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Abstract
Both thematerial-pointmethod (MPM) and optimal transportationmeshfree (OTM)method have been developed to efficiently
solve partial differential equations that are based on the conservation laws from continuum mechanics. However, the methods
are derived in a different fashion and have been studied independently of one another. In this paper, we provide a direct
step-by-step comparison of the MPM and OTM algorithms. Based on this comparison, we derive the conditions, under
which the two approaches can be related to each other, thereby bridging the gap between the MPM and OTM communities.
In addition, we introduce a novel unified approach that combines the design principles from B-spline MPM and the OTM
method. The proposed approach does not contain user-defined parameters and can decrease the costs of the standard OTM
method. Moreover, it allows for the use of a consistent mass matrix without stability issues that are typically encountered in
MPM computations.

Keywords Material point · Optimal transportation · Meshfree · B-spline · Maximum entropy · Consistent mass matrix

1 Introduction

The material-point method (MPM) [48,51] is a numerical
technique suited to model large deformations in continuum
mechanics.MPMhas been successfully applied in the numer-
ical simulation of complex engineering problems [3,50,59,
61]. It originates from the fluid-dynamics-oriented particle-
in-cell (PIC) method [25] and is mainly based on a weak
formulation of the momentum-balance equation. To avoid
mesh distortion when the material undergoes large defor-
mations, MPM combines a fixed Eulerian background grid
and a set of Lagrangian point masses called material points.
The MPM grid contains no permanent information about
the continuum and is used only to assemble and solve the
discretized governing equations. The material points travel
freely through the background grid, while carrying the infor-
mation about the continuum.
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1 Department of Applied Mathematics, Delft University of
Technology, Van Mourik Broekmanweg 6, 2628 XE Delft,
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The optimal transportation meshfree (OTM) method [27]
has been developed to simulate general solid and fluid flows
and applied to a wide range of problems [19,28,29,37]. The
OTM method uses the concepts from optimal transportation
theory (an overview is provided by Villani [54]) to translate
the mass and momentum balance equations into a minimiza-
tion problem for the total action of the solid over a time
interval. The OTMmethod employs two sets of points: nodal
points and material points. Nodal points carry information
about the positions, while material points represent the con-
tinuum. This updated Lagrangian method is typically used
with localmaximum-entropy (maxent) basis functions [4,46]
that are fully defined by the nodal set and the domain of anal-
ysis.

Many similarities can be found between MPM and the
OTM method. For instance, they both employ the idea
of material points that represent the continuum, but are
not used directly to compute the solution of the govern-
ing equations. Moreover, an alternative derivation of the
OTM scheme has been provided by Weißenfels and Wrig-
gers [56], where the method is obtained from the weak
form of the equation of motion. Despite this, MPM method
and the OTM method have been evolved and studied inde-
pendently from each other. An in-depth analysis and direct
comparison of the methods provide a better understanding of
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their relation, with potential improvements of MPM based
on the present knowledge of the OTM method and vice
versa.

This paper consists of two parts: The first part offers
new insights into the relation between MPM and the OTM
methodbydrawing a detailed comparison of their algorithms.
Based on this comparison, it identifies the conditions, under
which the two approaches can be related to each other, and
highlights their fundamental differences. The second part of
the study presents a novel unified approach that combines
the design principles from B-spline MPM (BSMPM) [43]
and the OTM method. The choice of BSMPM is motivated
by previous studies. First of all, a number of studies have
indicated that BSMPM is a viable alternative not only for
MPM, but also for its more advanced versions such as dual
domain material-point (DDMP) [60] and convected particle-
domain interpolation (CPDI) [40] methods [20,45,53,57].
Secondly, Cyron et al. [13] pointed out the strong simi-
larities between B-spline and maxent basis functions. For
example, both of them are non-negative, smooth and pos-
sess the partition of unity property. Although in the present
paper, the unified approach is applied to relatively sim-
ple examples, all derivations are presented in their general
form enabling its straightforward extension to more complex
problems.

This paper is structured as follows: Section 2 presents
the governing equations that serve as a basis for the devel-
opment of both MPM and OTM. To be self-contained and
allow for a direct comparison of the methods, Sects. 3 and 4
describe, respectively, the MPM and OTM schemes and
provide their computational algorithms. Section 5 gives a
step-by-step comparison of the algorithms and identifies the
conditions, under which they can be related, as well as their
main differences. Aside from the computational algorithms,
theMPMandOTMmethods can be classified bymeans of the
basis functions typically used within them. For this reason,
Sect. 6 describes the piecewise-linear Lagrange and max-
imum entropy basis functions. Since our unified approach
and BSMPM adopt the B-spline basis functions, the section
also presents the B-spline basis functions. After that, Sect. 7
introduces the unified approach that combines the advan-
tages of BSMPM and the OTM method. Section 8 reports
the results that show the difference between the MPM and
OTM methods numerically. In addition, it demonstrates the
results obtained with our unified approach and gives a com-
parison with BSMPM. Finally, Sect. 9 summarizes the main
conclusions of this study.

2 Governing equations

To describe the governing equations for the MPM and OTM
schemes, we start by introducing some notation from contin-

uum mechanics. It is assumed that the considered one-phase
continuum occupies the domain Ω0 ⊆ R

3 at the initial time
t0 and domain Ω t ⊆ R

3 at any later time t > t0. The initial
position of the material is denoted by x0 = [x01 , x02 , x03 ]T,
while the position at time t is x = [x1, x2, x3]T. In
abstract formulation, the deformation mapping is defined as
ϕ : R

3 × [t0, T ] → R
3, where T is the final time. For a

fixed time t , the mapping Ω0 �→ Ω t can be considered as
the ‘push forward’ operator, which needs to be bijective, so
that the current domain can also be ‘pulled back’ to the initial
one via ϕ−1(x, t) : Ω t → Ω0. Likewise, it links the initial
and current positions:

x = ϕ(x0, t), x0 = ϕ−1(x, t). (1)

The displacement, velocity, and acceleration vectors are
denoted by

u = [u1, u2, u3]T,

v = [v1, v2, v3]T,

a = [a1, a2, a3]T, (2)

respectively. The displacement at time t is defined as the
difference between the current and initial positions:

u(x, t) = x − x0. (3)

The velocity and acceleration are defined by means of the

material time derivative. Using ∇ =
[

∂
∂x1

, ∂
∂x2

, ∂
∂x3

]T
, the

material time derivative can be written as

d

dt
= ∂

∂t
+ v · ∇. (4)

Since the convective effects can be neglected in Lagrangian
computations (e.g., Donea et al. [16]), the velocity and accel-
eration are obtained from

v(x, t) = d

d t
u(x, t) = ∂

∂t
u(x, t), (5)

a(x, t) = d

d t
v(x, t) = ∂

∂t
v(x, t). (6)

Furthermore, the deformation gradient tensor F is defined as

F = I + ∂u
∂x0

= I +
{

∂uk

∂x0l

}
, (7)

where I is the identity matrix.
For a continuum under purely mechanical loading, the

motion is governed by the conservation laws given by the
following system of coupled partial differential equations
(PDEs):
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∂ρ

∂t
+ ∇ · (ρv) = 0, (8)

∂(ρv)

∂t
− ∇ · σ − ρb = 0, (9)

where ρ is the mass density, σ is the Cauchy stress ten-
sor, and b is a body force. Equations (8) and (9) describe
the mass and momentum balance in the updated Lagrangian
form, respectively. To specify the material, the above sys-
tem needs to be supplemented with a suitable constitutive
equation. In this paper, only linear elastic and neo-Hookean
(hyperelastic) constitutive relations are considered. A multi-
dimensional linear elastic model can be described as

σ = λ

J
tr

(
1

2

(
F + FT

)
− I
)

F

+2μ

J
F
(
1

2

(
F + FT

)
− I
)

, (10)

where λ and μ are Lamé’s first parameter and the shear mod-
ulus, respectively. Denoting the determinant of F by J , the
neo-Hookean material model that can be used to describe a
nonlinear stress–strain material behavior is given by

σ = λ ln(J )

J
I + μ

J

(
FFT − I

)
. (11)

The details on the derivation of the conservation laws for
a solid continuum and information on various constitutive
models can be found in the works of Malvern [32] and
Spencer [42]. It should be noted that while the choice of
the constitutive model should not affect the approaches, it
may lead to more complex algorithms for more elaborate
nonlinear stress–strain relations.

3 Material-point method

MPM originates from the particle-in-cell (PIC) [25] and
fluid-implicit particle (FLIP) [10] methods. After its intro-
duction, several related methods have been proposed. For
example, Bardenhagen and Kober [6] introduced a general-
ization ofMPM, the generalized interpolation material-point
(GIMP) method, where particles are represented by particle
characteristic functions. In addition to the related methods,
several versions of theMPM algorithm have been suggested.
First, the original update stress last (USL) [48] version of
MPM was transformed into the modified update stress last
(MUSL) [51]. The main difference between the USL and
MUSL algorithms is that USL computes the nodal velocities
directly from the nodal accelerations, while MUSL obtains
them from thematerial-point velocities, significantly improv-
ing the stability of the scheme. Next to USL and MUSL,
the update stress first (USF) [5] and update stress averaged

(USAVG) [36] MPM algorithms have been introduced. Both
USF and USAVG attempt to improve the energy conserva-
tion within USL and MUSL. However, for the comparison
of MPM and OTM algorithms, we focus on the most basic
version of the MPM scheme, USL. Finally, a version of
MPM, the so-called moving-mesh MPM, has been proposed
where the background grid does not remain fixed as the sim-
ulation progresses in time. Moving-mesh MPM has been
successfully applied to model complex problems such as the
biological mechanics of cells [21] and the texture evolution
in polycrystalline nickel [62].

MPM simplifies the momentum equation, Eq. (9), by
assuming that the mass density is constant in time and solves
the simplified equation on thefixed backgroundgrid adopting
a variational formulation. The weak form of the momentum
equation is given by

∫

Ω t
wρ

∂v
∂t

dΩ t =
∫

∂Ω t
wn · σ dΓ t −

∫

Ω t
∇w · σ dΩ t

+
∫

Ω t
wρb dΩ t , (12)

where ω denotes an element of the test space that consists of
all functions, which are sufficiently smooth and zero on the
part of the boundary where essential boundary conditions are
prescribed,Γ t = ∂Ω t is the boundary of the domainΩ t , and
n is the outward unit normal vector. By adopting the standard
approach in the finite element method (FEM) [11], Eq. (12)
can be written in the following matrix-vector form for each
direction xk :

Māk = f̄k . (13)

where āk = [ak,1, ak,2, . . . , ak,N ]T is the unidirectional
vector of the unknown acceleration coefficients,1 M =[
Mi j

] ∈ R
N ×N is the consistent mass matrix, and f̄k =

[ fk,1, fk,2, . . . , fk,N ]T is the unidirectional force vector.
Here, N being the total number of nodes on the background
grid. The entries of themassmatrix and force vector are given
by

Mi j =
∫

Ω t
φi ρφ j dΩ t , (14)

fk,i =
∫

∂Ω t
φi τk dΓ t −

∫

Ω t

3∑
l=1

∂φi

∂xl
σlk dΩ t

+
∫

Ω t
φi ρbk dΩ t , (15)

1 We would like to remark that the unknown coefficients correspond
to the classical “nodes” located at the vertices of the cells for linear
Lagrangian finite element basis functions but can also be of modal type
for B-spline basis functions presented in Sect. 6. To simplify the pre-
sentation for the reader who is more familiar with nodal basis functions,
we will stick to the terminology of “nodes” unless stated otherwise.
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respectively. Here, τ (x, t) is the prescribed traction at the
boundary. In general, MPM can be implemented combining
Eq. (13) for each k into one linear system. The implementa-
tion procedure of a multi-dimensional MPM can be found,
for instance, in the thesis of Kafaji [2].

In MPM computations, the consistent mass matrix is typ-
ically replaced by the row-sum lumped mass matrix ML ,
which can be obtained by summing the off-diagonal entries
ofM in each row, adding them to the diagonal entry, and sub-
sequently setting the off-diagonal entries to zero. If the basis
functions maintain a partition of unity within the domain,
that is

N∑
j=1

φ j (x) = 1 ∀ x ∈ Ω t , (16)

the diagonal entry of the lumped mass matrix can be
expressed as follows:

M L
ii =

∫

Ω t
φi ρ dΩ t . (17)

Furthermore, in MPM material points represent the material
and carry all physical information about it (e.g., the mass,
strain, and stress). While most material-point properties vary
in time, the mass is time independent. This assures that
the conservation of mass, Eq. (8), is satisfied. Furthermore,
throughout a simulation, the integrals inEqs. (14) and (15) are
approximated by projecting the material-point information
onto the background grid. Let the continuum be discretized
byMmaterial points, then the integral of an arbitrary vector-
valued function g(x) is approximated by

∫

Ω

g(x)dΩ =
M∑
p=1

Vpg(xp), (18)

where Vp and xp represent the material-point volume and
position, respectively. The information obtained by solving
Eq. (13) is then mapped back to update the material points.
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———————————————————————————————
———————————————————————————————
Input: Nodal coordinates x0i , material-point coordinates x0p , velocities v0p , volumes V 0

p , densities ρ0
p , masses m p , deformation gradients F0

p , stresses

σ 0
p , body forces bp

1 Set s = 0
2 while s < N do
3 Compute basis functions φ0

i (xs
p) and gradients ∇φ0

i (xs
p) from initial nodal set

{
x0i
}
and advected material-point set

{
xs

p

}
4 Compute mass matrix Ms , linear momentum vector q̄s

k , and force vector f̄s
k :

Ms
i j =

M∑
p=1

φ0
i

(
xs

p

)
m pφ0

j

(
xs

p

)
(19)

qs
k,i =

M∑
p=1

φ0
i

(
xs

p

)
m pvs

k,p (20)

f s
k,i =

M∑
p=1

(
3∑

l=1

∂φ0
i

∂xl
(xs

p)σ s
lk,p + φ0

i

(
xs

p

)
ρs

pbk,p

)
V s

p (21)

5 Compute nodal accelerations:

ās
k = (

Ms)−1 f̄s
k (22)

6 Compute nodal velocities and incremental nodal displacements:

v̄s
k = (Ms)−1q̄s

k (23)

v̄s+1
k = v̄s

k + (t s+1 − t s)ās
k (24)

Δx̄s+1
k = (t s+1 − t s)v̄s+1

k (25)

7 Update material-point coordinates:

xs+1
p = xs

p +
N∑
i=1

φ0
i (xs

p)Δxs+1
i (26)

8 Update material-point velocities:

vs+1
p = vs

p + (t s+1 − t s)

N∑
i=1

φ0
i (xs

p)as
i (27)

9 Update material-point deformation gradients:

∇vs+1
p =

N∑
i=1

∇φ0
i (xs

p)vs+1
i (28)

Fs+1
p =

(
I + (t s+1 − t s)∇vs+1

p

)
Fs

p (29)

10 Update material-point volumes:

V s+1
p = det

(
Fs+1

p

)
V 0

p (30)

11 Update material-point densities:

ρs+1
p = m p

V s+1
p

(31)

12 Compute material-point stresses σ s+1
p from Fs+1

p using the constitutive equation (e.g., Equation 10 or 11)

13 Set s = s + 1
14 end

Algorithm 1: Update stress last (USL) version of material-point method.
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(a) (b)

(c) (d)

Fig. 1 Schematic representation of the MPM solution strategy within
each time step: a project material-point information onto the back-
ground grid; b solve the governing equations at the grid nodes;
c update material-point information; d update material-point positions
with respect to the grid

In the considered version of MPM, the Euler–Cromer
time-stepping scheme [12] is used for temporal discretiza-
tion. The scheme applies the forward Euler method to
advance the velocity and employs the backwardEulermethod
for the displacement. The choice of the time integration tech-
nique is discussed in detail by Wallstedt and Guilkey [55].
A schematic representation of the MPM solution strategy
that is followed within each of the N time steps is pro-
vided in Fig. 1. The complete form of the original MPM
algorithm is presented in Algorithm 1, where it is assumed
that only a constant body force is acting externally. In the
algorithm, the notation used for the acceleration and force
vectors, āk and f̄k , is also adopted for global nodal vectors
(e.g., the nodal velocity vector in the direction xk is denoted
by v̄k = [vk,1, vk,2, . . . , vk,N ]T).

4 Optimal transportationmeshfreemethod

The OTMmethod is a meshless updated Lagrangian method
that is based on the concepts from optimal transportation the-
ory. In contrast toMPM, theOTMmethod explicitly includes
the dependence of the mass density on time. For an arbitrary
time interval

[
t0, T

]
, it assumes that the density at time t0

and T is prescribed:

ρ
(
x0, t0

)
= ρ0

(
x0
)

, (32)

ρ (x, T ) = ρT (x) , (33)

where x0 and x are given in Eq. (1). Benamou and Brenier [8]
note that themass andmomentumbalance equations together
with Eqs. (32) and (33) can be translated into a minimization
problem for the action of the solid over the time interval. The
action over

[
t0, T

]
is given by

A (ρ, v) =
∫ T

t0
K (ρ, v) dt, (34)

where K (ρ, v) is the kinetic energy, which is equal to

K (ρ, v) =
∫

ΩT

ρ

2
|v|2 dΩT . (35)

Although Eqs. (34) and (35) are expressed in terms of mass
density and velocity, in the OTM framework the flow is
described by means of the deformation mapping ϕ that is
defined in Eq. (1). The deformation mapping is related to
velocity and density in the following way [27]:

v(x, t) = ∂ϕ

∂t

(
x0, t

)
, (36)

ρ(x, t) = ρ0
(
x0
)

/ det
(
∇ϕ

(
x0, t

))
. (37)

Benamou and Brenier [8] also demonstrate that the deforma-
tion mapping that minimizes the action in Eq. (34) is given
in terms of McCann’s displacement interpolation [33]:

ϕ
(
x0, t

)
= T − t

T − t0
x0 + t − t0

T − t0
ϕ
(
x0, T

)
. (38)

Here, ϕ
(
x0, T

)
is the optimal transportation map of ρ0 into

ρT with respect to the cost function [27]:

C0→T (γ ) =
∫

Ω0

∣∣∣γ
(
x0, T

)
− x0

∣∣∣
2

ρ0
(
x0
)
dΩ0, (39)

in which γ
(
x0, t

)
is a generic mapping of mass density.

To generate a numerical scheme, Eq. (34) is discretized
in space and time. The time interval

[
t0, T

]
is divided into

sub-intervals
[
t s, t s+1

]
with s = 0, 1, . . . , N − 1, to which

the above theory developed for
[
t0, T

]
is still applicable. The

OTM method approximates a flow using the concept of the
free energy of the solid U [29]:

U
(
ϕ
(
xs, t

)) =
∫

Ωs
f
(∇ϕ

(
xs, t

))
ρs (xs) dΩs, (40)

where f is the local free-energy density per unit vol-
ume. Furthermore, the method employs the Wasserstein
distance dW between mass densities at two consecutive time
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Fig. 2 Schematic representation of the OTMmethod. Discretization of
the domain by nodes (nodal points) and material points before and after
deformation

instances [27,28]:

d2
W

(
ρs, ρs+1

)
= inf

γ : Ωs→Ωs+1

ρs=ρs+1 det
(∇γ

(
xs ,t s+1

))
∫

Ωs

∣∣∣γ
(
xs, t s+1

)
− xs

∣∣∣
2

ρs (xs) dΩs

= inf
γ : Ωs→Ωs+1

ρs=ρs+1 det
(∇γ

(
xs ,t s+1

))
Cs→s+1 (γ ) . (41)

For elastic materials in unforced systems, the semi-
discrete action sum is equal to [28]

A0→N
(
ϕ0, . . . , ϕN

)
=

N−1∑
s=0

(
1

2

d2
W

(
ρs, ρs+1

)
(
t s+1 − t s

)2

−1

2

(
U
(
ϕs)+ U

(
ϕs+1

)))

·
(
t s+1 − t s

)
, (42)

where ϕs is the deformation mapping at time t s . For the
spatial discretization of Eq. (42), the OTM method employs
two sets of points: nodal points and material points (see
Fig. 2). Nodal points carry position information, while mate-
rial points represent the continuum body and arise from
the spatial approximation of the mass densities by point
masses:

ρs(x) ≈ ρs
h(x) =

M∑
p=1

m pδ
(
x − xs

p

)
, (43)

where δ
(
x − xs

p

)
is the Dirac delta distribution centered at

xs
p. Material points are convected by the deformation:

xs+1
p = ϕs→s+1

h

(
xs

p

)
, (44)

in which ϕs→s+1
h (x) is the incremental deformation map.

Fedeli et al. [19] explain that it can be described by general
linear interpolation schemes of the form:

ϕs→s+1
h (x) =

N∑
i=1

φs
i (x)xs+1

i , (45)

whereby the basis functions are assumed to be consis-
tent. Consistent basis functions satisfy the following con-
ditions [19]:

– Partition of unity property

N∑
i=1

φs
i (x) = 1 ∀ x ∈ Ωs . (46)

– Linear completeness

N∑
i=1

xs
i φs

i (x) = x ∀ x ∈ Ωs . (47)

Moreover, material points carry a fixed mass, serve as inte-
gration points, and store all local state data.
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———————————————————————————————
———————————————————————————————
Input: Nodal coordinates x0i , material-point coordinates x−1

p , x0p, volumes V 0
p , densities ρ0

p, masses m p, deformation
gradients F0

p, stresses σ 0
p, body forces bp

1 Set s = 0
2 while s < N do

3 Compute basis functions φs
i

(
xs

p

)
and derivatives ∇φs

i

(
xs

p

)
from advected nodal set

{
xs

i

}
and advected

material-point set
{
xs

p

}
4 Compute mass matrix Ms , linear momentum vector q̄s

k , and force vector f̄s
k :

Ms
i j =

M∑
p=1

φs
i

(
xs

p

)
m pφs

j

(
xs

p

)
(48)

qs
k,i =

M∑
p=1

φs
i

(
xs

p

)
m p

xs
k,p − xs−1

k,p

ts − t s−1 (49)

f s
k,i =

M∑
p=1

(
3∑

l=1

∂φs
i

∂xl

(
xs

p

)
σ s

kl,p + φs
i

(
xs

p

)
ρs

pbk,p

)
V s

p (50)

5 Update nodal coordinates:

x̄s+1
k = x̄s

k +
(
t s+1 − t s

) (
Ms)−1

(
q̄s

k + t s+1 − t s−1

2
f̄s
k

)
(51)

6 Update material-point coordinates:

xs+1
p = ϕs→s+1

h (xs
p) (52)

7 Update material-point volumes:

V s+1
p = det

(
∇ϕs→s+1

h

(
xs

p

))
V s

p (53)

8 Update material-point densities:

ρs+1
p = m p

V s+1
p

(54)

9 Update material-point deformation gradients:

Fs+1
p = ∇ϕs→s+1

h

(
xs

p

)
Fs

p (55)

10 Compute material-point stresses σ s+1
p from Fs+1

p using the constitutive equation (e.g., Equation 10 or 11)

1212 Set s = s + 1
13 end

Algorithm 2: Optimal transportation meshfree method.
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Using the definition of the Wasserstein distance and free
energy, as well as Eq. (43), the fully discrete form of Eq. (42)
is obtained (see Appendix A for more details):

A0→N
h

(
ϕ0

h , . . . , ϕN
h

)
=

N−1∑
s=0

M∑
p=1

(
m p

2

∣∣∣xs+1
p − xs

p

∣∣∣
2

(
t s+1 − t s

)2

− m p

2

(
f
(
∇ϕs

h

(
xs

p

))

+ f
(
∇ϕs+1

h

(
xs+1

p

) )))(
t s+1 − t s

)
. (56)

The OTM algorithm originates from applying discrete
Hamilton’s principle [24] to the fully discrete action [22,27].
A basic OTM algorithm for a solid material is summarized
in Algorithm 2. For more details on the OTM method, we
refer to the work of Li et al. [27] and Habbal [22].

5 Comparison of algorithms

While the derivations of MPM and the OTM method are
fundamentally different, the resulting algorithms have many
similarities. This section provides a side-by-side comparison
of the computational steps from Algorithm 1 (USL-MPM)
and 3 (OTM). Based on this comparison, it summarizes the
conditions required to further relate the methods and high-
lights the principal differences between them.

– In the beginning of the simulation, both algorithms initial-
ize the nodal coordinates and material-point properties.
While the MPM computation requires the material-point
velocity for time step s = 0, the OTM method expects
the material-point positions to be known at s = −1.
This difference arises from the explicit definition of the
material-point velocity in MPM and its implicit use in the
OTM method. This is further explained in the discussion
of step 4 of both schemes.

– After the initialization phase, the time step counter s is set
to zero, which identifies the start of the solution phase. At
the end of each time step, s is increased by one until the
maximum number of time steps N is reached.

– In step 3, the schemes compute the basis functions and
their derivatives. However, in the OTM method, the basis
functions are updated in each time step based on the nodal
velocities, while in standard MPM, the basis functions
remain fixed over time. This is an important difference
between the methods. To distinguish between the basis
functions, the OTM basis functions are denoted by φs

i
and the MPM basis functions by φ0

i .
– On the other hand, the schemes can be related in step 4.
Assuming that the material-point velocity in MPM can be
written as

vs
p = 1

t s − t s−1

(
xs

p − xs−1
p

)
. (57)

A direct substitution of Eq. (57) into the expression for the
linear momentum in the MPM algorithm (Eq.20) leads to
the linear momentum formula used in the OTM method
(Eq.49).

– Furthermore, steps 5 and 6 of the USL algorithm are
implicitly included in step 5 of the OTM algorithm, where
the nodal coordinates at time step s + 1 are computed.
More precisely, from step 5 in the OTM algorithm, we
obtain

Δx̄s+1
k = x̄s+1

k − x̄s
k =

(
t s+1 − t s

) (
Ms)−1

·
(

q̄s
k + t s+1 − t s−1

2
f̄s
k

)
. (58)

At the same time, the incremental nodal displacement in
MPM can be written as

Δx̄s+1
k =

(
t s+1 − t s

) ((
Ms)−1 q̄s

k +
(
t s+1 − t s

)
ās

k

)

=
(
t s+1 − t s

) (
Ms)−1

(
q̄s

k +
(
t s+1 − t s

)
f̄s
k

)
. (59)

It can be seen that Eq. (59) is equal to Eq. (58) for constant
time-step sizes. From this, we conclude that the update of
nodal positions is identical for both methods when the
time-step size is fixed.

– The definition of the incremental transport map (Eq.45)
implies that in step 6 of theOTMalgorithm,material-point
positions are obtained from

xs+1
p =

N∑
i=1

φs
i

(
xs

p

)
xs+1

i , (60)

while step 7 in the MPM algorithm states that

xs+1
p = xs

p +
N∑

i=1

φ0
i

(
xs

p

)
Δxs+1

i . (61)

The equality of the above expressions can be shown if lin-
ear completeness (see Eq. 47) of theMPMbasis functions
is imposed. That is, if the following condition is satisfied:

N∑
i=1

φ0
i (x)xs

i = x ∀ x ∈ Ωs, (62)

Equation (61) can be rewritten as

xs+1
p =

N∑
i=1

φ0
i

(
xs

p

)
xs

i +
N∑

i=1

φ0
i

(
xs

p

)
Δxs+1

i

=
N∑

i=1

φ0
i

(
xs

p

)
xs+1

i . (63)
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– Moreover, the OTM scheme avoids a direct update of
the material-point velocity by adopting Eq. (57), whereas
MPM performs the update in step 8. Nevertheless, assum-
ing that

N∑
i=1

φ0
i

(
xs

p

)
vs

i = vs
p, (64)

it is possible to relate the methods again. Substituting
Eq. (64) in step 8 of MPM gives

vs+1
p =

N∑
i=1

φ0
i

(
xs

p

)
vs

i +
(
ts+1 − ts

) N∑
i=1

φ0
i

(
xs

p

)
as

i (65)

=
N∑

i=1

φ0
i

(
xs

p

) (
vs

i +
(
ts+1 − ts

)
as

i

)
. (66)

Substituting the updated nodal velocity from step 6 of the
MPM algorithm yields

vs+1
p =

N∑
i=1

φ0
i

(
xs

p

)
vs+1

i . (67)

Therefore, the updated material-point velocity in MPM is
equal to

vs+1
p = 1

t s+1 − t s

N∑
i=1

φ0
i

(
xs

p

)
Δxs+1

i

= 1

t s+1 − t s

(
xs+1

p − xs
p

)
. (68)

The above equalities follow from the computation of the
incremental nodal displacements in steps 6, and the update
of material-point coordinates in step 7 of the MPM algo-
rithm.
The final expression in Eq. (68) is identical to the implicit
material-point velocity update in the OTM algorithm.
Although an extra assumption is required to establish a
connection between the methods, it does not lead to an
essential disparity between them.

– Step 9 of both schemes can be shown to be identical as
well. From step 6 in the OTM algorithm and the OTM
definition of material-point velocity presented in Eq. (57),
it follows that

∇ϕs→s+1
h

(
xs

p

)
= ∇xs+1

p = ∇
(
xs

p +
(
t s+1 − t s

)
vs+1

p

)

= I +
(
t s+1 − t s

)
∇vs+1

p . (69)

Therefore, step 9 is the same for theMPM and OTM algo-
rithm.

– Next, the update of the material-point volumes is inves-
tigated. MPM performs this update in step 10, while the

OTM method computes the volume in step 7. To prove
the equivalence of those steps, we need to show that

det
((

I +
(
t s+1 − t s

)
∇vs+1

p

)
Fs

p

)
V 0

p

= det
(
∇ϕs→s+1

h

(
xs

p

))
V s

p . (70)

This identity can be proved in the following way:

det
((

I +
(
t s+1 − t s

)
∇vs+1

p

)
Fs

p

)
V 0

p (71)

= det
(
I +

(
t s+1 − t s

)
∇vs+1

p

)
det
(
Fs

p

)
V 0

p (72)

= det
(
∇ϕs→s+1

h

(
xs

p

))
det
(
Fs

p

)
V 0

p (73)

= det
(
∇ϕs→s+1

h

(
xs

p

))
V s

p . (74)

In the above, Eq. 70 and the definition of the deformation
gradient tensor are used.

– The remaining steps are identical for MPM and OTM.

In this section, we have shown that under certain conditions
the MPM and OTM algorithms can be related to each other.
Namely, assuming a constant time step and the validity of
Eqs. (57), (62), and (64) for the MPM scheme, the only dif-
ference between the standard algorithms emerges from the
update of the basis functions and their gradients.

However, this difference is fundamental. Since the nodes
are fixed to their initial positions in the MPM basis-function
update (step 3 of the USL algorithm), the method is con-
sidered to be a combination of Lagrangian and Eulerian
approaches. At the same time, theOTMmethod is an updated
Lagrangian particle method. For the implementation of the
methods, this implies that the OTM method only discretizes
the initial material domain, while MPM discretizes the com-
plete domain, where the material is allowed to move, as
well as the initial material domain. Consequently, the OTM
method does not include inactive elements.

6 Basis functions

Section 5 identifies strong similarities between the OTM and
MPM schemes without specifying the basis functions used
within the methods. Since MPM typically uses piecewise-
linear basis functions, while the OTM method exploits
the local maximum-entropy (maxent) basis functions, both
piecewise-linear and maxent basis functions are presented
in this section. In addition, this section describes the B-
spline basis functions frequently combined with the MPM
algorithm and adopted in the unified approach provided in
Sect. 7. For simplicity, the piecewise-linear and B-spline
basis functions are presented in their one-dimensional form.
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Fig. 3 1D quadratic B-spline
basis functions and their
derivatives

The extension of these basis functions to quadrilateral ele-
ments is obtained by means of the tensor product.

6.1 Piecewise-linear basis functions

Given a set of nodes {xi }N
i=1, piecewise-linear basis functions

are defined as

φi =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < xi−1,

(x − xi−1)/(xi − xi−1) if xi−1 ≤ x < xi ,

1 − (x − xi )/(xi+1 − xi ) if xi ≤ x < xi+1,

0 if x ≥ xi+1.

(75)

The corresponding derivatives are equal to

dφi

dx
=

⎧⎪⎪⎨
⎪⎪⎩

0 if x < xi−1,

1 if xi−1 ≤ x < xi ,

−1 if xi ≤ x < xi+1,

0 if x ≥ xi+1.

(76)

These nonnegative basis functions possess the partition of
unity property and have a compact support. In addition, they
can be implemented in a straightforward manner. However,
their gradients are discontinuous at the element boundaries.
Within MPM, this can lead to unphysical results when mate-
rial points cross element boundaries [6].

6.2 B-spline basis functions

Figure 3 provides an example of quadratic B-spline basis
functions and their gradients. Generally, B-spline basis func-
tions are defined in the parametric space, based on a knot
vector. A knot vector in one dimension is a sequence of
ordered non-decreasing coordinates. It is typically denoted

asΞ =
{
ξ1, ξ2, . . . , ξnb̄+d̄+1

}
, where ξ j ∈ R is the j th knot,

nb̄ is the total number of basis functions, and d̄ is the poly-
nomial order. The knot vector is uniform when its knots are
distributed equidistantly. The knots are called repeated when
more than one knot is positioned at the same coordinate in
the parametric space. An open knot vector contains the first
and last knots d̄ + 1 times ensuring that the resulting basis
functions are interpolatory at the boundaries of the domain.

A non-empty knot interval
[
ξ j ξ j+1

)
is referred to as a knot

span. For an open uniform knot vector, the number of spans
is equal to nb̄ − d̄.

The Cox-de Boor formula [14] defines B-spline basis
functions recursively, starting with piecewise constants (no
repeated knots, i.e., d̄ = 0):

φ0
j (ξ) =

{
1 if ξ j ≤ ξ < ξ j+1,

0 otherwise.

For d̄ > 0, the basis functions are given by

φd̄
j (ξ)= ξ −ξ j

ξ j+d̄ − ξ j
φd̄−1

j (ξ)+ ξ j+d̄+1 − ξ

ξ j+d̄+1−ξ j+1
φd̄−1

j+1 (ξ) ξ ∈ ẑ,

where ẑ is the parametric domain. The derivatives of the B-
spline basis functions can be computed from [14]:

dφd̄
j (ξ)

dξ
= d̄

ξ j+d̄ − ξ j
φd̄−1

j (ξ) − d̄

ξ j+d̄+1 − ξ j+1
φd̄−1

j+1 (ξ).

It should be noted that in the considered implementation of
BSMPM, the parametric and physical domains are the same.
Moreover, first-order B-splines basis functions are identical
to piecewise-linear basis functions described previously.

B-spline basis functions were introduced within MPM
by Steffen et al. [43,44]. They form as a potential remedy
to the grid-crossing and quadrature errors present in MPM.
The concept of BSMPMwas further investigated by combin-
ing B-spline basis functions with more advanced integration
techniques [20,53,57] and adopting the method to unstruc-
tured grids [15].

6.3 Maximum-entropy basis functions

Maxent basis functions were introduced by Sukumar [46]
for the construction of polygonal interpolants. Arroyo and
Ortiz [4] presented local maxent basis functions and first
used themwithin ameshfreemethod.After that, localmaxent
basis functions have been integrated within several mesh-
free schemes such as point collocation methods [18]. The
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schemes that combined meshfree methods with maxent basis
function have been applied to a variety of problems including
simulations of shear-deformable plates [23] and thin-shell
analysis [34].

The construction of maxent basis functions combines ele-
ments from probability theory and optimization. In fact,
within a convex hull of the nodal set

{
xi
}
(i.e., the smallest

convex set that contains all nodes), the set of local maxent
basis functions

{
φi (x) ≥ 0

}N
i=1 form the solution of the fol-

lowing constrained optimization problem [38]:

max
φ ∈ R

N+
−

N∑
i=1

φi (x) ln

(
φi (x)

wi (x)

)
(77)

subject to

N∑
i=1

φi (x) = 1, (78)

N∑
i=1

φi (x)(xi − x) = 0, (79)

where wi (x) is a nonnegative weight function or prior esti-
mate of φi . The solution of this problem is typically found
using the method of Lagrange multipliers [7] and can be
written as

φi (x) = Zi (x, λ)

Z(x, λ)
(80)

with

Zi (x, λ) = wi (x) exp(−λ · (xi − x)), (81)

Z(x, λ) =
∑

i

Zi (x, λ), (82)

where λ represents the Lagrange multipliers.
In practice, the primal problem of maximization is trans-

ferred into the dual problem of minimization [46]. Consid-
ering the new formulation, λ is expressed as [1,9]

λ = argmin ln(Z). (83)

The Lagrange multipliers are typically found via Newton’s
method. The solution procedure of this method (e.g., [39])
requires an initial guess forλ and both first- and second-order
partial derivatives of ln(Z) with respect to λ.

The first derivatives of the local maxent basis functions
are given by (e.g., [58])

∇φi = φi

⎛
⎝(x−xi ) · (H−1−H−1A

)− ∇wi

wi
+

N∑
j=1

φ j
∇w j

w j

⎞
⎠ , (84)

in which the matricesH andA are computed in the following
way:

H =
N∑
j=1

φ j (x − x j )
⊗

(x − x j ), (85)

A =
N∑
j=1

φ j (x − x j )
⊗ ∇w j

w j
. (86)

Here,
⊗

is the dyadic product (i.e., the dyadic product of any
two vectors is equal to a

⊗
b = abT).

In the above description, the weight function remained
unspecified due to a large number of viable options (e.g.,
Gaussian prior, cubic or quartic spline). In general, the prior
functions are defined by means of the normalized radius of
the support domain, ri , for node i :

ri (x) = ||x − xi ||
di

, (87)

where || · || is the L2-norm, and di is the size of the domain
of support of node i , which is a user-defined parameter. In
this paper, di is equal to

di = dmaxζi , (88)

in which dmax is a factor with a typical value between 2.0
and 4.0 (this value is selected by the user), and ζi is the
distance between node i and its nearest neighboring node.
Alternative definitions of the normalized radius of the support
domain can be found, for instance, in the work of Sukumar
and Wright [47] and Yaw et al. [58].

Cubic spline weight functions, which are used in this
paper, are given by

wi (x) =

⎧⎪⎪⎨
⎪⎪⎩

2
3 − 4r2i (x) + 4r3i (x), for 0 < ri (x) ≤ 1

2 ,

4
3 − 4ri (x) + 4r2i (x) − 4

3 r3i (x), for 1
2 < ri (x) ≤ 1,

0, for ri (x) > 1.

(89)

Figure 4 shows the one-dimensional cubic spline basis func-
tions and their derivatives, as well as the corresponding local
maxent basis functions together with the derivatives.

Local maxent basis functions possess many desirable
properties for meshfree algorithms. First of all, they are
entirely defined by the nodal set and the domain of analy-
sis. They are also non-negative, satisfy the partition of unity
property, and provide an exact approximation for affine func-
tions [4]. Furthermore, the local maxent basis functions have
the so-called weak Kronecker delta property [4]. However,
the local maxent basis functions are defined only within a
convex hull of the nodal set. If non-convex domains are con-
sidered, the basis functions lose the weak Kronecker delta
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Fig. 4 1D cubic spline weight
functions (a) and derivatives (b),
as well as the corresponding
local maxent basis functions (c),
and their derivatives (d) for
dmax = 2.0

(a)

(c)

(b)

(d)

property at the non-convex parts of the domain [4]. In addi-
tion, the calculation of Lagrange multipliers is numerically
challenging [22] and frequently requires significant compu-
tational costs.

7 Unified approach

The unified approach combines the OTM scheme and
BSMPM. Similar toBSMPM, the proposed approach usesB-
spline basis functions. However, it computes them based not
only on the updated material-point positions, but also on the
advected degrees-of-freedom set. B-spline basis functions of
any order possess the partition of unity property, but only
first-order B-spline basis functions satisfy the linear com-
pleteness property. Therefore, according to the definition in
Sect. 4, higher-order basis functions are not consistent. Since
Algorithm 2 is designed for consistent basis functions, the
unified algorithm is mainly based on Algorithm 1 to ensure
the compatibility of the unified algorithm with the higher-
order B-spline basis functions. Furthermore, the proposed
approach employs the consistent mass matrix. The unified
algorithm is presented in Algorithm 3.

BothMPM andOTMprovide motivation for the proposed
unifiedmethod. On the one hand, the addition of the advected
nodal points to update the basis functions is supposed to sta-
bilize the computation when BSMPM is combined with a

consistent mass matrix. Consistent mass matrices frequently
cause stability issues in MPM [31], and BSMPM inherits
these issues. For this reason, MPM and BSMPM are gener-
ally used with a lumped mass matrix. While mass lumping
has little influence on the solution quality of lower order
methods, its O(h2) approximation of the consistent mass
matrix [44] can significantly influence the spatial conver-
gence of higher-order methods such as BSMPM. Moreover,
as was mentioned earlier, previous studies demonstrate that
moving-mesh MPM can be used successfully for complex
simulations.

On the other hand, within the OTM framework, the use of
B-spline basis functions is expected to significantly reduce
the computational costs. In contrast to maxent basis func-
tions, B-spline basis functions do not require the adoption of
iterative methods and have a purely analytical definition. It
has been pointed out by Cyron et al. [13] that maxent and
higher-order B-spline basis functions have many common
properties. For example, they are both smooth, non-negative,
have compact support, and satisfy the partition of unity prop-
erty. Therefore, the use of B-spline basis functions provides a
viable alternative to themassively parallel implementation of
OTM (pOTM) [30]. In addition, B-spline basis functions do
not require the use of search algorithms, frequently added to
the standard OTM scheme for stabilization [22,56]. Finally,
the adoption of higher-orderB-spline basis functions can lead
to higher-order spatial convergence.
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———————————————————————————————
———————————————————————————————
Input: Coordinates at degrees of freedom x0i , material-point coordinates x0p , velocities v0p , volumes V 0

p , densities ρ0
p , masses m p , deformation gradients

F0
p , body forces bp

1 Set s = 0
2 while s < N do
3 Compute basis functions φs

i (xs
p) and gradients ∇φs

i (xs
p) from advected nodal set

{
xs

i

}
and advected material-point set

{
xs

p

}
4 Compute mass matrix Ms , linear momentum vector q̄s

k , and force vector f̄s
k :

Ms
i j =

M∑
p=1

φs
i (xs

p)m pφs
j (x

s
p) (90)

qs
k,i =

M∑
p=1

φs
i (xs

p)m pvs
k,p (91)

f s
k,i =

M∑
p=1

(
3∑

l=1

∂φs
i

∂xl
(xs

p)σ s
lk,p + φs

i (xs
p)ρs

pbk,p

)
V s

p (92)

5 Compute accelerations at degrees of freedom:

ās
k = (Ms)−1 f̄s

k (93)

6 Compute incremental displacement and updated coordinates for degrees of freedom:

Δx̄s+1
k = (t s+1 − t s)(Ms)−1

(
q̄s

k + t s+1 − t s−1

2
f̄s
k

)
(94)

x̄s+1
k = x̄s

k + Δx̄s+1
k (95)

7 Update material-point coordinates:

xs+1
p = xs

p +
N∑
i=1

φs
i (xs

p)Δxs+1
i (96)

8 Update material-point velocities:

vs+1
p = vs

p + (t s+1 − t s)

N∑
i=1

φs
i (xs

p)as
i (97)

9 Update material-point deformation gradients:

Fs+1
p =

(
I + (t s+1 − t s)∇vs+1

p

)
Fs

p (98)

10 Update material-point volumes:

V s+1
p = det

(
Fs+1

p

)
V s

p (99)

11 Update material-point densities:

ρs+1
p = m p

V s+1
p

(100)

12 Compute material-point stresses σ s+1
p from Fs+1

p using the constitutive equation (e.g., Equation 10 or 11)

13 Set s = s + 1
14 End

Algorithm 3: Unified approach.
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We remark that in contrast to the OTM scheme, the pro-
posed unified approach cannot be viewed as a meshless
method. However, the study by De Koster et al. [15] shows
the potential of BSMPM on arbitrary grids. The extension
of the BSMPM to arbitrary grids in combination with an
efficient remeshing technique (e.g., the remeshing strategy
for large deformations proposed by Erhart et al. [17]) might
bring the unified approach closer to the meshless algorithms.
In this paper, the examples are restricted to relatively sim-
ple problems to study the basic properties of the considered
methods. Thus, further research is required to evaluate the
effect of mesh distortion on the proposed unified approach.

8 Numerical results

In this section, three benchmarks are considered to illus-
trate the performance of the discussed methods. The one-
dimensional benchmarks describe the vibration of a bar, but
have fundamentally different motion triggers and bound-
ary conditions. In the first benchmark, where both ends
of the bar are fixed, the domain contains only filled ele-
ments allowing for a straightforward implementation and
analysis. The second benchmark, where a traction force is
acting at one of the boundaries, contains multiple empty cells
throughout the simulation, thereby serving as a representa-
tive example for the stability analysis. The last benchmark
is two-dimensional; it further extends the numerical analysis
of the considered algorithms.

The results are provided for the USL version of the
MPM scheme (Algorithm 1) and OTM algorithms, as well
as the proposed unified approach. For MPM, piecewise-
linear, second-order B-spline and maxent basis functions are
employed. The OTM algorithm is used only with consistent
basis functions (i.e., piecewise-linear and maxent basis func-
tions). For the one-dimensional benchmarks, the factor dmax

is set to 2.0 to compute the maxent basis functions, while
for the two-dimensional problem, its value depends on the
considered algorithm.

8.1 Bar with fixed ends

This example describes the vibration of a linear elastic bar
of length l with fixed ends. The motion is generated by an
initial velocity prescribed along the bar:

v(x0, 0) = v0max sin

(
πx0

l

)
. (101)

Here, the length of the bar is set to 1 m, Young’s modulus
is set to 4 kPa, while the initial density and amplitude of the
velocity v0 are equal to 1 kg/m3 and 0.6 m/s, respectively.
The total simulation time is set to 0.001 s, while the time-

step size is equal to 10−5 s. This relatively small time step is
required tominimize the contribution of the temporal error to
the total one. Moreover, the number of nodes varies between
8 and 512, while the number of material points per element
remains equal to 12.

The analytical solution in terms of the displacement,
velocity, and stress can be found in the work of Wobbes et
al. [57]. For the convergence analysis, the root-mean-square
(RMS) error in the displacement is computed. RMS error is
defined as follows:

√√√√√ 1

M
M∑
p=1

(u(x0p, T ) − u p), (102)

where u(x0p, T ) and u p are, respectively, the analytical and
numerical solutions at position x0p at time T .

The left part of Fig. 5 depicts the final stress pro-
files obtained using MPM and the OTM method with
piecewise-linear basis functions. Grid crossing causes severe
oscillations in the MPM stress profile. The calculation of
the basis functions with the advected nodal coordinates in
the OTM method prevents these inaccuracies, significantly
improving the results. Although the OTM-P1 method avoids
grid-crossing errors, it provides only a piecewise-constant
approximation of the stress profile due to the gradients of the
P1 basis functions. The right part of Fig. 5 illustrates the per-
formance of the unified approach. The use of second-order
B-spline basis functions prevents the grid-crossing errors and
improves the accuracy of the solution. The results obtained
with maxent basis functions are similar to those computed
with the unified approach. To avoid repetition, these results
are not shown.

Table 1 provides the results in terms of computational
time of all considered methods for 32 and 512 nodes. We
remark that the maxent computations were performed with-
out a search algorithm. For the coarse discretization, the
MPM scheme-based approaches outperform the ones adopt-
ing the OTM algorithm. However, when 512 nodes are used,
the efficiency of the computation depends on the choice of
the basis functions instead of the algorithm. More precisely,
replacing maxent by B-spline basis functions reduces the
computational time by at least a factor of 2.

In addition, Fig. 6 illustrates the spatial convergence
behavior of the considered methods at the end of the sim-
ulation. When piecewise-linear basis functions are used,
both MPM and the OTM method demonstrate second-order
convergence for relatively coarse grids. However, for fine
meshes, the methods behave differently. In fact, MPM suf-
fers from grid-crossing errors that result in a loss of the
convergence. The OTM-P1 method preserves the second-
order convergence until the final refinement, where only
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Fig. 5 Comparison of the
results obtained with MPM and
the OTM method with
piecewise-linear basis functions
(left), and the unified approach
(right) to the analytical solution.
For MPM and the OTM method,
the number of nodes is equal to
512, while for the unified
approach, only 32 nodes were
used

Table 1 Computational time required for the considered methods nor-
malized with respect to the MPM-P1 computational time with the
corresponding number of nodes

Method Time (s)
32 nodes 512 nodes

OTM-P1 1.48 1.19

MPM-maxent 0.98 2.31

OTM-maxent 1.55 2.50

BSMPM 1.32 1.04

Unified approach 1.78 1.12

Fig. 6 Convergence behavior of the considered methods

first-order convergence is achieved. A sudden decrease in the
convergence rate is also observed in the computations when
maxent and B-spline basis functions are employed within
both MPM and OTM schemes. For this reason, it may be
assumed that the loss of the convergence order is unrelated
to the choice of the basis functions. Inaccurate numerical
integration, time integration errors, round-off errors, or a
combination of the above can contribute to the reduction in

the convergence rate [44,49,55]. Furthermore, Fig. 6 shows
that maxent basis functions lead to significantly lower errors
than the piecewise-linear basis functions for both MPM and
OTMschemes.Withmaxent basis functions, the convergence
of MPM and the OTM method varies between linear and
quadratic. It should be noted that the accuracy of MPM and
the OTM method with maxent basis functions can be fur-
ther improved by adapting more advanced implementations
[4,35,52,63]. The use of B-spline basis functions leads to
similar results for BSMPM and the unified approach. These
methodshave third-order convergenceuntil the limitingvalue
is reached.

8.2 Bar with dynamic traction boundary conditions

This benchmark describes the motion of a neo-Hookean bar
with one free end. The bar is fixed at x0 = 0 and subjected to
a traction force at the free end x0 = l. The forcing function is
equal to τ

(
x0, t

) = δ
(
x0 − l

)
σ
(
x0, t

)
. Defining ω = π/l,

the stress is given by

σ
(
x0, t

)

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for t ∈ [0, l − x0
)

,

sin
(
ω
(
t + x0

))
for t ∈ [l − x0, l + x0

)
,

sin
(
ω
(
t+x0

))+sin(ω(t − x0)) for t ∈ [l + x0, 3l − x0
)

,

sin
(
ω
(
t − x0

))
for t ∈ [3l − x0, 3l + x0

)
,

0 for t ∈ [3l + x0, 4l
]

.

(103)

The initial length of the bar is set to 1 m, the density is
equal to 100 kg/m3, and Young’s modulus is equal to 100 Pa.
The length of the computational domain is set to 1.25 m. A
more detailed description that includes an analytical solution
for displacement is provided by Steffen et al. [43]. To illus-
trate the stress profile obtained with different methods, the
material domain is discretized by 68 nodes, which results in
85 nodes for the complete domain. The material-domain dis-
cretization is sufficient for the unified and OTMmethods due
to their updated Lagrangian nature, whereas MPM requires
the discretization of the complete domain. Each active ele-
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Fig. 7 Comparison of the
considered methods to the
analytical solution. The material
domain is discretized by 68
nodes

ment initially contains 4 particles. The computational time
is set to 0.4 s, and the time-step size is equal to 10−4 s.

Figure 7 depicts the obtained results. It shows that maxent
andB-spline basis functions eliminate the grid-crossing error
in MPM. However, MPM-maxent and BSMPM do not fol-
low the analytical solution at the right edge of the bar. Within
BSMPM, these inaccuracies can be significantly reduced by
increasing the initial number of particles per elements. This
suggests that the errors are caused by insufficient accuracy of
the numerical integration inMPM.Thus, advancednumerical
integration techniques (e.g., Taylor least squares [57]) may
improve the BSMPM solution at the boundary. The inaccu-
racies within MPM-maxent have a different origin. They are
most probably caused by the incomplete set of maxent basis
functions, which arise from the presence of inactive elements
throughout an MPM simulation. Figure 7 also shows that the

OTM-P1, OTM-maxent, and unifiedmethods provide signif-
icantly more accurate solutions than their MPM equivalents.

Similar to the benchmark discussed in Sect. 8.1, the use
of B-spline basis functions instead of maxent basis func-
tions considerably decreases the computational time for both
MPM and OTM methods. In fact, the unified approach and
BSMPM computations are approximately 10 times faster
than the OTM and MPM computations with maxent basis
functions (without a search algorithm) with the settings used
for Fig. 7.

Furthermore, the unified approach and BSMPM have the
lowest RMS error and highest convergence rates compared
to the othermethods. This is illustrated in Fig. 8. Tominimize
quadrature and time integration errors, this figure is obtained
placing 12 particles per cell at the beginning of the simulation
and reducing the computational time to 0.1 s. In general, the
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Fig. 8 Convergence behavior of the considered methods. The number
of nodes, in this case, refers to the number of nodes used to discretize
the material domain

obtained convergence orders of the considered algorithms
are slightly lower than expected. This can be related to the
discontinuities in the solution for the stress field.

The main advantage of the unified method over BSMPM
arises from its stability properties. When a material point
enters an empty element, BSMPM inherits stability issues
fromMPM. For instance, changing the total number of nodes
to 81 results in a termination after 0.3 s. This issue in MPM
is discussed in detail by, for example, Kafaji [2] and requires
the use of the MUSL algorithm with a lumped mass matrix
to circumvent the breakdown.

8.3 Plate undergoing axis-aligned displacement

The final benchmark describes a two-dimensional neo-
Hookean plate that is fixed at the entire boundary. The plate
is assumed to be a unit square (l × l with l = 1 m), and
its motion is triggered by a body force. The corresponding
displacement is given by

ux1(x
0
1 , t) = A sin

(
2πx01

l

)
sin

(
cπ t

l

)
, (104)

ux2(x
0
2 , t) = A sin

(
2πx02

l

)
sin

(
cπ t

l
+ π

)
. (105)

Here, A denotes the maximum amplitude of the displace-
ment, which is set to 0.005m, whereas c is a constant defined
as

c =
√

E

ρ0 , (106)

Fig. 9 Comparison of the consideredmethods to the analytical solution.
The material domain is discretized by 33 nodes in each direction

with Young’s modulus E being equal to 1 · 107 Pa and initial
mass densityρ0 being set to 1·107 Pa. Furthermore, Poisson’s
ratio is equal to 0.3. A detailed description of this benchmark
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is available [40] including an analytical solution obtained
with the method of manufactured solutions [26,55].

The domain is discretized by 33 nodes in each direction,
and each element contains initially 16 particles. The compu-
tational time is set to 3.5·10−3 s, and the time-step size equals
10−4 s. The tensor product of the one-dimensional basis func-
tions described in Sect. 6 is adopted for discretization. For the
unified approach, the knot vector in each direction is updated
based on the velocity field to approximate the moving nodes.
For large deformations, however, the use of unstructured B-
splines is preferred, such as PS-splines [41], as it gives the
possibility to update the inner nodes independently of each
other.

Figure 9 shows the normal stress in x1-direction σ11 along
the plate for material points with x02 ≈ 0.07 m. Employing
piecewise-linear basis functions within both MPM and the
OTMmethod leads only to a piecewise-constant approxima-
tion of the stress field. Due to grid-crossing errors, the stress
profile obtained using MPM with piecewise-linear basis
functions deviates significantly from the analytical solution.
The simulations performed with the maxent basis functions
show considerably more accurate stress approximations for
both methods. To obtain these results with the MPM algo-
rithm, the user-defined factor dmax is set to 3.0, while for the
OTMmethod, dmax = 2.0 is taken. The unified approach and
BSMPM lead to an even smoother stress profiles which are
in close agreement with the analytical solution.

9 Conclusions

The first part of this paper provides a comparison between the
MPM and OTM schemes. While the methods were derived
in fundamentally different manners, the resulting algorithms
are closely related. In fact, assuming a constant time step,
the validity of the backward Euler scheme for material-point
displacement in MPM, as well as the linear completeness
of the MPM basis functions and their ability to translate
nodal velocities into material-point velocities, the only dif-
ference between the algorithms emerges from the update of
the basis functions. However, this difference is fundamental.
Since MPM uses initial nodal positions in the basis-function
update, it is viewed as a combination of Lagrangian andEule-
rian approaches. At the same time, the OTM method is a
fully updated Lagrangian method. Moreover, MPM is typ-
ically used with piecewise-linear basis functions, whereas
theOTMmethod generally employsmaximum-entropy basis
functions.

In the second part of the paper, a unified approach is
proposed. This approach combines BSMPM and the OTM
method. Similar to BSMPM, the proposed approach uses
B-spline basis functions. However, it computes the basis

functions based not only on the updated material-point posi-
tions, but also on the advected degrees-of-freedom set. The
obtained numerical results demonstrate that the proposed
method preserves the convergence properties of BSMPMand
remains stablewhen a consistentmassmatrix is adopted. Fur-
thermore, the unified approach does not contain user-defined
parameters and is faster than computations withmaxent basis
functions for large size problems.
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A Fully discrete action: derivation

In order to fully discretize Eq. (42), the Wasserstein distance

d2
W

(
ρs

h, ρs+1
h

)
is expressed as follows:

d2
W

(
ρs

h, ρs+1
h

)

= inf
γ : Ωs→Ωs+1

ρs
h=ρs+1

h det
(∇γ

(
xs ,t s+1

))

∫

Ωs

∣∣∣γ
(
xs, t s+1

)
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2

ρs
h

(
xs) dΩs (107)
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=
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p=1

m p
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(110)

=
M∑
p=1

m p

∣∣∣ϕ
(
xs

p, t s+1
)

− xs
p

∣∣∣
2

(111)
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. (112)

Here, we used the fact that ϕ
(
xs, t s+1

)
is the optimal trans-

portation map of ρs into ρs+1 with respect toCs→s+1 for the
second equality, while Eq. (43) for the third equality. More-
over, a similar procedure is followed to approximate the free
energy U

(
ϕs

h

)
:
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) =
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