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Abstract
Quantum circuits constructed from Josephson junctions and superconducting electronics are key to
many quantumcomputing and quantumoptics applications. Designing these circuits involves
calculating theHamiltonian describing their quantumbehavior.Here we presentQuCAT, or
‘QuantumCircuit Analyzer Tool’, an open-source framework to help in this task. This open-source
Python library features an intuitive graphical or programmatical interface to create circuits, the ability
to compute theirHamiltonian, and a set of complimentary functionalities such as calculating
dissipation rates or visualizing current flow in the circuit.

1. Introduction

Quantumcircuits, constructed from superconducting electronics and involving one ormore Josephson
junctions, have steadily gained prominence in experimental and theoretical physics over the past twenty years.
Foremost, they are one of themost successful platforms in the quest to build a quantum computer (Devoret and
Schoelkopf 2013). The control that can be gained over their quantum state, and the flexibility in their design have
alsomade these circuits an excellent test-bed to probe fundamental quantum effects (Gu et al 2017). They can
also be coupled to other systems, such as atoms, spins, acoustic vibrations ormechanical oscillators, acting as a
tool tomeasure andmanipulate these systems at a quantum level (Xiang et al 2013).

Any applicationmentioned above generally translates to a desiredHamiltonian, which governs the physics
of the circuit. The task of the quantum circuit designer is to determinewhich circuit components to use, how to
inter-connect them, and calculate the correspondingHamiltonian (Nigg et al 2012, Vool andDevoret 2017).
Performing this task analytically can be time consuming or even challenging.

Here we presentQuCAT,which stands for ‘QuantumCircuit Analyzer Tool’, an open-source Python
framework to help in analyzing and understanding quantum circuits.We provide an easy interface to create and
visualize circuits, either programmatically or through a graphical user interface (GUI). AHamiltonian can then
be generated for further analysis inQuTiP (Johansson et al 2012, 2013). The current version ofQuCAT supports
quantization in the basis of normalmodes of the linear circuit (Nigg et al 2012), making it suited for the analysis
of weakly anharmonic circuits with small losses. The properties of thesemodes: their frequency, dissipation
rates, anharmonicity and cross-Kerr couplings can be directly calculated. The user can also visualize the current
flows in the circuit associatedwith each normalmode. The library covers lumped element circuits featuring an
arbitrary number of Josephson junctions, inductors, capacitors and resistors. Through equivalent lumped
element circuits, certain distributed elements such aswaveguide resonators can also be analyzed (see
section B.3). The software relies on the symbolicmanipulation of the circuits equations,making it reliable even
for vastly different circuits and parameters. It also results in efficient parameter sweeps, as analytical
manipulations need not be repeated for different circuit parameters. In a few seconds, circuits featuring 10 nodes
(or degrees of freedom), corresponding to between 10 and 30 circuit elements can be simulated.

In themain section of this article, we cover the functionalities of the software.We start by showing how to
create circuits, first using theGUI, then programmatically.We then demonstrate how to generate the
correspondingHamiltonian. Lastly, we showhow to extract the characteristics of the circuitmodes: frequencies,
dissipation, anharmonicity and cross-Kerr coupling and present a tool to visualize thesemodes. Thismain
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sectionwill feature as an example the standard circuit of a transmon qubit coupled to a resonator (Koch et al
2007). In the appendices, wewillfirst useQuCAT to analyze some recent experiments: a tuneable coupler
(Kounalakis et al 2018), amulti-mode ultra-strong coupling circuit (Bosman et al 2017), amicrowave
optomechanics circuit (Ockeloen-Korppi et al 2016) and a Josephson-ring based qubit (Roy et al 2017).We then
provide an overview of the circuit quantizationmethod used and the algorithmicmethodswhich implement it.
The limitations of thesemethods regardingweak anharmonicity and circuit size will then be presented. Finally
wewill explain how to install QuCAT andwe provide a summary of all its functions.More tutorials and
examples are available on theQuCATwebsite https://qucat.org/.

2. Circuit construction

Any use ofQuCATwill start with importing thequcatlibrary

import qucat

One should then create a circuit. These are namedQcircuit, short for ‘quantum circuit’ inQuCAT. There are
twoways of creating aQcircuit: using theGUI, or programmatically.

2.1. Creating a circuit with theGUI
Wefirst cover how to create a circuit with theGUI. This is done through this command

circuit�=�qucat.GUI(‘netlist.txt’)

which opens theGUI. TheGUIwill appear as a separate window,whichwill block the execution of the rest of the
Python script until thewindow is closed. The user can drag-in and drop capacitors, inductors, resistors or
Josephson junctions, or grounds. These components can then be inter-connectedwithwires. Each changemade
to the circuit will be automatically be saved in the‘netlist.txt’ file. After closing theGUI, theQcircuit
object will be stored in the variable namedcircuitwhichwewill use for further analysis.

2.2. Creating a circuit programmatically
Alternatively, one can create a circuit with only Python code. This is done by creating a list of circuit components
with the functionsJ,L,CandR�for junctions, inductors, capacitors and resistors respectively. For the circuit of
figure 1:

circuit_components�=�[

qucat.C(0,1,100e-15), # transmon

qucat.J(0,1,’Lj’),

qucat.C(0,2,100e-15), # resonator

qucat.L(0,2,10e-9),

qucat.C(1,2,1e-15), # coupling capacitor

Figure 1.Construction of a circuit: code and output. The circuit used as an example in this section comprises of a transmon qubit on
the left, coupled through a 1 fF capacitor to an LC-oscillator. Dissipation arises from the capacitive coupling of the LC-oscillator to a
50� resistor on the right. After importing thequcat package, thecircuit object is createdmanually through a graphical user
interface (GUI) opened after callingqucat.GUI(‘netlist.txt’). All information necessary to construct the circuit is stored
in the textfilenetlist.txt. After closing theGUI, this information is also stored in the variablecircuit. Theshowmethod
finally displays the circuit.
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Wecan assign the frequency, dissipation rates, self-Kerr, and cross-Kerr parameters to the variablesf,k,A�and
chirespectively, by calling

f�=�circuit.eigenfrequencies(Lj�=�Lj_list)

k�=�circuit.loss_rates(Lj�=�Lj_list)

A�=�circuit.anharmonicities(Lj�=�Lj_list)

chi�=�circuit.kerr(Lj�=�Lj_list)

or alternatively through a single function call:

f,k,A,chi�=�circuit.f_k_A_chi(Lj�=�Lj_list)

All values returned by thesemethods are given inHertz, not in angular frequency.With respect to the
conventional way of writing theHamiltonian, whichwe have also adopted in�(2), we thus return the frequencies
as�m/2�, the loss rates as�m/2� and theKerr parameters asAm/h and�mn/h. Note thatf,k,A, are arrays,
where the indexm corresponds tomodem, andmodes are orderedwith increasing frequencies. For example,f
[0]will be an array of length 101, which stores the frequencies of the lowest frequencymode asLj is swept
from11 to 9 nH. The variablechi has an extra dimension, such thatchi[m,n] corresponds to the cross-Kerr
betweenmodesm andn, andchi[m,m] is the self-Kerr ofmodem, which has the same value asA[m]. These
generated values are plotted infigure 3.

We can also print these parameters in a visually pleasingway to get an overview of the circuit characteristics
for a given set of circuit parameters. For a Josephson inductance of 9 nH, this is done through the command

circuit.f_k_A_chi(Lj�=�10e-9, pretty_print

=�True)

whichwill print

mode�|���freq.�� �|��diss.�����|��anha.����|

��0�� ��|�4.99 GHz �|�9.56 kHz� |�10.5 kHz�|

��1�� ��|�5.28 GHz �|�94.3 Hz�� �|�189 MHz�� |

Figure 3.Extracting eigenfrequencies, loss-rates, anharmonicities, and cross-Kerr couplings.We apply thef_k_A_chimethod to
circuit defined infigure 1 to obtain a list of eigenfrequencies (f), loss-rates (k), anharmonicities (A), and cross-Kerr couplings
(chi), for all the normalmodes of the circuit. There is one unspecified variable in the circuit, the Josephson inductance Lj, which is
here specifiedwith a list of values. In (a), we plot the eigenfrequencies of the twofirstmodesf[0] andf[1]. In (b), we plot the loss-
rates of the samemodesk[0] andk[1], and in (c) their anharmonicitiesA[0] andA[1]. In (d), we plot the cross-Kerr coupling
betweenmodes0 and1:chi[0,1].
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Kerr coef�cients
diagonal�=�Kerr
off-diagonal�=�cross-Kerr
mode�|���0�����������|����1��������|

��0��� �|�10.5 kHz� |����������� ��|

��1��� �|�2.82 MHz �|�189 MHz�|

We see thatmode 1 is significantlymore anharmonic thanmode 0, whereasmode 0 has however a higher
dissipation.Wewould expect thatmode 1 is thus the resonance which has current fluctuationsmostly located in
the junction, whilstmode 0 is located on the other side to the coupling capacitor, where it can couplemore
strongly to the resistor.

Such interpretations can be verified by plotting a visual representation of the normalmodes on top
of the circuit as explained below. This can be done by plotting either the current, voltage, charge or flux
distribution, overlaid on top of the circuit schematic. As shown in figure 4, this is done by adding arrows,
representing one of these quantities at each circuit component and annotating it with the value of that
component. The annotation corresponds to the complex amplitude, or phasor, of a quantity across the
component, if themode was populated with a single photon amplitude coherent state. The absolute
value of this annotation corresponds to the contribution of amode to the zero-point fluctuations of the
given quantity across the component. The direction of the arrows indicates what direction we take for
0 phase for that component.

We note that an independantly developped Julia platform also allows the calculation of normalmode
frequencies and dissipation rates for circuits (Scheer andBlock 2018).

5.Outlook

Wehave presentedQuCAT, a Python library to automatize and speed up the design process and analysis of
superconducting circuits. By facilitating quick tests of different circuit designs, and helping develop an intuition

Figure 4.Visualizing normalmodes. Theshow_normal_modemethod overlays the circuit with arrows representing the voltage
across components when the circuit is populatedwith a single-photon amplitude coherent state. The arrows are annotatedwith the
value of the complex voltage oscillating across a component, where the direction of the arrow indicates the direction of a phase 0 for
that component. The absolute value of this annotation corresponds to the zero-pointfluctuations of the given quantity across the
component. The length and thickness of the arrows scale with themagnitude of the voltage.show_normal_mode takes as argument
any unspecified circuit parameter, here we specifyLj�=�10e-9where the twomodes undergo an avoided crossing.We plot each
mode by specifyingmode�=�0 ormode�=�1 and see that formode0, the anti-symmetricmode, the voltage has opposite signs on each
side of the coupling capacitor, leading to a larger voltage across the coupler (and hence a larger effective capacitance and lower
frequency) than the symmetricmode.
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for the physics of quantum circuits, we also hope thatQuCATwill enable users to develop evenmore innovative
circuits.

Possible extensions of theQuCAT features could include black-box impedance components tomodel
distributed components (Nigg et al 2012), more preciselymodeling lossy circuits (Solgun et al 2014, Solgun and
DiVincenzo 2015), handling static offsets influx or charge throughDC sources, additional elements such as
coupled inductors or superconducting quantum interference devices (SQUIDS) and different quantization
methods, enabling for example quantization in the charge orflux basis. The latter would extendQuCATbeyond
the scope of weakly-anharmonic circuits.

In terms of performance, QuCATwould benefit fromdelegating analytical calculations to amore efficient,
compiled language, with the exciting prospect of simulating large scale circuits (Kelly et al 2019). Note however
that there is a strong limitation on themaximumHilbert space size that one can simulate after extracting the
Hamiltonian.
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AppendixA. Applications

A.1. Designing amicrowave�lter
In this applicationwe show howQuCAT can be used to design classicalmicrowave components.
We study here a band pass filtermade from two LC oscillators with the inductor inline and a capacitive shunt
to ground. Such a filter can be used to stop aDCbias line from inducing losses, whilst being galvanically
connected to a resonator, see for example (Viennot et al 2018). In this case we are interested in the loss rate� of
a LC resonator connected through this filter to a 50� load, which could emulate a typicalmicrowave
transmission line.Wewant to study how � varies as a function of the inductance L and capacitanceC of its
components.

TheQuCATGUIfunction can be used to open theGUI, the user willmanually create the circuit, and upon
closing theGUI aQcircuit object is stored in the variable�ltered_cavity. By calling themethodshow, we
display the circuit as shown infigure A1(a). These steps are accomplishedwith the code

#Open theGUI andmanually build the

��circuit

�ltered_cavity�=�qucat.GUI(‘netlist.txt’)

#Display the circuit

�ltered_cavity.show()

Wecan then access the loss rates of the different circuitmodes through themethodloss_rates. Since the
values ofC and Lwere not specified in the construction of the circuit, their values have to be passed as keyword
arguments upon callingloss_rates. For example, the loss rate for a 1 pF capacitor and 100 nH inductor is
obtained through

# Loss rates of all modes

k_all�=��ltered_cavity.loss_rates(C�=�1e-12, L�=�100e-9)
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G is an arraywith values 2.3�×�1016Hz m�1 and 3.6�×�1016Hz m�1 corresponding to the lowest and higher
frequencymodes respectively.Multiplying these valueswith the zero-point fluctuations

# zero-point fluctuations

x_zpf�=�4e-15

g_0�=�G�x_zpf

yields couplings of 96 and 147 Hz. The lowest frequencymode thus has a 96 Hz coupling to the drum.
If wewant to know towhich part of the circuit (resonator 1 or 2 infigure A2) thismode pertains, we can

visualize it by calling

OM.show_normal_mode(

���mode�=�0,

���quantity�=�‘current’,

���Cd�=�Cd(D))

andwefind that the current ismajoritarily located in the inductor of resonator 1.

A.3. Convergence inmulti-mode cQED
In this sectionwe useQuCAT to study the convergence of parameters in thefirst orderHamiltonian
(equation (2)) of an ultra-strongly coupledmulti-mode circuitQED system.

Using a length of coplanar waveguide terminated with engineered boundary conditions is a common
way of building a high quality factormicrowave resonator. One implementation is a �/4 resonator
terminated on one end by a large shunt capacitor, acting as a near-perfect short circuit formicrowaves
such that only a small amount of radiationmay enter or leave the resonator. On the other end one places
a small capacitance to ground: an open circuit. The shunt capacitor creates a voltage node, and at the open
end the voltage is free to oscillate. This resonator hosts a number of normalmodes, justifying its lumped
element equivalent circuit: a series of LC oscillators with increasing resonance frequency (Gely et al 2017).
Here, we study such a resonator with a transmon circuit capacitively coupled to the open end. In particular
we consider this coupling to be strong enough for the circuit to be in themulti-mode ultra-strong
coupling regime as studied experimentally in (Bosman et al 2017) and theoretically in (Gely et al 2017).
The particularity of this regime is that the transmon has a considerable coupling tomultiplemodes of the
resonator. It then becomes unclear howmany of thesemodes to consider for a realisticmodeling of the
system. This regime is reached bymaximizing the coupling capacitance of the transmon to the resonator
andminimizing the capacitance of the transmon to ground. The experimental device accomplishing this is
shown in figure A3(a), with its schematic equivalent in figure A3(b), and the lumped-elementmodel in
figure A3(c).

Wewill useQuCAT to track the evolution of different characteristics of the system as the number of
consideredmodesN increases. For this application, programmatically building the circuit ismore appropriate
than using theGUI.We start by defining some constants

# fundamental mode frequency of the

��resonator

f0�=�4.603e9

w0�=�f0�2.�numpy.pi

# characteristic impedance of the resonator

Z0�=�50

# Josephson energy (inHertz)

Ej�=�18.15e9

#Coupling capacitance

Cc�=�40.3e-15
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���#Nodes ofmth oscillator

���node_minus�=�2�+�m

���node_plus�=�(2�+�m�+�1)

���# Inductance ofmth oscillator

���Lm�=�L0/(2�m�+�1)��2

���#Add oscillator to netlist

���netlist�=�netlist�+�[

�����qucat.L(node_minus,node_plus,Lm),

�����qucat.C(node_minus,node_plus,C0)]

#CreateQcircuit

mmusc�=�qucat.Network(netlist)

Note that12 is the index of the ground node.
We can now access some parameters of the system.Only the firstmode of the resonator has a lower

frequency than the transmon. The transmon-likemode is thus indexed asmode1. Its frequency is given by

mmusc.eigenfrequencies()[1]

and the anharmonicity of the transmon, computed from first order perturbation theory (see equation (2))with

mmusc.anharmonicities()[1]

Finally the Lamb shift, or shift in the transmon frequency resulting from the zero-point fluctuations of the
resonatormodes, is given following equation (2) by the sumof half the cross-Kerr couplings between the
transmonmode and the others

lamb_shift�=�0

K�=�mmusc.kerr()

for m in range(10):

���if m!�=�1:

�����lamb_shift�=�lamb_shift�+�K[1][m]/2

These parameters for different total number ofmodes are plotted in figures A3(d)–(f).
From this analysis, wefind that aswe reach 10, the plotted parameters are converging. Surprisingly, adding

even the highestmodes significantlymodifies the total Lamb shift of the Transmon despite large frequency
detunings.

A.4.Modeling a tuneable coupler
In this section, we study the circuit of (Kounalakis et al 2018)where two transmon qubits are coupled through a
tuneable coupler. This tuneable coupler is built from a capacitor and a SQUID. By flux biasing the SQUID, we
change the effective Josephson energy of the coupler, whichmodifies the coupling between the two transmons.
Wewill present how the normalmode visualization tool helps in understanding the physics of the device.
Secondly, wewill showhow aHamiltonian generatedwithQuCAT accurately reproduces experimental
measurements of the device.

We start by building the device shown infigure A4(a).More specifically, we are interested in the part of the
device in the dashed box, consisting of the two transmons and the tuneable coupler. The other circuitry, theflux
line, drive line and readout resonator could be included to determine external losses, or the dispersive coupling
of the transmons to their readout resonator.Wewill omit these features for simplicity here. After opening the

12

New J. Phys. 22 (2020) 013025 MFGely andGASteele



GUIwith thequcat.GUI�function,manually constructing the circuit, then closing theGUI, the resulting
Qcircuit�is stored in a variableTC.

TC�=�qucat.GUI(‘netlist.txt’)

The inductance Lj of the junctionwhichmodels the SQUID is given symbolically, andwill have to be specified
when callingQcircuit�functions. Since Lj is controlled throughfluxf in the experiment, we define a function
which translatesf (in units of the flux quantum) to Lj

def Lj(phi):

���#maximum Josephson energy

���Ejmax�=�6.5e9

���# junction asymmetry

���d�=�0.076 9

���# flux to Josephson energy

���Ej�=�Ejmax�numpy.cos(pi�phi)

������numpy.sqrt(1�+�d��2

������numpy.tan(pi�phi)��2)

���# Josephson energy to inductance

���return (hbar/2/e)��2/(Ej�h)

Figure A4.Tuneable coupler circuit analysis. (a)Opticalmicrograph of the device studied in this example, adapted from (Kounalakis
et al 2018) under a CCBY 4.0 license.Wewill omit theflux lines, drive lines and readout resonators for simplicity in this example, and
concentrate on the part of the device in the dashed box. The circuit consists of two near-identical transmon qubits coupled through a
third ‘coupler’ transmon. Scale bar corresponds to 200 �m. (b)Equivalent lumped-element circuit constructedwith theQuCATGUI
and displayed using theshow_normal_modemethod. Thismethod has overlaid the circuit with the currents flowing through the
components when the highest frequencymode is populatedwith a single-photon-amplitude coherent state.Most of the current is
located in the resonantly coupled transmons rather than the coupler, and the fact that the coupled transmons are identical leads to the
symmetry on each side of the coupler. Thismode is called symmetric since the current in both coupled transmonsflows in the same
direction. The net current through the coupling junctionmakes themode frequency sensitive to changes in the coupling junction
inductance tunedwith a SQUID. The change in symmetricmode frequency is shown in the experimentalmeasure of the response
frequencies in (c) (adapted from (Kounalakis et al 2018) under aCCBY 4.0 license), and in the diagonalization of theHamiltonian
generated fromQuCAT in (d).

13

New J. Phys. 22 (2020) 013025 MFGely andGASteele

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/




qubitmodes. The two vertically (horizontally) positioned pads will couple tomodes of the 3D cavity featuring
vertical (horizontal) electric fields.Wewill consider both a vertical and a horizontal cavitymode in ourmodel.
We number these pads from1 to 4 as displayed infigure A5(b). Each pad is connected to its two nearest
neighbors by a Josephson junction (figure A5(c)), forming a Josephson ring.

Using theQuCATGUI, we build a lumped elementmodel of this device, generating aQcircuit object we
store in the variabletrimon.

trimon�=�qucat.GUI(‘netlist.txt’)

The cavitymodes aremodeled asRLC oscillators with each plate of their capacitors capacitively coupled to a pad
of the trimon circuit. The junction inductances are assigned different values,first to reflect experimental reality,
but also to avoid infinities arising in theQuCAT analysis. Indeed, the voltage transfer function of this Josephson
ring between nodes 1, 3 and nodes 2, 4 will be exactly 0, whichwill cause errors when initializing theQcircuit
object. Component parameters are chosen to only approximativelymatch the experimental results of (Roy et al
2017), the objective here is to demonstrateQuCAT features rather than accuratelymodel the experiment.

The particularity of this circuit is that it hosts a quadrupolemode. It corresponds here to the second highest
frequencymode and can be visualized by calling

trimon.show_normal_mode(

���mode�=�2,

���quantity�=�‘voltage’)

the result of which is displayed infigure A5(d). The voltage oscillations aremajoritarily located in the junctions,
indicating this is not a cavitymode, but amode of the trimon circuit. Crucially, the polarity of voltages across the
junctions is such that the total voltage between pads 1 and 3 and the total voltage across pads 2 and 4 is 0,

Figure A5.Trimon device and Purcell-decay-protectedmode visualization. (a) Schematic of the cross-cut of a 3Dmicrowave cavity.
Dark gray showsmetal whilst light gray show the hollowed out section forming the cavity. Arrows represent the electric field of the
TE101, or ‘vertical’ cavitymode. In the cavity is placed a chip hosting the trimon circuit shown in the opticalmicrograph (b). The
circuit has 4 capacitive pads labeled from 1 to 4. These pads are connected by the Josephson junction ring shown in the scanning
electronmicroscope image (c). Scale bars correspond 200 and 2 �mfor panels (b) and (c) respectively. (d) Lumped-element equivalent
circuit of the device constructed using theQuCATGUI and displayedwithshow_normal_mode. The four pads of the trimon are
color-coded tomatch (b). The capacitorCa formed by pads 1 and 3 forms an electrical dipole which couples to a vertical cavitymode,
and the capacitorCb formed by pads 2 and 4 forms an electrical dipole which couples tomodes with horizontal electric fields. The
show_normal_mode overlays the voltage across different components if a single-photon amplitude coherent state was populating
mode 2. Thismode has a particularity that the voltage is concentrated across the junctions and their parallel capacitors without leading
to a buildup of voltage across the capacitorsCa orCb. This decouplesmode 2 from the cavitymode decay (no Purcell effect)whilst the
presence of voltagefluctuations across the junctions will ensure cross-Kerr coupling to the othermodes of the system. Concerning
panels (a)–(c): reprintedfigureswith permission fromRoy et al (2017). Copyright 2017 by theAmerican Physical Society.
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balanced against a single symbolic derivation ofTij through star-mesh transformations, and fast evaluations of
the symbolic expression for different parameters.

AppendixD. Performance and limitations

D.1.Number of nodes
In this sectionwe ask the question: howbig a circuit canQuCAT analyze? To address this, wefirst consider the
circuit offigure A3(c), and secondly the same circuit with resistors added in parallel to each capacitor. As the
number of (R)LC oscillators representing themodes of a CPWresonator is increased, wemeasure the time
necessary for the initialization of theQcircuit object. This is typically themost computationally expensive part of
aQuCATusage, limited by the speed of symbolicmanipulations in Sympy.

These symbolicmanipulations include:

• calculating the determinant of the admittancematrix

• converting that determinant to a polynomial

• reducing networks through star-mesh transformations both for admittance and transfer function calculations

• rational functionmanipulations to prepare the admittance for differentiation.

Once these operations have been performed, themost computationally expensive step in aQcircuitmethod is
finding the root of a polynomial (the determinant of the admittancematrix)which typically takes a few
milliseconds.

The results of this test are reported infigureD1.Wefind that relatively long computation times above 10 s
are required as one goes beyond 10 circuit nodes. Due to an increased complexity of symbolic expressions, the
computation time increases when resistors are included. For example, the admittancematrix of a non-resistive
circuit will have no coefficients proportional to�, only�2 and only real parts, translating to a polynomial in
��=��2 whichwill have half the number of terms as a resistive circuit. However, wefind that this initialization
time is also greatly dependent on the circuit connectivity, and this test should be taken as only a rough guideline.

MakingQuCAT compatible with the analysis of larger circuits will inevitably require the development of
more efficient open-source symbolicmanipulation tools. The development of the open-source C++ library
SymEngine https://github.com/symengine/symengine, together with its Pythonwrappers, the symengine.py
project https://github.com/symengine/symengine.py, could lead to rapid progress in this direction. An
enticing prospect would then be able to analyze the large scale cQED systems underlyingmodern transmon-
qubit-based quantumprocessors (Kelly et al 2019). One should keep inmind that an increase in circuit size
translates to an increase in the number of degrees of freedomof the circuit and hence of theHilbert space size
needed for further analysis once aHamiltonian has been extracted fromQuCAT.

FigureD1.Computation timewith increasing circuit size. On the vertical axis, we show the time necessary to initialize theQcircuit
object, which is the computationally expensive part of a typical QuCATuser case. This is plotted as a function of the number of nodes
in the circuit. The test circuit used here is themulti-mode circuit offigure A3(c), optionally with a resistor in parallel of each capacitor.
The number of nodes are increased by addingmodes to the circuit.Most of the computational time is spent in the symbolic
manipulations performedwith the sympy library.
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the charge dispersion (the difference in frequency between 0 and 0.5 charge offset) is 4�×�10�5 and 1�×�10�3 for
thefirst two transitions respectively.

Beyond 8 percent anharmonicity, one cannot reach convergence with the Fock basis and just before results
diverge considerably from that of the Cooper-pair boxHamiltonian. This corresponds toEj/EC ; 20 at which
the charge dispersion is 1.5�×�10�3 and 3�×�10�2 for thefirst two transitions respectively. A possible extension
of theQuCATHamiltonian could thus include handling static offsets in charge and different quantization
methods, for example quantization in the charge basis to extendQuCATbeyond the scope of weakly-
anharmonic circuits.

Appendix E. InstallingQuCAT anddependencies

The recommendedway of installingQuCAT is through the standard Python package installer by runningpip
install qucat in a terminal. Alternatively, all versions ofQuCAT, including the version currently under-
development is available on github at https://github.com/qucat. After downloading or cloning the repository,
one can navigate to thesrc folder and runpip install. in a terminal.

QuCAT and its GUI is cross-platform, and should function on Linux,MACOS andWindows.QuCAT
requires a version of Python 3, using the latest version is advised. QuCAT relies on several open-source Python
libraries: Numpy, Scipy,Matplotlib, Sympy andQuTiP (Johansson et al 2012, 2013), installation of Python and
these libraries throughAnaconda is recommended. The performance of Sympy calculations can be improved by
installingGmpy2.

Appendix F. List ofQuCATobjects andmethods

QuCATobjects

Network—Creates aQcircuit from a list of components

GUI—Opens a graphical user interface for the construction of aQcircuit

J—Creates a Josephson junction object

L—Creates a inductor object

C—Creates a capacitor object

R—Creates a resistor object

Qcircuitmethods

eigenfrequencies—Returns the normalmode frequencies

loss_rates—Returns the normalmode loss rates

anharmonicities—Returns the anharmonicities or self-Kerr of each normalmode

kerr—Returns the self-Kerr and cross-Kerr for and between each normalmode

f_k_A_chi—Returns the eigenfrequency, loss-rates, anharmonicity, andKerr parameters of the circuit

hamiltonian—Returns theHamiltonian of [B13]

Qcircuitmethods (only if built withGUI)

show—Plots the circuit

show_normal_mode—Plots the circuit overlaidwith the currents, voltages, charge orfluxes through each
componentwhen a normalmode is populatedwith a single-photon coherent state.

J, L, R, Cmethods

zpf—Returns contribution of amode to the zero-point fluctuations in current, voltages, charge orfluxes.
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Jmethods

anharmonicity—Returns the contribution of this junction to the anharmonicity of a given normalmode
(equation (B16)).

AppendixG. Source code and documentation

The code used to generate thefigures of this paper are available in Zenodowith the identifier (https://doi.org/
10.5281/zenodo.3298107). Tutorials and examples, including those presented here are available on theQuCAT
website at https://qucat.org/. The latest version of theQuCAT source code, is available to download or to
contribute to at https://github.com/qucat.
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