Bioenergetics of haloalkaliphiles

Muntyan, Maria S.; Muntyan M.S., Malinen A.M., Skulachev V.P.; Sorokin, Dimitry Y.; Skulachev, Vladimir P.

Publication date
2019

Document Version
Other version

Published in
Studia Universitatis Babes-Bolyai. Biologia

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.
Halophiles 2019

12th International Conference on Halophilic Microorganisms
June 24-28, 2019, Cluj-Napoca, Romania
Bioenergetics of haloalkaliphiles

Maria S. Muntyan1, Anssi M. Malinen2, Dimitry Y. Sorokin3 and Vladimir P. Skulachev1

1Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Bioenergetics, Moscow, Russia; 2University of Turku, Biochemistry, Turku, Finland; 3Delft University of Technology, Biotechnology, Delft, The Netherlands; *Corresponding author, E-mail: muntyan@genebee.msu.ru.

Abstract
The research aims at finding out the distinctive lines of energetics in natronophilic microorganisms started to be described (Banciu & Muntyan, 2015). Among used methods were analyses of respiratory characteristics, electrical potential generation, pH changes in cells/vesicles suspension upon light/oxygen impulses, effects of ionophores and uncouplers, visualization of sodium transport using radioisotope 22Na, phylogenetics. Summary of results: So far, a novel type of primary energy transformer, Na+‐motive cytochrome oxidase, which has been proven to operate in natronophilic strains of the genus Thioalkalivibrio (Muntyan et al., 2015), has been discovered, and then found in several other extremophiles. It has been demonstrated that in these same strains, cell motility is provided by Na+‐motive flagella. In addition, it was shown that the rhodopsin-like pigment, proteorhodopsin, in the new natronophilic strain of a novel deep‐lineage of the phylum Balneolaeota, Cyclonatronum proteinvorum, pumps Na+ from cells (Sorokin et al., 2018). The screening of Na+‐motive energy mechanisms revealed the sodium energy cycle, consisting of (i) primary mechanisms for generating Na+‐potential and (ii) Na+‐potential consumers, represented by flagella and FoF1‐ATPase. Conclusion: Along the way, we first discovered that several species of bacteria simultaneously have in their genomes: (i) oxygen-consuming generators of Na+‐potential (Na+‐pumping cbb3 oxidases) and (ii) consumers of Na+‐potential such as Na+‐ATPase of FOF1‐type and flagella. Thus, for the first time, it became possible to establish the presence of a complete Na+‐cycle in energetics of oxygen‐respiring bacteria.

Keywords: alkaliphiles, Na+‐motive enzymes, soda lakes.

Acknowledgements: Russian Foundation for Basic Research‐grant 17‐04‐02173.
ORAL PRESENTATION ABSTRACT

References

