltering.

additional scattered background pixels are present in the HSV (middle) image. Since this image is close to bimodal by
nature, in this study it was investigated how the bimodal Otsu’s thresholding can improve the segmentation with an
additional HSV �ltering step based on the image histogram. In Fig. 4, a simpli�ed schematic is shown of the HSV
segmentation and clustering pipeline.

Input
img

HSV-BW
img

Erode
Dilate

BW img
threshold

Extract
contours Cluster

Figure 4 Schematic of HSV �ltering, such that a BW image is obtained for subsequent clustering.

2. Morphological operations
HSV �lter alone may produce a noisy speckle masked image. A typical way to deal with this is by means of

morphological image transformations [14]. Morphological operation are, in general, useful, not only for removal of
global noise (e.g. Gaussian noise), but also for isolating and joining separate individual elements. A commonly used
cascaded operation is erode, followed by dilate, where the former erodes away pixels and pixel groups captured by a
certain kernel size, and the latter dilates and enlarges bright pixel groups. Both of these image transformations perform,
in essence, a convolution operation of image I„x; y” with kernel B„x 0; y0”. Erode operator performs a local min operation
with a kernel of desired size (e.g. 3 � 3), anchored at the centre. As the kernel slides over the image, the pixel value
under the anchor point is replaced by the min value of the region covered by the kernel B„x 0; y0”. Dilate operator works
according to the same principle, but performs a local max operation. The operations can be summarized as follows:

ferode„I„x; y”” = min
„x0;y0”2Bker

„I„x + x 0; y + y0”” (1)

fdilate„I„x; y”” = max
„x0;y0”2Bker

„I„x + x 0; y + y0”” (2)

and combined operation:
fmor ph„I„x; y”” = fdilate„ ferode„I„x; y””” (3)

For an appropriate kernel size, this will remove away noisy speckles surrounding and scattered around thresholded
shapes. In this study the kernel size was set to 2 � 2 pixels. The relevance and e�ect of morphological operations will
be further discussed in Section III.
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3. Thresholding
The thresholding strategy in image processing is essential for obtaining a good mask for DBSCAN clustering.

Variations of light and motion activity of the object make the task of obtaining good thresholding for live images
challenging [15]. A robust approach has to anticipate the variations in the pixel intensities to produce the best possible
mask. Several methods are possible; in this study, 3 approaches are investigated: using global unit normalisation,
baseline normalisation, adaptive global thresholding using Otsu’s method [9].

Global normalisation thresholding The global normalisation can be applied by converting the 3-channel RGB input
image to greyscale. Subsequently, the image can be scaled with the maximum value of the greyscale, depending on how
the greyscale is represented (0,1) or (0,255). Then, a single threshold can be applied to obtain a binary mask G„x; y”.
For an input image I„x; y”, this process can be represented as:

G„x; y” = fnorm„I„x; y”” (4)

G„x; y” =

(
1; I„x; y”norm � �th

0; I„x; y”norm < �th
(5)

where the I„x; y”norm can be computed using a simple scaling, or mean �I and standard deviation �I of the image:

I„x; y”norm =
I„x; y” � �I

�I
(6)

The downside of this approach is that it does not take into account the variations in pixel intensities throughout the
image sequence, that may have been in�uenced by changing light conditions and/or movement of the object being
tracked. The threshold parameter �th is, in this case, obtained and tailored for a single static image. The quality of the
thresholding then depends on the carefully chosen threshold parameter and predictability of the light variations. When
applied correctly to a continuous image sequence, in this particular application, an arbitrary thresholding routine should
be able to segment the foreground as moving object (high intensity) and detect background as static (low intensity).

Baseline thresholding In this approach, the baseline pixel intensities are taken into account of the nth image. The
�rst image is a good basis to obtain a suitable threshold parameter such that variations are taken into account from these
baseline values. This process can be represented similar to Eq. 5, but now the normalisation of nth sequential image is
done using:

„I„x; y”n”norm =
I„x; y”n � �In

�In

1
I„x; y”n=0

(7)

The downside of this approach is that the sensitivity to the threshold parameter increases, and the intensities lie closer
together. However, an o�set is maintained concerning the baseline in each image sequence.

Adaptive Otsu thresholding Otsu’s method is an automatic global thresholding method that tries to categorize an
image in two classes, background and foreground pixels [9, 16, 17]. It is well suited for images that have a bimodal grey
pixel intensity histogram. In the latter case, the histogram will show two distinct peaks and sharp separation between
them, where one peak is assumed to correspond to the bins of the background and the other to the foreground. The
threshold value is chosen such that the inter-class variance is minimized, which would suggest placing the threshold
value in the middle of the peaks. The minimisation to �nd a threshold value of �th can be represented as:

�2
w„�th” = w1„�th”�2

1 „�th” + w2„�th”�2
2 „�th” (8)

where the parameters w1; w2 and �2
1 ; �2

2 correspond to the probability and the variance of the two classes and can be
computed from the histograms [9].

The limitation of this method is the bimodality assumption, which may not hold for each image and its greyscale
image pair [18]. When the object is considerably smaller than the surrounding background, the histogram may not show
clear distinctions. Additionally, noise may a�ect the histogram representation. Variations of Otsu’s algorithm exist
which are capable of dealing with noisy images [16], however, in this regard HSV �ltering is responsible for �ltering out
most of the image noise, making the thresholding less complicated.
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B. Clustering approach
To tackle the problem of correctly detecting and clustering the markers, a machine learning approach is used. This

study implements and compares two machine learning methods for clustering, DBSCAN [6] and the Disjoint-set data
structure [7]. These algorithms were particularly suitable due to their unsupervised nature, namely (i) minimum needed
domain knowledge, (ii) ability to �nd clusters of varying size and (iii) ability to deal with noise (in case of DBSCAN).
The latter algorithm di�ers from the Disjoint-set data structure by its ability to deal with noise in the dataset and achieves
the goal at a signi�cantly lower computational cost (O„n log„n””). The two unsupervised clustering algorithms are
implemented in the marker recognition pipeline and are evaluated for performance in terms of speed and robustness.

In this study, it was crucial to apply an unsupervised clustering method. The reason was the periodic failure of
led markers installed on the wing. This is illustrated in Fig. 5. The experiment was designed to include robustness,
and a condition was tested were under high gust loads and wing oscillations, LEDs started to fail (going on and o�),
e�ectively losing certain markers whereby the number of markers (and thus cluster centres) varied over time Ænd across
experimental runs.

(a) Clustering of a complete set of mark-
ers.

(b) Clustering of an incomplete marker
set (LEDs are lost), but unsupervised
clustering is capable of �nding the
correct number of clusters.

(c) Clustering result from DBSCAN scan
(purple), and the Disjoint-set data
structure (yellow); the zoomed region
shows marker labels 1, 2 (lbl (1,2)).

Figure 5 Di�erence in mask obtained after thresholding of an incomplete (left) versus full (middle) set of markers (due
to periodic failure of LEDs), showing the necessity of unsupervised clustering. The red dots are contours of the
mask and blue is the centroid. The image on the right shows the result of clustering.

The main principle of DBSCAN is to identify and separate regions of high density from low density regions. At any
given point, p, density is measured within a circular radius � . A dense region of radius � from point p is a region that
contains at least a MinPts number of points. The latter two parameters are the main parameters of the algorithm. Given
a database D, the � neighbourhood, N� , of point p w.r.t. point q has the following form [6]:

N� „p” = q 2 jdist „p; q” (9)

This de�nition alone, when used naively, will fail to distinguish core points (points inside the cluster), border points
(points at the border of a cluster), and noise (a point not belonging to any cluster). The reason is that, generally, the �
neighbourhood of border points has much fewer points than the � neighbourhood of a core point. The problem arises
when the MinPts parameter is set to a low value to include the border points, which can cause noise to be included in
the cluster as well. To overcome this DBSCAN introduces the concept of density reachability. A point is said to be
Directly Density Reachable when the following two conditions hold:

p 2 N� „q” (10)
jN� „p” j � MinPts (core point condition) (11)

These conditions, thus, set a requirement for every point p in a cluster to be in the � neighbourhood of another point q in
this cluster. Additionally, the � neighbourhood of q, N� „q”, must have a minimum of MinPts, classifying it as a core
point. The method further introduces connectivity conditions for connecting N� of points and de�nes noise as a point
not belonging to any cluster in dataset D under the given conditions (Density-Reachability and connectivity) [6].

In Fig. 5c the result is shown of the clustering operations both for DBSCAN scan (purple) and Disjoint-set data
structure (yellow).
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C. Inverse DBSCAN: DBSCAN�1 for noise detection of sparse datasets
While DBSCAN allows explicit de�nition for noise in the data (points not meeting the core points condition), the

success in rejecting the noise is closely tied to the correct selection of parameters and the quality of the thresholded
input image. The clustering becomes harder when high-density noise is introduced to the data. Noise can have various
sources, e.g. interference in hardware signal, poor illumination or, simply, poor pre-�ltering and thresholding of the
input image. In particular for sparse datasets, under such conditions, DBSCAN is known to fail to identify the desired
clusters [19]. This arises from the fact that, for a high density of scattered noise, the probability increases such that
these noise particles will meet the core point criteria for a given DBSCAN parameter set.

To remedy this problem, a novel formulation of DBSCAN is proposed, the inverse DBSCAN (DBSCAN�1). In
this new model, a di�erent perspective on the clustering problem is needed: instead of trying to reject the noise, it
is proposed to actively look for noise. Hence, DBSCAN�1 tries to explicitly detect noise, and clustering becomes an
implicit task. The proposed approach would be to utilise this formulation of DBSCAN as a noise removal �lter, then
apply nominal DBSCAN again on clean image domain. To enable this approach, rede�nition of DBSCAN is needed
and an additional parameter MaxPts is introduced. For a given database D, the � neighbourhood of noise particles pn
and qn is de�ned as:

Z� „pn” = qn 2 jdist „pn; qn” (12)

DBSCAN in its original form was intended for obtaining clusters for large datasets and relatively low noise, hence
no limitation is set on the maximum number of clusters. In the de�nition of DBSCAN�1 we introduce an additional
parameter MaxPts which sets a cap on the allowable number of points in the � neighbourhood of noise pn, Z� . The
noise particle is directly reachable from another cluster of noise particle or particles when the following holds:

pn 2 Z� „qn” (13)
MaxPts � jZ� „pn” j � MinPts (core noise particle condition) (14)

To allow this, two conditions must be placed on the DBSCAN�1: (i) MinPts must be set to 1 to capture individual noise
particles, (ii) � must be at least the standard deviation of the noise density, �n (�xn and �yn ) in the spatial domain in
terms of „x; y” coordinates for zero mean distribution, and (iii) MaxPts must count less points than � neighbourhood of
desired cluster points, N� „q”. The latter is directly related to the standard deviation, �cluster (�xclust er and �yclust er ), of
„x; y” coordinates of a dense cluster and can be chosen based on a priori analysis of the input data set. These conditions
dictate that point noise particle pn does not belong to the � neighbourhood of true clusters N� , but to Z� :

(
pn 2 Z�

pn < N�
�

8>>>>><
>>>>>:

MinPts = 1

MaxPts <
q

„�xclust er + �yclust er ”

� �
q

„�xn + �yn ”

Density Reachability parameter constraints

A necessary condition for this is that, if a probability distribution of points is de�ned on 2D image plane in dataset D as
P„x; y” =

°
D , the density distribution of desired particles, P„x; y”cluster , is higher that the density distribution of the

noise, Pn„x; y”, otherwise the true clusters will dissolve in the noise:

P„x; y”n < P„x; y”cluster (15)

This is, however, a reasonable condition as otherwise, the clustering will not make sense for the given condition of
dataset D. What this clustering model will do in essence, is detect the group of desired clusters as points surrounded by
too many other points (�ltered by max MaxPts conditions) and reject them as noise. The actual noise particles will
meet the core noise particle condition of DBSCAN�1 as they do not have a distinct concentrated distribution. A visual
representation of this process can be found in the results section.

II. Experimental Setup and Data Collection
The experimental data was collected from camera observations of a �exible wing undergoing gust excitations

equipped with active (LED) markers. The study was set up as a larger study on smart sensing methods for control of
�exible aircraft.
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Figure 6 The Open Jet Facility (OJF) located at the Delft University of Technology [20]; the gust generator is mounted in
front of the test section.

A. Apparatus
The experiment was conducted in the Open Jet Facility (OJF) at the Delft University of Technology [20]. The OJF,

as shown in Fig. 6, is a closed-circuit low-speed wind tunnel, driven by a 500 KW electric engine, with an octagonal test
section of 285�285 cm2. The maximum �ow velocity available in the wind tunnel is 35 m/s, however, the theoretical
performance limit is around 30 m/s.

To introduce a gust for the dynamic motion conditions, a gust generator is installed in the test section composed
of two foam wings. The gust generator is servo-controlled and allows actuation of the gust vanes at 5-7 Hz for gust
vane angle of �g <= �15�, and 10-15 Hz for vane angles �g <= �10�. The gust generator can produce both harmonic,
as well as sinusoid signals of varying frequency. A Polytech PSV-500 laser vibrometer system [21] with a resolution
(RMS) of 200 µm/s was used to measure the dynamic response of the wing to the aerodynamic loads introduced by the
gust onsets. It was con�gured to measure 8 markers as shown in Fig. 7a, from a total of 16 LED markers placed on the
wing. Since the laser allowed for measurement of only a single point for each run, each run would be repeated 8 times to
reconstruct the displacement �eld of the wing. The system was con�gured for a sampling rate of 400 Hz.

1. Wing model and motion conditions
The wing used in the experiment was a forward swept tapered wing, built of glass �bre reinforced epoxy material,

referred to as the Allegra wing. The design of the wing allows for large tip displacements, up to 20% for 10� of Angle of
Attack (AoA) and 50 m/s �ow velocity [22]. The wing was clamped on one-side on a sturdy table under a �xed angle of
attack of 4�. Detailed information about the wing can be found in Appendix A.

The wing was equipped with 16 LED markers. Each LED marker consisted of a 3 sub-LED units, providing 3
distinct bright light sources per marker. In the experiment a 1-cosine gust signal and a frequency sweep signal were
used. The data collected for this particular study contained the following runs, as shown in Table 1:

Table 1 Flow and motion conditions in the wind tunnel collected for the image dataset in terms of number of images and
gusts observed. The �ow velocity Vinf of the wind tunnel, gust vane frequency fg and gust vane angle �g. In R3 a
sweep signal was applied and no discrete gust.

Run ID Frequency [Hz] Vane angle [�] Flow velocity [m/s] N images [-] N gusts [-]

R1 5 10. 30 469 3
R2 5 5 30 469 3
R3 5 inf 30 574 -
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(a) View of the wing and the active
marker locations tracked by the Poly-
tech measurement system.

(b) Hardware setup for data collection and live tracking with a Jetson
TX2

Figure 7 Experimental Setup

The motion conditions were selected such that it produced a high dynamic response from the wing and thus more
pixel activity in the image. The gust vane frequency of 5 Hz was close to the wing’s natural frequency at the given mass
con�guration. Each recoding run R1 and R2 spans observations from 3 gust inputs. The run R3 did not have a discrete
gust, but a sweep signal. The purpose of R2 run was to act as a control against the results of R1. Run R3 was selected
since it was designed to show marker loss (LEDs on/o�) under high dynamic activity.

2. Dataset collection
The overview of the hardware used for dataset collection is shown in Fig. 7b. The dataset was recorded with two

GigE acA1300-75gc ethernet Basler cameras with 1300 CMOS 1.3 megapixel (280�1024 pixels) sensor [23]. The
cameras were equipped with Computar 12 mm F1.4 2/3� P IRIS lenses [24] and were positioned in a stereo setup to
observe the markers from two viewpoints. The resulting image was cropped to 1088�600 pixel and streamed in 3
channel RGB format synchronously via real-time PTP triggering protocol over the Ethernet. A Power over Ethernet
(PoE) smart switch GS110TP from NETGEAR, provided both the power, 3.5 W (per camera unit), as well as the GigE
capability to stream the images up to 140 Frames Per Second (FPS).

The processing power and image capture was delivered by an embedded computing system from NVIDIA, the Jetson
TX2, equipped with NVIDIA Pascal architecture with 256 NVIDIA CUDA cores and 1.3 TFLOPS (FP16), Dual-core
Denver 2 64-bit CPU and quad-core ARM A57 complex [25]. The Jetson TX2 is designed for embedded applications
using Arti�cial Intelligence (AI) and Computer Vision (CV), and operates on Ubuntu 16.04 LTS allowing �exibility in
code deployment. The application developed for this study was programmed in C++ and deployed on the device. For
the development the Basler C++ Pylon API [23] and OpenCV open-source computer vision library [26]. The image and
tracking data were extracted and plotted in using the OpenCV-Matlab parsing interface tmkhoyan/cvyamlParser [27].

Code development, testing and assessment was done using standard Dell Optiplex 7400 and 2.3 GHz In-
tel Core i5 16G MacBook and the Jetson TX2. The code, dataset and tolls developed are available under
tmkhoyan/adaptiveClusteringTracker [28].

3. Noise model
To evaluate the real-life performance of the method a common noise model is used. The input images are injected

with an image independent Gaussian noise and the robustness of the colour �ltering, thresholding and clustering pipeline
is investigated against possible sensor noise, transmission and hardware related issues and poor illumination. Then, the
tracking quality of the pipeline is accessed on image sequences from R1 and R3, where R2 is used as a reference. The
probability density function of the Gaussian noise model is as follows:

I„z” =
1

�
p

2�
e

„z��”2

2�2 (16)
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In this model, z represents the greyscale value. The parameters used for the noise model are a mean of � = 0 and a
standard deviation of � = 0:5. The grey values produced from the probability distribution are scaled to RGB range
(0-255) and injected in the 3-channels of the input image I„x; y” producing additive sum of new noise input image
J„x; y”. The random seed is initialized with the CPU clock for each image input, thus resulting in dynamic noisy image
input sequence at each nth frame:

Inoise„x; y”n = I„x; y”n + N„x; y; t” (17)

III. Results and Discussion
The tracking result with the full clustering pipeline on run R1 and R3 were performed on a sequence of � 468 images

from camera 1 (Leading edge). R2 was used as the control for R1 and showed a similar result. R3 was mainly used to
asses the ability of the tracking pipeline to deal with marker loss. In the nominal runs, � = 20 pix and reachability
parameter of MinPts = 2 were used. This set of parameters provided the best cluster detection considering preceding
segmentation �lters. Speeds of 250+ fps were measured on image sequence of a single camera with a resolution of
1088 � 600 pixels using standard Dell Optiplex 7400, 2.3 GHz Intel Core i5 16G MacBook and the Jetson TX2.

A. Measured wing response
The laser vibrometer measurement results from the experimental runs R1 and R3 are collected in Figures 8. These

results are an indication of the physical motion behind the image sequence and are subsequently compared to tracking
results. From the plots, R2 shows a similar response hence it is not included in the set. The time history signals
correspond to marker location 1 (as shown in Fig. 7a). Figure 8a show the response of the wing to a single gust
input; Fig. 8b shows the response to a sweep signal. The blue curve corresponds to the 400 Hz measurement by
the laser vibrometer, the red line is a spline model of this response sampled at the capture intervals of CAM1 (leading edge).

0 0.5 1 1.5 2 2.5 3 3.5 4

time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

tip
 d

is
pl

ac
em

en
t [

m
]

10 -3 Measured tip displacement gust f=5,g=10,V=30ms
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(a) Measurement with 1-cos gust signal: gust vane
angle �g = 10�, gust frequency fg = 5 Hz and
�ow velocity V = 30 m/s.

0 5 10 15 20 25 30

time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

tip
 d

is
pl

ac
em

en
t [

m
]

Measured tip displacement sweep g=10, V=30ms 

400Hz
40Hz (img samples)

(b) Measurement with sweep signal: gust vane an-
gle �g = 10�, gust frequency fg = inf Hz and
�ow velocity V = 30 m/s.

Figure 8 Spline model of the laser measured (400 Hz) tip displacement of marker ID[1] sampled at capture intervals of
Cam1 (� 40 Hz). From runs with discrete gust and sweep signals.

Looking at the results from Fig. 9, the tracking pipeline shows the ability to follow the motion of the wing and
correctly cluster the markers. This is also con�rmed by looking at the output of the tracking in terms of pixel „x; y”
locations in the images, shown in Fig. 10a. The plots show the time traces for the detected markers and 3 occurrences
of decaying sinusoidal responses can be observed from the output. During the image sequence exactly 3 gusts were
introduced to the wing that produced a measurement as shown in Fig. 8 for a single gust. It suggests, thus, that the
tracking can be used to observe the motion of the wing. Looking at R3 results in Fig. 9, in a bottom row it can be seen
how some markers are lost, but DBSCAN is able to correctly cluster the markers without supervision in terms of a
number of clusters.
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Dilate

BW img
threshold

Extract
contours DBSCAN

Lost markers

Figure 9 Tracking sequence on input images from run R1 (upper row) and R3 lower row. The dotted outline shows the
initial contour at baseline de�ected shape before the gusts hit the wing. The tracking pipeline used is shown in
the last row.
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(a) Combined 3D view and time history with marker de�ec-
tions in image y coordinates.
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(b) Relative de�ections in y image coordinates with baseline
substracted.

Figure 10 Time series of marker-y de�ections in the image coordinates across 498 image sequences, as a result of gust
excitations from run R1.
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B. Assessment of DBSCAN parameters
Figure 11 shows the sensitivity of the MaxPts parameter on the tracking result. When the parameter is set to 3,

dictating that the Direct Density Reachability of core points needs to contain a neighbourhood of at least 3 core points,
the markers 1 and 10 fail to meet these criteria and are no longer score points. The shapes (dataset D) in the extracted
binary mask on which the clustering operation is done, are in�uenced by the motion of the wing and the result of
morphological �lters (erode, dilate) performed after HSV �ltering. As a result, at a given time instance, the 3 sub-LED
units can be clotted together in one or two dots instead of 3, hence never meeting the core points condition. It is clearly
seen how the cluster is found again once the units become more distinct. It can be seen that this is not happening when
the MaxPts parameter is chosen as 2, as shown in Fig. 9, for the reasons explained above.

Figure 11 Sensitivity of DBSCAN parameters. Snapshot of two frames from sequence R1, the frames are � 0:025 seconds
apart. The parameters are: � = 20; MinPts = 3.

C. Evaluation of robustness against noise
The runs R1 and R3 were injected with Gaussian noise (� = 0 and standard deviation of � = 0:5), as explained in

the previous section, and the performance of the tracking was evaluated. In Fig. 12 a sequence is shown for tracking of
frames 0, 50 and 100. The tracking pipeline used is shown in the bottom row. The colour codes correspond to the
stepwise operation performed in the pipeline, throughout the sequence (e.g. green row is HSV �ltering operation).

As seen, the HSV �lter combined with the morphological operations (erode and dilate) is able to cope well with the
Gaussian noise. The morphological operations together with the HSV �lter are in fact acting as a complex de-noising
�lter passing a clean output to DBSCAN. DBSCAN is then able to produce a robust result on the thresholded binary
image, despite the high level of noise injected into the input. The results are of the same quality as shown in Fig. 9. For
the run R3, a similar result was obtained and can be observed in Appendix B, Fig. 17.

D. DBSCAN�1 in the presence of noise without morphological operations
In this analysis, the robustness of DBSCAN was investigated without additional de-noising �lters. The same

experiment was run to see how well DBSCAN would fare when exposed to more noise and less �ltering steps, and in
particular when morphological operations were removed. The latter step showed how well it was able to �lter out the
remnants of Gaussian noise after HSV operation (row 3), marked as the blue �ltering block in Fig. 12. It is therefore
interesting to examine what happens when the morphological �lter block is removed. The result with the nominal
DBSCAN and same parameters (� = 20 pix, MinPts = 2) is shown in Fig. 13. Looking at the �gure, the most important
change in the pipeline is disabling the morphological operations (erode and dilate) shown in transparent grey. As a
result of this, the thresholded binary image contains noisy speckles which are detected as core points in DBSCAN. It
can be seen that in the third column (red colour code) the clustering fails to properly detect the markers. Instead, a large
number of clusters is detected. This is clearly illustrated in the rightmost plot where each point is identi�ed with a
numeric label belonging to the cluster ID, where magenta labels represent valid clusters and grey (-1) labels � outliers
or noise. This can be partly remedied by further tuning of the DBSCAN parameters, however, the additional noise in the
threshold image will continue to produce problems for correct detection of the remainder of the markers.

A better approach would be to use DBSCAN clustering di�erently. In the section I.C a methodology was proposed
to approach the DBSCAN clustering from a novel viewpoint. DBSCAN is known for its ability to discard points that are
not part of a cluster as noise. Instead of looking for cluster centres, it was proposed to use DBSCAN in an inverse
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fashion, for detection of noise (non-core points). The approach is to put the MinPts = 1, allowing to maximize the
number of points forming a cluster and tune instead of the � and MaxPts to capture the desired clusters. The result of
this analysis with � = 20, MinPts = 1 and MaxPts = 8 is shown in Fig. 14. The input to DBSCAN is the same, except,
as seen in the last row, the inverse DBSCAN �lter (Cyan block) is applied. As a result, as shown in the last row, the
desired clusters (markers) are identi�ed as noise (obtaining a grey -1 ID) and the rest of the points are identi�ed as valid
clusters, while the nominal DBSCAN (Fig. 13) was not able to deal with this without the additional de-noising �lter.
Thus, DBSCAN�1 has an advantage over the nominal DBSCAN in this scenario.

In essence, the DBSCAN�1 approach is actively looking for noise and discards the clusters, subsequently, the clusters
can be retrieved by an additional step applying nominal DBSCAN again. For this, a new parameter, MaxPts, was
introduced putting a cap on the number of reachable core points within a cluster. Since noise will be randomly and
densely scattered together, the probability is high (for most noise models) that noise particles will be surrounded with a
dense number of other noise particles within an arbitrary � neighbourhood. It is important to note that this condition
will hold when the MinPts = 1, such that the number of points forming a cluster is maximized.

Figure 12 Tracking sequence on input images (0,50,100) from run R1 with injected Gaussian noise (� = 0 and standard
deviation of � = 0:5). From top to bottom, the rows represent: input+noise image (gray), HSV �ltering (green),
threshold image (blue) and clustering result (red). The colour codes correspond to the tracking pipeline (last
row) and the dotted outline shows the initial contour at baseline de�ected shape before the gusts hit the wing.
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