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Abstract

In a dependently typed language, we can guarantee correctness of our programmes by providing
formal proofs. To check them, the typechecker elaborates these programs and proofs into a low-
level core language. However, this core language is by nature hard to understand by mere humans,
so how can we know we proved the right thing? This question occurs in particular for dependent
copattern matching, a powerful language construct for writing programmes and proofs by dependent
case analysis and mixed induction/coinduction. A definition by copattern matching consists of a list
of clauses that are elaborated to a case tree, which can be further translated to primitive eliminators.
In previous work this second step has received a lot of attention, but the first step has been mostly
ignored so far. We present an algorithm elaborating definitions by dependent copattern matching to
a core language with inductive data types, coinductive record types, an identity type, and constants
defined by well-typed case trees. To ensure correctness, we prove that elaboration preserves the first-
match semantics of the user clauses. Based on this theoretical work, we reimplement the algorithm
used by Agda to check left-hand sides of definitions by pattern matching. The new implementation
is at the same time more general and less complex, and fixes a number of bugs and usability issues
with the old version. Thus, we take another step towards the formally verified implementation of a
practical dependently typed language.

1 Introduction

Dependently typed functional languages such as Agda (2017), Coq (INRIA, 2017), Idris
(2013), and Lean (de Moura et al., 2015) combine programming and proving into one
language, so they should be at the same time expressive enough to be useful and simple
enough to be sound. These apparently contradictory requirements are addressed by having
two languages: a high-level surface language that focuses on expressivity and a small core
language that focuses on simplicity. The main role of the typechecker is to elaborate the
high-level surface language into the low-level core.

Since the difference between the surface and core languages can be quite large, the
elaboration process can be, well, elaborate. If there is an error in the elaboration process,

1 This paper is best viewed in colour.
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2 J. Cockx and A. Abel

our programme or proof may still be accepted by the system but its meaning is not what
was intended (Pollack, 1998). In particular, the statement of a theorem may depend on the
correct behaviour of some defined function, so if something went wrong in the elabora-
tion of these definitions, the theorem statement may not be what it seems. As an extreme
example, we may think we have proven an interesting theorem when in fact, we have only
proven something trivial. This may be detected in a later phase when trying to use this
proof, or it may not be detected at all. Unfortunately, there is no bulletproof way to avoid
such problems: each part of the elaboration process has to be verified independently to
make sure it produces something sensible.

One important part of the elaboration process is the elaboration of definitions by
dependent pattern matching (Coquand, 1992). Dependent pattern matching provides a
convenient high-level interface to the low-level constructions of case splitting, structural
induction, and specialization by unification. The elaboration of dependent pattern matching
goes in two steps: first the list of clauses given by the user is translated to a case tree, and
then the case tree is further translated to a term that only uses the primitive data type elimi-
nators.2 The second step has been studied in detail and is known to preserve the semantics
of the case tree precisely (Goguen et al., 2006; Cockx, 2017). In contrast, the first step has
received much less attention.

The goal of this paper is to formally describe an elaboration process of definitions by
dependent pattern matching to a well-typed case tree for a realistic dependently typed
language. Compared to the elaboration processes described by Norell (2007) and Sozeau
(2010), we make the following improvements:

• We include both pattern and copattern matching.
• We are more flexible in the placement of forced patterns.
• We prove that the translation preserves the first-match semantics of the user clauses.

We discuss each of these improvements in more detail below.

Copatterns. Copatterns provide a convenient way to define and reason about infinite
structures such as streams (Abel et al., 2013). They can be nested and mixed with regu-
lar patterns. Elaboration of definitions by copattern matching has been studied for simply
typed languages by Setzer et al. (2014), but so far the combination of copatterns with
general dependent types has not been studied in detail, even though it has already been
implemented in Agda.

One complication when dealing with copatterns in a dependently typed language is that
the type of a projection can depend on the values of the previous projections. For example,
define the coinductive type CoNatof possibly infinite natural numbers by the two projec-
tions iszero : Bool and pred : iszero� Bool false� CoNat. We use copatterns to define the
co-natural number cozero:

cozero: CoNat
cozero.iszero = true
cozero.pred �

(1)

Here, the constant cozerois being defined with the field iszero equal to true (and no value
for pred).

2 In Agda, case trees are part of the core language so the second step is skipped in practice, but it is still important
to know that it could be done in theory.
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Elaborating dependent (co)pattern matching 3

To refute the proof of cozero.iszero� Bool falsewith an absurd pattern � , the typechecker
needs to know already that cozero.iszero = true, so it needs to check the clauses in the
right order.

This example also shows that with mixed pattern/copattern matching, some clauses can
have more arguments than others, so the typechecker has to deal with variable arity. This
means that we need to consider introducing a new argument as an explicit node in the
constructed case tree.

Flexible placement of forced patterns. When giving a definition by dependent pattern
matching that involves forced patterns,3 there are often multiple positions where to place
them. For example, in the proof of symmetry of equality:

sym: (x y : A) � x � A y � y � A x

symx � x� reß= reß
(2)

it should not matter if we instead write sym� x� x reß= reß. In fact, we even allow the
apparently non-linear definition symx x reß= reß.

Our elaboration algorithm addresses this by treating forced patterns as laziness anno-
tations: they guarantee that the function will not match against a certain argument. This
allows the user to be free in the placement of the forced patterns. For example, it is always
allowed to write zeroinstead of � zero� , or x instead of � x� .

With our elaboration algorithm, it is easy to extend the pattern syntax with forced con-
structor patterns such as � suc� n (Brady et al. (2003)’s presupposed-constructor patterns).
These allow the user to annotate that the function should not match on the argument but
still bind some of the arguments of the constructor.

Preservation of first-match semantics. Like Augustsson (1985) and Norell (2007), we
allow the clauses of a definition by pattern matching to overlap and use the first-match
semantics in the construction of the case tree. For example, when constructing a case tree
from the definition:

max: N � N � N
max zero y = y
max x zero = x
max (sucx) (sucy) = suc(maxx y)

(3)

we do not get maxx zero= x but only max(sucx�) zero= sucx�. This makes a difference
for dependent type checking where we evaluate open terms with free variables like x. In this
paper, we provide a proof that the translation from a list of clauses to a case tree preserves
the first-match semantics of the clauses. More precisely, we prove that if the arguments
given to a function match a clause and all previous clauses produce a mismatch,4 then the
case tree produced by elaborating the clauses also computes for the given arguments and
the result is the same as the one given by the clause.

3 Forced patterns are also called presupposed terms (Brady et al., 2003), inaccessible patterns (Norell, 2007),
or, in Agda, dot patterns.

4 Note that, in the example, the open term max x zerodoes not produce a mismatch with the first clause since it
could match if variable x was replaced by zero. In the first-match semantics, evaluation of max x zero is stuck.
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4 J. Cockx and A. Abel

Contributions

• We present a dependently typed core language with inductive data types, coinduc-
tive record types, and an identity type. The language is focused (Andreoli, 1992;
Zeilberger, 2008; Krishnaswami, 2009): terms of our language correspond to the
non-invertible rules to introduce and eliminate these types, while the invertible rules
constitute case trees.

• We are the first to present a coverage checking algorithm for fully dependent copat-
terns. Our algorithm desugars deep copattern matching to well-typed case trees in
our core language.

• We prove correctness: if the desugaring succeeds, then the behaviour of the case tree
corresponds precisely to the first-match semantics of the given clauses.

• We have implemented a new version of the algorithm used by Agda for check-
ing the left-hand sides of a definition by dependent (co)pattern matching. This
re-implementation has been released5 as part of Agda 2.5.4; it uncovers and fixes
multiple issues in the old implementation (Agda issue, 2017a,b,c,d, 2018a,b). Our
algorithm could also be used by other implementations of dependent pattern match-
ing such as Idris (2013), Lean (de Moura et al., 2015), and the Equations package
for Coq (Sozeau, 2010).

Compared to the conference version of this paper (Cockx & Abel, 2018), we add the
following:

• We give a more fine-grained small-step semantics for our core language, which
allows us to state and prove type preservation without assuming normalization (see
Theorem 17).6

• We add a discussion on the treatment of catch-all clauses by the algorithm described
in this paper and how it differs from the implementation used by Agda (see
Section 2.6).

• We include the detailed proofs that were omitted from the conference version.

This paper was born out of a practical need that arose while reimplementing the elabora-
tion algorithm for Agda: it was not clear to us what exactly we wanted to implement, and
we did not find sufficiently precise answers in the existing literature. Our main goal in this
paper is therefore to give a precise description of the language, the elaboration algorithm,
and the high-level properties we expect them to have. This also means we do not focus on
fully developing the metatheory of the language or giving detailed proofs for all the basic
properties one would expect.

We start by introducing definitions by dependent (co)pattern matching and our elabora-
tion algorithm to a case tree by a number of examples in Section 2. We then describe our
core language in Section 3: the syntax, the rules for typing and equality, and the evaluation

5 Agda 2.5.4 released on 2018/06/02, changelog: https://hackage.haskell.org/package/Agda-2.5.4/
changelog.

6 In most dependently typed languages, a termination checker ensures normalization of recursive functions.
Likewise, a productivity checker can ensure normalization in the presence of infinite structures defined by
copatterns. However, by proving preservation independently from normalization, we allow our approach to be
extended to languages without such checks (such as Haskell), while at the same time making the metatheory
more modular.
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Elaborating dependent (co)pattern matching 5

rules. In Section 4, we give the syntax and rules for case trees, and prove that a func-
tion defined by a well-typed case tree satisfies type preservation and progress. Finally, in
Section 5, we describe the rules for elaborating a definition by dependent (co)pattern match-
ing to a well-typed case tree, and prove that this translation preserves the computational
meaning of the given clauses. Section 6 discusses related work, and Section 7 concludes.

2 Elaborating dependent (co)pattern matching by example

Before we move on to the general description of our core language and the elaboration pro-
cess, we give some examples of definitions by (co)pattern matching and how our algorithm
elaborates them to a case tree. The elaboration works on a configuration � � P | u : C,
called a lhs problem, consisting of:

• A context � , i.e. a list of variables annotated with types. Initially, � is the empty
context � .

• The current target type C. This type may depend on variables bound in � . Initially,
C is the type of the function being defined.

• A representation of the ‘self’ object u, which is a term of type C in context � .
Initially, u is the function being defined itself. In each leaf of the case tree, u will rep-
resent the left-hand side of the clause, where certain variables might be specialized
due to overlap with previous clauses.

• A list of partially deconstructed user clauses P. Initially, these are the clauses as
written by the user.

These four pieces of data together describe the current state of elaborating the definition.
The elaboration algorithm transforms this state step by step until the user clauses are

deconstructed completely. In the examples below, we annotate each step with a label such
as SPLITCON or INTRO, linking it to the general rules given in Section 5.

2.1 A Þrst example: Maximum of two numbers

Let us define a function max: N � N � N by pattern matching as in the introduction (3).
The initial lhs problem is � P0 | max: N � N � N where:

P0 =

�
��

��

zero j �� j

i zero �� i

(suck) (sucl) �� suc(maxk l)

(4)

The first operation we need is to introduce a new variable m (rule INTRO). It transforms
the initial problem into (m : N ) � P1 | maxm : N � N where:

P1 =

�
��

��

[m / ? zero] j �� j

[m / ? i] zero �� i

[m / ? suck] (sucl) �� suc(maxk l)

(5)

This operation strips the first user pattern from each clause and replaces it by a constraint
m / ? p that it should be equal to the newly introduced variable m. We write these constraints
between brackets in front of each individual clause.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000182
Downloaded from https://www.cambridge.org/core. Technische Universiteit Delft, on 03 Feb 2020 at 08:20:08, subject to the Cambridge Core terms of use, available



6 J. Cockx and A. Abel

The next operation we need is to perform a case analysis on the variable m (rule
SPLITCON).7 This transforms the problem into two subproblems � P2 | maxzero: N �
N and ( p : N ) � P3 | max(sucp) : N � N where:

P2 =

�
���

���

[zero/ ? zero] j �� j

[zero/ ? i] zero �� i

[zero/ ? suck] (sucl) �� suc(maxk l)

(6)

P3 =

�
���

���

[sucp / ? zero] j �� j

[sucp / ? i] zero �� i

[sucp / ? suck] (sucl) �� suc(maxk l)

(7)

We simplify the constraints as follows: clauses with absurd constraints (such as zero/ ?

suck) are removed; trivial constraints (such as zero/ ? zero) are dropped; and constraints
between equal constructors (such as sucp / ? suck) are simplified (i.e. to p / ? k):

P2 =

�
j �� j

[zero/ ? i] zero�� i
P3 =

�
[sucp / ? i] zero �� i

[p / ? k] (sucl) �� suc(maxk l)
(8)

We continue applying these operations INTRO and SPLITCON (introducing a new variable
and case analysis on a variable) until the first clause has no more user patterns and no more
constraints where the user-written pattern on the left is a constructor. For example, for P2,
we get after one more introduction step (n : N ) � P4 | maxzeron : N where:

P4 =

�
[n / ? j] �� j

[zero/ ? i, n / ? zero] �� i
(9)

We solve the remaining constraint in the first clause by instantiating j := n. This means we
are done and we have maxzeron = j[n / j] = n (rule DONE).8 The second clause of P4 still
has unsolved constraints, but this is not a problem since it is not used for the construction
of this branch of the case tree.

Similarly, elaborating the lhs problem ( p : N ) � P3 | max(sucp) : N � N
(with rules INTRO, SPLITCON, and DONE) gives us max(sucp) zero= sucp and
max(sucp) (sucq) = suc(maxp q).

We record the operations used when elaborating the clauses in a case tree. Our syntax
for case trees is close to the normal term syntax in other languages: � x. for introducing a
new variable and casex{} for a case split. For max, we get the following case tree:

� m. casem

�
���

���

zero 	� � n. n

sucp 	� � n. casen

�
zero 	� sucp

sucq 	� suc(maxp q)

�

�
��	

��

(10)

7 At this point, we could also introduce the variable for the second argument of max, the elaboration algorithm
is free to choose either option.

8 Since the DONE rule only looks at the first remaining clause, there may be unreachable clauses that are not
used in any of the branches of the case tree. However, detection of unreachable clauses can easily be added as
an additional check if desired.
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Elaborating dependent (co)pattern matching 7

2.2 Copattern matching

Next, we take a look at how to elaborate definitions using copatterns. For the cozero
example (1), we have the initial lhs problem � P0 | cozero: CoNatwhere:

P0 =

�
.iszero �� true

.pred � �� impossible
(11)

Here, we need a new operation to split on the result type CoNat (rule COSPLIT).
This produces two subproblems � P1 | cozero.iszero and � P2 | cozero.pred :
cozero.iszero� Bool false� CoNatwhere:

P1 =
�

�� true P2 =
�

� �� impossible (12)

The first problem is solved immediately with cozero.iszero = true (rule DONE). In the
second problem, we introduce the variable x : cozero.iszero� Bool false(rule INTRO) and
note that cozero.iszero = true from the previous branch, hence x : true� Bool false. Since
true� Bool falseis an empty type (technically, since unification of true with falseresults in
a conflict), we can perform a case split on x with zero cases (rule SPLITEMPTY), solving
the problem.

In the resulting case tree, the syntax for a split on the result type is record{}, with one
subtree for each field of the record type:

record

�
iszero 	� true

pred 	� � x. casex{}

�

(13)

Just as pattern matching is elaborated to a case, an elimination form, copattern matching is
elaborated to a record, an introduction form.

For the next examples, we omit the details of the elaboration process and only show the
definition by pattern matching and the resulting case tree.

2.3 Mixing patterns and copatterns

Consider the type CStreamof C streams: potentially infinite streams of numbers that end
on a zero. We define this as a record where the tail field has two extra arguments enforcing
that we can only take the tail if the head is sucm for some m:

recordself : CStream: Setwhere
head : N

tail : (m : N ) � self .head � N sucm � CStream

(14)

Here, the name self is bound to the current record instance, allowing later projections to
depend on prior projections. In particular, the type of tail depends on the value of head for
the self object.
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8 J. Cockx and A. Abel

Now consider the function countdownthat creates a C stream counting down from a
given number n:

countdown: N � CStream

countdownn .head = n

countdownzero .tail m �

countdown(sucm) .tail m reß= countdownm

(15)

Because the type of tail depends on the value of head, it is again important to check the
clauses in the right order: to check the pattern � in the second clause, the typechecker needs
to know that countdownzero.head = zero(and likewise that countdown(sucm) .head =
sucm to check reßin the third clause).

Our elaboration algorithm applies the rules INTRO, COSPLIT, SPLITCON, SPLITEMPTY,
SPLITEQ, and DONE in sequence to translate this definition to the following case tree:

� n. record

�
����

����

head 	� n

tail 	� � m, p. casen

�
zero 	� casep{}

sucn� 	� casep
�
reß	� 1m (countdownm)

�

�

�
���	

���


(16)

Note the extra annotation 1m after the case split on p : sucm � N sucn�. This rather tech-
nical addition is necessary to define the operational semantics of case trees (see Figure 8).
It is used to remember which arguments correspond to forced patterns and can thus safely
be dropped. In the current example, it reflects the fact that the argument n� is forced to be
equal to m by the case split on reß: sucn� � N sucm. Thus, evaluation of the function only
depends on the value of m.

2.4 Inferring forced patterns

This example is based on issue #2896 on the Agda bug tracker (Agda issue, 2018a). The
problem was that Agda’s old elaboration algorithm threw away a part of the pattern written
by the user. This meant the definition could be elaborated to a different case tree from the
one intended by the user.

The (simplified) example consists of the following data type D and function foo:

dataD (m : N ) : Setwhere
c : (n : N ) ( p : n � N m) � D m

foo : (m : N ) � D (sucm) � N

foom (c (suck) reß) = m + k
(17)

The old algorithm would ignore the pattern suck in the definition of foo because it corre-
sponds to a forced pattern after the case split on reß. This lead to the variable k occurring
in the case tree despite it not being bound anywhere. Our elaboration instead produces the
following case tree (using rules INTRO, SPLITCON, SPLITEQ, and DONE):

� m, x. casex
�

cn p 	� casep
�
reß	� 1m (m + m)

� �
(18)
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Elaborating dependent (co)pattern matching 9

Note that the variable k has been substituted by m in the leaf of the case tree. Even though
this case tree does not match on the succonstructor, it implements the same computational
behaviour as the clause in the definition of foo because the first argument of c is forced to
be sucm by the typing rules.

This example also shows another feature supported by our elaboration algorithm, namely
that two different variables m and n in the user syntax may correspond to the same variable
m in the core syntax. In effect, n is treated as a let-bound variable with value m.

2.5 Preservation of Þrst-match semantics

This example is based on issue #2964 on the Agda bug tracker (Agda issue, 2018b). The
problem was that Agda was using a too-liberal version of the first-match semantics that
was not preserved by the translation to a case tree. The problem occurred for the following
definition:

f : (A : Set) � A � Bool � (A � Set Bool) � Bool

f � Bool� true true reß= true

f _ _ _ _ = false

(19)

This function is elaborated (both by Agda’s old algorithm and by ours) to the following
case tree (using rules INTRO, SPLITCON, SPLITEQ, and DONE):

� A, x, y, p. casey

�
���

���

true 	� casep

�
�

�
reß	� 1x,y casex

�
�

�

true 	� true

false	� false

�
	




�
	




false	� false

�
��	

��

(20)

According to the (liberal) first-match semantics, we should have f Bool falsey p = false
for any y : Booland p : Bool � Set Bool, but this is not true for the case tree since evaluation
gets stuck on the variable y. Another possibility is to start the case tree by a split on p (after
introducing all the variables), but this case tree still gets stuck on the variable p. In fact,
there is no well-typed case tree that implements the first-match semantics of these clauses
since we cannot perform a case split on x : A before splitting on p.

One radical solution for this problem would be to only allow case trees where the case
splits are performed in order from left to right. However, this would mean the typechecker
must reject many definitions such as f in this example, because the type of x is not known
to be a data type until the case split on A � Set Bool. Instead, we choose to keep the elab-
oration as it is and restrict the first-match semantics of clauses (see Sections 3.4 and 5.3).
In particular, we use a more conservative matching algorithm that only produces a mis-
match when not only at least one pattern is a mismatch (as usual), but also matching is
not stuck for any of the other patterns. In the example of f, this change means that we can
only go to the second clause once all three arguments x, y, and p are constructors, and at
least one of them produces a mismatch. In particular, this means f Bool falsey p no longer
computes to false. This is reasonable since there exists a valid case tree that does not have
this computation rule.
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10 J. Cockx and A. Abel

2.6 Expanding catch-all clauses

Compared to the implementation in Agda, the algorithm for elaborating definitions by
dependent (co)pattern matching to a case tree in this paper is more liberal with respect
to catch-all cases. Specifically, Agda includes an extra pass where each clause is type-
checked individually before elaborating the whole set of clauses to a case tree. In contrast,
the algorithm presented here only requires that the type of each right-hand side is correct
after all case splitting is finished.

Let us consider an example where this makes a difference. Let Bin be the data type of
binary numbers 1, 10, 11, 100, 101, . . . and consider the function isOne:

dataBin : Setwhere
one : Bin

2* : Bin � Bin

1+2* : Bin � Bin

isOne: Bin � Bool

isOneone= true

isOnex = false

(21)

For example, the number 9 is represented as 1+2* (2* (2* one)). Now consider the
following soundness proof isOneSoundbelow:

isOneSound: (x : Bin) � isOnex� Bool true � x � Bin one

isOneSoundone reß= reß

isOneSoundx �
(22)

Following the algorithm of Section 5.2, this definition is elaborated to the following case
tree:

� x. � p. casex

�
���

���

one 	� casep
�

reß 	� reß
�

2* 	� casep{}

1+2* 	� casep{}

�
��	

��

(23)

On the other hand, this definition is rejected by Agda because the second clause is ill-typed:
x is not a constructor so the term isOnex does not reduce to either true or false, hence Agda
cannot conclude that isOnex � Bool true is an empty type.

One advantage of the approach in this paper is that it allows for shorter definitions
of some functions. For example, the shortest possible definition of isOneSoundin Agda
requires three clauses. As another example, proving decidable equality for a data type D
with n constructors in general requires n2 cases in Agda, while it only requires n + 1 cases
with the elaboration algorithm presented here:

decEq: (x y : D) � Dec(x � D y)

decEq(c1 x̄) (c1 ȳ) = · · ·
...

decEq(cn x̄) (cn ȳ) = · · ·
decEq_ _ = no(� � )

(24)

here, the final clause is expanded into n · (n Š 1) leaves of the case tree corresponding to
the cases where the two arguments are applications of different constructors.
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Elaborating dependent (co)pattern matching 11

However, it is not clear how this late checking of the right-hand side should interact
with other Agda features beyond the scope of this paper, such as interaction holes used
for interactively developing Agda programmes. If such an interaction hole occurs in the
right-hand side of a clause that corresponds to multiple branches of the case tree, then
it may have multiple incompatible types. At this point, it is unclear how to display this
information in a way that makes sense to the Agda user. For this reason, we have decided
to leave the initial pass over the individual clauses in place for now.

The behaviour of Agda can be simulated by the elaboration judgement described in
this paper by additionally requiring that each clause individually can be elaborated to a
case tree. These individual case trees can then be ‘merged’ into one bigger case tree by
following the first-match semantics. Alternatively, we can run the elaboration algorithm
again on the whole set of clauses (as is currently done in the Agda implementation).

3 Core language

In this section, we introduce a basic type theory for studying definitions by dependent
(co)pattern matching. It has support for dependent function types, an infinite hierarchy of
predicative universes, equality types, inductive data types, and coinductive records.

To keep the work in this paper as simple as possible, we leave out many features com-
monly included in dependently typed languages, such as lambda expressions and inductive
families of data types (other than the equality type). These features can nevertheless be
encoded in our language, see Section 3.5 for details.

Note also that we do not include any rules for � -equality, neither for lambda expressions
(which do not exist) nor for records (which can be coinductive hence do not satisfy � ).
Section 3.5 discusses how our language could be extended with � -rules.

3.1 Syntax of the core type theory

Expression syntax. Expressions of our type theory are almost identical to Agda’s internal
term language. All function applications are in spine-normal form, so the head symbol of
an application is exposed, be it variable x, data D or record type R, or defined symbol f.
We generalize applications to eliminations e by including projections .� in spines ē. Any
expression is in weak head normal form but f ē, which is computed via pattern matching
(see Section 3.4):

A, B, u, v ::= w weak head normal form
| f ē defined symbol applied to eliminations

W , w ::= (x : A) � B dependent function type
| Set� universe �
| D ū data type fully applied to parameters
| R ū record type fully applied to parameters
| u � A v equality type
| x ē variable applied to eliminations
| c ū constructor fully applied to arguments
| reß proof of reflexivity

(25)
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12 J. Cockx and A. Abel

Any expression but c ū or reß can be a type; the first five weak head normal forms
are definitely types. Any type has in turn a type, specifically some universe Set� . Syntax
is coloured according to the Agda conventions: primitives and defined symbols are blue,
constructors are green, and projections are pink:

e ::= u application
| .� projection

(26)

Binary application u e is defined as a partial function on the syntax: for variables
and functions it is defined by (x ē) e = x (ē, e) and (f ē) e = f (ē, e), respectively, otherwise
it is undefined. The expression syntax does not include anonymous functions or record
expressions, but these can be defined in terms of definitions by (co)pattern matching (see
Section 3.5).

Pattern syntax. Patterns are generated from variables and constructors. In addition,
we have forced and absurd patterns. Since we are matching spines, we also consider
projections as patterns, or more precisely, as copatterns:

p ::= x variable pattern
| reß pattern for reflexivity proof
| c p̄ constructor pattern
| � c� p̄ forced constructor pattern
| � u� forced argument
| � absurd pattern

q ::= p application copattern
| .� projection copattern

(27)

Forced patterns (Brady et al., 2003) appear with dependent types; they are either entirely
forced arguments � u� , which are Agda’s dot patterns, or only the constructor is forced
� c� p̄. An argument can be forced by a match against reß somewhere in the surrounding
(co)pattern. However, sometimes we want to bind variables in a forced argument; in this
case, we revert to forced constructors. Absurd patterns9 are used to indicate that the type at
this place is empty, i.e. no constructor can possibly match. They are also used to indicate
an empty copattern split, i.e. a copattern split on a record type with no projections. This
allows us in particular to define the unique element tt of the unit record, which has no
projections at all, by the clause tt � = impossible.

The pattern variables PV(q̄) is the list of variables in q̄ that appear outside forcing brack-
ets �·� . By removing the forcing brackets, patterns p embed into terms 
 p� , and copatterns
q into eliminations 
 q� , except for the absurd pattern � :


 x� = x

 reß� = reß


 c p̄� = c 
 p̄�

� c� p̄� = c 
 p̄�


� u�� = u

 .� � = .�

(28)

Telescopes and contexts. Constructors take a list of arguments whose types can depend
on all previous arguments. The constructor parameters are given as a list x1:A1, . . . , xn:An

9 Absurd patterns are written as ‘( )’ in Agda syntax.
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Elaborating dependent (co)pattern matching 13

Fig. 1. Declarations.

with pairwise distinct xi, where Ai can depend on x1, . . . , xiŠ1. This list can be conceived
as a cons-list, then it is called a telescope (de Bruijn, 1991), or as a snoc-list, then we call
it a context:

� ::= � empty context
| � (x : A) context extension

	 ::= � empty telescope
| (x : A)	 non-empty telescope

(29)

Context and telescopes can be regarded as finite maps from variables to types, and
we require x � dom(� ) and x � dom(	 ) in the above grammars. We implicitly convert
between contexts and telescopes, but there are still some conceptual differences. Contexts
are always closed, i.e. its types only refer to variables bound prior in the same context. In
contrast, we allow open telescopes whose types can also refer to some surrounding context.
Telescopes can be naturally thought of as context extensions, and if � is a context and 	
a telescope in context � where dom(� ) and dom(	 ) are disjoint, then �	 defined by
�� = � and � ((x:A)	 ) = (� (x:A))	 is a new valid context. We embed telescopes in the
syntax of declarations, but contexts are used in typing rules exclusively.

Given a telescope 	 , let �	 be 	 without the types, i.e. the variables of 	 in order.

Similarly, we write �� for the variables bound in the context � . Further, we define 	 � C
as the iterated dependent function type via � � C = C and (x:A)	 � C = (x:A) �
(	 � C).

Declaration syntax. A development in our core type theory is a list of declarations, of
which there are three kinds: data type, record type, and function declarations (see Figure 1).
The input to the type checker is a list of unchecked declarations decl� , and the output a list
of checked declarations decl� , called a signature 
 .

A data type D can be parameterized by telescope 	 and inhabits one of the universes
Set� . Each of its constructors ci (although there might be none) takes a telescope 	 i of
arguments that can refer to the parameters in 	 . The full type of ci could be 		 i � D �	 ,
but we never apply constructors to the data parameters explicitly.
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14 J. Cockx and A. Abel

A record type R can be thought of as data type with a single constructor; its fields
� 1:A1, . . . , � n:An would be the constructor arguments. The field list behaves similar to a
telescope, the type of each field can depend on the value of the previous fields. However,
these values are referred to via self .� i where variable self is a placeholder for the value of
the whole record.10 The full type of projection � i could be 	 (self : R �	 ) � Ai, but like for
constructors, we do not apply a projection explicitly to the record parameters.

Even though we do not spell out the conditions for ensuring totality in this paper, like
positivity, termination, and productivity checking, data types, when recursive, should be
thought of as inductive types, and record types, when recursive, as coinductive types (Abel
et al., 2013). Thus, there is no dedicated constructor for records; instead, concrete records
are defined by what their projections compute.

Such definitions are subsumed under the last alternative dubbed function declaration.
More precisely, these are definitions by copattern matching which include both function
and record definitions. Each clause defining the constant f : A consists of a list of copatterns
q̄ (including patterns and projections) and right-hand side rhs. The copatterns eliminate
type A into the type of the rhs which is either a term u or the special keyword impossible,
in case one of the copatterns qi contains an absurd pattern � . The intended semantics is
that if an application f ē matches a left-hand side f q̄ with substitution � , then f ē reduces
to rhs under � . For efficient computation of matching, we require linearity of pattern vari-
ables for checked clauses: each variable in q̄ occurs only once in a non-forced position.
Note that checked/unchecked declarations can only mention checked/unchecked clauses,
respectively.

While checking declarations, the typechecker builds up a signature 
 of already checked
declarations or parts of declarations. Checked clauses are the elaboration (Sections 2 and 5)
of the corresponding unchecked clauses: they are non-overlapping and supplemented by a
telescope 	 holding the types of the pattern variables and the type B of left- and right-hand
side. Further, checked clauses do not contain absurd patterns.

In the signature, the last entry might be incomplete, e.g. a data type missing some con-
structors, a record type missing some fields, or a function missing some clauses. During
checking a declaration, we might add already checked parts of the declaration, dubbed
snippets, to the signature:

Z ::= dataD 	 : Set� data type signature
| constructorc 	 c : D 	 constructor signature
| recordR	 : Set� record type signature
| projectionself : R	 � .� : A projection signature
| deÞnitionf : A function signature
| clause	 � f q̄ �� v : B function clause

(30)

Adding a snippet Z to a signature 
 , written 
 , Z is a always defined if Z is a data or
record type or function signature; in this case, the corresponding declaration is appended
to 
 . Adding a constructor signature constructorc 	 c : D 	 is only defined if the last
declaration in 
 is (dataD 	 : Set� wherecon) and c is not part of con yet. Analogous
conditions apply when adding projection snippets. Function clauses can be added if the

10 self is the analogous of Java’s ‘this’, but like in Scala’s ‘trait’, the name can be chosen.
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Elaborating dependent (co)pattern matching 15

Table 1. List of typing and equality judgements of our core type theory.

Judgement Explanation Rules


 � � Context � is well formed. Figure A.1

 ; � � � 	 In � , telescope 	 is well formed and bounded by level � . Figure 4

 ; � � u : A In � , term u has type A. Figure 2

 ; � � ¯u : 	 In � , term list ū instantiates telescope 	 . Figure 4

 ; � | u : A � ¯e : B In � , head u of type A is eliminated via ē to type B. Figure 3

 ; � � u = v : A In � , terms u and v are equal of type A. Figure A.2

 ; � � ¯u = v̄ : 	 In � , term lists ū and v̄ are equal instantiations of 	 . Figure A.4

 ; � | u : A � ¯e = ē� : B In � , ē and ē� are equal eliminations of head u : A to type B. Figure A.3

last declaration of 
 is a function declaration with the same name. We trust the formal
definition of 
 , Z to the imagination of the reader. The conditions ensure that we do not add
new constructors to a data type that is already complete or new fields to a completed record
declaration. Such additions could destroy coverage for functions that have already been
checked. Late addition of function clauses would not pose a problem, but since we require
all function definitions to be total, any additional clauses would anyway be unreachable.

Membership of a snippet is written Z  
 and a decidable property with the obvious
definition. These operations on the signature will be used in the inference rules of our
type theory. Since we only refer to a constructor c in conjunction with its data type D,
constructors can be overloaded, and likewise projections.

3.2 Typing and equality

Our type theory employs the basic typing and equality judgements listed in Table 1. In all
these judgements, the signature 
 is fixed, thus we usually omit it, e.g. in the inferences
rules.

We further define some shorthands for type-level judgements when we do not care about
the universe level � :


 ; � � 	 �� � � . 
 ; � � � 	 well-formed telescope

 ; � � A �� � � . 
 ; � � A : Set� well-formed type

 ; � � A = B �� � � . 
 ; � � A = B : Set� equal types

In the inference rules, we make use of substitutions. Substitutions � , � ,  are partial maps
from variable names to terms with a finite domain. If dom(� ) and dom(� ) are disjoint,
then � � � denotes the union of these maps. We write the substitution that maps the
variables x1, . . . , xn to the terms v1, . . . , vn (and is undefined for all other variables) by
[v1 / x1; . . . ; vn / xn]. In particular, the empty substitution [ ] is undefined for all variables.
If 	 = (x1 : A1) . . . (xn : An) is a telescope and v̄ = v1, . . . , vn is a list of terms, we may
write [v̄ / 	 ] for the substitution [v̄ / �	 ], i.e. [v1 / x1; . . . ; vn / xn]. In particular, the identity
substitution 1� := [ �� / � ] maps all variables in � to themselves. We also use the identity
substitution as a weakening substitution, allowing us to forget about all variables that are
not in � . If x  dom(� ), then � \ x is defined by removing x from the domain of � .

Application of a substitution � to a term u is written as u� and is defined as usual by
replacing all (free) variables in u by their values given by � , avoiding variable capture via
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16 J. Cockx and A. Abel

Fig. 2. Typing rules for expressions.

suitable renaming of bound variables. Like function application, this is a partial operation
on the syntax; for instance, (x .� )[c / x] is undefined as constructors cannot be the head of
an elimination. Thus, when a substitution appears in an inference rule, its definedness is an
implicit premise of the rule. Also, such pathological cases are ruled out by typing. Well-
typed substitutions can always be applied to well-typed terms (established in Lemma 3).
Substitution composition � ; � shall map the variable x to the term (x� )� . Note the differ-
ence between � ; � and � � � : the former applies first � and then � in sequence, while
the latter applies � and � in parallel to disjoint parts of the context. Application of a
substitution to a pattern p� is defined as 
 p� � .

In addition to substitutions on terms, we also make use of substitutions on patterns
called pattern substitutions. A pattern substitution � assigns to each variable a pattern.
We reuse the same syntax for pattern substitutions as for normal substitutions. Any pattern
substitution � can be used as a normal substitution 
 � � defined by x
 � � = 
 x� � .

The rules for the typing judgement � � t : A are listed in Figure 2. The type formation
rules introduce an infinite hierarchy of predicative universes Set� without cumulativity.
The formation rules for data and record types make use of the judgement � � ¯u : 	 to
type argument lists, same for the constructor rule, which introduces a data type. Further,
reß introduces the equality type. All expressions involved in these rules are fully applied,
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Elaborating dependent (co)pattern matching 17

Fig. 3. The typing rules for eliminations.

Fig. 4. The typing rules for telescopes and lists of terms.

but this changes when we come to the elimination rules. The types of heads, i.e. variables
x or defined constants f are found in the context or signature.

The rules for applying heads u to spines ē, judgement � | u : A � ¯e : C , are presented
in Figure 3. For checking arguments, the type of the head is sufficient, and it needs to be a
function type. To check projections, we also need the value u of the head that replaces self
in the type of the projection. We may need to convert the type of the head to a function
or record type to apply these rules, hence, we supply a suitable conversion rule. The result
type C of this judgement need not be converted here, it can be converted in the typing
judgement for expressions.

Remark 1 (Focused syntax). The reader may have observed that our expressions cover
only the non-invertible rules in the sense of focusing (Andreoli, 1992), given that we con-
sider data types as multiplicative disjunctions and record types as additive conjunctions:
terms introduce data and eliminate records and functions. The invertible rules, i.e. elimi-
nation for data and equality and introduction for function space and records are covered
by pattern matching (Section 3.4) and, equivalently, case trees (Section 4). This matches
our intuition that all the information/choice resides with the non-invertible rules, the terms,
while the choice-free pattern matching corresponding to the invertible rules only sets the
stage for the decisions taken in the terms.

Figure 4 defines judgement � � � 	 for telescope formation. The level � is an upper
bound for the universe levels of the types that comprise the telescope. In particular, if we
consider a telescope as a nested 
 -type, then � is an upper bound for the universe that hosts
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18 J. Cockx and A. Abel

Fig. 5. Rules for well-formed signature snippets and extension.

this type. This is important when checking that the level of a data type is sufficiently high
for the level of data it contains (Figure 5).

Using the notation (x1, . . . , xn)� = (x1� , . . . , xn� ), substitution typing can be reduced
to typing of lists of terms: suppose � � and � 	 . We write � � � : 	 for dom(� ) = 	

and � � �	� : 	 . Likewise, we write � � � = � � : 	 for � � �	� = �	� � : 	 .

Definitional equality � � u = u� : A is induced by rewriting function applications
according to the function clauses. It is the least typed congruence over the axiom:

clause	 � f q̄ �� v : B  
 � � � : 	

� � f q̄� = v� : B�

If f q̄ �� v is a defining clause of function f, then each instance arising from a well-typed
substitution � is a valid equation. The full list of congruence and equivalence rules is given
in Figure A.2 in Appendix A., together with congruence rules for applications (Figure A.3)
and lists of terms (Figure A.4). As usual in dependent type theory, definitional equality on
types � � A = B : Set� is used for type conversion.

Lemma 2. If � � � : 	 1(x : A)	 2 then also � � � : 	 1(	 2[x� / x]).

Lemma 3 (Substitution). Suppose � � � � : � . Then the following hold

• If � � u : A then � � � u� : A� .
• If � | u : A � ¯e : B then � � | u� : A� � ¯e� : B� .
• If � � � 	 then � � � � 	� .
• If � � ¯u : 	 then � � � ¯u� : 	� .
• If � � u = v : A then � � � u� = v� : A� .
• If � | u : A � ¯e1 = ē2 : C then � � | u� : A� � ¯e1� = ē2� : C� .
• If � � ¯u1 = ū2 : 	 then � � � ¯u1� = ū2� : 	 .
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Elaborating dependent (co)pattern matching 19

Proof By mutual induction on the derivation of the given judgement. The interesting case
is when u is a variable application x ē. Suppose that x : A  � and � | x : A � ¯e : B, then
� � � x� : A� . We also know from the induction hypothesis that � � | x� : A� � ¯e� : B� ,
so we have � � � x� ē� : B� , as we had to prove. �

Property 4. If � � u : A and � | u : A � ¯e : B, then u ē is well defined and � � u ē : B.

3.3 Signature well-formedness

A signature 
 extends 
 0 if we can go from 
 0 to 
 by adding valid snippets Z, i.e. new
data types, record types, and defined constants, but new constructors/projections/clauses
only for not yet completed definitions in 
 . A signature 
 is well formed if it is a valid
extension of the empty signature � . Formally, we define signature extension 
 0 � 
 via

snippet typing 
 � Z by the rules in Figure 5, and signature well-formedness � 
 as
� � 
 . Recall that the rules for extending the signature with a constructor (resp. projection
or clause) can only be used when the corresponding data type (resp. record type or defini-
tion) is the last thing in the signature, by definition of extending the signature with a snippet

 , Z. When adding a constructor or projection, it is ensured that the stored data is not too
big in terms of universe level � ; this preserves predicativity. However, the parameters 	
of a data or record type of level � can be big, they may exceed � .

All typing and equality judgements are monotone in the signature, thus, remain valid
under signature extensions.

Lemma 5 (Signature extension preserves inferences). If 
 ; � � u : A and 
 � 
 �, then
also 
 �; � � u : A (and likewise for other judgements).

Remark 6 (Progress and preservation). The rules for extending a signature with a function
definition given by a list of clauses are not strong enough to guarantee the usual properties
of a language such as type preservation and progress. For example, we could define a
function with no clauses at all (violating progress), or we could add a clause where all
patterns are forced patterns (violating type preservation). We prove type preservation and
progress only for functions that correspond to a well-typed case tree as defined in Section 4.

3.4 Pattern matching and evaluation rules

We define a small-step evaluation relation for our core language. This relation is not used
by the typing judgement, but it serves as a reference point when proving the correctness of
the operational semantics of case trees (Lemma 12). Since our language does not contain
syntax for lambda abstraction, there is no rule for � -reduction. Almost all terms are their
own weak head normal form; the only exception are applications f ē. Formally, small-step
evaluation 
 � u Š� v is defined as the congruence closure of the following rule:

clause	 � f q̄ �� v : A  
 [ē / q̄] � �


 � f ē Š� v�
(31)

The small-step semantics are related to the definitional equality judgement by the notion
of respectfulness (see Definition 13).
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20 J. Cockx and A. Abel

Fig. 6. Rules for the pattern matching and mismatching algorithm.

Evaluation of defined symbols relies on matching [ē / q̄] � � � (Figure 6). Herein, � �

is either a substitution � with dom(� ) = PV(q̄) or the error value � for mismatch. Join of
lifted substitutions � � � � � is � if one of the operands is � , otherwise the join � � � .

A pattern variable x matches any term v, producing singleton substitution [v / x].
Likewise for a forced pattern � u� , but it does not bind any pattern variables. Projections .�
only match themselves, and so do constructors c p̄, but they require successful matching
[ū / p̄] � � of the arguments. For forced constructors � c1� p̄, the constructor equality test
is skipped, as it is ensured by typing. Constructor (c1 �= c2) and projection (.� 1 �= .� 2) mis-
matches produce � . We do not need to match against the absurd pattern; user clauses
with absurd matches are never added to the signature. Recall that absurd patterns are not
contained in clauses of the signature, thus, we need not consider them in the matching algo-
rithm. Evaluating a function that eliminates absurdity will be stuck for lack of matching
clauses.

A priori, requiring that [ē / q̄] � � is very similar to asking that 
 q̄� � = ē, but there are
two key differences:

1. The matching judgement [ē / q̄] � � ignores the forced patterns � u� and the con-
structor names in forced constructor patterns � c� p̄. This is important to give an
efficient implementation of matching as it means we do not have to check equality
of arbitrary terms.

2. The matching judgement makes a difference between a mismatch and a stuck
match. For example, we have [sucn / zero] � � but [m + n / zero] �� � . Mere
(in)equality cannot distinguish between the two situations.

For the purpose of the evaluation judgement, we would not need to track definite mismatch
separately from getting stuck. However, for the first-match semantics (Augustsson, 1985)
we do: there, a function should reduce with the first clause that matches while all previous
clauses produce a mismatch. If matching a clause is stuck, we must not try the next one.
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The first-match semantics is also the reason why either [e / q] � � or [ē / q̄] � � alone
is not sufficient to derive [e ē / q q̄] � � , i.e. mismatch does not dominate stuckness, nor
does it short-cut matching. Suppose a function anddefined by the clauses true true�� true
and x y �� false. If mismatch dominated stuckness, then both open terms andfalsey and
andx falsewould reduce to false. However, there is no case tree that accomplishes this.
We have to split on the first or the second variable; either way, one of the two open terms
will be stuck. We cannot even decree left-to-right splitting: see Section 2.5 for a definition
that is impossible to elaborate to a case tree using a left-to-right splitting order. Thus, we
require our pattern match semantics to be faithful with any possible elaboration of clauses
into case trees (see Theorem 22).11

3.5 Other language features

In comparison to dependently typed programming languages like Agda and Idris, our core
language seems rather reduced. In the following, we discuss how some popular features
could be translated to our core language.

Lambda abstractions and � -equality: A lambda abstraction � x. t in context � can
be lifted to the top level and encoded as auxiliary function f �� x �� t. We obtain
extensionality (� ) by adding the following rule to definitional equality:

� � t1 : (x : A) � B � � t2 : (x : A) � B � (x : A) � t1 x = t2 x : B

� � t1 = t2 : (x : A) � B
x � dom(� )

Record expressions: Likewise, a record value record{�̄ = v̄} in � can be turned into
an auxiliary definition by copattern matching with clauses (f �� .� i �� vi)i. We could
add an � -law that considers two values of record type R definitionally equal if they
are so under each projection of R. However, to maintain decidability of definitional
equality, this should only applied to non-recursive records, as recursive records model
coinductive types which do not admit � .
Indexed data types can be defined as regular (parameterized) data types with extra
arguments to each constructor containing equality proofs for the indices. For example,
VecA n can be defined as follows:

dataVec(A : Set� )(n : N ) : Set� where
nil : n � N zero� VecA n
cons: (m : N )(x : A)(xs : VecA m) � n � N sucm � VecA n

Indexed record types can be defined analogously to indexed data types. For example,
we can also define VecA n as a record type:

recordVec(A : Set� )(n : N ) : Set� where
head : (m : N ) � n � N sucm � A
tail : (m : N ) � n � N sucm � VecA m

11 In a sense, this is opposite to lazy pattern matching (Maranget, 1992), which aims to find the right clause with
the least amount of matching.
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The ‘constructors’ nil and consare then defined by:

nil : VecA zero

nil .head m � = impossible
nil .tail m � = impossible

cons: (n : N )(x : A)(xs : VecA n) � VecA (sucn)

consn x xs .head � n� reß= x
consn x xs .tail � n� reß = xs

Mutual recursion can be simulated by nested recursion as long as we do not define
checks for positivity and termination.
Wildcard patterns can be written as variable patterns with a fresh name. Note that
an unused variable may stand for either a wildcard or a forced pattern. In the lat-
ter case, our algorithm treats it as a let-bound variable in the right-hand side of the
clause.
Record patterns would make sense for inductive records with � . Without changes to
the core language, we can represent them by first turning deep matching into shallow
matching, along the lines of Setzer et al. (2014), and then turn record matches on the
left-hand side into projection applications on the right-hand side.

Other type-level features such as cumulativity or a (predicative or impredicative) Prop
universe are orthogonal to the work in this paper and could be added without much trouble.
This concludes the presentation of our core language.

4 Case trees

From a user perspective, it is nice to be able to define a function by a list of clauses, but
for a core language this representation of functions leaves much to be desired: it is hard
to see whether a set of clauses is covering all cases (Coquand, 1992), and evaluating the
clauses directly can be slow for deeply nested patterns (Cardelli, 1984). Recall that for
type-checking dependent types, we need to decide equality of open terms which requires
computing weak head normal forms efficiently.

Thus, instead of using clauses, we represent functions by a case tree in our core language.
In this section, we give a concrete syntax for case trees and give typing and evaluation rules
for them. We also prove that a function defined by a case tree enjoys good properties such
as type preservation and progress:

Q ::= u branch body (splitting done)
| � x. Q bring argument x in scope
| record{� 1 	� Q1; . . . ; � n 	� Qn} splitting on projections
| casex{c1 �	 1 	� Q1; . . . ; cn �	 n 	� Qn} match on data x
| casex{reß	� � Q} match on equality proof x

(32)

Note that empty caseand empty recordare allowed, to cover the empty data type and
the unit type, i.e. the record without fields.
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Fig. 7. Declarative (non-algorithmic) typing rules for case trees.

Remark 7 (Focusing). Case trees allow us to introduce functions and records, and elimi-
nate data. In the sense of focusing, this corresponds to the invertible rules for implication,
additive conjunction, and multiplicative disjunction. (See typing rules in Figure 7.)

4.1 Case tree typing

A case tree Q for a defined constant f : A is well typed in signature 
 if 
 � f := Q : A �

 �. In this judgement, 
 is the signature in which case tree Q for function f : A is well typed,
and 
 � is the output signature which is 
 extended with the function clauses corresponding
to case tree Q. Note that the absence of a local context � in this proposition implies that
we only use case trees for top-level definitions.12

Case tree typing is established by the generalized judgement 
 ; � � f q̄ := Q : A � 
 �

(Figure 7) that considers a case tree Q for the instance f q̄ of the function in a context � of
the pattern variables of q̄. The typing rules presented here capture the well-formedness of
the output of the elaboration algorithm. In Figure 10, this judgement will be extended to an
algorithmic version that takes the user clauses as additional input. We have the following
rules for 
 ; � � f q̄ := Q : A � 
 �:

12 It would also be possible to embed case trees into our language as terms instead, as is the case in many other
languages. We refrain from doing so in this paper for the sake of simplicity.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000182
Downloaded from https://www.cambridge.org/core. Technische Universiteit Delft, on 03 Feb 2020 at 08:20:08, subject to the Cambridge Core terms of use, available



24 J. Cockx and A. Abel

CTDONE A leaf of a case tree consists of a right-hand side v which needs to be of the
same type C of the corresponding left-hand side f q̄ and may only refer to the pattern
variables � of q̄. If this is the case, the clause f q̄ �� v is added to the signature.
CTINTRO If the left-hand side f q̄ is of function type (x : A) � B, we can extend it by
variable pattern x. The corresponding case tree is function introduction � x. Q.
CTCOSPLIT If the left-hand side is of record type Rv̄ with projections � i,
we can do result splitting and extend it by copattern .� i for all i. We have
record{� 1 	� Q1; . . . ; � n 	� Qn} (where n � 0) as the corresponding case tree, and we
check each subtree Qi for left-hand side f q̄ .� i in the signature 
 iŠ1 which includes the
clauses for the branches j < i. Note that these previous clauses may be needed to check
the current case, since we have dependent records (Section 2.2).
CTSPLITCON If left-hand side f q̄ contains a variable x of data type D v̄, we can split
on x and consider all possible constructors ci fully applied to fresh variables, generat-
ing the case tree casex{c1 �	 �

1 	� Q1; . . . ; cn �	 �
n 	� Qn}. The branch Qi is checked for a

refined left-hand side where x has been substituted by ci �	 �
i in a context where x has

been replaced by the new pattern variables 	 �
i. Note also the threading of signatures as

in rule CTCOSPLIT. 13

The rules CTSPLITEQ and CTSPLITABSURDEQ are explained in the next section.

4.2 UniÞcation: Splitting on the identity type

To split on an equality proof x : u � B v, we try to unify u and v. Unification has three possi-
ble outcomes: either it ends in a positive success and finds a most general unifier (m.g.u.);
then we can build a case tree casex{reß	� ·} (rule CTSPLITEQ). Or it ends in a negative
success with a disunifier; then we may build the case tree casex{} (rule CTSPLITABSURDEQ).
Finally, it may end in a failure with neither a m.g.u. nor a disunifier, e.g. for equality
y + z � N y� + z�; then elaboration fails.

In fact, in our setting, we need a refinement of m.g.u.s we call strong unifiers. Compared
to the usual notion of m.g.u., a strong unifier has additional restrictions on the computa-
tional behaviour of the substitutions between the original context and the reduced ones.
We recall the definitions of a strong unifier and a disunifier from Cockx et al. (2016), here
translated to the language of this paper and specialized to the case of a single equation:

Definition 8 (Strong unifier). Let � be a well-formed context and u and v be terms
such that � � u, v : A. A strong unifier (� �, � , � ) of u and v consists of a context � � and
substitutions � � � � : � (x : u � A v) and � (x : u � A v) � � : � � such that:

1. � � � x� = reß: u� � A� v� (this implies the definitional equality � � � u� = v� :
A� )

2. � � � � ; � = 1� � : � � (recall that 1� � is the identity substitution [ �� � / � �])
3. For any context � 0 and substitution � 0 such that � 0 � � 0 : � (x : u � A v) and

� 0 � x� 0 = reß: u� 0 � A� 0 v� 0, we have � 0 � � ; � ; � 0 = � 0 : � (x : u � A v).

13 This threading is not necessary for the current work. However, it allows our approach to be extended to sit-
uations where constructors can mention earlier constructors in their types, as for example in the case of path
constructors of higher inductive types in homotopy type theory.
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Fig. 8. Evaluation of case trees.

Definition 9 (Disunifier). Let � be a well-formed context and � � u, v : A. A disunifier of
u and v is a function � � f : (u � A v) � � where � is the empty type.

Since we use the substitution � for the construction of the left-hand side of clauses, we
require unification to output not just a substitution but a pattern substitution � . The only
properly matching pattern in � is x� = reß; all the other patterns y� are either a forced
pattern � t� (if unification instantiates y with t) or the variable y itself (if unification leaves
y untouched).

We thus assume we have access to a proof relevant unification algorithm specified by
the following judgements:

• A positive success 
 ; � � x u = ? v : A � YES(� �, � , � ) ensures that x� = reß and

the triple (� �, 
 � � , � ) is a strong unifier. Additionally, � � � � , y� = y, and y� = y for
all y  � �, and y� is a forced pattern for all variables y  � \ � �.

• A negative success 
 ; � � x u = ? v : A � NO ensures that there exists a disunifier
of u and v.

Remark 10. During the unification of u with v, each step either instantiates one variable
from � (e.g. the solution step) or leaves it untouched (e.g. the injectivity step). We thus
have the invariant that the variables in � � form a subset of the variables in � . In effect, the
substitution � makes the variables instantiated by unification go ‘out of scope’ after a match
on reß. This property ceases to hold in a language with � -equality for record types and uni-
fication rules for � -expanding a variable such as the ones given by Cockx et al. (2016). In
particular, � may contain not only variables but also projections applied to those variables.

4.3 Operational semantics

If a function f is defined by a case tree Q, then we can compute the application of f to elim-
inations ē via the judgement 
 � Q� ē Š� v (Figure 8) with � = [ ]. The substitution
� acts as an accumulator, collecting the values for each of the variables introduced by a �
or by the constructor arguments in a casex{...}. In particular, when evaluating a case tree
of the form casex{reß	� � Q}, the substitution � is used to remove any bindings in � that
correspond to forced patterns.

The operational sematics of case trees give us an efficient way to evaluate functions by
pattern matching. Since case trees are guaranteed to be covering, their operational sematics
is also essential in the proof of progress (in particular Lemma 19).
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4.4 Properties

If a function f is defined by a well-typed case tree, then it enjoys certain good properties
such as type preservation and progress. The goal of this section is to state and prove these
properties. First, we need some basic lemmata.

Lemma 11 (Well-typed case trees preserve signature well-formedness). Let � 
 be a
well-formed signature where deÞnitionf : A wherecls

�
is the last declaration in 
 and let

Q be a case tree such that 
 ; � � f q̄ := Q : C � 
 � where 
 � � and 
 ; � | f : A � 
¯ q� :
C. Then 
 � is also well formed.

Proof By induction on 
 ; � � f q̄ := Q : C � 
 �. �

The following lemma implies that once the typechecker has completed checking a def-
inition, we can replace the clauses of that definition by the case tree. This gives us more
efficient evaluation of the function and guarantees that evaluation is deterministic. In the
statement of the lemma, we use the notation [ē / q̄] Š� � � � to state that ē Š� � ē� and

[ē� / q̄] � � � for some ē�.

Lemma 12 (Simulation lemma). Consider a case tree Q such that 
 0; � � f q̄ := Q : C �

 , let � be a substitution whose domain is the pattern variables of q̄, and let ē be some
eliminations. If 
 � Q� ē Š� t then there is some pattern substitution � and copat-
terns q̄� such that clause	 � f q̄� q̄� �� v : A is in 
 but not in 
 0 and t = v� ē2 where
[q̄� ē1 / q̄� q̄�] Š� � � and ē = ē1 ē2.

Conversely, the signature 
 is equal to the signature 
 0 extended with clauses of the
form clause	 � f q̄� q̄� �� v : A, and for any � and ē1 and ē2 such that [q̄� ē1 / q̄� q̄�] � �
we have 
 � Q� ē1 ē2 Š� v� ē2.

Proof We start by proving the first statement by induction on Q:

• In case Q = v we have 
 0 � Q� ē Š� v� ē, and 
 = 
 0, clause� � f q̄ �� v : A.
Thus, we take � = 1� , q̄� = � , v = v, ē1 = � , and ē2 = ē. We clearly have [q̄� / q̄] �
� , hence t = v� ē.

• In case Q = � x. Q�, we have ē = u ē� and 
 � Q(� � [u / x]) ē� Š� t. From the
induction hypothesis, we know that clause	 � f (q̄ x)� q̄� �� v : A  
 and t =
v� ē2 where [q̄� u ē1 / (q̄ x)� q̄�] Š� � � and ē� = ē1 ē2. We can decompose � as
� � � [p / x], which means that we have clause	 � f q̄� � p q̄� �� v : A  
 and
[q̄� � u ē1 / q̄� � p q̄�] � � , so it suffices to take � � as the new � and p q̄� as the new q̄�.

• In case Q = casex{c1 �	 �
i 	� Q1; . . . ; cn �	 �

n 	� Qn}, we know that x� Š� � ci ū
and 
 � Qi(� \ x � [ū / 	 i� ]) ē Š� t. Let � i = 1� 1 � [ci �	 �

i / x] � 1� 2 , then by the
induction hypothesis we have � and q̄� such that clause	 � f q̄� i� q̄� �� v : A  

and t = v� ē2 where [q̄� i(� \ x � [ū / 	 i� ]) ē1 / q̄� i� q̄�] Š� � � and ē = ē1 ē2. From
the definition of matching, it follows that also [q̄� ē1 / q̄� i� q̄�] � � . Thus, we finish
this case by taking � i; � as the new � (and keep q̄� the same).
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• In case Q = record{� 1 	� Q1; . . . ; � n 	� Qn}, we have ē = .� i ē� and

 � Qi� ē� Š� t. From the induction hypothesis, we know that clause	 �
�� f q̄� .� i q̄� : vA  
 and t = v� ē2 where [q̄� .� i ē1 / q̄� .� i q̄�] Š� � � and
ē� = ē1 ē2. Hence, it suffices to take .� i q̄� as the new q̄� (and keep � the same).

• In case Q = casex{reß	� � �
Q�}, we have x� Š� � reß and 
 � Q�(� �; � ) ē Š� t.

From the induction hypothesis, we know that clause	 � f q̄� �� � � v : A  
 and
and t = v� ē2 where [q̄� �� �� ē1 / q̄� �� q̄�] Š� � � and ē = ē1 ē2. Since � � and � � are
produced by unification, we have that x� � = reßand for each pattern variable y of q̄
other than x, either y� � = � s� or y� � = y and y� � = y. It then follows from the defini-
tion of matching that [q̄� ē1 / q̄� �� q̄�] � � . Hence, we take � �; � as the new � (and
keep q̄� the same).

• There are no evaluation rules for Q = casex{} so this case is impossible.

In the other direction, we start again by induction on Q:

• In case Q = v, we have the single clause clause� � f q̄ �� v : A which is of the right
form with � = 1� and q̄� = � . If [q̄� ē1 / q̄] � � , then we have � = � and ē1 = � , so

 � Q� ē1 ē2 Š� v� ē2.

• In case Q = � x. Q�, we get from the induction hypothesis that any clause in 
 \ 
 0

is of the form clause	 � f (q̄ x)� q̄� �� v : A, which is of the right form if we take
� � = � \ x as the new � and q̄�� = x� q̄� as the new q̄�. Moreover, if [q̄� ē1 / q̄� � q̄��] �
� , then ē1 = u ē�

1 and [(q̄ x)(� � [u / x]) ē�
1 / (q̄ x)� q̄�] � � . The induction hypothe-

sis gives us that 
 � Q�(� � [u / x]) ē�
1 ē Š� v� ē2, hence also 
 � Q� ē1 ē2 Š�

v� ē2.
• In case Q = casex{c1 �	 �

i 	� Q1; . . . ; cn �	 �
n 	� Qn}, we get from the induction hypoth-

esis that any clause in 
 \ 
 0 is of the form clause	 � f q̄� i� q̄� �� v : A for some
� i = 1� 1 � [ci �	 �

i / x] � 1� 2 . This is of the right form if we take � � = � i� as the
new � (and keep q̄� the same). Moreover, if [q̄� ē1 / q̄� i� q̄�] � � , then we have
x� = ci ū from the definition of matching. Let � � = � \ x � [ū / 	 i� ], then we also
have [q̄� i� � ē1 / q̄� i� q̄�] � � . From the induction hypothesis, it now follows that

 � Qi� � ē1 ē2 Š� v� ē2, hence also 
 � Q� ē1 ē2 Š� v� ē2.

• In case Q = record{� 1 	� Q1; . . . ; � n 	� Qn}, we get from the induction hypothesis
that any clause in 
 \ 
 0 is of the form clause	 � f q̄� .� i q̄� �� v : A. This is of the
right form if we take q̄�� = .� i q̄� as the new q̄� (and keep � the same). Moreover,
if [q̄� ē1 / q̄� .� i q̄�] � � , then ē1 = .� i ē�

1. The induction hypothesis gives us that

 � Qi� ē�

1 ē2 Š� v� ē2, hence also 
 � Q� ē1 ē2 Š� v� ē2.
• In case Q = casex{reß	� � �

Q}�, we get from the induction hypothesis that any clause
in 
 \ 
 0 is of the form clause	 � f q̄� �� � � v : A where � � and � � are produced by
unification. This is of the right form if we take � �� = � �; � as the new � (and keep q̄�

the same). Moreover, if [q̄� ē1 / q̄� �� q̄�] � � , then we have x� = reßfrom the defi-
nition of matching. Let � � = � �; � , then we have x� �� � = reßand for all other pattern
variables y of q̄, either y� � is a forced pattern or y� � = y and y� � = y� . By matching,
it follows that also [q̄� �� � ē1 / q̄� �� q̄�] � � . From the induction hypothesis, it now
follows that 
 � Q� � � ē1 ē2 Š� v� ē2, hence also 
 � Q� ē1 ē2 Š� v� ē2.

• In case Q = casex{}, we have 
 = 
 0 so there are no new clauses to worry about.

�
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Before adding a clause f q̄ �� v to the signature, we have to make sure that the copatterns
q̄ only use forced patterns in places where it is justified: otherwise we might have [ē / q̄] �
� but 
 q̄� � �= ē. This is captured in the notion of a respectful pattern (Goguen et al., 2006).
Intuitively, a pattern is respectful if any well-typed term that matches the accessible part
of the pattern also matches the inaccessible parts. Here, we generalize the definition to
the case where we do not yet know that all reductions in the signature are necessarily
type-preserving. This requires us to first define respectfulness of a signature.

Definition 13. A signature 
 is respectful for 
 � u Š� v if 
 ; � � u : A implies

 ; � � u = v : A. A signature 
 is respectful if it is respectful for all derivations of

 � u Š� v.

In particular, this means 
 ; � � w : A, so evaluation with signature 
 is type-preserving.
It is immediately clear that the empty signature is respectful, since it does not contain any
clauses.

Definition 14 (Respectful copatterns). Let q̄ be a list of copatterns such that 
 ; 	 | u :
A � 
¯ q� : C where u and A are closed (i.e. do not depend on 	 ). We call q̄ respectful in sig-
nature 
 if the following holds: for any signature extension 
 � 
 � and any eliminations

 �; � | u : A � ¯e : C such that [ē / q̄] � � , we have 
 �; � | u : A � ¯q� = ē : C.

Being respectful is stable under signature extension by definition: if q̄ is respectful in 

and 
 � 
 �, then q̄ is also respectful in 
 �.

Lemma 15 (Signatures with respectful clauses are respectful). If 
 is a well-formed
signature such that all clauses in 
 have respectful copatterns in 
 , then 
 is respectful.

Proof By induction on the derivation of 
 � u Š� v. Assume clause	 � f q̄ �� v :
C  
 and [ē / q̄] � � for well-typed eliminations 
 ; � | f : C � ¯e : A, then we have to
prove that 
 ; � � f ē = v� : A. Since q̄ is respectful, we have 
 ; � | f : C � ¯q� = ē : A.
It follows that 
 ; � � f q̄� = f ē : A, hence also 
 ; � � f ē = v� : A by the � -rule for
definitional equality. �

Lemma 16 (Well-typed case trees have respectful clauses). Consider a respectful signa-
ture 
 0 and a case tree Q such that 
 0; � � f q̄ := Q : C � 
 and q̄ is respectful in 
 0.
Then all clauses in 
 \ 
 0 have respectful patterns in 
 .

Proof By induction on the derivation of 
 0; � � f q̄ := Q : C � 
 :

• In case Q = v, we have a single new clause clause� � f q̄ �� v : C. Since q̄ is
respectful in 
 0 by assumption, it is also respectful in 
 = 
 0, clause� � f q̄ ��
v : C.

• In case Q = � x. Q�, we know from the typing rule of � x. that 
 0; � � C = (x : A�) �
B� : Set� . and 
 0; � (x : A) � f q̄ x := Q� : B � 
 . Since q̄ is respectful, it follows that
q̄ x is also respectful, so the result follows from the induction hypothesis.
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• In case Q = casex{c1 �	 �
i 	� Q1; . . . ; cn �	 �

n 	� Qn}, the typing rule for casex{} tells
us that � = � 1(x : A)� 2 and 
 0; � 1 � A = D v̄ : Set� . Moreover, it tells us for
n = 1, . . . , n that 
 iŠ1; � 1	 �

i� 2� i � f q̄� i := Qi : C� i � 
 i where constructorci 	 i :
D 	  
 0 and 	 �

i = 	 i[v̄ / 	 ] and � i = [ci �	 �
i / x]. Since q̄ is respectful, so is q̄� i, so

the result follows from the induction hypothesis.
• In case Q = record{� 1 	� Q1; . . . ; � n 	� Qn}, the typing rule for record{}

tells us that 
 0; � � C = Rv̄ : Set� . We also get that 
 iŠ1; � � f q̄ .� i := Qi :
Ai[v̄ / 	 , f 
 q̄� / x] � 
 i where projectionx : R	 � .� i : Ai  
 0. Since q̄ is respect-
ful, so is q̄ .� i, so the result follows from the induction hypothesis.

• In case Q = casex{reß	� � Q}�, the the typing rule tells us that � = � 1(x : A)� 2 and

 0; � 1 � A = s � E t : Set� . We also have that 
 0; � 1 � x s = ? t : E � YES(� �

1, � , � )
and 
 0; � �

1� 2� � f q̄� � := Q� : C� � � 
 where � � = � � 1� 2 . Since q̄ is respectful
and � is a strong unifier (Definition 8), q̄� � is also respectful, so the result follows
from the induction hypothesis.

• The typing rule for Q = casee{} does not add any new clauses.
�

Theorem 17 (Type preservation). If all functions in a signature 
 are given by well-typed
case trees, then 
 is respectful.

Proof This is a direct consequence of the previous two lemmata. �

Theorem 18 (Progress). Let 
 be a well-formed signature where all functions are given
by well-typed case trees. Then for any function deÞnitionf : A  
 and closed eliminations

 | f : A � ¯e : B such that B is not definitionally equal to a function type or a record type,
we have 
 � f ē Š� v for some v.

In particular, this theorem tells us that evaluation of a function defined by a well-typed
case tree applied to closed arguments can never get stuck. To prove this theorem, we first
prove the following auxiliary lemma.

Lemma 19. Let 
 be a well-formed signature where all functions other than f are given
by well-typed case trees. Let further Q be a case tree such that 
 0; � � f q̄ := Q : C �

 , and let 
 � � 0 : � be a (closed) substitution and 
 | f q̄� 0 : C� 0 � ¯e : B be (closed)
eliminations such that B is not definitionally equal to a function type or a record type, and
� 0 and ē do not mention f. Then one of the following holds

1. 
 � x� 0 Š� v for some variable x in � , or
2. 
 � ¯e Š� ¯ e�, or
3. 
 � Q� 0 ē Š� v.

From this lemma, the theorem follows directly by induction on well-formedness of 

and applying the lemma for each function with � = � , � 0 = [ ], and q̄ = � .

Proof By induction on Q:

• If Q = v, we have clause� � f q̄ �� v : C  
 so we are in the third case.
• If Q = � x. Q�, we have 
 0; � � C = (x : A�) � B� : Set� and 
 0; � (x : A�) � f q̄ x :=

Q� : B� � 
 from the typing rule of � x.. Hence, we have 
 ; � � C� 0 = (x : A� � 0) �
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B� � 0 : Set� , so ē = w ē� for some term 
 � w : A� � 0 and eliminations 
 | f q̄� 0 w :
B�(� 0 � [w / x]) � ¯e� : B. By induction, we now have that either � 0 or ē takes a step,
or else 
 � Q�(� 0 � [w / x]) ē� Š� v, hence also 
 � Q� 0 ē Š� v.

• If Q = casex{c1 �	 �
i 	� Q1; . . . ; cn �	 �

n 	� Qn}, we have x : D v̄  � , hence either x� 0

takes a step (so we are in the first case) or else x� 0 is a weak head normal form
ci ū for some constructor ci of D. In the latter case, we have by induction that either
� 0 � [ū / 	 i� ] or ē takes a step, or else 
 � Qi(� 0 � [ū / 	 i� ]) ē Š� v, hence also

 � Q� ē Š� v.

• If Q = record{� 1 	� Q1; . . . ; � n 	� Qn}, we have 
 0; � � C = Rv̄ : Set� . Hence,
we have 
 0 � C� 0 = Rv̄� 0 : Set� , so ē = .� i ē� for some field � i of R. By induc-
tion either � 0 or ē takes a step, or else we get a v such that 
 � Qi� 0 ē� Š� v, hence
also 
 � Q� 0 ē Š� v.

• If Q = casex{reß	� � Q�}, we have x : u � E v  � , hence either x� 0 takes a step (so we
are in the first case) or else x� 0 = reß. From the inductive hypothesis together follows
that either � ; � 0 or ē takes a step, or else 
 � Q�(� ; � 0) ē Š� v. By construction,
y� = y for each variable y in � � (see Remark 10), so if � ; � 0 takes a step then so does
� 0. On the other hand, if 
 � Q�(� ; � 0) ē Š� v, then we also have 
 � Q� 0 ē Š�
v so we are in the third case.

• If Q = casex{}, we have x : u � E v  � , so either x� 0 takes a step or it is equal to
reß. But u � E v is equivalent to the empty type by unification, so the latter case is
impossible.

�

5 Elaboration

In the previous two sections, we have described a core language with inductive data types,
coinductive records, identity types, and functions defined by well-typed case trees. On the
other hand, we also have a surface language consisting of declarations of data types, record
types, and functions by dependent (co)pattern matching. In this section, we show how to
elaborate a programme in this surface language to a well-formed signature in the core
language.

The main goal of this section is to describe the elaboration of a definition given by a
set of (unchecked) clauses to a well-typed case tree and prove that this translation (if it
succeeds) preserves the first-match semantics of the given clauses. Before we dive into
this, we first describe the elaboration for data and record types.

5.1 Elaborating data and record types

Figure 9 gives the rules for checking declarations, constructors, and projections. These
rules are designed to correspond closely to those for signature extension in Figure 5.
Consequentially, if � 
 and 
 � decl � 
 �, then also � 
 �.

5.2 From clauses to a case tree

In Section 2, we showed how our elaboration algorithm works in a number of examples,
here we describe it in general. The inputs to the algorithm are the following:
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Fig. 9. Declarative (non-algorithmic) rules for checking declarations of data types, record types, and
defined symbols.

• A signature 
 containing previous declarations, as well as clauses for the branches
of the case tree that have already been checked.

• A context � containing the types of the pattern variables: dom(� ) = PV(q̄).
• The function f currently being checked.
• The copatterns q̄ for the current branch of the case tree.
• The refined target type C of the current branch.
• The user input P, which is described below.

The outputs of the algorithm are a signature 
 � extending 
 with new clauses and a well-
typed case tree Q such that 
 ; � � f q̄ := Q : C � 
 �.

We represent the user input P to the algorithm as an (ordered) list of partially decom-
posed clauses, called a left-hand side problem or lhs problem for short. Each partially
decomposed clause is of the form [E]q̄ �� rhs, where E is an (unordered) set of constraints
{wk / ? pk : Ak | k = 1 . . . l} between a pattern pk and a term wk , q̄ is a list of copatterns, and
rhs is a right-hand side. In the special case E is empty, we have a complete clause written
as q̄ �� rhs.
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Table 2. List of judgements and definitions used by the elaboration algorithm.

Judgement/definition Explanation Rules


 ; � � P | f q̄ := Q : C � 
 � User input P is elaborated to the case tree Q which Figure 10
implements f q̄, 
 � extends 
 with the clauses of Q.


 ; � � E � SOLVED(� ) The constraints E are solved by substitution � . Figure 11
P (x : A) Update user input P by introducing new argument x. Figure 12
P .� Update user input P by applying projection .� . Figure 13

 � P� � P� Applying substitution � to user input P produces P�. Figure 14

 � ¯v / ? p̄ : 	 � E� Constraints v̄ / ? p̄ can be simplified to E� . Figure 15

 ; � � � : A Type A is a caseless type. Figure 16

Elaboration of an lhs problem to a well-typed case tree is defined by the judgements
in Table 2, which are explained further in the following paragraphs. The main elabora-
tion judgement 
 ; � � P | f q̄ := Q : C � 
 � is defined in Figure 10. This judgement is
designed as an algorithmic version of the typing judgement for case trees 
 ; � � f q̄ :=
Q : C � 
 �, where the extra user input P guides the construction of the case tree. In par-
ticular, the clauses in P serve as the user-provided definition of f q̄. Each of the rules in
Figure 10 is a refined version of one of the rules in Figure 7, so any case tree produced by
this elaboration is well typed by construction. In particular, since well-typed case trees are
guaranteed to be covering, this judgement doubles as a coverage checking algorithm for
the clauses in P.

To check a definition of f : A with clauses q̄i �� rhsi for i = 1 . . . n, the algorithm starts
with � = � , q̄ = � , and P = { q̄i �� rhsi | i = 1 . . . n}. If we obtain 
 ; � � P | f := Q : A �

 �, then the function f can be implemented using the case tree Q.

During elaboration, the algorithm maintains the invariants that � 
 is a well-formed
signature, 
 � � is a well-formed context, and 
 ; � � f 
 q̄� : C. It also maintains the
invariant that for each constraint wk / ? pk : Ak in the lhs problem, we have 
 ; � � wk : Ak .

The rules for 
 ; � � P | f q̄ := Q : C � 
 � make use of some auxiliary operations for
manipulating lhs problems:

• After each step, the algorithm uses 
 ; � � E � SOLVED(� ) (Figure 11) to check
if the first user clause has no more (co)patterns, and all its constraints are solved. If
this is the case, it returns a substitution � assigning a well-typed value to each of the
user-written pattern variables.

• After introducing a new variable, the algorithm uses P (x : A) (Figure 12) to remove
the first application pattern from each of the user clauses and to introduce a new
constraint between the variable and the pattern.

• After a copattern split on a record type, the algorithm uses P .� (Figure 13)
to partition the clauses in the lhs problem according to the projection they
belong to.

• After a case split on a data type or an equality proof, the algorithm uses

 � P� � P� (Figure 14) to refine the constraints in the problem. It makes use

of the judgements 
 � v / ? p : A � E� and 
 � ¯v / ? p̄ : 	 � E� (Figure 15) to
simplify the constraints if possible, and to filter out the clauses that definitely do not
match the current branch (see Section 2.1 for an example).
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Fig. 10. Rules for checking a list of clauses and elaborating them to a well-typed case tree.

• To check an absurd pattern � , the algorithm uses 
 ; � � � : A (Figure 16) to
ensure that the type of the pattern is a caseless type (Goguen et al., 2006), i.e. a type
that is empty and cannot even contain constructor-headed terms in an open context.
Our language has two kinds of caseless types: data types D v̄ with no constructors,
and identity types u � A v where 
 ; � � x u = ? v : A � NO.

The following rules constitute the elaboration algorithm 
 ; � � P | f q̄ := Q : C � 
 �:

DONE applies when the first user clause in P has no more copatterns and all its
constraints are solved according to 
 ; � � E � SOLVED(� ). If this is the case, then
construction of the case tree is finished, adding the clause clause� � f q̄ �� v� : C to
the signature.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796819000182
Downloaded from https://www.cambridge.org/core. Technische Universiteit Delft, on 03 Feb 2020 at 08:20:08, subject to the Cambridge Core terms of use, available






















	Elaborating dependent (co)pattern matching: No pattern left behind
	Introduction
	Elaborating dependent (co)pattern matching by example


