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Abstract
We deal with a system of quasilinear fractional differential equations, subjected to the 
Cauchy–Nicoletti type boundary conditions. The task of explicit solution of such problems 
is difficult and not always solvable. Thus we suggest a suitable numerical–analytic tech-
nique that allows to construct an approximate solution of the studied fractional boundary 
value problem with high precision.

Keywords  Fractional differential equations · Cauchy–Nicoletti type boundary conditions · 
Approximation of solutions · Parametrization technique

Introduction

In the case of BVPs for quasilinear systems of fractional differential equations (FDEs) we 
use an original technique of the numerical–analytic approximation, that was initially sug-
gested for the periodic BVPs for ordinary differential equations (see[17]) and later on mod-
ified for the fractional differential systems (FDSs) (see discussions in[2–4, 9, 10]).

The main idea of the mentioned method is to construct a sequence of functions {xm}m∈ℕ , 
that under additional assumptions converges to the limit function x∞ , depending on 
unknown parameters. The question to be answered is: how to define the sequence {xm}m∈ℕ 
that in case of the two-point BVPs already anticipates invertible matrixes. Even though 
there are new developments in the theory of FDEs (see discussions in[1, 5, 6, 8, 11, 12]), it 
is restrictive enough not to cover a wide class of problems that are of high interest. To cope 
with this we suggest an approach of parametrization that has essential differences in appli-
cation to different types of boundary conditions.

In the current paper it is shown, how the aforementioned technique can be applied to 
the Cauchy–Nicoletti type boundary conditions and enables to substitute the degenerate 
matrixes in the given boundary restrictions by the non-degenerate ones via the introduction 
of some scalar parameters.
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Note, that since the approximate solutions of the studied BVP are constructed analyti-
cally, one can also study behavior of the exact solution using the special mathematical soft-
ware, e.g. Matlab, Maple etc.

Main Definitions

Let J = [a, b] (−∞ < a < b < ∞) be a final interval of ℝ . Throughout this paper under Γ(z) 
we understand the Gamma function, defined by the integral

which converges in the right half of the complex plane Re(z) > 0[20].

Definition 1  [13] The left and right Riemann–Liouville fractional integrals of order 
� ∈ ℝ

+ are defined by

and

respectively, provided the right-hand sides are pointwise defined on [a, b].

Definition 2  [13] The left and right Riemann–Liouville fractional derivatives of order 
� ∈ ℝ+ are defined by

and

respectively, where n = [�] + 1 , [�] means the integer part of �.

Definition 3  [20] The left and right Caputo fractional derivatives of order � ∈ ℝ+ are 
defined by

Γ(z) = ∫
∞

0

e−ttz−1dt,

aD−𝛼

t
f (t) =

1

Γ(𝛼) ∫
t

a

(t − s)𝛼−1f (s)ds, t > a, 𝛼 > 0

tD
−𝛼

b
f (t) =

1

Γ(𝛼) ∫
b

t

(s − t)𝛼−1f (s)ds, t < b, 𝛼 > 0

aD𝛼

t
f (t) =

dn

dtn
aD

−(n−𝛼)

t f (t)

=
1

Γ(n − 𝛼)

dn

dtn ∫
t

a

(t − s)n−𝛼−1f (s)ds, t > a

tD
𝛼

b
f (t) =(−1)n dn

dtn
tD

−(n−𝛼)

b
f (t)

=
1

Γ(n − 𝛼)
(−1)n dn

dtn ∫
b

t

(s − t)n−𝛼−1f (s)ds, t < b

(1)C
a
D�

t
f (t) = aD�

t

[
f (t) −

n−1∑
k=0

f (k)(a)

k!
(t − a)k

]
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and

respectively, where n = [�] + 1 , for � ∉ ℕ0 ; n = � for � ∈ ℕ0.
In particular, when 0 < 𝛼 < 1 , then

and

Under assumption, that operations | ⋅ | , = , ≤ , ≥ , max , etc. between matrixes and vectors are 
understood componentwise, let us introduce the following notations.

Definition 4  For any non-negative vector � ∈ ℝ
3 of the form

under the componentwise �−neighbourhood of a point z0 ∈ ℝ
3 we understand

where M ∈ ℝ
3 is a given constant vector.

Definition 5  For a given bounded connected set Da ⊂ ℝ
3 introduce its componentwise �−

neighbourhood as follows

Definition 6  For a set D ⊂ ℝ
3 , closed interval [a, b] ⊂ ℝ , Caratheodory function 

f ∶ [a, b] × D → ℝ
3 , three-dimensional square matrix K with non-negative entires, we 

write

if the inequality

holds for all {u, v} ⊂ D and a.e. t ∈ [a, b].

Problem Setting

We study a two-point boundary value problem for a system of FDEs of the form:

C
t
D�

b
f (t) = tD

�

b

[
f (t) −

n−1∑
k=0

f (k)(b)

k!
(b − t)k

]

C
a
D�

t
f (t) = aD�

t
(f (t) − f (a))

C
t
D�

b
f (t) = tD

�

b
(f (t) − f (b)).

(2)� ∶=
(b − a)pM

22p−1Γ(p + 1)

(3)B(z, �) ∶=
{

z0 ∈ ℝ
n ∶ ||z0 − z|| ≤ �

}
,

(4)D ∶= B(Da, �).

(5)f ∈ Lip(K, D)

(6)|f (t, u) − f (t, v)| ≤ K|u − v|

(7)C
a
D

p

t x = f (t, x(t)), t ∈ [a, b], x, f ∈ ℝ
3,
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for some p ∈ (0, 1] , and subjected to the Cauchy–Nicoletti type two-point boundary 
conditions

where C
a
D

p

t  is the left Caputo fractional derivative with lower limit at a (see (1), Defini-
tion 3), f ∶ Gf → ℝ

3 is a continuous vector-function, Gf ∶= [a, b] × D , D ⊂ ℝ
3 is a closed 

and bounded domain, matrixes A, C and vector d have the form

The problem is to find an explicit solution of the FDS (7), satisfying the two-point 
Cauchy–Nicoletti type boundary constraints (8), in the space of continuous vector-func-
tions x ∶ [a, b] → D.

Remark 1  The practical interest to the problem (7), (8) is explained by its application. 
Let function x1(t) interprets the gross domestic product (GDP), x2(t)—inflation and x3(t)

—unemployment rate (UE) at time t. Then the system (7) describes the history of devel-
opment of the modeled economy in time, which is represented by triples of the values of 
GDP, inflation, and UE (see also discussion in[18]). On the other hand, boundary condi-
tions (8) give us values of the observable quantities at certain time t = t∗ . This also applies 
to the perturbed Cauchy problem, investigated on the later stage.

Auxiliary Lemmas

To prove the main result of the paper we need to generalize some auxiliary lemmas, initially 
formulated by Fečkan, Marynets in[2], in terms of the interval [a, b].

Lemma 1  Let f(t) be a continuous function for t ∈ [a, b] . Then for all t ∈ [a, b] the follow-
ing estimate is true:

where

Proof  It is obvious that

(8)Ax(a) + Cx(b) = d,

A =

⎛⎜⎜⎝

1 0 0

0 1 0

0 0 0

⎞⎟⎟⎠
, C =

⎛⎜⎜⎝

0 0 0

0 0 0

0 0 1

⎞⎟⎟⎠
, d =

⎛⎜⎜⎝

xa1

xa2

xb3

⎞⎟⎟⎠
.

(9)

||||
1

Γ(p) �
t

a

(t − �)p−1f (�)d� −

(
t − a

b − a

)p 1

Γ(p) �
b

a

(b − �)p−1f (�)d�
||||

≤ �1(t) max
t∈[a,b]

|f (t)|,

(10)�1(t) =
2(b − t)p

Γ(p + 1)

(
1 −

b − t

b − a

)p

.
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since

for any � ∈ [0, t) and

This completes the proof. 	�  ◻

Lemma 2  Let {�m(t)}m∈ℕ be a sequence of continuous functions at the interval [a, b] given 
by

||||
1

Γ(p) �
t

a

(t − �)p−1f (�)d� −

(
t − a

b − a

)p 1

Γ(p) �
b

a

(b − �)p−1f (�)d�
||||

≤ 1

Γ(p)

||||�
t

a

(t − �)p−1f (�)d� −

(
t − a

b − a

)p

�
t

a

(b − �)p−1f (�)d�

−

(
t − a

b − a

)p

�
b

t

(b − �)p−1f (�)d�
||||

≤ 1

Γ(p)

[||||�
t

a

[
(t − �)p−1 −

(
t − a

b − a

)p

(b − �)p−1

]
f (�)d�

||||
+

||||
(

t − a

b − a

)p

�
b

t

(b − �)p−1f (�)d�
||||
]

≤ 1

Γ(p)

[
�

t

a

[
(t − �)p−1 −

(
t − a

b − a

)p

(b − �)p−1

]
|f (�)|d�

+

(
t − a

b − a

)p

�
b

t

(b − �)p−1|f (�)|d�

]

≤ 1

Γ(p)

[
�

t

a

[
(t − �)p−1 −

(
t − a

b − a

)p

(b − �)p−1

]
d�

+

(
t − a

b − a

)p

�
b

t

(b − �)p−1d�

]
max
t∈[a,b]

|f (t)|

=
2(b − t)p

Γ(p + 1)

(
1 −

b − t

b − a

)p

max
t∈[a,b]

|f (t)| = �1(t) max
t∈[a,b]

|f (t)|.

(t − �)p−1 −

(
t − a

b − a

)p

(b − �)p−1

= (t − �)p−1

(
1 −

(
t − a

b − a

)p(
b − �

t − �

)p−1
)

≥ (t − �)p−1

(
1 −

(
t − a

b − a

)p(
b − a

t − a

)p−1
)

= (t − �)p−1

(
1 −

t − a

b − a

)
= (t − �)p−1 b − t

b − a
≥ 0,

1

Γ(p) ∫
t

a

[
(t − �)p−1 −

(
t − a

b − a

)p

(b − �)p−1

]
d�

+

(
t − a

b − a

)p 1

Γ(p) ∫
b

t

(b − �)p−1d� =
2(b − t)p

Γ(p + 1)

(
1 −

b − t

b − a

)p

= �1(t).
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where �0(t) = 1 and �1(t)—defined by formula (10). Then the following estimate holds:

for m ∈ ℕ0.

Proof  We will use the method of mathematical induction. First we prove (12) for m = 0 as 
follows:

since the inequality �� ≤ (�+�)2

4
 for any � ≥ 0 and � ≥ 0 holds. It means that function �1(t) 

satisfies an inequality (12) for m = 0 . Suppose that the relation (12) holds for some m ∈ ℕ0 , 
i.e. the estimate

holds.
Let us prove it for (m + 1) . In virtue of (12), from the recurrent formula (11) for (m + 1) 

we obtain:

that proves lemma.	�  ◻

(11)
�m(t) ∶=

1

Γ(p)

[
∫

t

a

[
(t − �)p−1 −

(
t − a

b − a

)p

(b − �)p−1

]
�m−1(�)d�

+

(
t − a

b − a

)p

∫
b

t

(b − �)p−1�m−1(�)d�

]
, m ∈ ℕ,

(12)�m+1(t) ≤ (b − a)mp

2m(2p−1)Γm(p + 1)
�1(t) ≤ (b − a)(m+1)p

2(m+1)(2p−1)Γm+1(p + 1)
,

�1(t) =
2(b − t)p

Γ(p + 1)

(
1 −

b − t

b − a

)p

=
2(b − a)p

Γ(p + 1)

(
b − t

b − a

(
1 −

b − t

b − a

))p

≤ (b − a)p

22p−1Γ(p + 1)

�m(t) ≤ (b − a)(m−1)p

2(m−1)(2p−1)Γm−1(p + 1)
�1(t) ≤ (b − a)mp

2m(2p−1)Γm(p + 1)

�m+1(t) =
1

Γ(p)

[
�

t

a

[
(t − �)p−1 −

(
t − a

b − a

)p

(b − �)p−1

]
�m(�)d�

+

(
t − a

b − a

)p

�
b

t

(b − �)p−1�m(�)d�

]

≤ 1

Γ(p)

[
�

t

a

[
(t − �)p−1 −

(
t − a

b − a

)p

(b − �)p−1

]
(�)d�

+

(
t − a

b − a

)p

�
b

t

(b − �)p−1(�)d�

]
(b − a)mp

2m(2p−1)Γm(p + 1)

=
(b − a)mp

2m(2p−1)Γm(p + 1)
�1(t) ≤ (b − a)(m+1)p

2(m+1)(2p−1)Γm+1(p + 1)
,
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Approximation of Solutions Via the Numerical–Analytic Technique

Since matrix C in the boundary restrictions (8) is degenerate, the approach of the numeri-
cal–analytic method in its classical form[14–17], is impossible to apply.

Hence, a proper parametrization

transforms conditions (8) with degenerate matrix C to the parametrized ones

where C1 ≡ I3 , I3—is the unit three-dimensional matrix, d(�) ∶=

⎛⎜⎜⎝

xa1 + �1

xa2 + �2

xb3

⎞⎟⎟⎠
 and 

� ∶= (�1, �2) ∈ Λ—are the artificially introduced vector-parameter, such that the triplex 
(�1, �2, xb3) ∈ D.

Let us connect with the two-point FBVP (7) and (8) the following sequence of functions:

where t ∈ [a, b] , �a3 ∈ Ξ is such that �0 = col(x01, x02, �a3) ∈ Da and

is considered as a zero-approximation.

Remark 2  Note that the functions xm in (15) are constructed in such a way, that they satisfy 
the two-point parametrized boundary restrictions (14) a priory, for all m ∈ ℕ.

We can prove the following convergence theorem.

Theorem 1  Assume that

(i) there exists a non-negative vector � , satisfying the inequality (3);

(ii) f ∶ Gf → ℝ
3 be a function satisfying the Caratheodory and the Lipschitz condition 

f ∈ Lip(K, D) in the domain D of the form (4) with matrix K;

(iii) for the spectral radius of the matrix

estimate

(13)x1(b) = �1, x2(b) = �2

(14)Ax(a) + C1x(b) = d(�),

(15)

xm(t, �a3, �) ∶= �0 +
1

Γ(p) ∫
t

a

(t − s)p−1f (s, xm−1(s, �a3, �))ds

−

(
t − a

b − a

)p 1

Γ(p) ∫
b

a

(b − s)p−1f (s, xm−1(s, �a3, �))ds

+

(
t − a

b − a

)p

C−1

1
[d(�) − (A + C1)�0], m ∈ ℕ,

x0(t, �a3, �) = �0 +

(
t − a

b − a

)p

C−1

1
[d(�) − (A + C1)�0]

(16)Q =
(b − a)pK

22p−1Γ(p + 1)
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holds.

Then, for all fixed �a3 ∈ Ξ and � ∈ Λ:

1. The functions of the sequence (15) are absolutely continuous functions on the interval 
t ∈ [a, b], have values in the domain D andsatisfy the two-point boundary conditions

2. The sequence of functions (15) converges uniformly for t ∈ [a, b] as m → ∞ to the limit 
function

3. The limit function satisfies the initial condition

and the two-point boundary conditions

4. The function x∞

(
⋅, �a3, �

)
 is a unique absolutely continuous solution of the integral 

equation

In other words, x∞

(
⋅, �a3, �

)
 satisfies the Cauchy problem for the modified system of FDEs:

where Δ ∶ Ξ × Λ → ℝ
3 is a mapping given by formula

5. The following error estimate holds:

(17)r(Q) < 1

Axm(a, �a3, �) + C1xm(b, �a3, �) = d(�).

(18)x∞

(
t, �a3, �

)
= lim

m→∞
xm(t, �a3, �).

(19)x∞

(
a, �a3, �

)
= �0

Ax∞(a, �a3, �) + C1x∞(b, �a3, �) = d(�).

(20)

x(t) ∶= �0 +
1

Γ(p) ∫
t

a

(t − s)p−1f (s, x(s))ds

−

(
t − a

b − a

)p 1

Γ(p) ∫
b

a

(b − s)p−1f (s, x(s))ds

+

(
t − a

b − a

)p

C−1

1
[d(�) − (A + C1)�0].

(21)C
a
D

p

t x = f (t, x(t)) +
p

(b − a)p
Δ(�a3, �),

(22)x(a) = �0,

(23)Δ(�a3, �) ∶= − ∫
b

a

(b − s)p−1f (s, x(s))ds + Γ(p)C−1

1
[d(�) − (A + C1)�0].

(24)
|||x∞

(
t, �a3, �

)
− xm

(
t, �a3, �

)||| ≤ (b − a)p

22p−1Γ(p + 1)
Qm(I3 − Q)−1M.
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Proof  As already mentioned in the Sect. 4, the sequence (15) is constructed in accordance 
to the boundary conditions (14). This means that the statement 1 of the theorem holds.

Now we show, that independently from the number of iterations, all functions xm of the 
sequence (15) will remain in the domain D of their definition. For m = 1 we get

where M ∶= max
t∈[a,b]

|f (t, ⋅)|.
For m = 2 we obtain the estimate

Suppose, that for m − 1 the inequality holds

and let us prove it for m:

Let us now estimate the differences of the form |xm+1(⋅, �a3, �) − xm(⋅, �a3, �)|.
For m = 1 we already obtained an inequality

Then for m = 2 it is easy to derive

(25)

|x1(t, �a3, �) − x0(t, �a3, �)|
=

||||
1

Γ(p) �
t

a

(t − s)p−1f (s, x0(s, �a3, �))ds

−

(
t − a

b − a

)p 1

Γ(p) �
b

a

(b − s)p−1f (s, x0(s, �a3, �))ds
||||

≤ �1(t)M ≤ (b − a)pM

22p−1Γ(p + 1)
∶= �,

|x2(t, �a3, �) − x0(t, �a3, �)|
=

||||
1

Γ(p) �
t

a

(t − s)p−1f (s, x1(s, �a3, �))ds

−

(
t − a

b − a

)p 1

Γ(p) �
b

a

(b − s)p−1f (s, x1(s, �a3, �))ds
||||

≤ �1(t)M ≤ (b − a)pM

22p−1Γ(p + 1)
= �.

|xm−1(t, �a3, �) − x0(t, �a3, �)| ≤ �1(t)M ≤ (b − a)pM

22p−1Γ(p + 1)
= �,

|xm(t, �a3, �) − x0(t, �a3, �)| =
||||

1

Γ(p) �
t

a

(t − s)p−1f (s, xm−1(s, x0(t, �a3, �)))ds

−

(
t − a

b − a

)p 1

Γ(p) �
b

a

(b − s)p−1f (s, xm−1(s, x0(t, �a3, �)))ds
||||

≤ �1(t)M ≤ (b − a)pM

22p−1Γ(p + 1)
= �.

|x1(t, �a3, �) − x0(t, �a3, �)| ≤ �1(t)M ≤ (b − a)pM

22p−1Γ(p + 1)
.
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Under assumption that for m the estimate

holds we prove it for m + 1 . So we obtain

Summarizing, in view of (12), we get the following estimates

|x2(t, �a3, �) − x1(t, �a3, �)| =
1

Γ(p)

||||�
t

a

(t − s)p−1f (s, x1(s, �a3, �))ds

−

(
t − a

b − a

)p

�
b

a

(b − s)p−1f (s, x1(s, �a3, �))ds

− �
t

a

(t − s)p−1f (s, x0(s, �a3, �))ds

+

(
t − a

b − a

)p

�
b

a

(b − s)p−1f (s, x0(s, �a3, �))ds
||||

≤ KM

Γ(p)

[
�

t

a

[
(t − s)p−1 −

(
t − a

b − a

)p

(b − s)p−1

]
�1(s)ds

+

(
t − a

b − a

)p

�
b

t

(b − s)p−1�1(s)ds

]
= KM�2(t)

≤ (b − a)pKM

22p−1Γ(p + 1)
�1(t) ≤ (b − a)2pKM

22(2p−1)Γ2(p + 1)

|xm(t, �a3, �) − xm−1(t, �a3, �)| ≤ (b − a)(m−1)pKm−1M

2(m−1)(2p−1)Γm−1(p + 1)
�1(t)

|xm+1(t, �a3, �) − xm(t, �a3, �)| =
1

Γ(p)

||||�
t

a

(t − s)p−1f (s, xm(s, �a3, �))ds

−

(
t − a

b − a

)p

�
b

a

(b − s)p−1f (s, xm(s, �a3, �))ds

− �
t

a

(t − s)p−1f (s, xm−1(s, �a3, �))ds

+

(
t − a

b − a

)p

�
b

a

(b − s)p−1f (s, xm−1(s, �a3, �))ds
||||

≤ KM

Γ(p)

[
�

t

a

[
(t − s)p−1 −

(
t − a

b − a

)p

(b − s)p−1

]
�m(s)ds

+

(
t − a

b − a

)p

�
b

t

(b − s)p−1�m(s)ds

]
= KmM�m+1(t)

≤ (b − a)mpKmM

2m(2p−1)Γm(p + 1)
�1(t) ≤ (b − a)(m+1)pKmM

2(m+1)(2p−1)Γm+1(p + 1)
.
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As the maximum eigenvalue of matrix Q of the form (16) is less than 1, we get the follow-
ing relations:

where O3 is the zero three-dimension matrix. Letting j → ∞ in (26), we get the estimate 
(24). According to the Cauchy criteria, the sequence of functions {xm} , defined by (15), 
uniformly converges in the domain [a, b] × Da to the limit function x∞(⋅, �a3, �).

Since all functions of the sequence (15) satisfy the two-point parametrized boundary 
conditions (14), the limit function (18) satisfies them as well. Passing in (15) to the limit as 
m → ∞ , we get that function x∞(⋅, �a3, �) satisfies the integral equation (20).

In order to show that (20) has a unique continuous solution, suppose that x1(t) and x2(t) 
be two solutions of (20). Then like above, we get

for all t ∈ [a, b] . Hence

which by (17) gives max
t∈[a,b]

||x1(t) − x2(t)|| = 0 , so x1(t) = x2(t) for all t ∈ [a, b] . Furthermore, 
the initial-value problem (21), (22) is equivalent to the integral equation[19],

(26)

|xm+j(t, �a3, �) − xm(t, �a3, �)|

≤
j∑

k=1

|xm+k(t, �a3, �) − xm+k−1(t, �a3, �)|

≤
j∑

k=1

Km+k−1M�m+k(t) ≤
j∑

k=1

Km+k−1(b − a)(m+k−1)p

2(m+k−1)(2p−1)Γm+k−1(p + 1)
M�1(t)

=

j−1∑
k=0

Qm+kM�1(t) = Qm

j−1∑
k=0

QkM�1(t).

j−1∑
k=0

Qk ≤ (I3 − Q)−1, lim
m→∞

Qm = O3,

|x1(t) − x2(t)| ≤ K

Γ(p)

[
�

t

a

[
(t − s)p−1 −

(
t − a

b − a

)p

(b − s)p−1

]
ds

+

(
t − a

b − a

)p

�
b

t

(b − s)p−1ds

]
max
t∈[a,b]

||x1(t) − x2(t)||

= K�1(t) max
t∈[a,b]

||x1(t) − x2(t)|| ≤ K(b − a)p

22p−1Γ(p + 1)
max
t∈[a,b]

||x1(t) − x2(t)||
= Q max

t∈[a,b]

||x1(t) − x2(t)||,

max
t∈[a,b]

||x1(t) − x2(t)|| ≤ Q max
t∈[a,b]

||x1(t) − x2(t)||,
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where the perturbation Δ(�a3, �) is given by (23). By comparing (20) with (27), and recall-
ing that x∞(t, �a3, �) is the unique continuous solution of (20), we see that x(t) = x∞(t, �a3, �) 
in (27), i.e., x∞(t, �a3, �) is the unique solution of (21), (22). This completes the proof. 	
� ◻

Relation of the Limit Function to the Solution of the FBVP

Let us consider the Cauchy problem for a perturbed differential equation

with the initial data (22), where t ∈ [a, b] and � ∈ ℝ
3 is a control parameter.

The following theorem holds.

Theorem 2  Let �a3 ∈ Ξ , � ∈ Λ and �0 ∈ ℝ
3 be some given vectors. Suppose that all condi-

tions of Theorem 1 hold for the system of FDEs (7).

Then the solution x = x(⋅, �a3, �, � ) of the initial-value problem (28), (22) satisfy also 
boundary conditions (14) if and only if

where Δ is given by (23). In that case

Proof  First we note that the existence and uniqueness of x(t, �a3, �, � ) on [a,  b] and its 
smooth dependence on �a3, � and � follow from the classical theory in[7, 20].

Sufficiency Suppose that vector parameter � in the right hand-side of the perturbed FDS 
(28) is given by (29). According to Theorem 1, the limit function (18) of the sequence (15) 
is the unique solution of the BVP problem (28), (14). Moreover, function x∞(t, �a3, �) satis-
fies the initial conditions (22), i.e., it is the unique solution of the Cauchy problem (28), 
(22) for � defined by the relation (29). It means also that the equality (30) takes place.

Necessity Let us show that the parameter value (29) is unique. Let there exists �  and the 
solution x(t, �a3, �, � ) of the initial-value problem

(27)

x(t) = �0 +
1

Γ(p) ∫
t

a

(t − s)p−1f (s, x(s))ds +
Δ(t − a)p

Γ(p + 1)

= �0 +
1

Γ(p) ∫
t

a

(t − s)p−1f (s, x(s))ds

−

(
t − a

b − a

)p 1

Γ(p) ∫
b

a

(b − s)p−1f (s, x(s))ds

+

(
t − a

b − a

)p

C−1

1
[d(�) − (A + C1)�0],

(28)C
a
D

p

t x = f (t, x(t)) +
p

(b − a)p
� ,

(29)� ∶= Δ(�a3, �),

(30)x(t, �a3, �, � ) = x∞

(
t, �a3, �

)
.
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that satisfies also the boundary restrictions (14). It means by[7, Corollary  3.24],[20, 
Lemma 3.3] that function x(t, �a3, �, � ) is a continuous solution of the integral equation:

By assumption, function x(t, �a3, �, � ) satisfies two-point parametrized boundary con-
straints (14) and the initial condition (22), that is,

Then x(b, �a3, �, � ) = C−1

1
[d(�) − A�0] and substituting this into the relation (31) for t = b 

we get

Putting (33) into (31), we come to the relation:

As �0 ∈ Da and � ∈ Λ , according to the integral equation (34) and the definition of the 
set D, it can be proved that all values of function x(t, �a3, �, � ) are contained into the 
domain D. By comparing (20) with (34), we know from the statement 4 of Theorem 1 that 
x(t, �a3, �, � ) = x∞(t, �a3, �) and then �  equals to � given by (29). This finishes the proof. 	
� ◻

Theorem 3  Let conditions of Theorem 1 hold. Then x∞(⋅, �∗
a3

, �∗) is the solution of (7) and 
(8) if and only if the point (�∗

a3
, �∗) is the solution of the determining system:

Proof  The result follows directly from Theorem  2 by observing that the perturbed FDS 
(21) coincides with (7) if and only if the point (�∗

a3
, �∗) satisfies the system of determining 

Eq. (35). 	� ◻

The next statement claims that the system of determining Eqs. (35), in fact, determines 
all possible solutions of the original FBVP (7), (8).

C
a
D

p

t x(t) = f (t, x(t)) +
p

(b − a)p
� , t ∈ [a, b], x(a) = �0

(31)
x(t, �a3, �, � ) = � +

1

Γ(p) ∫
t

a

(t − s)p−1f (s, x(s, �a3, �, � ))ds

+
� (t − a)p

Γ(p)(b − a)p
.

(32)
Ax(a, �a3, �, � ) + C1x(b, �a3, �, � ) = d(�),

x(a, �a3, �, � ) = �0.

(33)� = − ∫
b

a

(b − s)p−1f (s, x(s, �a3, �), � )ds + Γ(p)C−1

1
[d(�) − (A + C1)�0].

(34)

x(t, �a3, �, � ) = �0 +
1

Γ(p) ∫
t

a

(t − s)p−1f (s, x(s, �a3, �, � ))ds

−

(
t − a

b − a

)p 1

Γ(p) ∫
b

a

(b − s)p−1f (s, x(s, �a3, �), � )ds

+

(
t − a

b − a

)p

C−1

1
[d(�) − (A + C1)�0].

(35)Δ(�a3, �) = 0.
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Theorem  4  Assume that conditions of Theorem  1 are satisfied. If there exist the values 
�a3 ∈ Ξ and� ∈ Λ that satisfy the system of determining Eq. (35), then the FBVP (7), (8) 
has a solution x0(⋅) such that

and

Moreover, this solution is given by the limit function of the sequence (15):

Conversely, if the FBVP (7), (8) has a solution x0(⋅), then x0(⋅) necessarily has form (37) 
and the system of determining Eq. (35) is satisfied with

Proof  If there exist the values �0

3
, �0

1
, �0

2
 that satisfy the system of determining Eq. (35), 

then according to Theorem 1 the function (37) is a solution of the given FBVP (7), (8).
On the other hand , if x0(⋅) is the solution of the original problem (7), (8), then this func-

tion is a solution of the Cauchy problem (28), (22) with

As x0(⋅) satisfies the linear two-point boundary restrictions (8), by virtue of equality (30) of 
Theorem 2 the equality ( 37) holds.

Moreover,

where �a3 , � are defined by (38 ).
From (40) we have that the determining system (35) is satisfied, if �a3 , � are given by 

(38).
We have thus specified in (38) the values of �a3 , � that satisfy the system of determining 

Eq. (35), which proves the theorem. 	�  ◻

Remark 3  For the practical application of the aforementioned method it is reasonable to 
use an approximate determining equation

instead of the exact one (35) where Δm ∶ Ξ × Λ → ℝ
3 is the m-th determining function 

defined by formulae

x0

3
(a) = �0

3
, x0

1
(b) = �0

1
, x0

2
(b) = �0

2

(36)Ax0(a) + Cx0(b) = d,

(37)x0(t) = x∞

(
t, �0

3
, �0

)
= lim

m→∞
xm(t, �0

3
, �0), t ∈ [a, b].

(38)�0

3
= x0

3
(a), �0

1
= x0

1
(b), �0

2
= x0

2
(b).

(39)� = 0 and � = x0(a).

(40)
� ∶= − ∫

b

a

(b − s)p−1f (s, x∞(s, �a3, �))ds

+Γ(p)C−1

1
[d(�) − (A + C1)�0] = 0,

(41)Δm(�a3, �) = 0,

Δm(�a3, �) ∶= − ∫
b

a

(b − s)p−1f (s, xm(s, �a3, �a3, �))ds + Γ(p)C−1

1
[d − (A + C1)�]
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and xm

(
⋅, �a3, �

)
 is given by (15).

Example

Let us study a fractional boundary value problem for a FDS

for t ∈ [0, 1] , subjected to the Cauchy–Nicoletti boundary constraints

where x(⋅) = col(x1(⋅), x2(⋅), x3(⋅)) and

Let the solution of the BVP (42), (43) be defined in the domain D ⊂ ℝ
3 , defined as

Note, that in the domain Gf = [0, 1] × D the vector-function

is bounded by a constant vector

and satisfies the Lipschitz condition with a matrix

Moreover, the spectral radius r(Q) of the matrix Q, defined by formula (16) satisfies an 
inequality

(42)

⎧⎪⎪⎨⎪⎪⎩

C
0
D

1

2

t x1(t) =
4

3

�
t

�
x2(t)(∶= f1(t, x1, x2, x3)),

C
0
D

1

2

t x2(t) = 2

�
t

�
x3(t)(∶= f2(t, x1, x2, x3)),

C
0
D

1

2

t x3(t) =
x1(t)−x3(t)2

3
√

�
−

t2

24
√

�
(∶= f3(t, x1, x2, x3)),

(43)Ax(0) + Cx(1) = d,

A =

⎛⎜⎜⎝

1 0 0

0 1 0

0 0 0

⎞⎟⎟⎠
, C =

⎛⎜⎜⎝

0 0 0

0 0 0

0 0 1

⎞⎟⎟⎠
, d =

⎛⎜⎜⎝

−
1

16

0
1

4

⎞⎟⎟⎠
.

D ∶

{
(x1, x2, x3) ∶ |x1| ≤ 1

2
, |x2| ≤ 1

2
, |x3| ≤ 1

3

}
.

f (t, x1, x2, x3) = col(f1(t, x1, x2, x3), f2(t, x1, x2, x3), f3(t, x1, x2, x3))

M = col

�
2

3
√

�
,

2

3
√

�
,

1

6
√

�

�

K =

⎛
⎜⎜⎜⎝

0
4

3
√

�
0

0 0
2√
�

1

3
√

�
0

2

9
√

�

⎞
⎟⎟⎟⎠
.
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In addition, there exists a non-negative vector

of the form (2) and for which condition (3) holds.
Let us now introduce a parametrization:

Using (44), we pass from the original boundary conditions (43) with homogeneous matrix 
C to the parametrized ones of the form:

where C1 ≡ I3 , d(�) =

⎛⎜⎜⎝

�1 −
1

16

�2
1

4

⎞⎟⎟⎠
 and � = (�1, �2) is such that 

(
�1, �2,

1

4

)
∈ D.

Since all conditions of Theorem 1 are fulfilled, we can construct an iterative scheme (15) 
that is a successive approximation to the exact solution of the original BVP (42), (43).

Hence, for the parametrized problem (42), (45) the approximate solution has the form

r(Q) < 0.67.

� = col

�
4

3
√

�
,

4

3
√

�
,

1

3
√

�

�
,

(44)x1(1) = �1, x2(1) = �2, x3(0) = �03.

(45)Ax(0) + C1x(1) = d(�),

(46)

x1,m(t, �03, �) ∶= −
1

16
+

1

Γ

�
1

2

� ∫
t

0

(t − s)
−

1

2 f1(s, xm−1(s, �a3, �))ds

−

√
t

Γ

�
1

2

� ∫
1

0

(1 − s)
−

1

2 f1(s, xm−1(s, �a3, �))ds +
√

t�1,

(47)

x2,m(t, �03, �) ∶=
1

Γ

�
1

2

� ∫
t

0

(t − s)
−

1

2 f2(s, xm−1(s, �a3, �))ds

−

√
t

Γ

�
1

2

� ∫
1

0

(1 − s)
−

1

2 f2(s, xm−1(s, �a3, �))ds +
√

t

�
�2 −

4�03

�

�
,

(48)

x3,m(t, �03, �) ∶=
1

Γ

�
1

2

� ∫
t

0

(t − s)
−

1

2 f3(s, xm−1(s, �a3, �))ds

−

√
t

Γ

�
1

2

� ∫
1

0

(1 − s)
−

1

2 f3(s, xm−1(s, �a3, �))ds

+
√

t
�

1

4
+

1

24�
−

�
4

9�
+ 1

�
�03

�
, m = 1, 2, 3, … ,
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where t ∈ [0, 1] , �03 ∈ Ξ , such that �0 = col(−
1

16
, 0, �03) ∈ D0 and � are considered as 

parameters, and

At the same time a zero approximation is given by expressions:

xm−1(⋅, �a3, �) = (x1,m−1(⋅, �a3, �), x2,m−1(⋅, �a3, �), x3,m−1(⋅, �a3, �)).

x1,0(t, �03, �) = −
1

16
+

√
t�1,

x2,0(t, �03, �) =
√

t

�
�2 −

4�03

�

�
,

x3,0(t, �03, �) = �03 +
√

t
�

1

4
+

1

24�
−

�
4

9�
+ 1

�
�03

�
.

Fig. 1   The first, second and third components of the error function in the first approximation
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Using the mathematical software Maple, we calculated three approximations to the exact 
solution of the fractional BVP (42), (43).

On the first iteration step we obtained:

Moreover, the graphs of the components of the error function, obtained after the substitu-
tion of (49) into the differential system (42), are given at Fig. 1.

The second approximation to the exact solution of the original BVP (42), (43) is given by:

(49)

X1,1(t) = 0.131956t
3

2 − 0.0625 − 0.015906
√

t,

X2,1(t) = −0.021059t
3

2 + 0.001864 − 2
√

t + 0.24906t,

X3,1(t) = −0.0000932t
3

2 − 0.0138398t
5

2 − 0.032191
√

t

+ 0.0211481t + 0.25277.

Fig. 2   The first, second and third components of the error function in the second approximation
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The graphs of the components of the error function in the second approximation are given 
at Fig. 2.

Calculations show, that the third approximation to the exact solution of the problem 
(42), (43) is:

X1,2(t) = 0.000176t
3

2 − 0.0096127t
5

2 + 0.000069
√

t − 0.0625 + 0.122429t2,

X2,2(t) = −0.02747t
3

2 − 0.0000656t
5

2 − 0.00785168t
7

2 − 0.001576
√

t

+ 0.0155104t2 + 0.249751t,

X3,2(t) = −0.00163856t
3

2 − 0.0138883t
5

2 − 0.000086088t
7

2

− 0.0000145431t
11

2 − 0.0274086
√

t + 0.000714048t3

+ 0.0162403t2 + 0.0001485t + 0.0000517757t4 + 0.253476.

Fig. 3   Components of the error function in the third approximation
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The components of the error function in the third iteration are presented at Fig. 3.
It is easy to see, that by increasing the number of iterations the approximate solutions 

get closer to the exact solution of the original BVP (42), (43).
This confirms the applicability of the suggested numerical–analytic technique in study 

of the nonlinear fractional boundary value problems and it can be used for more complex 
systems.
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