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Abstract. Airborne wind energy (AWE) systems harness energy at heights beyond the reach of tower-based
wind turbines. To estimate the annual energy production (AEP), measured or modelled wind speed statistics
close to the ground are commonly extrapolated to higher altitudes, introducing substantial uncertainties. This
study proposes a clustering procedure for obtaining wind statistics for an extended height range from modelled
datasets that include the variation in the wind speed and direction with height. K-means clustering is used to
identify a set of wind profile shapes that characterise the wind resource. The methodology is demonstrated using
the Dutch Offshore Wind Atlas for the locations of the met masts IJmuiden and Cabauw, 85 km off the Dutch
coast in the North Sea and in the centre of the Netherlands, respectively. The cluster-mean wind profile shapes
and the corresponding temporal cycles, wind properties, and atmospheric stability are in good agreement with
the literature. Finally, it is demonstrated how a set of wind profile shapes is used to estimate the AEP of a small-
scale pumping AWE system located at Cabauw, which requires the derivation of a separate power curve for each
wind profile shape. Studying the relationship between the estimated AEP and the number of site-specific clusters
used for the calculation shows that the difference in AEP relative to the converged value is less than 3 % for four
or more clusters.

1 Introduction

Airborne wind energy (AWE) systems employ tethered fly-
ing devices to harness energy above the operational height
range of tower-based wind turbines. Typically these devices
operate above 150 m (Malz et al., 2019; Salma et al., 2019),
where wind is generally stronger and more persistent than
in the surface layer. To estimate the annual energy produc-
tion (AEP), measured or modelled wind speed statistics close
to the ground are commonly extrapolated to higher altitudes
to obtain the wind speed statistics in the full operational
height range of the AWE system using either the wind pro-
file power law or the logarithmic profile (e.g. Heilmann and
Houle, 2013). This way of representing the wind resource in-
troduces substantial uncertainties since the aforementioned
wind profile relationships are not strictly valid beyond the

surface layer. Moreover, within this layer, not all wind pro-
files can be described well with these relationships.

The power law is a simple empirical relationship which
can be used to relate the wind speed v at one height z1 to that
at a different height z2 and has the form

v(z2)D v(z1)
�
z2

z1

��
; (1)

where � is an empirical shear exponent factor related to the
surface properties. The power law is normally applied up to
around 100–200 m (Peterson and Hennessey, 1978) and does
not offer enough flexibility to describe the variety of mea-
sured wind profiles (e.g. Park et al., 2014).

The logarithmic wind profile is frequently used to estimate
the variation in wind speed with height over a flat surface.
This profile is based on physical arguments, and a form of the
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profile has been well established based on Monin–Obukhov
similarity theory (Monin and Obukhov, 1954). In this non-
adiabatic form, the mean wind speed v at height z is given
by

v(z)D
v�

�

�
ln
�
z

z0

�
�9

� z
L

��
; (2)

in which v� is the friction velocity, � is the von Karman con-
stant, z0 is the roughness length, 9 is a stability correction
function, and L is the Obukhov length that is often used to
evaluate atmospheric stability and is positive (negative) for
stable (unstable) stratification and infinite for neutral stratifi-
cation. Holtslag et al. (2014) proposes the following stability
correction functions:

9 (L� 0)D 2ln
�

1C x
2

�
C ln

�
1C x2

2

�
� 2arctan(x)

C
�

2
;x D

�
1� 19:3

z

L

� 1
4
; (3)

9 (L� 0)D�6:0
z

L
: (4)

Although the logarithmic wind profile is less accurate under
stable stratification above the surface layer (e.g. Optis et al.,
2014), the relationship is often applied to any condition in
wind resource estimation.

The value of L is not easily measured or derived from
model data and is generally inferred indirectly. One way to
do this is to fit a functional form of the logarithmic wind pro-
file with stability correction to the wind velocity magnitude
profile. Such an approach is outlined by Basu (2018) using
three levels of wind speed. Another common way of estimat-
ing L is by inferring it from the gradient Richardson number,
RiG. We approximate this number using a finite difference,
yielding the bulk Richardson number, RiB, which expresses
the ratio between the temperature stratification and the wind
shear:

RiB D
g

��

1��1z

1v2 ; (5)

in which g is the gravitational acceleration, �� is the mean
virtual potential temperature, and 1�� and 1v are the vir-
tual potential temperature difference and the horizontal wind
speed difference, respectively, determined over the height
difference 1z. Positive (negative) RiB values indicate sta-
ble (unstable) stratification, and values close to zero indi-
cate neutral stratification. By assuming a functional form of
the stability correction, L can be derived from RiB (Holtslag
et al., 2014):

z

L
D

(
RiB

1�5RiB ; if RiB � 0

RiB; otherwise
; (6)

in which z is a reference height which is commonly taken as
either the arithmetic or geometric mean of the heights used
to determine the temperature and wind speed differences.

The wind direction can vary substantially with height in
the lower atmosphere (e.g. Brown et al., 2005; Floors et al.,
2015). A limitation of both the power law and logarithmic
profile is that they provide no information about any wind di-
rection dependence with height. In addition, the relationships
assume that wind speed increases monotonically with height.
In practice, low-level maxima in wind speed, with decreas-
ing wind speed above (low-level jets), are likely to occur,
which is also observed in reanalysis data (e.g. Ranjha et al.,
2013; Kalverla et al., 2019). To extend the validity of wind
profile relationships to higher altitudes, several modifications
have been proposed (e.g. Gryning et al., 2007; Holtslag et al.,
2017). However, these theoretical formulations are only val-
idated up to heights relevant for conventional, tower-based
wind turbines.

Alternatively, computationally expensive brute-force en-
ergy production calculations do not assume any wind profile
relationship and are performed using historical wind data for
the full operational height range. Bechtle et al. (2019) use
ERA5 reanalysis data to map out the wind resource avail-
able to AWE systems over a large part of Europe but do
not touch upon the respective power production of an AWE
system. Ranneberg et al. (2018) combine COSMO-DE re-
analysis data with power curves for multiple heights that are
independent of the wind profile shape to estimate the AEP.
This is a valid approach if the system is operating at a nearly
constant height. However, the wind profile shape has to be
considered if the system operates in a larger height range, as
is the case for a flexible-kite AWE system (Van der Vlugt
et al., 2019). AEP calculations become more computation-
ally expensive if the wind profile shape is considered, es-
pecially when identifying the optimal cycle settings for all
time points. Malz et al. (2020a) use 3 months of 3-hourly
MERRA-2 reanalysis data and speed up the computation by
a factor 20 by using the solution of the previous optimisa-
tion to initialise the next. In a follow-up study, Malz et al.
(2020b) use this approach to determine the AEP of an AWE
system for 16 locations in Europe. The current state of the
art is lacking a methodology that can be confidently used to
make efficient AEP calculations for a pumping AWE system
that sweeps a non-negligible height range.

Previously, clustering techniques have been used for iden-
tifying wind profile patterns. Sommerfeld et al. (2019) ap-
ply k-means clustering to subdivide stable and unstable wind
profile datasets from lidar observations into two clusters for
a location in a mostly flat area in northern Germany. Du-
ran et al. (2019) use self-organising maps to characterise
wind profile data for two locations (Cabauw in the centre of
the Netherlands and the FINO-1 platform in the North Sea,
45 km north of the German and Dutch coasts) from Weather
Research and Forecasting modelled data using 2300 clusters.
The clusters are used for forecast verification and to investi-
gate diurnal and seasonal cycles.

This study proposes a clustering procedure for obtaining
representative wind profile shapes from measured or mod-
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elled data that include the vertical variation in the wind speed
and direction. The data are partitioned into a small num-
ber of clusters, and the corresponding cluster-mean wind
profile shapes are determined. We have chosen an empiri-
cal approach for identifying these shapes such that they are
not restricted by physical assumptions. Nevertheless, we try
to physically interpret the observed features. In contrast to
earlier studies that use clustering, we investigate normalised
wind profiles as these are often described by wind profile
relationships and yield a more compact wind resource repre-
sentation. Moreover, the variation in the wind direction with
height is included as it affects the operation of an AWE sys-
tem.

The following sections of this paper outline the process
of making an efficient AEP estimation for an AWE sys-
tem based on historical wind data. Section 2 introduces the
Dutch Offshore Wind Atlas (DOWA) and ERA5 datasets.
Section 3 discusses the data processing and clustering tech-
niques, complemented by interim results. Section 4 first ad-
dresses the clustering of DOWA data and presents the results
for an on- and offshore location. Subsequently, the DOWA
data of 45 other locations are clustered altogether to gener-
ate a generalised set of wind profile shapes that is applicable
for an area which includes a wide range of location types.
Although the resulting wind resource representation can be
used for other applications, we illustrate its use for estimating
the AEP of pumping AWE systems. Section 5 demonstrates
the AEP estimation for a flexible-kite AWE system and as-
sesses how many wind profile shape clusters are required for
an accurate estimation. Finally, Sect. 6 summarises the con-
clusions of this study.

2 Wind datasets

In principle, any dataset containing time series of wind
speeds and directions for multiple altitudes can be used as
input for the proposed methodology. For the AEP calcula-
tion, we focus on the sensitivity of the AWE system power
production to the wind profile, which is assumed to be non-
varying in the calculation. An hourly temporal resolution of
the datasets suffices for capturing the diurnal cycle of the
wind profile. While smaller-scale atmospheric phenomena
might have an adverse effect on the power production, these
effects can be superimposed on a mean time-invariant wind
profile using separate models for assessing, e.g. the associ-
ated loss in power production (Fechner, 2016). This power
loss is device-specific and depends on the control strategy
and is therefore not considered here. The first commercial
AWE initiatives envisage a maximum operational height of
500 m because operation at higher altitudes requires more
complex system designs (Watson et al., 2019, p. 4) and leg-
islative procedures (Salma et al., 2018). For the wind re-
source representation for AWE, it is thus desirable to have
wind data at least up to this height. The vertical resolution

should be adequate to assess the shape of the wind profile
with sufficient detail for the performance calculations. Both
long-term lidar observations and modelled data qualify as in-
put. This study focuses on using modelled data, which pro-
vide good spatial and temporal coverage.

An on- and offshore location in the Netherlands and the
North Sea, respectively, are selected for demonstrating the
methodology. The offshore location, that of the met mast IJ-
muiden, is located 85 km off the Dutch coast, in the North
Sea. The onshore location, namely the met mast Cabauw, is
located in the centre of the Netherlands. The area directly sur-
rounding the mast is flat, open grassland for at least 400 m in
all directions and up to 2 km in the dominant wind direction,
i.e. west-south-west. Furthermore, within a radius of 20 km,
the terrain is predominantly grassland and virtually flat. The
met mast sites, shown in Fig. 1, are selected because they are
well known in the literature. We do not use the anemome-
ter or lidar measurements of the met masts in this study.
The other 45 depicted locations are used to evaluate the full
DOWA domain and are selected such that onshore, coastal,
and offshore locations are equally represented. The datasets
for the met masts Cabauw and IJmuiden and the 45 loca-
tions are referred to as the onshore, offshore, and multiloca-
tion datasets, respectively.

2.1 ERA5

ERA5 (Copernicus Climate Change Service , C3S) is a
global reanalysis produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF) using their at-
mospheric model and data assimilation system. At the time
of writing, ERA5 data are available from 1979 to the present
time. The data include hourly modelled values of a large
number of atmospheric variables on a 30 km horizontal grid
with 137 vertical pressure levels up to a height of roughly
80 km. The level heights are time-dependent, and interpola-
tion is needed to obtain the wind data for fixed heights as
required by the presented methodology. The clustering of the
wind profile shapes is performed on the DOWA data, which
are described in the following section. ERA5 is only used to
determine the atmospheric stability at the time and location
of the analysed wind profiles.

2.2 Dutch Offshore Wind Atlas

DOWA (Wijnant et al., 2019) is produced by the Royal
Netherlands Meteorological Institute (KNMI) by downscal-
ing ERA5 data to a finer-resolution surface grid using their
mesoscale weather model HARMONIE-AROME (Bengts-
son et al., 2017). The downscaled reanalysis is performed for
10 years, from 2008 until 2017. Hourly values for tempera-
ture, wind speed and direction, pressure, and relative humid-
ity are made available on a 217� 234 grid with 2.5 km spac-
ing and 17 heights between 10 and 600 m. The DOWA do-
main is illustrated in Fig. 1. Due to the higher resolution and
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Figure 1. The DOWA domain, framed by the blue line, covers the Netherlands, a substantial part of the North Sea, and adjoining coastal
areas. The �, �, and � markers depict the locations analysed in Sect. 4.1, 4.3, and 4.4, respectively. The sea is depicted in light blue and the
colour scale shows the elevation of the land surface (Amante and Eakins, 2009).

non-hydrostatic nature of HARMONIE-AROME, DOWA
benefits from an improved representation of the coastline,
land surface heterogeneity, and mesoscale circulations, such
as the sea breeze. Furthermore, additional observations from
the KNMI’s network of automated weather stations, satel-
lite retrievals (ASCAT), and aircraft sensors (MODE-S EHS)
have been assimilated by the HARMONIE-AROME model.
Kalverla (2019) shows that DOWA improves on ERA5 in
terms of wind speed, wind shear, and directional accuracy as
well as the representation of anomalous events such as low-
level jets.

3 Clustering procedure

This section illustrates the clustering procedure for the off-
shore location. The data are filtered and normalised, and their
dimensions are reduced using a principal component (PC)
analysis. Next, the clustering performance is analysed, and
the number of clusters is chosen for the wind resource repre-
sentations analysed in Sec. 4.

3.1 Preprocessing of the wind data

The operation of an AWE system is affected by the varia-
tion in wind speed and direction with height. Therefore, wind
profile shapes are studied with both these features included.
Each wind profile sample consists of easterly and northerly
wind speed components for multiple heights (vertical grid

points) at a given time and location and is processed in two
steps to obtain its shape. Firstly, similar to Kalverla et al.
(2017) and Malz et al. (2020a), the wind speed components
are expressed as parallel and perpendicular components rel-
ative to the wind velocity at a reference height, which we
have chosen to be 100 m. As a result, the value for the per-
pendicular wind speed at 100 m is zero, and the reformatted
wind profile is independent of the wind direction at 100 m.
Secondly, the wind speed components are normalised using
the 90th percentile of the sample’s wind velocity magnitudes.
Using the percentile makes the normalisation less sensitive to
outliers than using the maximum value. The normalised par-
allel and perpendicular wind speeds together form the wind
profile shape of a sample. The normalisation yields a more
compact wind resource representation; however, it is prone
to producing irregular wind profile shapes for low winds.
Therefore, the wind profiles that have a mean wind speed
below 5 ms�1 are filtered out before clustering. Note that the
low-wind conditions have a small contribution to the AEP
of a wind energy system, and their wind profile shapes are
thus of little importance for the AEP calculation. Although
the results presented in Sects. 3 and 4 do not account for the
low-wind samples, the AEP calculation in Sect. 5 does.

Wind Energ. Sci., 5, 1097–1120, 2020 https://doi.org/10.5194/wes-5-1097-2020
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3.2 Principal component analysis of the wind profile
shape dataset

The mean wind profile shape for the offshore location is il-
lustrated in Fig. 2a by plotting the normalised wind speed
Qv against height using profiles for the parallel and perpen-
dicular velocity components. As expected for an offshore lo-
cation, the mean shape exhibits low wind shear. The hodo-
graph in Fig. 2e shows how the normalised wind velocity
changes with height by plotting the parallel and perpendic-
ular normalised wind speed ( Qvk and Qv?) for every height.
In accordance with Ekman theory, the mean shape shows
wind veer (wind direction turns clockwise with height). A
logarithmic profile with roughness length z0 D 0:0002 m, a
representative value for open water (Wijnant et al., 2015),
is fitted to the lower 200 m of the mean shape. We use
200 m as a proxy for the top of the surface layer, though in
very stable situations the surface layer could be considerably
smaller. Consequently, we consider applying the logarithmic
profile relationship up to 200 m to be valid. Following the
approach recommended by Kelly and Gryning (2010), the
profile is fitted by varying the friction velocity v� and the sta-
bility function9, which we constrain to the functional forms
given in Eqs. (3) and (4). From this, a mean value of the
Obukhov length L can be inferred. The best-fit profile corre-
sponds to a value LD�3391 m, implying a neutral logarith-
mic profile in the surface layer (assuming neutral conditions
if jLj> 500). Above 200 m, the fit slightly deviates from the
mean profile.

Prior to clustering, a PC analysis is used to reduce the di-
mensionality of the dataset while preserving most of the vari-
ance. This reduces the computational effort and thus speeds
up the clustering. The PC analysis specifies a transformation
from the original to the PC coordinate system, with its ori-
gin coinciding with the mean of the dataset. The first axis is
oriented such that it accounts for most of the variance in the
data. Subsequent axes are perpendicular to their predecessors
and oriented such that they account for as much of the vari-
ance as possible. As a result, the last axis accounts for the
least variance. The PCs are unit vectors in the direction of
the positive PC axes.

The compositions of the first two 34-dimensional PCs of
the offshore dataset are illustrated in the second column of
Fig. 2. The coefficients of each PC describe the relation be-
tween the PC and the parallel and perpendicular normalised
wind speed components at the 17 heights. The absolute val-
ues of the PC coefficients quantify the contribution of the re-
spective normalised wind speed components to the PC. The
contributions of the perpendicular components account for
most of PC1, indicating that PC1 mostly characterises wind
veer. In contrast, the contributions of the parallel components
account for most of PC2, indicating that PC2 mostly charac-
terises wind shear. Both PCs show large contributions at both
ends of the height range, which indicates that most variance
in the dataset is found at these heights. In the PC space, the

data are expressed by multiplicands of the PCs superimposed
on the mean wind profile shape. The third and fourth columns
of Fig. 2 show the wind profile shapes that correspond to the
points on the PC1 and PC2 axes at �1 and C1 standard de-
viation and illustrate how the shape varies along both PCs.
A total of 68 % of the PC1 (PC2) values lie between the val-
ues used for generating wind profile shape 1 and 2 (3 and
4). Indeed, the wind veer differs substantially between wind
profile shape 1 and 2 and the wind shear between 3 and 4.

The percentage of variance retained after dimensionality
reduction depends on how many PCs are used to express
the data. The relation between the percentage of variance re-
tained and the number of PCs follows from the PC analysis
and is shown in Fig. 3. The first four PCs already account for
more than 90 % of the variance in the offshore dataset. Since
the wind velocities of neighbouring vertical grid points are
highly correlated, most of the variance in the data is retained
using a limited number of PCs. We consider retaining 90 %
or more acceptable for our application. Since the variance
retained still increases a few percentage points between four
and five PCs, we opt for using five PCs. The preprocessed
data are mapped onto the PC1–5 space and used as input for
the clustering.

Figure 4a shows the frequency distribution of the wind
profile shapes in the PC1, PC2 space. The PC1, PC2 pro-
jections of the wind profile shapes in the third and fourth
columns of Fig. 2 are indicated with the markers. By vi-
sual inspection, two relatively dense groups of data points are
identified: a confined group and a less confined group, which
resembles a tail extending from the first group, marked with
the left and right ellipses, respectively. Figure 4b shows re-
sults for the onshore location and is discussed in Sect. 4.3.

3.3 Choosing the number of clusters

K-means clustering (Pedregosa et al., 2011) is applied to
identify the set of wind profile shapes that are used for
representing the wind resource. Each cluster is represented
by its centroid, and each sample is assigned to the clus-
ter with the nearest centroid. The clustering algorithm iter-
atively searches for the positions of the centroids that min-
imise the sum of the squared Euclidean distances between the
centroids and their associated samples. This cost function is
also referred to as the within-cluster sum of squares (WCSS).
The resulting centroids reflect the cluster-mean wind profile
shapes in the dataset, which follow from back-transforming
the cluster centroids from the PC to physical space.
K-means clustering is always able to produce a result,

which makes it very powerful but also potentially deceptive.
The algorithm tends to produce spherical clusters with equal
radius and sample size and works best on data with such a
structure. The previous visual analysis of Fig. 4 revealed a
different structure type for the wind profile shape datasets
with two unevenly sized groups of data points. The number
of clusters k generated by the algorithm needs to be specified
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Figure 2. Mean wind profile shape and corresponding non-adiabatic logarithmic profile fit (a) and corresponding hodograph (e) for the
filtered offshore dataset. Composition of the first and second PCs (b, f). The average of the PC1 (PC2) profiles from the two reference
locations is plotted alongside the offshore PC1 (PC2) profile using the dashed line. PC multiplicands superimposed on the mean wind profile
shape using �1 (c, g) and C1 (d, h) standard deviation as multipliers. The wind profile shape numbers 1–4 refer to the markers in Fig. 4a.

Figure 3. Relationship between the percentage of variance retained
and the number of PCs for the filtered offshore, onshore, and multi-
location datasets analysed in Sect. 4.1, 4.3, and 4.4, respectively.

by the user, and it is often not evident how many clusters to
choose. The elbow and silhouette method are used for find-
ing an appropriate number for k. Moreover, the choice for k
is evaluated in the context of applying the cluster-mean wind
profile shapes to represent the wind resource.

The elbow method investigates the trend of WCSS
against k. Increasing the number of clusters is equivalent to
reducing the WCSS. Kinks in the trend indicate appropriate

choices for k. The elbow plot in Fig. 5a shows no distinct
kinks for more than three clusters.

The silhouette score expresses the similarity of a sample
to the other samples in its cluster relative to its similarity to
the nearest neighbouring cluster’s samples. The dimension-
less score ranges from�1 to 1: a negative value suggests that
the sample is assigned to the wrong cluster, a value around
zero indicates that the sample lies between two clusters, and
a high value indicates that the sample is assigned to a dis-
tinct cluster. Figure 5b shows the mean silhouette score is
highest for two clusters. The division of the dataset into two
clusters thus yields the most cohesive clusters, which is in
agreement with the visual inspection of Fig. 4a. The decreas-
ing trend of silhouette score with k implies that, in general, a
small number of clusters should be used to maintain cluster
cohesiveness.

After obtaining the cluster-mean wind profile shapes, they
are used for constructing the cluster representation of the
wind resource. Each sample’s absolute vertical wind speed
profile is approximated by scaling the associated cluster-
mean wind profile shape using the normalisation wind speed
used in the preprocessing. We assess the accuracy of this
cluster representation using the mean fit error over all filtered
samples. The fit error of the j th sample is calculated by the

Wind Energ. Sci., 5, 1097–1120, 2020 https://doi.org/10.5194/wes-5-1097-2020
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Figure 4. Sample frequency distributions in the PC1, PC2 space for the offshore (a) and onshore (b) locations. The origins coincide with
the mean wind profile shapes and the markers with the wind profile shapes numbered 1–4 in Figs. 2 and 11. The orange ellipses indicate the
visually identified clusters. The plots share the same coordinate system with the x axis (y axis), aligned with the average of the PC1 (PC2)
unit vectors from the two reference locations. The averaged PCs are denoted by an asterisk and their profiles shown in Figs. 2 and 11 (b, f).

Figure 5. Sensitivity of the k-means clustering performance to the number of clusters over the full vertical grid (a–c) and for each height (d)
for the filtered offshore dataset. Cost function of the clustering algorithm (a), cluster cohesiveness metric (b), and the mean wind speed fit
error (c) against the number of clusters. The dashed vertical lines depict the final choice for eight clusters.

root mean square of the errors at each vertical grid point. Two
different expressions are used to evaluate the error at the ith
vertical grid point: the wind velocity magnitude error "i;j and
that which includes both the parallel and perpendicular wind
speed errors, "k;i;j and "?;i;j . The resulting magnitude and
two-component forms of the mean fit error, Emag and E2c,
are given by

Emag D
1
ns

nsX
jD1

0@vuut 1
nh

nhX
iD1

"2
i;j

1A (7)

and

E2c D
1
ns

nsX
jD1

0@vuut 1
2nh

nhX
iD1

�
"k;i;j

2
C "?;i;j

2
�1A ; (8)

in which nh is the number of heights, and ns is the number of
samples. The relation between both mean fit errors and the
number of clusters is shown in Fig. 5c.

We consider the use of the cluster representation valid
when it yields a higher accuracy than a representation that
uses logarithmic profiles to approximate the vertical varia-
tion in the horizontal wind speed. The logarithmic wind re-
source representation is obtained by fitting logarithmic pro-
files with roughness length z0 D 0:0002 m to each sample.
Here, the Obukhov length L passed to the 9 stability func-
tion is restricted to the representative values of the five stabil-
ity classes, listed in the third column of Table 1. Moreover,
the fit is performed to the full height range, i.e. 10–600 m,
as we aim to minimise the fit error of the wind resource rep-
resentation and, therefore, allow the logarithmic profile rela-
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Table 1. Stability classes in terms of the Obukhov length, adapted
from Holtslag et al. (2014).

Class name Class boundaries Representative
[m] L [m]

Very unstable (VU) �200� L < 0 �100
Unstable (U) �500� L <�200 �350
Neutral (N) jLj> 500 1010

Stable (S) 200< L� 500 350
Very stable (VS) 0< L� 200 100

tionship to be applied beyond the surface layer. As the loga-
rithmic representation does not include information about the
wind direction variation with height, its accuracy is only as-
sessed usingEmag. We evaluate the fit error of the cluster rep-
resentation in relation to the number of clusters and compare
it to the fit error of the logarithmic representation. Figure 5c
shows that whether the fit error of the cluster representation
is evaluated using Emag or E2c makes little difference. The
cluster representation is more accurate than the logarithmic
representation when using three clusters or more.

The wind resource representations do not yield the same
accuracy for each vertical grid point. To investigate the height
dependency, the mean wind velocity magnitude error over all
filtered samples is calculated for each vertical grid point. The
results are shown in Fig. 5d, in which the horizontal lines de-
pict the 17 heights of the vertical grid points of DOWA. The
fits have a relatively low error around 150 m height and a
higher error at the top and bottom of the vertical grid. Around
150 m height, the grid is relatively fine, which is equivalent
to allocating more weight to the 100–200 m interval for the
logarithmic profile fitting procedure. As a result, the fitting
favours minimising the errors in this interval over those at
both ends of the height range. Note that the sensitivity of the
cluster representation to the grid spacing is limited by the PC
analysis prior to the fitting. As stated before, the PC1 and
PC2 profiles show that most variance in the dataset is found
at both ends of the height range. Due to the relatively high
variance and fit model deficiencies, the fit error is also ex-
pected to be largest at these heights. Although the error of
the cluster representations at 100 m is higher than that of the
logarithmic representation, on average they perform substan-
tially better.

The choice for the number of clusters used to represent the
wind resource depends on the type of analysis. Eight clusters
are chosen for investigating their characteristics in Sect. 4.
This choice follows from a trade-off between the mean wind
profile fit error, the silhouette score, representation validity,
and our aim to present a concise analysis and meaningful
interpretation of the resulting clusters. To get more insight
into the structures of the eight offshore clusters (MMIJ-1–
8), the mean silhouette score is calculated for each cluster.
The higher the mean silhouette score, the more likely that

a cluster is to represent a natural structure in the data. Fig-
ure 6 shows that a large fraction of the samples have high
silhouette scores for MMIJ-1–4, indicating that MMIJ-1–4
are relatively cohesive clusters. The silhouette score distri-
butions of MMIJ-5–8 indicate less uniform sets of samples,
especially that of MMIJ-8. Note that MMIJ-1 is larger than
the second-biggest cluster by roughly a factor of 2.5 despite
the tendency of k-means clustering to produce equally sized
clusters.

4 Cluster wind resource representation

This section discusses our physical interpretation of the clus-
ter representations. Firstly, the clusters and their cluster-mean
wind profile shapes that result from the offshore dataset are
presented. For each cluster, patterns in the times of occur-
rences are studied together with their association with wind
properties at 100 m and atmospheric stability. The analysis is
then repeated for the onshore location. The cluster sets for
both reference locations are compared to shed some light on
the similarities and differences between them. Finally, data
from 45 locations are combined to obtain a single set of clus-
ters that is applicable for the entire DOWA domain. For each
of the resulting clusters, a map is generated depicting the
cluster frequency distribution over the DOWA domain.

4.1 Cluster representation for the offshore location

The clustering of the dataset for the offshore location at the
met mast IJmuiden yields eight clusters (MMIJ-1–8), which
are represented by their centroids shown in Fig. 7a. The clus-
ters are well spread over the PC1, PC2 space, with the ex-
ception of MMIJ-5 and MMIJ-7, which are relatively close
to each other. Note that only two axes of the five-dimensional
PC space are shown. Table 2 lists all five PC coordinates of
the cluster centroids and confirms that the PC1 and PC2 co-
ordinates of MMIJ-5 and MMIJ- 7 are similar, in contrast to
their PC3 coordinates: the centroids are furthest apart along
PC3. The PC4 and PC5 values have a substantially smaller
range than that for PC1–3 and are superfluous for distin-
guishing between the eight clusters.

The cluster-mean wind profile shapes of the offshore clus-
ters are shown in Fig. 8. Logarithmic profiles with roughness
length z0 D 0:0002 m are fitted to the magnitude profiles and
shown for comparison. Here, the Obukhov length used in the
stability function is varied freely, and the fit is restricted to
the lower 200 m. The values for the Obukhov lengths inferred
from the fits are plotted as 500 m/L in Fig. 9 and categorised
using the stability classes in Table 1. The comparison serves
to show the extent to which the cluster shapes deviate from
non-adiabatic logarithmic profiles, particularly above the sur-
face layer.

To investigate the characteristics of each cluster, Fig. 10a–
c show how the clusters are distributed over the years,
months, and hours of the day. Figure 10a shows that the inter-
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Figure 6. The silhouette scores of the individual samples grouped by cluster and in ascending order for the filtered offshore dataset. The
numbered markers and colour-filled areas indicate the cluster to which a sample belongs. The overall mean score is indicated by the dashed
line, and the table below the figure states the mean score for each cluster.

Figure 7. Projection of the samples onto the PC1, PC2 space for the offshore (a) and onshore (b) locations. The colour indicates the cluster
to which a sample belongs, and the markers represent the cluster centroids. The plots share the same coordinate system as the x axis (y axis),
aligned with the average of the PC1 (PC2) unit vectors from the two reference locations. The averaged PCs are denoted by an asterisk and
their profiles shown in Figs. 2 and 11 (b, f).

Table 2. Principal component coordinates of the cluster centroids
for the filtered offshore dataset. The centroid positions in the PC1,
PC2 space are depicted in Fig. 7a with the numbered markers.

Cluster label PC1 PC2 PC3 PC4 PC5

MMIJ-1 �0:33 �0:05 �0:04 �0:02 0.01
MMIJ-2 0 0.17 �0:08 0.05 0.02
MMIJ-3 0.38 0.38 �0:01 0.05 0
MMIJ-4 0.35 �0:02 0.04 �0:09 �0:06
MMIJ-5 0 �0:22 �0:16 0.07 �0:04
MMIJ-6 0.74 �0:4 0.02 0 0.12
MMIJ-7 0.14 �0:33 0.44 0.09 0.03
MMIJ-8 �0:36 0.36 0.45 0.04 0.02

annual variability is limited, which asserts that the results can
safely be generalised to the lifetime of a wind energy system
(� 20 years). The absolute frequency on the y axis serves to
show the cluster sizes. Figure 10d–f show the relative fre-
quency of each cluster for different conditions in terms of
wind speed, wind direction, and atmospheric stability. As

for the logarithmic profile fits, the stability of each sample
is classified using Table 1.

For generating Fig. 10f, we derive the stability class distri-
butions using the bulk Richardson number RiB converted to
the Obukhov length L using Eqs. (5) and (6). The data from
either ERA5 or DOWA could be used to derive RiB; how-
ever, we found that using the data from the two lowest ERA5
model levels, i.e.� 10–31 m, yields the most realistic values.
We use the arithmetic mean of the model level heights for z
in order to convert RiB to L.

4.2 Interpretation of the offshore cluster representation

By examining Figs. 8 and 9, we can see how the cluster-mean
wind profile shapes differ from standard logarithmic profiles,
particularly above the surface layer. Moreover, by referring
to Fig. 10, it is possible to investigate the conditions under
which each of the clusters occur and to gain insight into their
physical origins.

Figure 8 shows that the MMIJ-1 and MMIJ-2 magni-
tude profiles are well described with logarithmic profiles.
The MMIJ-1 profile shape suggests a well-mixed convective
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Figure 8. The eight cluster-mean wind profile shapes of the offshore clusters (MMIJ-1–8). Each shape is depicted by the normalised wind
speed components with height (first and third rows) with the corresponding hodograph below (second and fourth rows). Non-adiabatic
logarithmic profile fits are plotted alongside the shapes. In each hodograph, the lower end of the profile is indicated by the dotted line
connecting the lowest-height point to the origin. All plots share the same x axis.

Figure 9. Obukhov lengths (plotted as 500 m/L) found by fitting
logarithmic profiles to the offshore cluster-mean wind profile shapes
in Fig. 8. The stability classes are adopted from Table 1.

profile with little wind shear and veer. MMIJ-1 occurs pre-
dominantly in autumn and is slightly more frequent in the
morning hours. The wind is more frequently weak or mod-
erate than strong and mostly comes from the westerly, north-
westerly, or northerly directions. Furthermore, this cluster
occurs predominantly during unstable conditions. These ob-
servations make sense as in autumn, the relatively warm sea-
water favours neutral to unstable stratification; the dominant
wind directions have long fetches over sea, which allow the
boundary layer to reach an equilibrium state due to the rela-
tively constant surface forcing.
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Figure 10. Frequency distributions broken down into bins by time of occurrence (a, b, c), wind speed and direction at 100 m (d, e), and
atmospheric stability (f) for the filtered offshore dataset. The wind speed bin limits are chosen such that the frequency over all clusters
for each bin is roughly the same. The stability bins correspond to the classes in Table 1 together with the VS+ bin (RiB � 0:2). The other
distributions have equal bin widths.

The MMIJ-2 and MMIJ-3 profile shapes show an increase
in wind shear relative to MMIJ-1. The MMIJ-2 profile shape
closely resembles a neutral logarithmic profile up to 600 m,
whereas that of MMIJ-3 only shows a good fit with a sta-
ble logarithmic profile in the surface layer. These clusters
typically occur during strong winds, predominantly from the
south-west. Strong south-westerly winds are characteristic of
the wind climate at this mid-latitude location, which is dom-
inated by the frequent passage of low-pressure systems. The
relatively strong winds explain why we see the highest oc-
currence of near-neutral conditions, especially for MMIJ-2.
For MMIJ-3, we also see frequent stable conditions. Simul-
taneously, we observe that MMIJ-2 occurs more often in the
late autumn and MMIJ-3 in winter and the start of spring.
The colder seawater in spring favours the formation of stable
stratification, which explains the difference in stability dis-

tribution between the two clusters. Stable stratification sup-
presses turbulent mixing, which helps to sustain a strong
wind shear, consistent with the increasing wind shear and
veer seen in Figs. 7a and 8.

The MMIJ-4–7 profile shapes are all jet-like. Because
wind speed increases monotonically with height in the log-
arithmic wind profile relationship, it cannot describe these
types of profile shapes. The wind direction and stability dis-
tributions associated with the MMIJ-4 cluster are correlated
with south-westerly winds and stable stratification. The sea-
sonal cycle is very pronounced and peaks in spring, when sta-
ble stratification is frequent. The winds recorded for MMIJ-4
are mostly moderate to strong. The distributions associated
with the MMIJ-5 cluster are very similar to those of MMIJ-1,
with the exception of the wind direction distribution, which
shows an opposite trend. The winds with a southerly com-
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ponent are dominant for MMIJ-5 and typically have shorter
fetches over sea than the north and westerly winds seen for
MMIJ-1. The hodograph of the MMIJ-5 profile shape indi-
cates a rather abrupt kink around 140 m, suggesting a dis-
continuity such as a boundary layer top. The MMIJ-6 pro-
file shape shows a maximum at 120 m. Although the magni-
tude profiles of MMIJ-5 and MMIJ-6 look somewhat similar,
the MMIJ-6 profile shape veers more. The MMIJ-7 profile
shape shows the most pronounced jet-like shape, also peak-
ing around 120 m. MMIJ-6 and MMIJ-7 occur almost exclu-
sively for very stable conditions in spring and for weak-wind
situations. Both clusters occur predominantly for winds with
an easterly component and show a diurnal cycle with fewer
occurrences around noon. Such a diurnal cycle is in agree-
ment with various studies that have linked low-level jets and
the diurnal variation in both the land–sea temperature dif-
ference and the intensity of turbulent mixing (e.g. Burk and
Thompson, 1996; Parish, 2000; Mahrt et al., 2014; Shapiro
et al., 2016).

The hodographs of MMIJ-5 and MMIJ-8 both show a
sharp bend around 140 m. However, the wind direction turns
anticlockwise with height above the bend for MMIJ-8, which
is opposite to the veering of the other profile shapes. Despite
the peculiarities of the wind direction profiles, the magnitude
profiles of MMIJ-5 and MMIJ-8 are described reasonably
well below 200 m, with very unstable and neutral logarithmic
profiles, respectively. MMIJ-8 occurs mostly in spring, under
stable conditions, and more often for winds with a westerly
rather than a southerly component. Note that this shape be-
longs to an incohesive cluster and therefore gives a relatively
poor representation of the cluster samples.

4.3 Comparing the on- and offshore cluster
representations

The dataset for the onshore location at the met mast Cabauw
is clustered using the same approach. The eight resulting
clusters are referred to as MMC-1–8. The results of the
PC analysis of the onshore dataset are shown in Fig. 11,
which we will compare to those of the offshore dataset,
shown in Fig. 2. A logarithmic profile with roughness length
z0 D 0:1 m, a representative value for the area surrounding
the mast (Verkaik, 2006), is fitted to the mean wind profile
shape as before. With a stability function value correspond-
ing to LD 476 m, the mean profile shape below 200 m is
in accordance with a stable logarithmic profile. Above that,
the fitted logarithmic profile rapidly diverges from the mean
shape. A higher wind shear is observed than for the offshore
location due to the higher surface roughness. The hodograph
in Fig. 11e shows that the wind veer is also substantially
increased. Despite the apparent differences in mean shape,
the PC1 and PC2 profiles are very similar for both reference
locations. The average of the PC1 (PC2) profiles from the
two reference locations is plotted alongside the onshore PC1
(PC2) profile using the dashed line. To enable a direct com-

parison between results, the same coordinate system is used
for Figs. 4a and b. The x axis (y axis) is aligned with the av-
erage of the PC1 (PC2) unit vectors from the two reference
locations.

The distribution in Fig. 4b shows a similar pattern to
Fig. 4a: a dense, confined group of samples, marked with the
left ellipse, with a tail of samples extending from this group
at around 45� towards the right ellipse. In general, the sam-
ples of the onshore dataset are more spread out than the off-
shore samples, particularly along the PC1 axis. The confined
group is also less dense for the onshore location. Figure 7
shows that, for both locations, the samples of these confined
groups belong to the on- and offshore clusters with number 1.
The remaining onshore clusters with monotonic wind speed
and veering profiles, MMC-2–4, account for most of the tail
(see Fig. 12). Note that the clustering algorithm produces ar-
bitrary labels for each cluster. We have manually renumbered
them such that the onshore cluster numbers align with the
offshore cluster numbers. This allows us to draw parallels
between them and show that the resulting profiles are very
similar between both locations, e.g. the first offshore clusters
(MMIJ-1–3) also have monotonic profiles.

Logarithmic profiles with roughness length z0 D 0:1 m are
fitted to the cluster-mean wind profile shapes and plotted
alongside them in Fig. 12. The values for the Obukhov
lengths inferred from the fits are shown in Fig. 13 and cat-
egorised by stability class. For the offshore location, Fig. 9
shows that six out of eight logarithmic profiles found by fit-
ting are neutral or stable and those for MMIJ-1 and MMIJ-5
are more unstable. Figure 13 shows that only one unstable
logarithmic profile is found for the onshore location, next to
six stable and one neutral logarithmic profile. Since there is
little diversity in the shape of the unstable profiles, all the as-
sociated samples are grouped together by the clustering. The
fact that this type of profile is well mixed with little shear
and a relatively high boundary layer height explains why the
diversity is small. By contrast, the neutral and stable profiles
can have a wide range of shear, and in addition, particularly
in stable conditions, the boundary layer height can be quite
low, which will have a strong influence on wind shear. This
means that a greater diversity of profile shapes is to be ex-
pected under neutral or stable conditions.

The profile shapes for MMC-1 to MMC-3 show an in-
crease in wind shear. Between MMC-3 and MMC-4, we see
an increased wind veer though reduced wind shear. The pro-
file shapes for MMC-5–7 are jet-like, as is the case for the
offshore clusters MMIJ-4–7. MMC-5 and MMC-6 have sim-
ilar wind velocity magnitude profiles with a relatively weak
wind speed maximum around 200 m, but MMC-6 shows
a much stronger wind veer. MMC-7 shows the strongest
fall-off above 200 m. Like its offshore counterpart, MMC-
8 is characterised by an anticlockwise-turning profile with a
sharp bend, which is most clearly visible in the hodograph.
Recall that the offshore wind profile shape for MMIJ-5 also
showed a sharp bend, albeit in combination with clockwise
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Figure 11. Mean wind profile shape and corresponding non-adiabatic logarithmic profile fit (a) and corresponding hodograph (e) for the
filtered onshore dataset. Composition of the first and second PCs (b, f). The average of the PC1 (PC2) profiles from the two reference
locations is plotted alongside the onshore PC1 (PC2) profile using the dashed line. PC multiplicands superimposed on the mean wind profile
shape using �1 (c, g) and C1 (d, h) standard deviation as multipliers. The wind profile shape numbers 1–4 refer to the markers in Fig. 4b.

turning. We do not see these features for any of the MMC
profile shapes.

Figure 14 shows that MMC-3 is the most frequent cluster
in the filtered onshore dataset, with a frequency of 20.6 %.
The first five onshore clusters have similar total frequencies,
whereas MMIJ-1 dominates for the offshore location. As for
the offshore clusters MMIJ-6–8, the onshore clusters MMC-
6–8 are less frequent.

Figure 14 shows clusters that typically occur during spring
and summer (MMC-1, MMC-7, and MMC-8) or autumn and
winter (MMC-2–6). The diurnal cycles of the onshore loca-
tion are highly pronounced in contrast to those for the off-
shore location. This effect is caused by the lower heat capac-
ity of the land surface, which promotes a more immediate
heat transfer to or from the atmosphere. Convection created
by solar irradiation leads to more turbulent mixing during the
day than at night. Indeed, MMC-1 and MMC-2 show mixed
profiles and predominantly occur during the day, whereas
MMC-3–8 show profiles with less mixing and predominantly
occur during the night. Note that low-level jets and stable
conditions in general occur almost exclusively at night. Fig-
ure 14c indicates a pronounced diurnal cycle in atmospheric
stability for the onshore location, whereas for the offshore
location the seasonal cycle, shown in Fig. 10b, is more pro-

nounced. Figures 10d and 14d display almost identical fre-
quency distributions over the bins; however, the actual wind
speed distributions differ due to the different bin limit values.
Note that the chosen limits give the same total frequency for
each bin; therefore the distributions of the individual clus-
ters are easily related to the uniform general distribution and
compared with one another. The wind direction distributions
also show similar patterns for both locations. In the case of
the stability distributions, the onshore location shows a ten-
dency to more stable conditions for all clusters.

In conclusion, we see that very similar cluster-mean wind
profile shapes have been identified for the on- and offshore
reference locations. Moreover, similar profiles seem to be re-
lated to similar conditions in terms of wind speed, wind di-
rection, and atmospheric stability. The strongest winds typi-
cally act to neutralise the stratification, leading to monotonic
profiles with relatively little veer. These profiles are rela-
tively well captured by logarithmic wind profiles. For weaker
winds, atmospheric stability acts to enhance wind shear and
veer up to the point where low-level jets are observed. How-
ever, whereas stability at the offshore location is governed by
a clear seasonal cycle in the underlying sea surface, stability
over land is regulated by the relatively rapid diurnal heating
cycle of the land surface. Over sea, the wind direction also
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Figure 12. The eight cluster-mean wind profile shapes of the onshore clusters (MMC-1–8). Each shape is depicted by the normalised
wind speed components with height (first and third rows) with the corresponding hodograph below (second and fourth rows). Non-adiabatic
logarithmic profile fits are plotted alongside the shapes. In each hodograph, the lower end of the profile is indicated by the dotted line
connecting the lowest-height point to the origin. All plots share the same x axis.

Figure 13. Obukhov lengths (plotted as 500 m/L) found by fitting
logarithmic profiles to the onshore cluster-mean wind profile shapes
in Fig. 12. The stability classes are adopted from Table 1.

seems to play a more pronounced role since it controls the
characteristics of the prevailing fetch.

4.4 Spatial frequency distribution of wind profile shape
clusters

So far, we have shown that similar clusters and, consequently,
similar wind profile shapes were identified for both onshore
and offshore locations. Here, we apply our clustering algo-
rithm to a dataset that includes wind data from a variety
of locations. The multilocation dataset (filtered to exclude
low-wind samples) includes wind data from 45 DOWA grid
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Figure 14. Frequency distributions broken down into bins by time of occurrence (a, b, c), wind speed and direction at 100 m (d, e), and
atmospheric stability (f) for the filtered onshore dataset. The wind speed bin limits are chosen such that the frequency over all clusters for each
bin is roughly the same. The stability bins correspond to the classes in Table 1 together with the VS+ bin (RiB � 0:2). The other distributions
have equal bin widths.

points that are selected such that onshore, coastal, and off-
shore locations are equally represented. For each location
type, 15 grid points are chosen pseudo-randomly to yield a
good coverage of the full DOWA domain (50 778 grid points
in total). The sampled grid points are marked on the map
in Fig. 1. Our aim is to give some insight into the spatial
variability of wind profile characteristics, in particular to see
how the clustering approach highlights profile characteristics
of the on- and offshore environments. In principle, the mul-
tilocation approach gives a set of profile shapes that could be
used for an AEP assessment, though a site-specific set would
be better suited if a more accurate assessment is required.
Whilst we increase the applicability of the cluster represen-
tation to a larger area by keeping the number of clusters the
same, we compromise on the accuracy. As mentioned before,
increasing the number of clusters reduces the error. The num-

ber of clusters can be increased until a suitable accuracy is
attained. Here, we still use eight clusters as it suffices to give
an impression of the spatial variability of the wind profile
shapes. The eight resulting multilocation clusters are referred
to as ML-1–8.

Figure 15 shows the cluster-mean wind profile shapes for
each of the multilocation clusters. Each sample of every grid
point in the DOWA domain is assigned to the cluster with the
closest centroid. For each cluster, a map is generated show-
ing the spatial distribution of its frequency of occurrence (see
Fig. 16). Note that the colour scale is different for each map
such that spatial patterns are easier to observe. Table 3 lists
the frequency of each cluster at the on- and offshore refer-
ence locations. It is interesting to compare the multilocation
clusters with the site-specific clusters identified earlier. With
a frequency of 48.5 %, ML-1 is dominant at the met mast
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Figure 15. The eight cluster-mean wind profile shapes of the multilocation clusters (ML-1–8). Each shape is depicted by the normalised wind
speed components with height (first and third rows) with the corresponding hodograph below (second and fourth rows). In each hodograph,
the lower end of the profile is indicated by the dotted line connecting the lowest-height point to the origin. All plots share the same x axis.

IJmuiden. Therefore, we expect it to be similar to MMIJ-
1, the dominant cluster resulting from the offshore analy-
sis. Comparing Figs. 8 and 15 indeed shows that the cluster-
mean wind profile shapes of ML-1 and MMIJ-1 look alike.
Similarly, ML-7 has the highest frequency at the met mast
Cabauw, i.e. 21.7 %, and has a profile shape somewhere in
between those of MMC-3 and MMC-4, the most frequent
clusters resulting from the onshore analysis. Every multilo-
cation cluster is manually linked to the single-location clus-
ters based on resemblance of their cluster-mean wind profile
shapes (see Table 3).

The maps in Fig. 16 show a distinct division between clus-
ters that mostly occur over sea (ML-1–3) and over land (ML-

4–8). The latter group is subdivided into coastal and onshore
clusters (see Table 3). The sharply defined patterns in the
frequency maps of ML-5–8 coincide with orographic fea-
tures and thus suggest a strong relationship between the clus-
ters and orography. Other site characteristics such as recur-
ring weather systems and land cover also affect the clusters
and thus the frequency maps. Over land the frequency maps
of ML-5 and ML-6 suggest an inverse relationship: the fre-
quency of ML-5 peaks at high elevations, whereas that of
ML-6 is highest in the river valley in the lower-right corner
of the DOWA domain. A similar inverse relationship is ob-
served between ML-7 and ML-8. Also, the frequency maps
of ML-7 and ML-8 show contours coinciding with the eleva-
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Table 3. Classification of the multiple-location clusters and frequencies of occurrence of the clusters at the on- and offshore reference
locations (met masts Cabauw and IJmuiden).

Cluster label Class Similar single- Frequency at Frequency at
location cluster(s) offshore location onshore location

ML-1 offshore MMIJ-1 48.5 % 5.8 %
ML-2 offshore MMIJ-2, 3 22.0 % 4.2 %
ML-3 offshore MMIJ-4, 6 14.1 % 4.2 %
ML-4 coastal MMC-1 8.6 % 16.1 %
ML-5 onshore/coastal MMC-2 3.0 % 17.4 %
ML-6 onshore MMC-6 2.0 % 13.3 %
ML-7 onshore MMC-3, 4 1.2 % 21.7 %
ML-8 onshore MMC-5 0.6 % 17.3 %

tion map, though the relationship between the frequency and
elevation is not as direct as for ML-5 and ML-6.

5 Efficient AWE production estimation using the
cluster representation

With AWE technology maturing and approaching the de-
ployment stage, the community is debating how to uniformly
define the performance of AWE systems (Van Hussen et al.,
2018). A generally applicable set of wind profile shapes is
considered to be an important step to facilitate the standard-
isation of wind conditions for which AWE systems are rated
in terms of power production. In this section, we demonstrate
how the wind resource representations obtained using the
clustering procedure can be used for estimating the AEP of a
pumping AWE system. An advantage of AWE systems over
tower-based wind turbines is that they have access to winds
at higher altitudes. This advantage is limited when low-shear
wind profiles are frequent at the installation site, as is the
case offshore but unusual for onshore locations. Deploying
an AWE system at an onshore location thus requires a more
variable operational approach. For this reason, we demon-
strate the AEP estimation for the met mast Cabauw loca-
tion using the eight clusters from the single-location anal-
ysis (Sect. 4.3). A separate power curve is generated for each
cluster using its cluster-mean wind profile shape. Each power
curve together with the corresponding cluster-specific wind
speed distribution yields the AEP contribution of the respec-
tive cluster. Finally, the sensitivity of the total AEP to the
number of clusters is evaluated.

5.1 Deriving power curves for a pumping AWE system

A pumping AWE system is alternating between reeling the
tether in and out and thereby consuming and producing
power, respectively. The relatively high lift force generated
by the kite during reel-out and large fraction of the cycle
spent on reeling out yields a positive net energy output. The
specific operational approach differs between AWE concepts
and may require different performance models for calculat-

ing the generated power. We evaluate a flexible-kite system
using the quasi-steady model (QSM) developed by Van der
Vlugt et al. (2019) specifically for this concept. The cluster
representation can in principle be used together with any per-
formance model for estimating the AEP.

Flexible-kite systems typically sweep a large height range
during the pumping cycle, which requires pronounced tran-
sitions between the reel-out and reel-in phases (Salma et al.,
2019). Figure 17 shows the distinct phases of a pumping
flexible-kite system. During the reel-out phase, the kite flies
figure-of-eight manoeuvres in a fast crosswind motion. After
the reel-out phase, the kite stops flying crosswind, depowers,
and flies towards zenith. Once reeled back in, the kite steers
down, flies towards the starting position of the reel-out phase,
and starts a next cycle. The QSM idealises and represents
the pumping cycle using three phases: the reel-in, transition,
and reel-out phase. The transition between the reel-out and
reel-in phases is not modelled separately but is included in
the reel-in phase. The model does not resolve the crosswind
flight manoeuvres during the reel-out phase but represents
them by an average crosswind flight state with constant val-
ues for the elevation, azimuth, and course angle. The motion
of the kite is approximated by moving it along the idealised
flight path according to the computed steady-state kite speed.

The QSM assumes a steady wind field with a constant
wind direction and only a vertical variation in the wind speed.
Therefore, we consider only the magnitude profiles of the
cluster-mean wind profile shapes in the calculations. The uni-
directional wind profile approximation is equivalent to hypo-
thetically knowing the wind direction profile and steering the
kite to correct for direction changes. We use the system prop-
erties of the 20 kW technology demonstrator of Delft Univer-
sity of Technology given in Table 4. The QSM uses constant
values for the lift and drag coefficients of the powered and
depowered kite. In reality, the coefficients vary, and represen-
tative values of the leading-edge inflatable kite are selected
based on the experiment of Oehler and Schmehl (2019).

The proposed AEP estimation requires the characterisa-
tion of the maximal mean cycle power for a large variety of
wind conditions. The mean cycle power depends on the op-
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Figure 16. Frequency of occurrence of each multiple-location cluster (ML-1–8) mapped over the DOWA domain. The � and � markers
depict the reference locations of the met masts IJmuiden and Cabauw. The � markers show the sampled grid points. The lower-right plot is a
repetition of Fig. 1.

erational settings that control the cycle trajectory and phase
durations. These cycle settings include the forces applied to
the tether during reel-in and reel-out. The values of the cycle
settings are chosen such that they yield maximal mean cycle
power. The reel-in tether force should allow a fast retraction
of the kite while limiting the energy consumption. During
the transition phase, the reeling speed is kept zero as long

as the tether force does not exceed its limit. During reel-out,
the tether force should yield a high power while increasing
the fraction of time spent producing energy in the cycle. For
high wind speeds, the system runs into its maximum tether
force and reeling speed limits. Increasing the elevation angle
of the reel-out path generally indirectly depowers the kite and
alleviates the tether force. Controlling the elevation angle can
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Table 4. Constant system properties that are required as model input for the QSM.CL andCD stand for lift and drag coefficients, respectively.
The kite and tether properties follow from the work of Oehler and Schmehl (2019). The other properties are chosen by judgement of the
authors for being representative for the analysed system.

Kite properties Tether properties Operational limits Representative reel-out state

Projected area 19.75 m2 Density 724 kgm�3 Min reeling speed 2 ms�1 Azimuth angle 13�

Mass 22.8 kg Diameter 4 mm Max reeling speed 10 ms�1 Course angle 100�

CL;powered 0.9 CD;tether 1.1 Min tether force 300 N
CD;powered 0.2 Max tether force 5000 N
CL;depowered 0.2
CD;depowered 0.1

Figure 17. Flight path of the flexible-kite, pumping AWE system
(kite and drum not to scale) adapted from Fechner (2016).

thereby expand the wind speed range that allows safe oper-
ations. Although not considered here, the kite could also be
depowered directly by controlling CL;powered. The effective
pumping length of the trajectory is the difference between
the minimum and maximum tether length during reel-out.
The minimum tether length is fixed at 200 m.

We use numerical optimisation to determine the cycle set-
tings that maximise the mean cycle power. Table 5 lists the
cycle setting parameters, which are used as optimisation vari-
ables, together with their respective limits. Imposing a lower
bound on the tether force ensures that the kite stays ten-
sioned, as required for a flexible kite. The upper bound corre-
sponds to the maximum allowed tether force. The remaining
limits are chosen by judgement of the authors. The optimi-
sation uses the sequential quadratic programming algorithm
(SLSQP) that is part of pyOpt (Perez et al., 2012). This class
of algorithms is generally seen as a good general-purpose
method for differentiable constrained non-linear problems.
The power curves required for the AEP estimation relate
the mean cycle power to the scaling parameter used for de-
normalising the cluster-mean wind profile shapes of MMC-
1–8. Given the profile shape, the wind speed at any height
can be used as a scaling parameter. We use the wind speed at

Table 5. Cycle setting parameters, which are varied for maximising
the mean cycle power and their corresponding limits defining the
search space. The limits are chosen by judgement of the authors for
being representative for the analysed system.

Parameter Lower bound Upper bound

Reel-out force 300 N 5000 N
Reel-in force 300 N 5000 N
Reel-out elevation angle 25� 60�

Pumping length tether 150 m 250 m

100 m as a scaling parameter. A power curve is derived for
each of the clusters by determining the maximal mean cycle
power for a range of wind speeds at 100 m between cut-in
and cut-out. In each step, the profile shape is de-normalised,
followed by an optimisation using the resulting wind profile
as input.

Prior to performing the optimisations, we determine the
cut-in and cut-out wind speeds at 100 m for each wind pro-
file shape. The cut-in limit is assumed to be the lowest
wind speed for which, along the entire reel-out path, feasible
steady flight states are found with the QSM. The cut-out limit
is determined by the criterion that the pumping cycle should
complete at least one figure-of-eight manoeuvre (at an ele-
vation angle of 60�). This criterion becomes more critical at
high wind speeds as the reel-out phase gets shorter. The QSM
as presented by Van der Vlugt et al. (2019) does not resolve
the crosswind flight motion. However, this motion can also
be approximated as a transition through steady flight states,
yielding an approximate duration of the figure-of-eight ma-
noeuvre. Dividing the total duration of the reel-out phase by
the average duration of a figure-of-eight manoeuvre yields
the number of crosswind manoeuvres flown.

Scaling each wind profile shape such that the wind speed
at 100 m equals the previously determined cut-in and cut-
out wind speeds yields the respective absolute wind profiles,
shown in Fig. 18. The cut-in profiles have the same wind
speed at roughly 80 m, which is the kite height at the start of
the reel-out phase for the minimum elevation angle employed
at low winds. This indicates that, for every wind profile, the

https://doi.org/10.5194/wes-5-1097-2020 Wind Energ. Sci., 5, 1097–1120, 2020



1116 M. Schelbergen et al.: Clustering wind profile shapes

cut-in criterion is critical at the start of the reel-out phase
rather than at the end. The cut-out profiles exhibit roughly
the same wind speed at 300 m, which is the kite height at the
end of the reel-out phase for the maximum elevation angle
and tether length employed at high winds. The cut-out wind
conditions for an AWE system are ambiguous when defined
by wind speeds at a certain height without defining the pro-
file shape. However, since the cut-out profiles all intersect
at roughly 300 m, characterising the cut-out wind speed at
this height yields a reasonably precise definition for all pro-
file shapes. Similarly, the cut-in wind speed is well defined
at 80 m. At 100 m, MMC-3 and MMC-7 show the lowest and
highest cut-out wind speed, respectively.

Figure 19 shows the idealised cycle trajectories that fol-
low from the optimisations for the cluster-mean wind pro-
file shape of MMC-1. The depicted trajectories highlight
changes in the operational approach at wind speeds at 100 m
between cut-in and cut-out, which are discussed next. The
optimal pumping tether length coincides with its upper
bound for all wind speeds. The reel-out elevation angle of the
flight trajectory below v100 m=10.5 ms�1 coincides with its
lower bound. For higher wind speeds, an increased inclina-
tion of the reel-out path yields a higher mean cycle power. At
roughly v100 m D 16 ms�1, the maximal mean cycle power
is reached with the kite completing only one crosswind pat-
tern. Above 16 ms�1 wind speed, the constraint that requires
completing at least one crosswind pattern is driving the ele-
vation angle to higher values until reaching its upper bound
for v100 m=19.7 ms�1, above which no feasible solution ex-
ists.

The calculated power curves are shown in Fig. 20. Note
that plotting the mean cycle power against the wind speed at
300 m would yield curves that end at roughly the same wind
speed. Up to roughly v100 m D 8:5 ms�1, all the power curves
are similar. Above this wind speed, the curves flatten off and
become different from one another. The MMC-3 and MMC-
7 curves show the lowest and highest maximal mean cycle
power, respectively. In conclusion, a pronounced low-level
jet is favoured over a high-shear wind profile shape in terms
of the power production of an AWE system.

5.2 Estimating the annual energy production

The previously derived power curves are used to calculate the
average generated power of the AWE system:

P D

ncX
iD1

1Z
0

pi(vnorm) �Pi(v100m) dvnorm

�

ncX
iD1

nbX
jD1

fi;j

ns
�Pi(vj;100 m); (9)

in which the wind speed probability pi is a function of the
normalisation wind speed vnorm used in the preprocessing,
the maximal mean cycle power Pi is a function of the wind

speed at 100 m height v100m, both functions apply to the ith
cluster, and nc is the number of clusters. The integral in the
expression is solved numerically using nb D 100 wind speed
bins between the cut-in and cut-out of equal width. A large
number of bins is used to mitigate numerical errors. In the
resulting right-hand-side expression, the number of samples
ns is used to normalise the frequency fi;j of the ith cluster
and j th bin, which is determined on the basis of the normal-
isation wind speeds. Consequently, the normalisation wind
speed is used to express the bin limits. The argument of Pi is
the equivalent wind speed at 100 m height at the centre of the
j th bin, which is derived using vj;100 m D vj;norm � Qvi;100 m, in
which Qvi;100 m is the normalised wind speed at 100 m height
of the ith cluster-mean wind profile shape. The resulting
wind speed distributions based on the normalised bin fre-
quencies are shown in Fig. 20b. Multiplying the average gen-
erated power by the hours in a year gives the AEP estimate.

The AEP at the onshore location is evaluated for the MMC
and ML cluster representations from Sect. 4.3 and 4.4, re-
spectively. Moreover, the number of clusters used for the rep-
resentations is varied to assess how many clusters are needed
for the AEP to converge to a steady value (see Fig. 21).
The trend for the MMC representation converges to around
36 MWh for a large number of clusters. In the following, we
refer to the difference relative to the AEP at 32 clusters cal-
culated using the MMC representation as the AEP error. For
four or more clusters, the AEP error is within 3 %, and for
14 or more clusters, there is virtually no more variation in
the AEP, and the steady solution is reached. The error can
be mostly attributed to the wind resource representation, but
the numerically obtained power curves and numerical inte-
gration also introduce errors. The AEP trend for the MMC
representation converges faster than that for the ML repre-
sentation since the former is generated specifically for the
evaluated location. The AEP error at 16 clusters for the MMC
representation is similar to the AEP error at 32 clusters for
the ML representation, which suggests that the ML represen-
tation needs twice the number of clusters to yield the same
accuracy as the MMC representation. Note that assumptions
in the performance model also affect the convergence, e.g.
neglecting the change in wind direction with height is ex-
pected to increase the convergence rate. How many clusters
to use depends on the application of the AEP calculation. In
a preliminary design optimisation, where the computational
cost is critical, four MMC clusters may be a sensible choice.
For more detailed design studies, 14 MMC clusters would be
more suitable.

Previously, at more than 50 wind speeds between cut-in
and cut-out, performance optimisations were performed to
obtain each of the highly detailed power curves in Fig. 20.
Half the number of optimisations yields a similar level of de-
tail with half the computational cost. Assuming that a four-
cluster representation provides sufficient accuracy, and 25
optimisations are used to generate a single power curve, 100
performance optimisations are needed for the AEP calcula-
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Figure 18. The cut-in (a) and cut-out (b) wind profiles that follow from scaling the onshore profile shapes in Fig. 12 (Sect. 4.3) using the
calculated cut-in and cut-out wind speeds at 100 m, respectively.

Figure 19. The optimal idealised cycle trajectories for six wind pro-
files with the same cluster-mean wind profile shape, i.e. that of clus-
ter MMC-1 but with different scaling. The wind speeds for which
the trajectories are depicted highlight changes in the operational ap-
proach. The angle of inclination of the straight dotted line is the
minimum elevation angle. The radius of the dotted quarter circle
shows the fixed minimum tether length.

tion. In comparison, an hourly brute force calculation needs
8760 optimisations per year. Already for a 1-year calcula-
tion, the number of optimisations required by the presented
methodology is 2 orders of magnitude lower. The calculation
for a longer period does not require more optimisations; how-
ever, it does increase the computational effort for the cluster-
ing.

6 Conclusions

We have presented a methodology for including multiple
wind profile shapes in a wind resource description. A data-
driven approach is used to identify a set of wind profile
shapes that characterise the wind resource. These shapes go

beyond the height range for which conventional wind profile
relationships are developed, such as the logarithmic profile.
Moreover, they include non-monotonic wind profile shapes
such as low-level jets. We demonstrated this methodology
for an on- and offshore reference location using DOWA data.
Subsequently, the resulting cluster wind resource representa-
tion for the onshore location has been used to estimate the
AEP of a pumping AWE system.

To obtain the wind profile shapes of the DOWA samples,
the wind profile of each sample is expressed relative to its
wind velocity at the 100 m reference height and normalised.
A PC analysis shows that three PCs already account for
about 90 % of the variance in the dataset. The first and sec-
ond PCs are very similar for the datasets of the onshore and
offshore locations. The first PC mostly characterises wind
veer, whereas the second PC mostly characterises wind shear.
Moreover, the analysis reveals a natural structure of the data
in the principal component space with two relatively dense
groups of data points. The data points for the onshore loca-
tion are more spread out, indicating a larger variety of wind
profile shapes.

The dataset is partitioned using k-means clustering. The
resulting cluster-mean wind profile shapes are used to ap-
proximate the vertical variation in the wind, yielding the
cluster wind resource representation. This representation re-
duces the wide variety of wind conditions in the DOWA
dataset to a reasonable number of wind profile shapes. The
accuracy of the representation using three or more clusters is
already higher than that of a representation using logarithmic
wind profiles. The eight cluster-mean wind profile shapes of
the offshore representation include three monotonic profiles;
four jet-like profiles; and an anticlockwise-turning, sharply
bent profile. Very similar cluster-mean wind profile shapes
have been identified for the onshore location occurring un-
der similar conditions. A single set of clusters is generated
that is representative for the entire DOWA domain and used
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Figure 20. Power curves obtained by performance optimisations using the scaled cluster-mean wind profile shapes of MMC-1–8 (a). Wind
speed distribution of the samples within each cluster using the full onshore dataset (b). Only the frequencies between cut-in and cut-out are
depicted, and every four wind speed bins are aggregated purely for illustrative purposes and shown as a single bin.

Figure 21. Comparison of the AEP convergence with increasing number of clusters at the onshore reference location for the MMC and ML
cluster wind resource representations.

to analyse the spatial variability of the frequency of occur-
rence of the clusters. The cluster frequency maps indicate a
clear distinction between onshore and offshore clusters. The
sharply defined patterns in the frequency maps of the onshore
clusters coincide with orographic features and thus suggest a
strong relationship between the wind profile shape and orog-
raphy.

The AEP of a flexible-kite, pumping AWE system is es-
timated using the onshore cluster representation. For each
cluster-mean wind profile shape, a power curve is derived
by using a quasi-steady model in power production optimi-
sations. The highest power is found for the shape with a
pronounced low-level jet. Together with the respective wind
speed distributions, the power curves yield the AEP contribu-
tions of the clusters. The relationship between the estimated
AEP and the number of site-specific clusters shows that the

difference in AEP relative to the converged value is less than
3 % for four or more clusters. For 14 or more clusters, there is
virtually no more variation in the AEP estimation. For a four-
cluster representation and using 25 optimisations for deriv-
ing the power curve of a single cluster, 100 optimisations are
required for the AEP estimation against 8760 for an hourly
brute-force calculation. The AEP estimation using clusters is
thereby roughly 2 orders of magnitude faster.

The presented methodology has the capability to produce a
single set of wind profile shapes that is valid for a large area.
Such a set can facilitate the standardisation of wind condi-
tions for which AWE systems are rated in terms of power
production. Moreover, the multilocation cluster representa-
tion enables an assessment of which installation site is best
for an AWE system in terms of its AEP, which makes this
methodology a very powerful tool for project developers. In
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future work, the role of the performance model in estimating
the AEP is further investigated.
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