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Adaptive Critic Control For Aircraft

Lateral-Directional Dynamics

Imrul K. Ashraf∗, E. van Kampen†

Delft University of Technology, PO Box 5058, 2600 GB Delft, The Netherlands

Loss of control-in flight (LOC-I) is one of the causes of catastrophic aircraft accidents.
Fault-tolerant flight control (FTFC) systems can prevent LOC-I and recover aircraft from
LOC-I precursors. One group of promising methods for developing Fault-Tolerant Con-
trol (FTC) system is the Adaptive Critic Designs (ACD). Recently one ACD algorithm,
called value function based single network adaptive critic (J-SNAC), has emerged and it
promises to make applications of ACD more practical by reducing the required amount of
computations. This paper discusses the implementation of this framework for the design of
a lateral-directional flight controller. The proposed flight controller is trained to perform
coordinated-turns with an F16 simulation model. The trained controller was evaluated
for tracking two different heading command signals, robustness against sensor noises and
partial failure of the ailerons. The controller is found to be effective for the considered
assessments.

Nomenclature

ACD Adaptive Critic Designs
ADP Approximate Dynamic Programming
CE Control Effectiveness
FA Function Approximator
FCS Flight Control System
H.O.T Higher Order Terms
J-SNAC Value Function Based Single Network Adaptive Critic
LOC-I Loss Of Control-In Flight
PI Performance Index
PID ProportionalIntegralDerivative
RL Reinforcement Learning
RLS Recurssive Least Square
RMS Root-Mean-Square
TD Temporal Difference

I. Introduction

Loss of control is one of the causes of catastrophic aircraft accidents.1–4 Enhanced dynamics control
strategies, that can accommodate onboard system failures and persist in adverse operational environment,2

can be employed to diminish this cause. “Adaptive Critic Design” (ACD) algorithms are a group of such
strategies.5–11 These are a class of Reinforcement Learning (RL) algorithms, that uses function approxima-

tors (FA) and Approximate Dynamic Programming (ADP) technique to learn solutions to complex control
problems autonomously. Their learning capability may enable Flight Control Systems (FCS) to adapt in
response to unanticipated changes in the aircraft sub-systems or operating conditions. However, due to lack
of maturity, these algorithms are yet to be implemented in FCS.
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Until now several RL Flight Controllers have been proposed with different ACD frameworks.12–21 One
limitation of these controllers is that they have an exorbitant computational requirement. This requirement
comes from learning two different functions with separate function approximation structures. Utilizing one of
the modern ACD architectures,22–25 can circumvent the computational burden. These modern frameworks
make half of the required computation in ACD algorithms superfluous by eliminating one of the function
to be learned. Furthermore, most of the research mentioned above have focused their work on the control
of aircraft longitudinal dynamics. Control of the lateral-directional flight dynamics with ACD would reveal
the efficacy of these algorithms to control the coupled roll and yaw motions and thus facilitating their
implementation in future FCS.

This article contributes by addressing the mentioned limitations of the previous studies. It focuses on
the theoretical development and performance analyses of a lateral-directional flight controller designed with
Value Function based Single Network Adaptive Critic (J-SNAC) algorithm. The organization of this article
is as follows. Section II introduces the preliminaries to rest of the article. Next, Section III presents the
objective of the proposed controller and its design. Then Section IV gives the controller training schedule
and performance evaluation strategies. Subsequently, Section V presents the results and discussions from
the training and evaluation processes. Finally, Section VI concludes the article with the implications of this
paper and future research directions.

II. Preliminaries

This section presents the preliminaries to the development of lateral-directional flight control law with the
J-SNAC algorithm. Firstly, it describes the lateral-directional flight dynamics. Next, it presents the Infinite

Horizon Discounted Return Problem and few essential concepts required to solve this problem. Finally, it
provides an overview of the J-SNAC algorithm.

A. Lateral-Directional Flight Dynamics

The objective of this work is to synthesize a reinforcement learning controller to drive aircraft heading angle
 , roll angle �, side slip angle �, roll rate p and yaw rate r (see Figure 1 for the definitions) by manipulating
of the aileron �a and rudder �r deflections. The system of equations that governs these dynamic states is as
follows,

 ̇ = 1
cos � (q sin�+ r cos�)

�̇ = p+ tan �(q sin�+ r cos�)

�̇ = Y
m + p sin�� r cos�+ g

V cos� sin� cos � + sin �
V

�
g cos� sin � � g sin� cos� cos � + T cos�

m

�

ṗ = 1
IxxIzz�I2

xz

�
IzzL+ IxzN + (Ixz(Ixx � Iyy + Izz))pq + (Izz(Iyy � Izz) � I2

xz)qr
�

ṙ = 1
IxxIzz�I2

xz

�
IxzL+ IxxN � (Ixz(Ixx � Iyy + Izz))qr + (Ixx(Ixx � Iyy) � I2

xz)pq
�

(1)

The dynamics of the lateral-directional state variables are coupled with longitudinal state variables (e.g., the
involvement of airspeed V , body pitch rate q, pitch angle � and angle of attack � in Eq. 1). The aerodynamic
forces and moments that influences the lateral-directional dynamics most are side-force Y , rolling moment L
and yaw moment N . These forces and moments depend on the Mach number, aerodynamic angles (� and �)
and deflections of the aerodynamic surfaces (�a, �e and �r). Next to these force and moments, gravitational
attraction g influences the lateral-directional dynamics. Last but not least, the state variables are dependent
on aircraft inertial properties, i.e., mass m, and mass moment of inertia Ixx, Iyy, Izz and Ixz.

This work assumes that airspeed and altitude controller are in-place so that the cross-coupling between
longitudinal and lateral-directional state variables are negligible. Additionally, the effects of thrust T on
side-slip dynamics �̇ is considered to be weak.

B. In�nite Horizon Discounted Return Problem

Reinforcement Learning (RL) algorithms are a group of data-driven approaches to solving optimal control
problems.10, 26 The type of optimal control problem considered for the development of flight controller is
called “Infinite Horizon Discounted Return Problem”.22 This problem is defined as follows.
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(a) Front view
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(b) Left view
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V� 

r

(c) Top view

Figure 1. Definition of aircraft state variables with body reference frame F b and geodetical reference frame
F g.

Given a continuous-time-nonlinear system,

ẋ(t) = f [x(t);u(t)] (2)

with x 2 X � Rn being the states, u 2 U � Rm being the control inputs. An associated one-step-control
performance for this system is given by the reward function r(t),

r(t) = �[x(t);u(t)] (3)

The objective is to find a state feedback control law,

u(t) = h[x(t)] (4)

such that the following performance measure is maximized for any initial state x(t0) 2 X.

R[x(t)] =

Z 1

t
e� s�t

� �[x(s);u(s)]ds (5)

In Eq. (5), R[x(t)] is the return of the state x and � is the time constant to discount future rewards.

C. Value and Policy Functions

ACD compute solutions to control problems (i.e. optimal control policy) through the optimal value function.
Below are definitions of policy function, value function and their optimal forms.

A policy h(x) is defined as the stationary mapping of states to control actions,

h(x) : x ! u; 8x 2 X (6)

The stationary mapping of return R(x) from each state x 2 X for a given control policy h(x) is defined
as the value function V h(x),

V h(x) : x ! R(x); 8x 2 X; u(t) = h[x(t)] (7)

The optimal value function V �(x) is that corresponds to the optimal control policy h�(x). It is defined
as following,

V �(x) =
R1
t e� s�t

� �[x(s); h�[x(s)]]ds

= maxu[t;1)

hR1
t e� s�t

� �[x(s);u(s)ds
i (8)
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Where u[t;1) is the time course of u(s) 2 U for t � s < 1. According to the principle of optimality,27

at time t, the optimal value function satisfies following self-consistency property.22

1

�
V �(x) = max

u(t)2U

�
�[x(t);u(t)] +

@V �(x)

@x
f [x(t);u(t)]

�
(9)

Eq. (9) presents the Hamilton-Jacobi-Bellman (HJB) equation for the Infinite Horizon Discounted Return
problem. The optimal policy consists of actions that maximize the right-hand side of the HJB equation, i.e.,

u�(t) = h�[x(t)] = arg max
u2U

�
�[x(t);u] +

@V �(x)

@x
f [x(t);u]

�
(10)

D. Policy Evaluation and Improvement

Policy Evaluation and Policy Improvement are two interactive processes through which ACD algorithms learn
the optimal value and policy function. Below are descriptions of policy evaluation and policy improvement
processes in J-SNAC algorithms. Detailed descriptions of these processes can be found in22 for complete and
their derivation.

1. Policy Evaluation

Policy Evaluation is the process of estimating the value function V h(x) corresponding to the policy h(x).
Given, a parametric function V̂ (x(t); w) that approximates the V h(x), with w being a set of function
approximator parameters. When the estimated value function V̂ (x(t)) is a equivalent to V h(x) , it satisfies
following consistency condition.

V̇ h(x(t)) =
1

�
V h(x(t)) � r(t) (11)

When the consistency condition is not satisfied, the disparity between the predicted and the real function
can be reduced by minimizing the Temporal Difference (TD) error �(t).

�(t) � r(t) �
1

�
V̂ (t) +

˙̂V (t) (12)

TD error diminishes when the loss function Ec(t) is minimized by adjusting the parameters of the value
function approximator.

Ec(t) =
1

2
�2(t) (13)

One approach to adapting the function approximator is to utilize the TD(0) algorithm, where parameters
are adjusted with the following gradient estimate.

@Ec(t)
@wi

= ��(t)
1

�
@V̂ (t)
@wi

(14)

However, further improvement in the learning performance can be made by adding eligibility traces in the
parameter update law (TD(�) algorithm). Eligibility traces smoothen the descending gradient and distributes
the credits of receiving rewards to the visited states according to their the recency of visits. The weight
update law with eligibility trace is given by,

wi = wi � �(t)�(t)ei

ėi(t) = � 1
�ei(t) + @V̂ (x(t);w)

@wi

(15)

Where �(t) is a variable learning rate, and 0 < � � � is the time constant of the eligibility trace.
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2. Policy Improvement

Policy improvement is the process of improving the policy h(x) by making the policy greedy with respect
to the current estimate of the value function V h(x). This process entails searching for value function
optimizing actions (greedy actions). When the system dynamics ẋ is affine-in-input (see Eq. (16)) and the
reward function �(x;u) is convex with respect to the action u, the searching operation has a unique solution
and it can be expressed in a closed form function.22, 23, 25, 28

ẋ(t) = f [x(t)] + g[x(t)]u(t) (16)

Assuming that reward function can be separated into state dependent �x(x) (defined to encompass the
control objective) and action dependent �u(u) parts (defined to engrave physical limits and/or learning
strategy). The reward function can be expressed as,

�(x;u) = �x(x) �
mX

i=1

�ui(ui) (17)

From the definition of optimal policy in Eq. (10), an action is said to be greedy if it satisfies,

0 = @
@u

h
�[x(t);u] + @V �(x)

@x f [x(t);u(t)]
i

= @
@u

h
�(x(t);u) + @V �(x)

@x (f [x(t)] + g[x(t)]u)
i

= ��0
ui(ui) + @V �(x)

@x g(x(t)) (i = 1; � � � ;m)

(18)

From this derivation, the closed form function for greedy policy (named as the actor) is given as,

u(t) = �0�1
u

�
@V �(x)

@x
g[x(t)]

�
(19)

As per Eq. (19), the computation of greedy actions requires an estimate of Control Effectiveness (CE)
parameters and the co-states.

E. Value Function Based Single Network Adaptive Critic

Figure 2 presents a pictorial depiction of the Value Function Based Single Network Adaptive Critic (J-SNAC)
algorithm. It solves infinite horizon discounted return problem defined for an input-affine system, forward
in time. It consists of five subsystems, namely the critic, the plant model, the reward function, the action
modifier, and the actor. The derivation of this algorithm can be found in.22

1. The Critic

The critic learns the optimal value function V �(x) and reads out the state values V (x) and the co-state-
values @V (x)=@x to other subsystems of the controller. The critic system uses a TD(�) algorithm to learn
the optimal value function. It reads out the state value from the learned function and calculates co-states
by performing backpropagation on the approximated function.

In this work Normalized Radial Basis Function (NRBF) network22, 29, 30 is used for the critic. The choice
of this parametric structure is motivated by its ability to alter the estimated function in a local region of the
state-space without altering the global shape. Assuming K basis functions in the network, output V from
the NRBF structure for a given input x is given by

V (x; a) =
PK
k=1 akvk(x)

vk(x) = ukPK
l=0 ul(x)

uk(x) = ekrTk (x�ck)k

(20)

Where ak, ck and rk are the amplitude, location and spread of the kth basis function.
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2. The Reward Function

The reward function computes the one step performance of the controller. It is a user defined function
to encapsulate the control objective and physical constraints. J-SNAC algorithm assumes that the reward
function is action-dependent, i.e., r(x;u) and convex with respect to the action u.

3. Action modifier

-

+

+

-+
�

�

Actor
Critic

P lant
Model

Action
Modifier

Reward
Function

1
�

rt

rt

x(t)
V (t)

_V (t)

r(t)

�(t)

un(t)

rxV (x)

ruf(x; u)

u(t)

em(t)

Figure 2. J-SNAC control algorithm. At time t, x(t) is the
state measurements, u(t) is the action to be applied, V (t) is
value of the state x, r(t) is the reward for being in state x
and applying action u, un(t) is an additive noise signal, �(t) is
the temporal difference, f(x; u) is the system dynamics, and
∇ is system/operator to calculate partial derivatives (e.g.
∇tx is the partial derivatives of x with respect to t.)

To learn a stationary, near-optimal value func-
tion and to estimate the control effectiveness
parameters, the action applied by the actor
needs to excite the system-to-be controlled per-
sistently. This excitation signal is called explo-
ration action signal. J-SNAC uses a filtered and
modulated noise signal as its excitation signal22

and it is generated with the following system of
equations.

un(t) = �(t)n(t)

�nṅ(t) = �n(t) + N(t)

�(t) = �0 min
h
1;max

h
0; rmax�V (t)

rmax�rmin

ii

(21)
Where, �0 is the maximum perturbing ac-

tion, N(t) is a zero-mean Gaussian noise signal,
V (t) is the estimated value of the state at time t,
rmax and rmin are the maximum and minimum
value of expected rewards r(t).

4. The Plant Model

The plant model estimates of the Control Ef-

fectiveness (CE). In this work, CE is ap-
proximated incrementally with Recursive Least
Square (RLS) estimator.31, 32 The central idea
in this estimation process is to linearize the
plant locally in time and space and use sampled
input-output data to estimate the parameters of
the linearized plant.

Given a continuous-time nonlinear system
(e.g., Eq. (2)), it can be linearized around a
time t0 using Taylor series expansion,

ẋ(t) = ẋ(t0)+
@f(x(t); u(t))

@x(t)

����
x(t0);u(t0)

(x(t)�x(t0))+
@f(x(t); u(t))

@u(t)

����
x(t0);u(t0)

(u(t)�u(t0))+H.O.T

(22)
Truncating the expansion up-to linear terms and rewriting the terms (ẋ(t)� ẋ(t0)), (x(t)�x(t0)), (u(t)�

u(t0)), @f(x(t);u(t))
@x(t)

���
x(t0);u(t0)

, @f(x(t);u(t))
@u(t)

���
x(t0);u(t0)

as ∆ẋ(t), ∆x(t), ∆u(t), F [x(t0); u(t0)], G[x(t0); u(t0)]

respectively, following linear system can be approximated,

∆ẋ(t) � F [x(t0); u(t0)]∆x+G[x(t0); u(t0)]∆u (23)

Assuming that states and actions are sampled at a fast rate, the linearized drift dynamics F [x(t0); u(t0)]
and control effectiveness G[x(t0); u(t0)] can be estimated with an RLS estimator.33 The system of equations
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for the RLS estimator is as follows,

∆ˆ̇x(t) = X(t)T Θ̂(t� 1)

e(t) = ∆ẋ(t) � ∆ˆ̇x(t)

Θ̂(t) = Θ̂(t� 1) +K(t)e(t)

K(t) = Q(t)X(t)

Q(t) = P (t�1)
Λ+X(t)TP (t�1)X(t)

P (t) = 1
Λ

h
P (t� 1) � P (t�1)X(t)X(t)TP (t�1)

Λ+X(t)P (t�1)X(t)T

i

(24)

Where ∆ˆ̇x(t) is the estimation of the incremental change in state rate ∆ẋ(t), X is the regression vector
[∆x ∆u]T , Θ̂(t) is the concatenated matrix of estimated drift dynamics and control effectiveness [F̂T ĜT ]T

at time t, K is the estimator gain, Q is the innovation matrix, P is the estimator covariance matrix and
finally Λ 2 [0; 1] is the data forgetting factor of the estimator.

5. The actor

The actor commands the control effectors. In the J-SNAC algorithm, its definition comes the reward function
and requires values of the co-state, control effectiveness, and exploratory actions to compute the control
signal. These signals come from the critic, the model, and the action modifier systems.

6. Partial Derivative Estimation

In Figure 2, it can be seen that J-SNAC algorithm requires co-states (partial derivative of the value function
with respect to the state measurements @V=@x) and time derivative of the value (@V=@x � ẋ � @V=@t).
Furthermore in order to update estimate the control effectiveness parameter the time rate of the state mea-
surements @x=@t are required. A back-propagation through the function approximator is used for estimating
the derivative @V=@x. The time derivatives of the states and the value function is estimated by using a
derivative filter. The equation for this derivative filter in Laplace domain is given as,

Y (s) =
s

d � s+ 1
U(s) (25)

with Y being the estimated time derivative of the signal U , s being the Laplace variable and d being an
adjustable filter coefficient.

III. Flight Control Systems Design

This section explains the objective of the proposed lateral-directional flight control system. Furthermore,
this section elaborates the use of J-SNAC for the design of the flight control system.

A. Control Objective

The control objective considered here is to perform coordinated turns at a given flight altitude and airspeed.
Such a task entails maintaining a zero side-slip condition (regulation problem) and tracking the desired
aircraft heading angles (tracking problem). The strategy is to manipulate the rudder deflections �r to
regulate the side-slips (� = 0) and produce desirable roll angles �r to track the heading angles  r. The
desired roll angles �r are attained by manipulating the aileron deflections �a.

B. Lateral-Directional Flight Control System Design with J-SNAC

In this work, a distributed architecture is chosen for the design lateral-directional flight control system. Its
modularity and minimization of dimensionality motivate the choice of the architecture. The proposed flight
control system consists of three J-SNAC controllers, one for regulating side-slip (�) angle, one for tracking
desired roll angle �r and the other one is for producing desired roll angle �r to track desired heading angle
 r. All three controllers have the structure depicted in Figure 2.
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-0.5 0 0.5
-2

-1

0

1

2

(a) side slip controller

-2 0 2
-2

-1

0

1

2

(b) roll angle controller

Figure 3. Placement of Normalized Radial Basis Functions in the state-space for the side-slip regulator and
the roll tracker

1. Side-Slip Regulator Design

The J-SNAC side slip regulator takes the vector signal [�m rm(t)]T as its input and outputs the scalar signal
ur(t). �m is the measured/estimated side-slip angle, rm is the measured body yaw rate and ur(t) is the
command signal for the rudder actuator.

The reward function for this regulator is defined as,

�(�m; rm; ur) = �2�2
m � cr

4

�2
urmax log

0

@

������

1

cos
�
�2

4
ur

urmax

�

������

1

A (26)

The action-depended part in the reward function implies following the actor function,

ur(t) =
2 � urmax

�
arctan

 
�
2

 
1

cr
[@V=@� @V=@r]

"
@�̇=@ur
@ṙ=@ur

#

+ un;�

!!

(27)

Table 1. Hyper-Parameters for side-slip controller

Variable Value Units

Maximum surface deflections (urmax) 30 degrees

Discounting time horizon (��) 0:1 s

Eligibility trace time constant (��) 0:01 s

Action cost parameter (c�) 0.1 -

Exploration noise filter time constant (�n;�) 5 s

Learning rate (��(t)) 1 -

Exploration noise intensity (�0;�) 30 degrees

Derivative filter time constant (d�) 0.02 s

The NRBF network used in side-slip regulator for learning the value function consists of 181 basis
functions distributed in a hexagonal pattern (see Figure 3). The spreads of each basis function are the
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defined with Eq (28), where ri is the spread of ith basis function and �i is the Euclidean distance to the
nearest basis function. The learning process only updates the amplitudes of the basis functions to reduce
the required computations further.

ri =
1

p
2�i

(28)

The control effectiveness parameters has been estimated with the incremental identification procedure
(see Eq. (24)). The state vector and control vector for the estimator are [∆� ∆� ∆p ∆r]T and [∆ua ∆ur]T .

Implemented hyper-parameters for this controller are given in Table 1.

2. Roll Angle Controller

The J-SNAC roll angle controller takes the vector signal [e� pm(t)]T as its input and outputs scalar signal
ua(t). e� is the difference between the reference for roll angle �r and the measured roll angle �m. pm is the
measured body roll rate and ua is the command signal for the aileron actuator. The reward function for this
tracker is defined as

�(e�; pm; ua) = �e2
� �

p2
m
8

� ca
4

�2
uamax log

0

@

������

1

cos
�
�2

4
ua

uamax

�

������

1

A (29)

The action-depended part in the reward function implies following actor function for the roll tracker,

ua(t) =
2 � uamax

�
arctan

 
�
2

 
1

ca
[@V=@e�@V=@p]

"
@ė�=@ua
@ṗ=@ua

#

+ un;�

!!

(30)

Table 2. Hyper-Parameters for roll controller

Variable Value Units

Maximum surface deflections (umax) 21.5 degrees

Discounting time horizon (��) 0:1 s

Eligibility trace time constant (��) 0:01 s

Action cost parameter (c�) 0.1 -

Exploration noise filter time constant (�n;�) 5 s

Learning rate (��) 1 -

Exploration noise intensity (�0;�) 21.5 degrees

The NRBF network and control effectiveness identification for roll tracker is identical to that of the
side-slip regulator. Implemented hyper-parameters for roll tracker are listed in Table 2.

3. Heading Angle Controller

The J-SNAC heading angle controller takes the scalar signal e (t) as its input and outputs the scalar signal
�r(t). e (t) is the difference between the reference for heading angle  r(t) and the true heading angle  m(t).
�r(t) is the reference signal for the roll angle controller. The reward function for this tracker is defined as

�(e ; �r(t)) = �0:5e2
 � c�r

4

�2
�rmax log

0

@

������

1

cos
�
�2

4
�r

�rmax

�

������

1

A (31)

The action-depended reward part implies following actor function for the heading angle tracker,

ur(t) =
2 � �rmax

�
arctan

�
�
2

�
1

c�r

@V
e 

@ė 
@�r

+ un; 
��

(32)

The NRBF network for heading angle tracker consisted of 25 basis function evenly distributed in within
the space of [�2� 2�]. The spread of each basis function is according to Eq. (28). Since the kinematic
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equation that determines the heading angle is non-changing, the control effectiveness is set with a desired
value of @ =@�r = 0:5. Implemented hyper-parameters for this controller are listed in Table 3.

Table 3. Hyper-Parameters for heading controller

Variable Value Units

Maximum roll command (�rmax) 68.76 degrees

Discounting time horizon (� ) 0:1 s

Eligibility trace time constant (� ) 0:01 s

Action cost parameter (c ) 0.001 -

Exploration noise filter time constant (�n; ) 5 s

Learning rate (� ) 0.002 -

Exploration noise intensity (�0; ) 68.76 degrees

IV. Controller Training and Evaluation Method

This section presents the simulation setup, the controller training, and evaluation methods. Furthermore,
it gives the design of the PID flight controllers, used for stabilizing the longitudinal flight dynamics and
benchmarking the proposed J-SNAC flight controller.

A. Aircraft Model and Simulation Setup

The proposed lateral-directional flight control system was trained and evaluated in a Simulation environment
made with MATLAB and Simulink. This setup used Fourth-Order Runge-Kutta Solver with a fundamental
time step of 0.02s to calculate the state evolution. The simulation setup consisted a nonlinear model of the
F16 aircraft34 and the controllers (see Figure 4).

The aircraft model used in the setup has traditional aerodynamic control surfaces (i.e., aileron, elevator,
and rudder) and a single engine. Furthermore, the model consists first order lag filters with bounded rate
and values to model the aerodynamics surface actuators and the engine.

The aircraft is initialized at a steady-symmetric flight condition at an altitude of 5000 ft and airspeed of
600 ft/s. The state values at this trim conditions are given in Table 4.

Table 4. Trim condition for the simulation setup

Variable Value Units

Altitude (h) 5000 ft

Airspeed (V ) 600 ft/s

Mach number (M) 0.5470 -

Angle of attack (�) 1.5579 degrees

Angle of Side slip (�) 0 degrees

Pitch angle (�) 1.5579 degrees

Throttle Setting (�th) 2:5942 � 103 lbf

Elevator Deflection (�e) 1.7640 degrees

Rudder Deflection (�r) 0 degrees

Aileron Deflection (�a) 0 degrees

B. Fixed Gain Controller Design

In Section II, it was assumed that the effects of longitudinal state variable on lateral-directional state dy-
namics are minimum. For this assumption to hold, longitudinal dynamics controllers are necessary. Here,
a set of fixed gain linear controllers were designed to hold the longitudinal states close to their trimmed
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values. Furthermore, to provide a benchmark for the proposed J-SNAC based lateral-directional flight con-
troller, another set of fixed-gain linear controllers were designed for controlling the lateral-directional flight
controller. Figure 4 depicts how longitudinal flight controllers work in tandem with the lateral-directional
flight controller.

1. Longitudinal Dynamics Controller Design

The function of the longitudinal flight controller is to hold a longitudinal state (i.e., altitude h, airspeed V ,
pitch angle �, the angle of attack �, pitch rate q) at a constant value. Figure 5(a) shows the structure of the
longitudinal flight controller used in this work.

This flight controller consists of three PID control laws, two of which work together to hold a reference
flight altitude hr and the other one holds a reference airspeed Vr(t). The altitude regulator takes in desired
altitude hr(t) and measured altitude hm(t) as its input and outputs a desired pitch angle �r(t). The control
law for this controller is defined with Eq. (33). In these equations �r, KPeh , KIeh , KDeh stands for desired
pitch angle and PID gains of the controller.

�r(t) = KPeh eh(t) +KIeh

R t
t0
eh(�)d� +KDeh ėh(t)

eh(t) = hr(t) � hm(t)
(33)

xref
long

xm
long

xm
lat

xref
lat

uth ue

ur ua

Longi-
tudinal
Controller

F16
with
Actuator
Dynamics

Lateral-
Directional
Controller

Figure 4. F16 aircraft model with flight controllers.
xref

long and xref
lat are the external command signals for

longitudinal and lateral states respectively. xm
long and

xm
lat are the measured/estimated signals for longitu-

dinal and lateral states. uth, ue, ua and ur are the
command signals for the flight control surfaces and
the engine.

The pitch controller takes in the desired pitch an-
gle �r(t) from the altitude regulator, measured pitch
angle �m(t) and pitch rate qm(t) from the sensors as
its input and outputs dynamic command for elevator
deflections uce(t). The control law for this controller
is defined in Eq. (34).

uce(t) = �r(t) �K��m(t) �Kqqm(t) (34)

The combination of two signals determines the ac-
tual elevator deflection. The first signal is a dynamic
signal uce(t) generated by the pitch controller and the
second signal is a static signal utre (t) determined from
trimming routine.

The airspeed regulator takes in the desired air-
speed Vr(t) and the measured airspeed Vm(t) as its
input and outputs a dynamic throttle command sig-
nal determined with Eq. (35). In these equations,
ucth(t) stands for dynamic throttle command signal,
KPeV , KIeV and KDeV stands for the PID gains.

ucth(t) = KPeV eV (t) +KIeV

R t
t0
eV (�)d� +KDeV ėV (t)

eV (t) = Vr(t) � Vm(t)
(35)

Similar to the elevator, the throttle setting is de-
termined by the combination of a dynamic ucth and a
static signal utrth. The dynamic signal comes from the
airspeed controller, and the static signal comes from
the trimming routine.

There are eight parameters, namely KPeh , KIeh ,
KDeh , K�, Kq, KPeV , KIeV and KDeV , in the longitu-
dinal flight controller. These parameters were tuned
with root locus and successive loop closure methods, to meet the specifications for the category B flight phase
and level 1 flying qualities, as stipulated in MIL-F-8785C.35 The determined gain values are given in Table
5.
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Fixed
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Controller
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Controller

Airspeed
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P

P

(a) Longitudinal Flight Controller

+

+

+

+

 r(t)

 m(t)

�m(t)
pm(t)

�r(t)
�m(t)
rm(t)

�r(t)

uc
a(t)

utr
a (t)

ua(t)

ur(t)

utr
r (t)

uc
r(t)

Fixed

Gain

Fixed

Gain

Fixed

Gain

J-

SNAC

J-

SNAC

J-

SNAC

Heading

Controller

Roll

Controller

Side-Slip

Regulator

P

P

(b) Lateral-Directional flight controller

Figure 5. Internal structure of decoupled flight controllers. The purpose of the longitudinal flight control-
system is to hold a specific altitude and flight velocity. The purpose of lateral-directional control-system is
to perform coordinated turns. Sub-controllers in longitudinal flight controller consist of a PID law. Sub-
controllers of the lateral-directional flight controller consist of either J-SNAC or PID control law.

2. Lateral-Directional Dynamics Controller Design

The purpose of lateral-directional flight control system is to perform the same control objective as J-SNAC
flight controller, i.e., coordinated turns. This linear flight controller has a similar structure to the J-SNAC
controller (see, Figure 5(b)).

Similar to the longitudinal-dynamics controller, these controllers were designed to meet the specification
provided in MIL-F-8785C, with root-locus and successive loop closure methods.

The linear heading tracker takes desired heading angle  r(t) and measured heading angle  m(t) as its
input and outputs a desired roll angle �r(t). The control law is defined with Eq. (36). In these equations
�r, KPe , KIe , KDe stands for desired roll angle and PID gains of the controller.

�r(t) = KPe e (t) +KIe 

R t
t0
e (�)d� +KDe ė (t)

e (t) =  r(t) �  m(t)
(36)

Table 5. Longitudinal controller parameter values for holding F16 at an altitude of 5000 feet and with an
airspeed of 600 feet per second.

Parameter Values Parameter Values

KPeh -0.0113 Kq -0.0682

KIeh -0.0059 KPeV 16759

KDeh -0.0328 KIeV 9545

K� -0.0367 KDeV 5206

The side-slip regulator takes in the reference side slip angle �r(t) = 0, measured side slip angle �m(t)
and measured yaw rate rm as its input and outputs a dynamic rudder command signal determined with Eq.
(38), (39) and (40). This rudder controller contains a wash-out filter to augment yaw rate measurements.
In the controller Equations the washed-out yaw rate measurement is given by w(t). Furthermore, in the
equations ucr(t) stands for dynamic rudder deflection signal, KIe� and Kw stands for the controller gains.

The roll angle controller takes desired roll angle �r from the heading tracker, measured roll angle �m
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and roll rate pm from the sensors/estimators. The control logic for this controller is given by Eq. (37). In
these equations pm is the measured roll rate, �m is the measured roll angle, uca(t) is the dynamic command
for aileron deflections, KPe� , KIe� , KDe� and Kp are the tunable controller parameters.

uca(t) = KPe� e�(t) +KIe�

R t
t0
e�(�)d� +KDe� ė�(t) �Kppm(t)

e�(t) = �r(t) � �m(t)
(37)

The combination of two signals determines aileron deflection. The first signal is a dynamic signal uca(t)
generated by the aileron regulator and the second signal is a static signal utra (t) determined from trimming
routine.

ucr(t) = KIe�

Z t

t0
e�(�)d� +Kww(t) (38)

e�(t) = �r(t) � �m(t) = ��m(t) (39)

ẇ(t) = �w(t) + rm(t) (40)

Similar to all other controllers, the combination of a dynamic ucr and a static signal utrr determines the
rudder deflection. The dynamic signal comes from the rudder regulator, and the static signal comes from
the trimming routine.

There are nine parameters, namely KPe , KIe , KDe , KPe� , KIe� , KDe� , Kp, KIe� and Kw, in the

linear lateral-directional-flight controller that needs tuning. The determined gain values are given in Table
6.

Table 6. Lateral-directional-controller parameter values for making coordinated turns to track heading com-
mands with F16 at an altitude of 5000 feet and with an airspeed of 600 feet per second.

Parameters Values Parameters Values Parameters Values

KPe 27.40 KPe� -1.71 Kp -0.07

KIe 1.45 KIe� -1.50 KIe� 0.70

KDe -16.54 KDe� -0.48 Kw 0.12

C. J-SNAC Flight Controller Training Method

The J-SNAC controller was initialized with zero knowledge about control task and then was trained in a
two-step training procedure. In the first training sequence, the side-slip regulator and the roll angle controller
was trained to track roll command signals with zero side-slips. Next, the heading angle controller was added
to the flight control system and then trained together to follow heading angle commands.

1. Training of Side-Slip Regulator and Bank Angle Controller

During this phase of training, the slide slip regulator and roll angle controller is trained to track roll command
signals with zero-side slips. The training session consisted of 305 episodes, where each episode lasted for 180
seconds. Each episode started at the trimmed condition mentioned earlier.

A cascaded system consisting of a sine wave generator, a static-gain, and a zero-order hold filter (see
Figure 6) generates the commanded roll angles. Throughout training sessions, the sine wave generator
produced a sine wave with an amplitude of �=3 radian and frequency of 1/180 Hz. The gain block is
responsible for altering the sign of the sine signal randomly. This random switching is done to promote even
exploration of the state-space. The zero-order hold filter is used to convert the sine signal into variable step
signal. The variable step signals are generated by setting the sampling time of the zero-order filter with
following law.

T = mod(N � 1; 61) (41)
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Sinusoid
Wave
Generator

Gain ZOH
Filter

K out

Figure 6. System to generate reference signals for training.

In Eq. 41, T stands for sampling time, and N is the episode number and “mod” stands for remainder
operator. When the T = 0 the reference signal is a pure sine signal. When T is an integer, the reference
generator produced block signals with varying levels.

These type of reference signals are chosen to make the tracking task gradually demanding across the
training episodes and then repeating the tracking tasks five times.

2. Training of Heading Angle Training

Upon the completion of initial training of side-slip regulator and roll angle controller, the heading angle
controller is added to the flight control system. The learning rate of the roll tracker and side-slip regulator
is set to zero as it is desired to train the heading controller alone. The training session is similar to the
previous training sequence, i.e., using the same reference signal generator. One of the differences between
this and previous training session is that the heading angle controller was trained over 124 training episodes.
Other difference is that the sinusoidal signal generator generated following the reference signal,

 r(t) =
3

4
� sin(

2�
180

t�
�
2

) +
�
2

(42)

D. Controller Performance Evaluation

After the training, the proposed J-SNAC based lateral-direction flight controller was evaluated for its learning
and control performance. At first, the controller is qualitatively assessed for its learning performances. Next,
the controller is evaluated quantitatively for its control performances.

1. Training Performance Evaluation

The goal of this evaluation is to assess the training process and its effects on the value and policy functions.
The training process is evaluated by observing the region of state-space covered by the controller and ob-
serving the change of policy function across the training episodes. Effects of training on the value and policy
functions are evaluated by comparing their surfaces before and after the training processes.

2. Control Performance Evaluation

The goal of this evaluation is to quantify the control performance of the proposed controller before and
after the training, then compare these performances with the performance of the benchmarking controller.
Furthermore, control performance was also evaluated for robustness against sensor noise and partial failure
of the aileron.

The performance of the proposed controller is quantified with the performance index PI defined in Eq.
43. The defined performance index is a weighted sum of normalized root mean squared (RMS) errors in
desired altitude, airspeed, side-slip angle, and heading angle. Altitude and velocity are included in the PI to
quantify the effects on the longitudinal flight controller. Side-slip and heading angles are included in the PI
because they are the principal variables of interest. The error in altitude and airspeed are normalized with
25 feet and 10 feet per second. The error in heading and the side-slip angle is normalized with 2 degrees.

PI = �0:1 �
r

1
T

R T
0

�
h(t)�hr(t)

25

�2

dt� 0:1 �
r

1
T

R T
0

�
V (t)�Vr(t)

10

�2

dt

�0:4 �
r

1
T

R T
0

�
�(t)��r(t)

2

�2

dt� 0:4 �
r

1
T

R T
0

�
 (t)� r(t)

2

�2

dt
(43)
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The control performance of the controller was compared with the bench-marking fixed gain controller for
tracking a sinusoid and a smoothened step signal under nominal conditions.

Then the controller was evaluated for robustness against sensor noise and partial failure of the aileron.
The sensor noise is simulated by corrupting the rotational rate signals (i.e., roll rate p and yaw rate r) with
zero mean Gaussian noise. The partial loss of aileron was simulated by halving the command signals and
adding 7 degrees bias to this split signal.

V. Results and Discussion

This section presents and discusses the results from the training and performance evaluation procedures.

A. A�ects of Training on the Value and Policy functions

Figure 7 shows the region of state-space that the J-SNAC flight controllers have explored while being trained.
Although the roll and heading angle trackers have experienced most parts of the state-space, the side slip
regulator has not experienced much of the state-space. This disparity between the explored regions by
controllers is because of the training schedule. The reference signals used for training have made the roll and
heading angle trackers explore most of the allowed state-space. However, since all training episodes started
at zero-side-slip conditions, the exploration signal produced by J-SNAC side-slip regulator was insignificant.
Furthermore, disturbances in side-slip angles while rolling was also small.

(a) side slip controller (b) roll angle controller

Figure 7. Depiction of parts of the state-space visited by the J-SNAC controllers during their training. The
rectangular box represents the bounds in the state-space within which the controllers can learn its policy.

Figure 8 depicts the trajectory of policy function monitoring parameters (∆h�r ;∆h�a ;∆�r) across the
training episodes. The policy function monitoring parameters were defined with the RMS of changes in
control actions assigned to a list of preselected states. In figure 8(a) and 8(b), it is observed that initially
both the side-slip regulator and roll angle tracker changes rapidly. This rapid change is because of large initial
TD errors. Next notable observation in these figures is that every 61 training episode there is a drop in the
rate of change. This drop in the rate of change is because of the process of generating the tracking reference
signal, which changed gradually over 61 episodes and then repeated after every 61 episodes. Additionally, the
rate of change of side-slip and roll tracker policies are decreasing over the episodes, due to the declining TD
error. The policies did not converge to a stationary form as there are unexplored regions in the state-space.
With more training and possibly with better training scheme policy could converge.

15 of 23

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
8,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

18
45

 



According to Figure 8(c), the heading angle policy changed rapidly during the first episode and afterward
there is a slow increase in the change of policy with some fluctuations. Rapid change in the first episode is
due to high TD error in the first episode, and small variations after that are due to the exploration of state
space and declining TD error.

0 100 200 300 400
0

0.01

0.02
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(a) side slip controller
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(c) heading angle controller

Figure 8. Change in policy function tracking parameter across training episodes.

Figures 9 and 10 and shows the value and policy functions learned by the J-SNAC controllers after their
training. Before the training, all of these functions have zero outputs for all input.
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-2

-1

0

1

2

-8 -6 -4 -2 0
10 -5

(a) side slip controller
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(b) roll angle controller

-10 -5 0 5 10
-2.5

-2

-1.5

-1

-0.5

0

(c) heading angle controller

Figure 9. Value functions after training.

From these observations, it can be concluded that the J-SNAC algorithm could perform its learning
function. However, the learned functions did not convergence due to the training program and the chosen
hyper-parameters.

B. Di�erence in Performances Before and After Training

Figure 11 shows the state trajectories of the aircraft when it used benchmarking PID controller, non-trained
and trained J-SNAC controllers for tracking sinusoidal reference signal. As expected, non-trained flight
controller failed to follow the reference signal and eventually crash the aircraft after 50 seconds. The crash
is due to unreasonable deflection of ailerons, causing high roll rate which then destabilizes the longitudinal
controllers. After the training performance of PID and J-SNAC controller are almost similar. One of the
differences between the performances of these controllers is that side-slip regulator designed with PID law
attenuates incurred side-slips better. Furthermore, the J-SNAC controller has a delay in following heading
commands compared to the PID controller.

Figure 12 depicts the state evolution of the aircraft for tracking a smoothened step signal. Similar to the
tracking of the sinusoid, non-trained J-SNAC controller failed to perform the tracking while trained J-SNAC
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Figure 10. Policies learned by each of the controllers

and PID controller performs almost the same. Again, PID side-slip regulator attenuates incurred side-slip
better, and J-SNAC controller has a small delay in tracking. One additional difference is that PID controllers
create more aggressive commands for the aerodynamic surface actuators.

Table 7 shows the performance score of PID, non-trained and trained J-SNAC controller according the
Eq.(43). The performance scores are in agreement with the visual analysis, i.e., the non-trained controller
cannot perform the control task; trained controller performs almost similar but lower than that of the PID
controllers. The lower score is due to the delay in tracking and lower attenuation of side-slips.

Table 7. Performance according to the Index given in Eq. (43)

Tracking task Controller setting PI value

Non-trained J-SNAC -52.0257

sin wave Trained J-SNAC -1.5802

PID -0.1839

Non-trained J-SNAC -4.8565

smooth-step Trained J-SNAC -0.3440

PID -0.1623

C. Robustness Against Sensor Noise

Figure 14 shows the aircraft state evolution while tracking sinusoidal heading commands in the presence of
noise in the rate measurements. The sensor noise is simulated by adding zero-mean noise signals with the
roll and yaw rate signals. The noise signals have a standard deviation of 5 degrees/s.

The tracking performance for both controllers was satisfactory, as both have tracked the reference heading
angles. Although, J-SNAC controller produced a more noisy command signal for the aileron actuators and
almost no commands for the rudder actuator. The noisy command signal is because the J-SNAC algorithm
does not have any internal filtering procedures. Concerning the tracking, J-SNAC controller again has
a delay. Also, J-SNAC controller did not compensate for a small increment in side-slips, because in the
learned policy these small side-slips are mapped to no-rudder actions.

According to the defined performance index, the score of J-SNAC flight controller is -1.5917 and the score
of the PID controller is -0.2719.

D. Control Adaptation During Partial Loss of Flight Control Surfaces

Figure 14 shows the aircraft state evolution while tracking sinusoidal heading commands in the presence of
aileron actuator failure.
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