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ABSTRACT

Surface heat ßuxes are vital to hydrological and environmental studies, but mapping them accurately over a
large area remains a problem. In this study, brightness temperature (TB) observations or soil moisture re-
trievals from the NASA Soil Moisture Active Passive (SMAP) mission and land surface temperature (LST)
product from the Geostationary Operational Environmental Satellite (GOES) are assimilated together into a
coupled water and heat transfer model to improve surface heat ßux estimates. A particle Þlter is used to
assimilate SMAP data, while a particle smoothing method is adopted to assimilate GOES LST time series,
correcting for both systematic biases via parameter updating and for short-term error via state updating. One
experiment assimilates SMAP TB at horizontal polarization and GOES LST, a second experiment assimilates
SMAP TB at vertical polarization and GOES LST, and a third experiment assimilates SMAP soil moisture
retrievals along with GOES LST. The aim is to examine if the assimilation of physically consistent TB and
LST observations could yield improved surface heat ßux estimates. It is demonstrated that all three assimi-
lation experiments improved ßux estimates compared to a no-assimilation case. Assimilating TB data tends to
produce smaller bias in soil moisture estimates compared to assimilating soil moisture retrievals, but the
estimates are inßuenced by the respective bias correction approaches. Despite the differences in soil moisture
estimates, the ßux estimates from different assimilation experiments are in general very similar.

1. Introduction

Surface heat ßuxes, and in particular their spatial pattern
and temporal evolution, are crucial for surface energy
balance (SEB) as well as terrestrial water cycle studies
(McCabe and Wood 2006; Bateni and Entekhabi 2012).
However, in situ measurements are difÞcult and expen-
sive, and are limited to only a few in situ ßux networks
(Baldocchi et al. 2001; Ma and Szilagyi 2019; Xu et al.
2019). In addition, the heterogeneous nature of heat ßuxes
further complicates their int erpolation and extrapolation
in the spatial domain (Semmens et al. 2016).

Remote sensing techniques have great potential for
monitoring land surface variables continuously over a
large area. Although surface heat ßuxes cannot be
observed directly from space, many studies have used
remote sensing products for surface heat ßux estimation.
For example, ÔÔtriangle methodsÕÕ estimate ßuxes by as-
suming a statistical relationship between the ßuxes and
observable environmental indicators such as vegetation
indices and land surface temperature (LST) (Minacapilli
et al. 2016; Chirouze et al. 2014; Zhu et al. 2017). Other
studies have mainly focused on using remote sensing data
as input for SEB models (Su 2002; Bastiaanssen et al.
1998a,b; Allen et al. 2007; Kustas et al. 1996; Holmes
et al. 2018; Jiang and Islam 2001; Anderson et al. 2011)
or land surface models (LSMs) (Oleson et al. 2010;
Zheng et al. 2015). These models apply to a wide range
of conditions but require a relatively large suite of input
data (Lu et al. 2017).
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Aside from the direct modeling approaches, some
studies have assimilated in situ or remotely sensed LST
data for ßux estimation (Bateni and Entekhabi 2012;
Bateni and Liang 2012; Bateni et al. 2013; Caparrini
et al. 2003, 2004b,a; Xu et al. 2014, 2018) into simple
SEB models. The rationale is that LST time series con-
tain information on energy partitioning over the land
surface. These studies estimate ßuxes by determining
two key parameters: a neutral bulk heat transfer coef-
Þcient CHN and an evaporative fraction (EF). The CHN

determines the sum of sensible and latent heat ßuxes,
while EF represents the partitioning between them. In
these studies,CHN is often assumed constant during
a month, and EF is assumed constant in the daytime
window (0900Ð1600 LT) on sunny days. Thanks to the
assumptions, these methods only require a limited amount
of input data. Some studies have demonstrated that the
ßux estimates can be further improved by constraining
EF using soil wetness information calculated from pre-
cipitation data ( Sini et al. 2008), or in situ soil moisture
measurements (Farhadi et al. 2014; Lu et al. 2016) or
remote sensing (Farhadi et al. 2016; Lu et al. 2017; Xu
et al. 2019) soil moisture retrievals.

A potential risk of assimilating remotely sensed soil
moisture retrievals lies in the retrieval algorithm, which
utilizes land surface parameters and background in-
formation including, for example, LST data. These
data are often outputs of other models, which may be
inconsistent with, or even contradictory to the model
simulations in the assimilation system. Furthermore,
the retrieval errors will be correlated to ancillary data,
which in turn may be correlated to the background
information used in data assimilation (De Lannoy and
Reichle 2016b). Therefore, it is natural to consider
assimilation of brightness temperature (TB), which is
the direct measurement of satellite microwave radiom-
eters. It is more difÞcult to assimilate TB observations
than soil moisture retrievals since TB is indirectly related
to land surface variables. A radiative transfer model
(RTM) needs to be adopted as the observation operator
to translate modeled land surface variables into TB sim-
ulations. Several TB assimilation studies have been con-
ducted, which have used TB observations from Advanced
Microwave Scanning Radiometer for Earth Observing
System (AMSR-E) ( Tian et al. 2009; Zhao et al. 2016;
Yang et al. 2016) and Soil Moisture Ocean Salinity
(SMOS) (De Lannoy and Reichle 2016a,b; Lievens et al.
2016, 2017a), and mainly focused on improving soil
moisture estimates.

Launched in January 2015, the Soil Moisture Active
Passive (SMAP) mission is the latest mission dedicated
to soil moisture monitoring. The microwave radiometer
onboard SMAP provides global soil moisture measurement

at 36-km scale and 2Ð3-day revisit time. Validation studies
suggest that SMAP can characterize the soil moisture
temporal evolution accurately (Pan et al. 2016; Colliander
et al. 2017; Cai et al. 2017). Recently, Lu et al. (2017)
demonstrated that surface heat ßux estimates can be
improved by the assimilation of SMAP soil moisture re-
trievals and Geostationary Operational Environmental
Satellite (GOES-East) LST data into a coupled water and
heat transfer model, and that incorporating soil moisture
data signiÞcantly improves ßux estimation thanks to
the positive correlation between EF and soil moisture
(Gentine et al. 2007; Santanello et al. 2011; Farhadi
et al. 2014). However, SMAP TB assimilation studies
are limited to, for example, the operational SMAP
Level-4 data products (Reichle et al. 2017a,b) and a few
studies on soil moisture estimation (Lievens et al. 2017b)
or numerical weather forecasting (Carrera et al. 2019).
No studies so far have focused on surface heat ßux
estimation or the differences between assimilating TB
observations and soil moisture retrievals.

The goal of this study is to determine if the assimila-
tion of physically consistent TB and LST data could
yield improved soil moisture and surface turbulent heat
ßux estimates. Here SMAP TB observations at either
horizontal or vertical polarization are assimilated to-
gether with GOES LST data, and the experiments are
compared to a third experiment which assimilates GOES
LST data and SMAP soil moisture retrievals following
Lu et al. (2017). The objective is to investigate the in-
formation contained in SMAP TB observations for
surface turbulent heat ßux estimation in comparison
with that from SMAP soil moisture retrievals, through
assimilation with GOES LST data, and to provide in-
sight into the differences in using horizontally or verti-
cally polarized TB data.

This paper is structured as follows:section 2 intro-
duces the datasets and model framework, including the
state propagation model and radiative transfer model as
well as the bias correction approach. The model simu-
lation assessment and the estimates for soil moisture and
ßuxes are given insection 3. Finally the conclusions are
summarized in section 4.

2. Materials and methods

a. Study area and data

The methodology is applied over an area (35.758Ð
37.248N, 96.728Ð98.218W) in the U.S. Southern Great
Plains (SGP). The study area is covered by 43 4 SMAP TB
cells posted on a 36-km Equal-Area Scalable Earth-2
(EASE-2) grid, or 30 3 30 GOES LST cells at 0.058
resolution. This area is chosen because of the relatively
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dense ßux network. The area is ßat and mostly covered
by grassland and cropland, with a small fraction of urban
area and water bodies. The dominant soil types are
sandy loam and silt loam, as shown inFig. 1. In situ ßux
measurements are available at four stations from the
Atmospheric Radiation Measurement (ARM) network.
Sensible (H) and latent (LE) heat ßux measurements
are provided every 30 min by energy balance Bowen
ratio (EBBR) instruments. In situ soil moisture obser-
vations are available at two stations (Stillwater and
Abrams) from the U.S. Climate Reference Network
(CRN; Bell et al. 2013) and the Soil Climate Analysis
Network (SCAN; Schaefer et al. 2007), respectively. The
data are collected hourly at the depths of 5, 10, 20, 50,
and 100 cm from the surface.

Input data can be categorized into forcing data, ancil-
lary data, and data for assimilation. Precipitation forcing
data are obtained from the 3IMERGHH product
provided by the Global Precipitation Mission (GPM)

(Hou et al. 2014). The data are provided at 30-min time
interval and 0.18spatial resolution (Huffman et al. 2015).
The atmospheric forcing data, including incoming
shortwaveRY

s and longwave radiationRY
l , wind speedU,

air temperature Ta, and air pressurePa come from the
North American Land Data Assimilation System proj-
ect phase 2 (NLDAS-2) (Xia et al. 2012). The data are
provided hourly at 0.1258 resolution. Since the forcing
data are coarser than the model grid cell, a ÔÔdrop in the
bucketÕÕ strategy is used to extract forcing data for each
model grid cell (i.e., the forcing data from the single
GPM/NLDAS-2 grid cell closest to, or overlaying, the
model grid cell are used).

The ancillary data used in this study include soil tex-
ture, vegetation, and land cover data. The soil texture
data, including soil sand fraction, soil clay fraction, and
soil bulk density data are provided on a 3-km EASE-2
grid by the National Snow and Ice Data Center (NSIDC)
(Das 2013), which are also used for SMAP soil moisture

FIG . 1. Study area with stations and dominant soil types and land cover for each pixel. The
SMAP grid cells are represented by the thick black lines, and the GOES grid cells are
demonstrated by the thin dashed lines. The border between Kansas to the north and
Oklahoma to the south is plotted in a red line.
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retrieval. This is to make the forward modeling of TB
consistent with SMAP soil moisture retrieval and to
avoid inßuences from differences in soil texture ancillary
data. Soil hydraulic properties are computed based on
texture information using the ROSETTA software ( Schaap
et al. 2001). The vegetation data, including the normalized
difference vegetation index (NDVI) and the leaf area index
(LAI) data are obtained from the Moderate Resolution
Imaging Spectroradiometer (MODIS) MOD13C1 and
MCD15A2 products, respectively. The NDVI data are
available at 0.058resolution every 16 days (Huete et al.
1999), while the LAI data are provided every 8 days
at 1-km resolution (Knyazikhin et al. 1999). The land
cover data are from ESA Climate Change Initiative (CCI)
(v1.6.1). All ancillary data are spatially regridded to the
resolution of model grid cells (0.058). Since no daily LAI
or NDVI data are available, the datasets are also line-
arly interpolated between two observation dates to
generate daily values (Abdolghafoorian et al. 2017; Lu
et al. 2017). Previous studies suggest that linear inter-
polation provides reasonable approximation of the daily
value (Houborg et al. 2016). Although the LAI and
NDVI datasets are spatially and temporally gap-free in
this study, it is worth noting that linear interpolation
generally performs poorly in case of long periods with-
out observations (Kandasamy et al. 2013).

The TB data for assimilation are the SMAP Level-1C
(L1C_TB) data acquired by the L-band radiometer at
2Ð3-day intervals (Entekhabi et al. 2014). The TB observa-
tions are the arithmetic average of the fore- and aft-looking
TB data obtained from https://reverb.echo.nasa.gov/and are
only assimilated at 0600 LT (descending node), when the
temperature within one model grid cell is very homoge-
neous, and the vegetation temperature can be assumed the
same as soil temperature. The GOES LST data are acquired
from the Copernicus Global Land Service (available from
http://land.copernicus.eu/global). The dataset is based
on fusion of multisource infrared sensors and provided
hourly at 0.058resolution. The datasets are summarized
in Table 1, and all datasets are processed and mapped to
geographic coordinates. The assimilation period covers
two growing seasons, that is, day of year (DOY) 91
through DOY 304 (AprilÐOctober) for 2015 and 2016,
respectively.

b. Model framework

1) DUAL -SOURCE MODEL

The dual-source model scheme introduced byLu et al.
(2017)is used, which is based on surface energy balance.
In the dual-source scheme, the contributions to the en-
ergy ßuxes from both soil and vegetation are character-
ized, and their energy balance is constructed separately.

The total H can be derived by

H 5 r CpU(Tw 2 Ta)CH , (1)

where r (kg m2 3) is air density, Cp (J kg2 1K2 1) is spe-
ciÞc heat capacity of air, U (m s2 1) is wind speed at
a reference height above the canopy,Tw (K) and Ta (K)
are the air temperature within and above the canopy,
and CH (Ñ) is CHN (Ñ) modiÞed for atmospheric
instability.

Following Farhadi et al. (2014), CHN can be estimated
from LAI by

CHN 5 exp(a1 b 3 LAI) . (2)

Here a and b are two parameters to be estimated. By
assuming an exponential decay of conductance within
the canopy (Caparrini et al. 2004b), the inßuence ofCHN

for the ßuxes over soil and canopy can be evaluated. This
relationship is shown to be valid under a wide range of
LAI values ( Abdolghafoorian et al. 2017).

When H is calculated, LE can be derived using the EF.
In the dual-source scheme, EF (Ñ) for soil (EF s) and
canopy (EFc) are calculated separately and assumed
constant during the daytime window (0900Ð1600 LT)
under clear-sky conditions. Hence only one EFs and one
EFc need to be estimated each day, making the appli-
cation easier and more robust (Caparrini et al. 2004a).
This assumption has been tested in many studies (Crago
1996; Crago and Brutsaert 1996; Gentine et al. 2007) and
has been proven effective in surface heat ßux estimation.

The state propagation model consists of a coupled
heat transfer module and a water transfer module. The
modeled temperature impacts the magnitude ofH and
hence LE, which serves as the sink term in soil moisture
simulation, while the modeled soil moisture inßuences
surface energy partitioning through EF and further de-
termines the ground heat ßux which propagates the heat
transfer process.

TABLE 1. Summary of datasets. The variables are explained in
the text.

Original
resolution

Category Source Dataset Spatial Temporal

Forcing NLDAS-2 RY
s , RY

l , U, Ta, Pa 0.1258 1 h
GPM P 0.18 30 min

Ancillary NSIDC Soil texture 3 km Ñ
MODIS LAI 1 km 8 days

NDVI 0.05 8 16 days
ESA CCI Land cover 300 m Ñ

Assimilation SMAP TB 36 km 2Ð3 days
GOES LST 0.058 1 h
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The heat transfer is modeled using the forceÐ
restore model

dTs

dt
5

2
�������
pv

p

Pe

G 2 2pv (Ts 2 Td) 1 «, (3)

wherePe(Jm2 2K2 1s2 1/2) is the effective thermal inertia,
G (Wm2 2) is ground heat ßux, v (s2 1) is the diurnal

frequency, Ts (K) is soil temperature, Td (K) is deep
ground temperature, and « represents model error. The
Peterm is calculated from soil moisture, bulk density, and
sand fraction (Lu et al. 2009), and Td is estimated with
a semidiurnal Þlter of surface temperature (Caparrini
et al. 2003).

The water transfer is modeled using a similar scheme used
in the Simple Biosphere model (SiB) (Sellers et al. 1986),
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where n is the number of soil layers,Wk (Ñ) is the soil
wetness of thekth layer, us (m3 m2 3) is soil moisture at
saturation, I 1 (cm s2 1) is the inÞltration into the Þrst
layer from precipitation, D k (cm) is the thickness of
the kth layer, Qk,k1 1 (cm s2 1) is the ßow between
the kth and k 1 1th layer, r w (g cm2 3) is water density,
Es (g cm2 2s2 1) is the water loss from soil evaporation,
Et,k (g cm2 2s2 1) is the water loss from vegetation tran-
spiration in the kth layer, and Qn (cm s2 1) is the gravi-
tational drainage from the bottom layer.

In this study a 90-cm soil column is used, which is di-
vided into six layers with thicknesses of 5, 10, 15, 15,
15, and 30 cm, respectively. The modeled soil moisture is
then used to get a prior estimate of EFs and EFc using
an improved arctangent-form relationship Þrst proposed
by Dirmeyer et al. (2000). A detailed description of the
model implementation can be found in Lu et al. (2017).

2) RADIATIVE TRANSFER MODEL (RTM)

To assimilate SMAP TB observations, the state
propagation model is coupled to a RTM to generate TB
simulations. The RTM used in this study mimics the
RTM used in the SMAP Level-2 retrieval algorithm
(OÕNeill et al. 2015). This model is developed byJackson
(1993)based on thet Ðv model and calculates TB in both
horizontal (TB H) and vertical (TB V) polarization. The
real part of soil dielectric constant «r is Þrst calculated
from soil moisture using a dielectric model. Here the
model proposed by Mironov et al. (2009) is used for
its simplicity over other models (Wang and Schmugge
1980; Dobson et al. 1985). The smooth surface soil
emissivity esoil_s is calculated from the dielectric constant
using the Fresnel equation. For horizontal polarization,
esoil_s is calculated by

esoil_s 5 12 jcosh 2
���������������������
«r 2 sin2h

q

cosh 1
���������������������
«r 2 sin2h

q j
2

, (5)

where h is the incidence angle, which is 408 for the
SMAP radiometer.

For vertical polarization, esoil_s is calculated by

esoil_s 5 12 j«r cosh 2
���������������������
«r 2 sin2h

q

«r cosh 1
���������������������
«r 2 sin2h

q j
2

. (6)

The inßuence of surface roughness (Choudhury et al.
1979) is then included to derive the rough surface soil
emissivity esoil_r by

esoil_r 5 12
12 esoil_s

exp(hr cos2h)
, (7)

where hr is a parameter dependent on the polarization,
frequency, and surface geometric properties (Entekhabi
et al. 2014).

Further, vegetation inßuence is included to derive the
land surface emissivityesurf (OÕNeill et al. 2015):

esurf 5 (1 2 v s)(1 2 g)[1 1 (1 2 esoil_r )g] 1 esoil_rg . (8)

Here v s(Ñ) is the scattering albedo, and g (Ñ) is the one-
way transmissivity of the canopy, which is estimated from the
vegetation water content (VWC)-based optical depth t :

g 5 exp(2 t sech) 5 exp(2 by 3 VWC 3 sech). (9)

The values for hr, v s, and by are taken from a lookup
table provided in OÕNeill et al. (2015), and VWC is
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calculated from the actual NDVI, the annual maximum
NDVI, and a land-cover-dependent stem factor using a
lookup table ( OÕNeill et al. 2015).

TB of the land surface (TB land) is given based on the
RayleighÐJeans approximation by

TBland 5 esurfTeff , (10)

where Teff (K) is the effective temperature of the land
surface, which is a measure of the contribution of the
whole soil column to microwave emission (OÕNeill et al.
2015). In many studies, Teff is estimated as a weighted
average of the surface (0Ð5cm) and deeper ground tem-
perature (50Ð100 cm) (Choudhury et al. 1982; Wigneron
et al. 2001, 2008; Holmes et al. 2006). Here the method
proposed by Wigneron et al. (2008) is adopted, which
includes the inßuence of soil moisture on the weights. TB
simulations are performed at the model resolution of
0.058and then aggregated to the SMAP TB grid scale
(36 km) using a simple arithmetic averaging.

Water bodies within a SMAP cell dramatically lower
the TB observations, and need to be accounted for in
the forward modeling. Here TB water is derived using a
theoretical model proposed by Klein and Swift (1977).
The simulated TB observations (TBsim) are then calcu-
lated as a weighted average of TBland and TBwater:

TBsim 5 fwaterTBwater 1 (1 2 fwater)TB land , (11)

where fwater is the water fraction in the model cell.
Since the theoretical modeling of TB of man-made,

impervious, and urban areas is very difÞcult with the pres-
ent land surface scheme (OÕNeill et al. 2015), the urban
fraction within model grid cells is treated in the following
way: 1) If urban area is not the dominant land cover type
of the cell, the cell is considered nonurban and the in-
ßuence from urban area is assumed marginal and ig-
nored. 2) Otherwise, the TBsim is not calculated, and the
grid cell is excluded (i.e., masked out) from the spatial
aggregation to the 36-km SMAP TB simulations.

c. Assimilation strategy

Similar to the case inLu et al. (2017), the SMAP data
(TB or soil moisture) are assimilated with a particle Þl-
ter, whereas the GOES LST data are assimilated with a
particle smoother. The main reason for using this hybrid
assimilation strategy is the large difference in spatial and
temporal resolution of the SMAP and GOES data. Since
GOES LST data are much Þner than SMAP TB data
both spatially and temporally, the information contained
in the SMAP TB observations will be swamped by the
large number of GOES LST observations if assimilated
simultaneously in one batch. In addition, the SMAP TB
observations are a ÔÔsnapshotÕÕ of the instantaneous land

surface states, and only available every 2Ð3 days, which
limits their ability to constrai n the temporal dynamics or the
model trajectory of soil moisture ( Dunne and Entekhabi
2006). A Þlter is therefore better suited to update the
instantaneous soil moisture state at the satellite overpass
time, and since soil moisture has inherent memory, the
update will propagate naturally in time. Related to the
LST observations, surface energy partitioning affects
not only the magnitude, but to a much larger extent in
the temporal evolution of LST time series. A batch
smoother is thus more appropriate to extract information
from a series of frequently sampled LST observations.

Here the SMAP TB observat ions are assimilated
using the particle Þlter (PF) at SMAP descending
overpass time (0600 LT) to update soil moisture. Next,
all available GOES LST data in the daytime assimilation
window (0900Ð1600 LT) are assimilated with an adap-
tive particle batch smoother (APBS) at 1600 LT to update
LST as well as four selected parameters:a and b for
estimating CHN , and two slope parameters (as and ac) to
estimate EFs and EFc. Here the TB assimilation does
not update soil temperature, and the LST assimilation
does not update soil moisture. However, an integrated
soil moisture and temperature update is possible and
may be considered for future research.

1) PARTICLE FILTER

Particle Þlters originate from Bayesian theory
(Moradkhani et al. 2005). Unlike Kalman ÞlterÐbased
methods that directly update model states, the PFs
use a likelihood function to calculate and update the
weights of particles (Dong et al. 2015; Moradkhani
et al. 2012; Yan et al. 2015).

The observation is related to the true state by

yt 5 h(xt) 1 vt , (12)

where yt is the observation at time stept, xt is the state
vector, h represents the observation operator that maps
the state (geophysical) space into observation space, and
vt is the observation error. The state vector here consists
of soil moisture of each layer in the soil column, while
the observation operator consists of the RTM as well as
spatial averaging.

Uniform weights are given to the particles at Þrst.
When assimilation is conducted, the particle weights are
updated by

wi*
t } wi

t2 1p(ytjx
i
t) , (13)

wi
t 5

wi*
t

�
N

i5 1
wi*

t

, (14)
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where wi*
t is the unnormalized weight of the ith particle

from importance sampling,wi
t stands for the weight after

normalization, N is particle size, and p(ytjx
i
t) is the

likelihood function, which is given by ( Dong et al. 2015)

p(ytjx
i
t) } exp 2 0:5(yt 2 ŷi

t)
T
R2 1(yt 2 ŷi

t)
h i

. (15)

Here ŷi
t is the simulated observation, andR is the

observation error covariance (scalar variance in this
case). The SMAP TB Þltering uses one coarse obser-
vation to update all 0.058state variables in the footprint.

2) TB ASSIMILATION

At SMAP descending overpass time (0600 LT),
SMAP TB observations are assimilated using the PF if
available. Since the model grid cells have a Þner reso-
lution, an averaging operator is adopted to convert the
RTM-derived TB at 0.058model grid cell to the simu-
lated TB at 36-km scale. For that purpose, Þrst all non-
urban model grid cells in one SMAP TB grid cell are
identiÞed. Second, for each nonurban model grid cell the
particles are sorted by their simulated TB, which serves
as the basis for updating particles in the assimilation
procedure. This is to ensure that spatial patterns simu-
lated by the model are retained in the updated states.
Here it is assumed that the Þrst particle yields the
highest TB, while the last particle has the lowest TB.
Finally, for all nonurban model grid cells the particles
are grouped by their respective ranking (i.e., the Þrst
group contains all the Þrst ranked particles from each of
the model grid cells). The simulated TB observation for
each group is then estimated as the algebraic average of
all members:

ŷi
t 5

�
M

j5 1
TBi

j,t

M
. (16)

Here M stands for the total number of nonurban
model grid cells within one SMAP grid cell, TB i

j,t is the
TB simulation of the ith particle in jth model grid cell at
time step t. Here ŷi

t is derived at the 36-km SMAP TB
scale. During assimilation, the likelihood of each particle
group is calculated using Eq. (15). Soil moisture of the
entire soil column is then updated based on the likelihood
to maintain water balance and the consistency between
layers within one particle.

TB observation error consists of instrument error and
representativeness error. The instrument error for SMAP
radiometer is anticipated to be around 1.3 K at 36-km
scale (Reichle et al. 2012; Das et al. 2016). The repre-
sentativeness error is composed of RTM errors resulted
from imperfect model structure, suboptimal parameters
or ancillary data (e.g., vegetation, soil), and the spatial

and temporal mismatch error between TB observations
and model simulations. The representativeness error for
SMAP TB data is assumed similar to that of SMOS TB
data, since both missions operate in L-band and provide
TB observations at similar spatial scales. The represen-
tativeness error depends on soil moisture and LST and
should ideally be modeled online in the assimilation
system. Here a constant representativeness error of
4.5 K is adopted following De Lannoy and Reichle
(2016a) for simplicity. The observation error is then
assumed to be 5 K (5’

����������������������
1:32 1 4:52

p
) for both horizontal

and vertical polarizations and spatially and temporally
uncorrelated.

3) A DAPTIVE PARTICLE BATCH

SMOOTHER (APBS)

The particle batch smoother (PBS) was Þrst developed
by Dong et al. (2015) and by Margulis et al. (2015) in-
dependently, which was further improved byDong et al.
(2016b) into the APBS. The main difference between a
Þlter and a batch smoother is that the Þlter assimilates
observations sequentially, while the batch smoother
assimilates all available observations within a window
in a batch. The limitation of the PBS is the requirement
to calibrate a tuning factor to avoid particle degeneracy,
which is improved in the APBS with an adaptive cali-
bration strategy.

In the APBS, the likelihood function is given by

p(yt2 L 1 1:t jx
i
t2 L 1 1:t) } P

t

j5 t2 L 1 1
exp½2 0:5b2(yj 2 ŷi

j )
T

3 R2 1(yj 2 ŷi
j )�. (17)

Here L is the length of the assimilation window, R is
the error covariance matrix of observations, andb is a
tuning factor to avoid particle degeneracy (Dong et al.
2016a). The tuning factor b varies between 0 and 1 and
is determined by maximizing the reliability of state
estimates.

4) LST ASSIMILATION

GOES LST observations are related to the modeled
soil temperature Ts and vegetation temperature Tc fol-
lowing Kustas et al. (1996):

LST 5 [ fcT
4
c 1 (1 2 fc)T

4
s ]

1/4
. (18)

Here fc is the vegetation cover fraction calculated
from LAI. The temporal autocorrelations among LST
observation errors are not addressed for simplicity. The
LST data assimilation is conducted if at least four ob-
servations (out of a maximum of eight in the window)
are available in the daytime assimilation window, and a
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3-K observation error is assumed (Lu et al. 2017). During
assimilation, the state vector is augmented as follows

X 5 LSTt1
LSTt2

� � � LSTtm
a bas ac

h i
, (19)

where t1, t2, . . . , tm are the time steps within the daytime
window when GOES LST observations are available
at a certain model grid cell; a and b are the parameters
for CHN estimation; and as and ac are the slope factors
for EF s and EFc estimation.

d. Bias correction

An assumption for most data assimilation systems is
unbiased observations and forecasts. However, the re-
mote sensing observations and the model simulations
often reveal different climatologies, in terms of long-
term mean or variability ( Reichle and Koster 2004;
Reichle et al. 2004). This may be caused by the limitations
of the model (e.g., imperfect structure, simpliÞcations,
suboptimal parameters) (De Lannoy et al. 2007) or non-
uniform representation of land surface variables of the
remote sensing system [e.g., shallower (, 5cm) observed
depth of soil moisture] (Sahoo et al. 2013), among others.
The difference in climatology can be even more dramatic
for TB observations (Kornelsen et al. 2015). A common
practice is to correct for the bias prior to data assimila-
tion. Generally, bias correction methods focus on cor-
rection of the Þrst-order moment (the long-term mean)
(Sahoo et al. 2013; De Lannoy and Reichle 2016b,a), the
Þrst two moments (mean and standard deviation) (Crow
et al. 2005; Kumar et al. 2012), or higher moments [the
distribution, often through cumulative distribution func-
tion (CDF) matching] ( Reichle and Koster 2004; Lievens
et al. 2016). More sophisticated methods have also
been proposed (Yilmaz and Crow 2013; Kornelsen and
Coulibaly 2015; Su and Ryu 2015). There is not a simple
ÔÔoptimalÕÕ bias correction method for a large range of
applications, and the appropriate bias correction scheme
is application dependent.

A seasonal bias correction approach is used here to
correct for the bias in TB observations. Lu et al. (2017)
used CDF matching to correct for the bias in SMAP soil
moisture since the bias in soil moisture is stationary and
less season dependent. In contrast, despite the dependence
on soil moisture, the magnitude of TB is also strongly
inßuenced byTeff and vegetation patterns. The bias in TB
hence varies with season, since bothTeff and vegetation
have a strong seasonal cycle. Therefore the seasonally
varying difference between SMAP TB observations and
ensemble mean TB simulations is corrected.

Here bias correction is not performed for LST data.
First, LST data retrieved from the GOES mission have
proved accurate without signiÞcant bias compared with

ground measurements (Sun and Pinker 2003; Pinker
et al. 2009). Second, the particle smoother will reduce
the difference between model simulated LST and GOES
observations by adjusting the parameter values to make
model simulations match observation climatology. The
impact on estimated surface heat ßuxes is expected to
be small as long as the parameter ranges are within a
physically reasonable range (Lu et al. 2017). Note that
earlier LST assimilation studies using a Kalman Þlter
for state updating only (no parameter updating) were
in need of bias estimation (Reichle et al. 2010; Draper
et al. 2015).

The bias correction steps are conducted for TBH

and TBV separately. Since SMAP TB observations are
coarser than model simulations, the simulated TB is
derived by averaging all nonurban modeled TB from
model grid cells that fall into each SMAP cell. To this
end, we Þrst calculate the ensemble mean of modeled
TB for each nonurban model grid cell at each SMAP
descending overpass time. Then a 30-day moving
window is used, which averages the time series of
SMAP TB observations as well as simulated TB
forecasts for each SMAP grid cell separately. Finally,
the differences between window-mean SMAP TB ob-
servations and model simulations are removed from
SMAP minus simulated TB innovations, and only short-
term differences between observations and forecasts are
assimilated.

e. Experiment setup

At 0000 on the Þrst day of model simulation, the soil
proÞle is assumed uniform and initialized randomly
within the physically valid range deÞned by the satu-
rated and residual soil moisture. The land surface tem-
perature is initialized using GOES observations within a
5-K range. For each experiment, 600 particles are used,
and the states are modeled at 0.058 resolution every
30 min. The perturbations used are summarized in
Table 2. The perturbations have been used inLu et al.
(2017) and proved reasonable.

The initial parameter ranges are given toa(2 7, a, 2 5)
and b (0 , b , 1) based on Abdolghafoorian et al.
(2017). An initial range of (1, 10) is used for as and ac

TABLE 2. Perturbations for the forcing data, where 3 and 1 rep-
resent multiplicative and additive perturbations, respectively.

Forcing Perturbation Standard deviation

RY
s Gaussian,3 3 , 0.1

RY
l Gaussian,3 3 , 0.1

U Gaussian,1 1 m s2 1

Ta Gaussian,1 5 K
P Lognormal, 3 3 , 0.2
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based on the values reported by Dirmeyer et al.
(2000). These ranges have proved reasonable inLu
et al. (2017).

During the daytime window, TsandTc are propagated
to calculate H. LE is then estimated using EFs and EFc.
The term G is calculated as the residual of the surface
energy balance. Outside the daytime window,G is es-
timated as a fraction of the net radiation to propagate
temperatures, since EF can no longer be assumed con-
stant. More details can be found in Lu et al. (2016).

The ßux estimation similarities between different as-
similation strategies are assessed over the study area
using the KlingÐGupta efÞciency (KGE; Gupta et al.
2009). The KGE is expressed as

KGE 5 12

���������������������������������������������������������������������������

(r 2 1)2 1
�

s ts1

s ts2

2 1
� 2

1
�

mts1

mts2

2 1
� 2

s

,

(20)

where r is the correlation coefÞcient between two sur-
face heat ßux time series,s ts1 and s ts2 are the standard
deviation of the two time series, while mts1 and mts2

are the corresponding mean values. KGE ranges
from minus inÞnity (poor agreement) to unity (perfect
agreement).

3. Results and discussion

a. Open-loop simulations

Figure 2 compares the spatiotemporal correlations
between the 36-km TB and surface soil moisture (0Ð5cm,
hereafter SSM) for SMAP products and open-loop
(no assimilation case, hereafter OL) simulations in the

whole study period (2015 and 2016 combined). Since the
Level-3 SMAP soil moisture product is retrieved from
vertically polarized TB observations using the single
channel algorithm (SCA) algorithm ( OÕNeill et al. 2015),
only TB V is included in the SMAP analysis. The corre-
lations between TB and SSM are generally very high,
indicating a strong control of SSM on TB. For vertical
polarization, SMAP TB V observations are slightly higher
than OL modeled TB V and have a larger dynamic range.
This may be caused by the difference between the SMAP
sensing depth and model settings. Studies have shown
that SMAP may measure shallower soil moisture than the
nominal 5-cm depth (Shellito et al. 2016). The correlation
between TBV and SSM is lower for OL simulations than
for SMAP data. This is mainly caused by differences in
the ancillary datasets used for the operational retrieval
and the forward simulation. Results from 2015 and 2016
show similar patterns, while the correlations for the 2016
study period are generally lower for both the SMAP
data (R2

V 5 0.85) and the model simulations (R2
V 5 0.73,

R2
H 5 0.78) compared to the 2015 study period (R2

V 5 0.91
for SMAP data, R2

V 5 0.81,R2
H 5 0.80 for model simula-

tions). This relates to the drier condition in 2016, when the
mean total precipitation during the study period (723 mm)
is over 100mm less than in 2015 (829 mm). The soil emis-
sivity becomes more variant for dry soil than for wet soil
(Njoku and Entekhabi 1996), which decreases the cor-
relation between SSM and TB.

The statistical metrics measuring the temporal agree-
ment between SMAP observations and OL simulations
are provided in Fig. 3 for both TB H and TBV (top row).
The boxplots show the distribution of the statistics
calculated for the 16 SMAP grid cells. OL simulated
TBV is better correlated with SMAP observations than

FIG . 2. Correlations between TB and surface soil moisture (SSM) from (a) SMAP (L1C_TB and Level-3 SSM)
and (b) OL simulations in the study period. The data pairs are extracted from all descending overpass time in the
study period in all the 16 SMAP TB grid cells.
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TBH. In terms of unbiased RMSD (ubRMSD) and the
bias, TBV signiÞcantly outperforms TBH. Over half of
the SMAP grid cells have ubRMSD over 15K for TB H,
while the ubRMSD is smaller than 15K for all cells for
TBV. The bias is less than2 10K for TB V for most grid
cells, while over half of the grid cells have bias larger
than 2 10K for TB H. Overall, the OL simulated TB is in
better agreement with SMAP observations for vertical
polarization than for horizontal polarization, which is a
logical consequence of the fact that TBV is bounded by
surface soil temperature and less variable than TBH.

The spatial patterns of the statistical metrics are also
shown in Fig. 3 (middle and bottom rows). Generally,
the statistical metrics show similar spatial patterns for
TBH and TBV, where the OL simulations agree better
with SMAP observations in the southeast part of the study
area. The spatial patterns may be caused by the vegetation

density. In the study area, a positive gradient of vegeta-
tion density is seen from the northwest to the southeast
(Lu et al. 2017). With more vegetation, the impact of soil
moisture is reduced, which makes TB easier to model.
The magnitude and spatial distribution of the statistical
metrics for study periods in both years are very similar.

The time series of the differences between OL simula-
tions and SMAP observations for TBH and TBV in the
2015 study period is plotted inFig. 4, and the areal mean
SSM from OL simulations and SMAP Level-3 soil mois-
ture product are also plotted for reference. The difference
between OL simulated and SMAP observed TB is much
smaller for TB V than for TB H because TB is less sensitive
to soil moisture in vertical polarization than in horizontal
polarization. The temporal evolution of the differences
shows similar trends for both TBH and TBV, closely
following the wetting and drying trends of the SSM.

FIG . 3. Statistical metrics between SMAP observations and OL simulations for TBH and TBV and their spatial patterns in the study period:
(top) boxplots for the metrics, (middle) spatial pattern of the metrics for TB H, and (bottom) spatial pattern of the metrics for TB V.
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In general, the differences are smaller when the SSM is
higher, and get larger when the soil dries down. After
rainfall events, the soil moisture proÞle near the surface
becomes very uniform, and the soil emissivity becomes less
sensitive to soil moisture (Njoku and Entekhabi 1996).
As a result, the uncertainty of TB is very small, despite the
relatively shallow sensing depth for L-band radiometer for
wet soil (Shellito et al. 2016). Whereas the soil moisture
proÞle gets less uniform with the soil drying down, and the
deeper soil moisture inßuences the soil emissivity for drier
soil (Njoku and Entekhabi 1996). Under this condition, a
small difference in the sensing depth could lead to a sig-
niÞcant difference in TB between SMAP observations and
model simulations. In addition, the modeled SSM may dry
down faster or slower than the true SSM, exerting different
inßuences under wet or dry conditions. This implies that
the difference between OL simulated TB and SMAP ob-
served TB is to some extent related to the soil moisture
condition or soil hydraulic properties. Correcting TB bias
online as a function of soil moisture therefore could po-
tentially improve TB assimilation schemes. The plots for
the 2016 study period show the same patterns (not shown).

b. Soil moisture estimation

Figure 5 provides the comparison of SSM estimates in
the 2015 study period from OL and three joint assimilation
cases at the two 0.058grid cells that contain soil moisture
stations, and the statistical assessments for both years are

summarized in Table 3. The assimilation cases include
(i) assimilation of GOES LST and SMAP TB H (hereafter
DA TH), (ii) assimilation of GOES LST and SMAP TB V

(hereafter DA TV), and (iii) assimilation of GOES LST and
SMAP Level-3 soil moisture retrievals (hereafter DA Tu)
following Lu et al. (2017). In general, the time series of OL
closely follows the dynamics of in situ observations at both
stations, indicating a good model performance. Assimilating
TB observations instead of soil moisture retrievals reduces
the estimation bias, particularly in 2016. This may relate
to the drier condition in 2016, where surface emissivity is
more sensitive to the soil moisture state. At Abrams,
DA TV has the best performance based on all the metrics in
both years, while DA TH and DA Tu are mostly comparable.
At Stillwater, the estimates are signiÞcantly inßuenced by
the erroneous soil hydraulic properties used in the model-
ing as well as the disagreement in GPM data with in situ
precipitation measurements (Lu et al. 2017). Despite the
inßuence, DATV shows slight improvement over DATu.

The performance of data assimilation in the 2015 study
period is also assessed for the second layer (5Ð15 cm) and
root-zone soil moisture (hereafter RZSM) in Fig. 6.
To bridge the difference in the soil column thickness
(90 cm for the model and 100 cm for the measurements),
weighted averaging and linear interpolation are con-
ducted respectively for the model simulations and in situ
measurements before deriving the RZSM. Similar to the
results for SSM, assimilating TB instead of soil moisture

FIG . 4. Boxplot time series of the differences between OL simulations and SMAP observations for TBH and TBV

in the 16 SMAP grid cells in the 2015 study period. The areal mean soil moisture time series from OL simulations
and SMAP is also plotted.
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generally yields smaller bias, particularly in 2016 which is
drier and in the second layer which is more closely cor-
related to SSM. Note that DA Tu overall produces higher
correlations with in situ data than DA TH and DA TV,
which may be attributed to the more direct relationship
with soil moisture states. Large bias exists between model
simulations and in situ measurements for RZSM in both
years, as is also demonstrated inLu et al. (2019). This is
mainly caused by the initialization error resulted from the
poor prior knowledge of the soil moisture proÞle. Since the
initial soil moisture is assumed uniform along the column,
the soil moisture analysis in the deeper layers will be lower
than the truth after SMAP assimilation, because it takes time
for the deeper layer soil moisture to reach its climatological
values (Lu et al. 2019). Furthermore, in situ measurements
suggest that the soil from the deepest layer is almost always
saturated, which also contributes to the large bias.

Overall, the difference in soil moisture estimates from
assimilating SMAP soil moisture retrievals or TB obser-
vations is not pronounced. This may be mainly explained
by the consistent Teff data as well as RTM parameters
used in the SMAP retrieval system and the model sim-
ulations in this study. The simulated Teff in this study is
generally lower than that used for SMAP soil moisture
retrieval, with a mean gap of 2 3 K for 2015 and 2 10 K

for 2016 for both DA TH and DA TV. The gap is small
compared to the magnitude of Teff (280Ð310K), and its
inßuence on TB is mitigated by the land surface emissivity
(, 1). In addition, the RTM parameters used are consistent
with each other, which also contributes to the small dif-
ference in TB estimates. More importantly, since the gap is
consistently negative, the mean bias correction adopted for
TB could effectively reduce the gap. It should be noted
that as a result of the relatively short record of the SMAP
data, only short-term bias can be corrected for, which re-
duces the information contained in the SMAP observa-
tions. LST states after updates are not evaluated due to
lack of in situ data, but are expected to have smaller bias
and phase error thanks to the relatively frequent (hourly)
information input from GOES ( Lu et al. 2017).

c. Flux estimation

The 30-min H and LE estimates in the whole study
period are assessed against in situ measurements at the
four ßux stations in Fig. 7, and the statistical metrics are
also summarized inTable 5. The OL estimates feature
relatively large bias, since the soil wetness and thermal
states are not updated, which has an impact on net radi-
ation estimation. All three assimilation strategies show
improvement over OL simulations, particularly for LE

FIG . 5. (a),(b) Time series of OL and assimilation results for SSM, together with in situ measurements at two
stations in the 2015 study period. The residual and saturated soil moisture used in the modeling are plotted with the
thick and thin dashed lines, respectively. The statistical results are shown inTable 3.
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estimates, which relates to a better characterization of
soil moisture dynamics. Flux estimates from the three
assimilation strategies are in general very similar, since
the differences in soil moisture estimates are not pro-
nounced. As soil moisture inßuences surface energy ßuxes
by constraining energy partitioning through an arctangent-
form relationship, the inßuence is expected to be large for
dry soil and small for wet soil. As demonstrated in Figs. 5
and 6, the larger soil moisture differences are mostly seen
when the soil wetness is medium or high, where the EF
estimates approach the plateau. While the difference when
the soil is dry is limited by the residual soil moisture
threshold. As a result, the small differences in soil moisture
do not lead to large differences in EF estimates, which is
further reduced by the 6 0.2 uncertainty range given to the
reference EF. DA TV slightly outperforms DA TH, indicated
by the smaller RMSD and higher correlation, but the dif-
ference is not signiÞcant, and even less visible for the 2016
study period. The scatterplots of 30-min ßux estimates
are also provided in the online supplemental material.
The H and LE estimates at daytime (0900Ð1600 LT)
scale yield similar results (not shown).

Figure 8 shows the KGE between 30-min ßux esti-
mates from each pair of assimilation strategies in the

whole study period to check the consistency between
strategies. Overall, the three assimilation strategies yield
very similar ßux estimates across the study area for both
H and LE. This is expected since the soil moisture esti-
mates from assimilating different datasets are very con-
sistent and in line with each other. It is demonstrated that
the KGE between DA TH or DA TV and DA Tu is generally
above 0.8 for 30-minH, while the KGE for 30-min LE is
above 0.9 for most of the area, indicating a very good
agreement between different assimilation strategies.
The KGE for H is lower than that for LE since H is more
susceptible to small variations in environmental factors
(e.g., wind speed). The KGE for 2016 is generally higher
than for 2015 for both H and LE estimates since the LST
time series contains more information on surface energy
partitioning for drier soil. As a result, the surface energy
ßuxes are more tightly constrained by LST dynamics,
which essentially reduces the estimation uncertainty.
Similar results are obtained for results at daytime scale
(not shown).

d. Comparison with univariate assimilation cases

To evaluate the marginal beneÞt of assimilating data
from either thermal (LST) or passive microwave (soil

TABLE 3. Statistical assessment of soil moisture estimates at different depths against in situ measurements for OL, DATu, DA TH , and
DA TV (unit of ubRMSD, RMSD, and bias is m 3 m2 3). The best performance in each category is shown in bold.

Abrams Stillwater

ubRMSD RMSD Bias R ubRMSD RMSD Bias R

2015
SSM OL 0.043 0.044 2 0.009 0.73 0.064 0.107 2 0.085 0.82

DA Tu 0.040 0.041 2 0.004 0.75 0.063 0.097 2 0.074 0.84
DA TH 0.039 0.039 2 0.002 0.77 0.063 0.097 2 0.074 0.83
DA TV 0.037 0.037 0.002 0.78 0.061 0.095 2 0.073 0.84

Second layer OL 0.044 0.046 2 0.014 0.65 0.054 0.134 2 0.122 0.80
DA Tu 0.038 0.041 2 0.014 0.73 0.054 0.127 2 0.115 0.81
DA TH 0.039 0.041 2 0.013 0.73 0.055 0.127 2 0.115 0.79
DA TV 0.038 0.039 2 0.009 0.72 0.053 0.125 2 0.113 0.81

RZSM OL 0.030 0.132 2 0.128 0.63 0.040 0.206 2 0.202 0.60
DA Tu 0.036 0.133 2 0.128 0.59 0.040 0.193 2 0.188 0.62
DA TH 0.037 0.134 2 0.128 0.56 0.042 0.191 2 0.187 0.61
DA TV 0.031 0.129 2 0.125 0.62 0.040 0.190 2 0.186 0.64

2016
SSM OL 0.042 0.048 2 0.023 0.66 0.063 0.093 2 0.068 0.68

DA Tu 0.042 0.045 2 0.016 0.65 0.056 0.084 2 0.063 0.76
DA TH 0.043 0.046 2 0.017 0.64 0.060 0.077 2 0.049 0.72
DA TV 0.040 0.041 2 0.011 0.68 0.061 0.080 2 0.051 0.70

Second layer OL 0.034 0.035 0.007 0.62 0.054 0.123 2 0.110 0.67
DA Tu 0.034 0.035 0.009 0.65 0.049 0.117 2 0.106 0.76
DA TH 0.038 0.038 0.006 0.57 0.050 0.104 2 0.091 0.72
DA TV 0.034 0.037 0.014 0.64 0.053 0.108 2 0.094 0.69

RZSM OL 0.033 0.131 2 0.127 0.31 0.041 0.203 2 0.199 0.71
DA Tu 0.031 0.120 2 0.116 0.50 0.039 0.188 2 0.184 0.79
DA TH 0.035 0.129 2 0.124 0.31 0.053 0.173 2 0.165 0.30
DA TV 0.033 0.115 0.110 0.37 0.052 0.176 2 0.168 0.28
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