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Critical Airport Infrastructure Disaster Resilience:
A Framework and Simulation Model for Rapid Adaptation

Tina Comes, Ph.D.1; Martijn Warnier, Ph.D.2; Wouter Feil3; and Bartel Van de Walle, Ph.D.4

Abstract: Resilient critical airport infrastructures affected by a disaster need to sustain minimal functionality and quickly resume full oper-
ation, while at the same time coping with the increased operational demands imposed by the unfolding disaster response. In this paper,
we develop a resilience framework and model-driven approach that focuses on the ability of the infrastructure to rapidly adapt to a new
steady state under these conditions. This requires both the extension of capacity as well as the adaptation of key processes. Through discrete
event simulations, we study the implications of different policies to improve airport resilience under different disaster impact scenarios for a
stylized case. Our results show that although decision-makers may be tempted to focus on short-term measures that can be implemented
immediately, resilience is improved most by a combination of rapid process changes and longer-term measures that structurally increase
airport capacity. DOI: 10.1061/(ASCE)ME.1943-5479.0000798. © 2020 American Society of Civil Engineers.

Introduction

Critical infrastructures are essential for our society’s prosperity
and quality of living. Yet, with the increasing frequency and se-
verity of climate change–induced extreme weather events, critical
infrastructures, especially in low- and middle-income countries, are
increasingly prone to failure leaving millions without essential
supplies such as food, water, or health care (Hallegatte et al. 2019).
Not surprisingly, resilience is increasingly viewed as a key design
principle and policy imperative with the objective to ensure that a
critical infrastructure affected by a major disruption can sustain
minimal functionality and resume full operation quickly and safely
(Bruneau et al. 2003).

In the aftermath of a disaster, critical hub infrastructures are vital
for the recovery of the affected region (Hallegatte et al. 2019;
Comes and de Walle 2014). For example, seaports may receive
more incoming shipments for reconstructing damaged areas, or
hospitals may have to cater for more injured patients. As such,
the critical hub infrastructure not only needs to resume its predis-
aster level of performance, but may at the same time have to deal
with, and provide for, a significantly increased operational load.

In this paper, we elaborate on the case of airports as a critical
hub infrastructure. A disaster has typically two immediate effects
on an airport. First, the disaster at least partially disrupts the airport

function and reduces its capacity. Second, in response to the disaster,
the airport finds itself in a new role as a disaster relief logistics hub.
This new role comes with an increase of incoming aircrafts bringing
supplies or aid workers. For an airport already struggling to regain its
normal capacity, this additional load often creates congestion with
significant bottlenecks at the airport hampering the ensuing response
(Holguín-Veras et al. 2012; Veatch and Goentzel 2018).

Therefore, we propose an approach for measuring critical infra-
structure resilience that includes the rapid adaptation of critical in-
frastructure systems to new performance requirements brought
about by a disaster. We formalize this approach to resilience by
means of three key characteristics: absorption capacity, adaptive
capacity, and the rapidity of adaptation. This resilience concept
can be used where resilience entails adaptation of the infrastructure
system to meet new unplanned service levels within a relatively
short time. Because adaptation entails both an extension of capacity
and a change of processes, we use a discrete event simulation to
model and measure the infrastructure resilience. We then apply
our approach to a stylized disaster case, considering four impact
scenarios and six policies to improve resilience. The results of
our simulation-driven approach allow us: (1) to gain insights into
adaptation of processes at airports during the immediate response
phase, (2) to reveal the interaction of system components and proc-
esses, and (3) to design and evaluate policies that improve resilience.
Lastly, we discuss the validity of our results, and conclude with a
brief discussion and future outlook of our approach.

Resilience and Rapid Adaptation Framework

Although the origins of the concept of resilience lie within ecology
(Holling 1973), today resilience is used in a wide range of domains,
ranging from cities and urban resilience (Meerow et al. 2016;
Comes 2016b), communities and their connections (Aldrich and
Meyer 2015), to critical infrastructures. Increasingly, resilience also
receives attention in the transportation and logistics literature gen-
erally (Heckmann et al. 2015; Mattsson and Jenelius 2015).

Traditionally resilience of infrastructures is defined as the ability
to rapidly recover from performance losses owing to a disruption
(Bruneau et al. 2003). Herein, resilience is understood as a three-
fold concept: (1) the capacity to absorb a shock or disturbance;
(2) the capacity to adapt to change; and (3) the rapidity of the
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recovery process (Francis and Bekera 2014; Mattsson and Jenelius
2015). Over the last two decades many studies have focused pri-
marily on a rapid recovery to a predisaster state (Cimellaro et al.
2010; Comes and de Walle 2014; Janić 2015; Zobel 2011; Ilbeigi
and Dilkina 2018). A comprehensive recent review by (Hosseini
et al. 2016) provides an overview of applications and adaptations
on this initial model.

One of the most important recent shifts in resilience engineering
is the recognition that critical infrastructures are complex socio-
technical systems and as such need to combine core concepts of
engineering resilience [robustness, rapidity, resourcefulness, and
redundancy (Zobel 2011; Zio 2016)] with the concepts of adapta-
tion and transformation from social-ecological resilience (Elmqvist
et al. 2019). Zio (2016) argues that in particular the long infrastruc-
ture life cycles require flexibility and adaptiveness to be part of
system design. Reflecting the different timescales of rapid response
and longer-term transformation, Woods (2015) distinguishes short-
term graceful extensibility (as opposed to brittleness) and longer-
term adaptiveness.

The recently proposed stress-strain model (Choi et al. 2019) fo-
cuses on this concept of extensibility and presents a resilience frame-
work that captures the need to expand infrastructure capacity during
a shock. The authors focus on serviceability as the ability of “an
infrastructure system to provide a pre-disaster level of service in
a post-disaster situation” (Choi et al. 2019). While this approach
allows policy-makers to consider increased demand, it assumes that
processes during crises do not change. Therefore, increased demand
needs to be met via extra capacity or resources (Woods et al. 2014).
However, several studies in disaster research literature have shown
that system behavior in disasters is fundamentally different from day-
to-day operations (Turoff et al. 2004; Comes 2016a). Similarly, the
difference between inherent and adaptive resilience has been stressed
previously (Rose 2007), where the latter refers to behavioral change,
improvisation, and creativity. Thus far, however, this behavioral
change and the different systems’ behavior is not considered in the
literature on infrastructure resilience.

In air transportation more specifically, most papers focus on
resilience of the airline transportation network, mostly by analyzing
the underlying complex networks, (Dunn and Wilkinson 2016;
Cook et al. 2015; Lordan et al. 2014; Clark et al. 2018). Here, mit-
igation measures largely relate to rescheduling and rerouting flights
(Janić 2015; Cardillo et al. 2013). In addition, most of these papers
focus on network disruptions, not on the impact of a large-scale
event on airport resilience (Janić 2015), that fundamentally change
the flight patterns. Few papers focus on the airport system itself,
as a critical hub in the disaster response phase. Malandri et al.
(2017) present a model of ground level accessibility, measuring
the impact of disruptions in the passenger flow at the airport,
and defining resilience as the ability to rapidly recover system per-
formance to baseline levels with respect to passenger delays, incon-
venience, and overcrowding. Faturechi et al. (2014) present an
optimization model for the rapid recovery of the airport runway
and taxi system after disruptions. What is thus missing is a paper
that takes into account the need for adaptation and expansion in
response to a disaster that focuses on the airport system as a critical
hub infrastructure.

This paper addresses the gap by explicitly considering the
rapid change of process and systems behavior during the response
to a crisis by following a two-fold approach. First, we propose a
resilience framework that is designed to take into account rapid
adaptation of system behavior that is required to meet the signifi-
cantly higher performance levels as compared to predisaster oper-
ations. Second, we capture systems behavior by a process model
that allows decision-makers to understand the how the behavior

of critical hub infrastructures changes under shocks, and which
process-related measures contribute to resilience, complementing
capacity expansion.

The resilience framework is schematically shown as the triple
resilience triangle in Fig. 1, which shows systems performance over
time for a disaster that hits at T0. The three triangles highlight the
combining absorptive and adaptive capacity as well as the rapidity
of adaptation. We assume here that overall system performance
needs to be maximized, typical performance indicators for hub in-
frastructures could be output or throughput rates; for performance
indicators that require minimization (such as time required or extra
cost), the triangles are flipped upside down.

The first triangle (light grey) corresponds to the traditional resil-
ience triangle, which is based on the time to achieve predisaster
performance level P0 given that the disaster led to a drop in per-
formance to absorption level P1, defined as the minimum post-
disaster system performance. The absorptive capacity is at the
root of the definition of resilience by Holling (1973), who defined
resilience as the ability of a system to absorb disturbance or change.
Later, Bruneau et al. (2003) defined absorption as the abrupt reduc-
tion of performance, a definition we follow here. The closer P1 is to
the original performance level P0, the better the absorption capacity
of the system, and the easier it is to reach predisaster performance.

The second and third triangle complement the traditional view
to integrate the aspect of adaptation, which requires a performance
level P3 that goes beyond recovery to the initial state and exceeds
the initial performance level P0 to cope with the required expansion
of services. Here, we refer to Rose (2007), who provided an indi-
cation of an upwards behavior to denote improvements in systems
performance via adaptive behavior, and described the occurrence of
a temporary equilibrium. These observations are the basis for our
conceptualization. To clearly denote and analyze system behavior,
we define the adaptation level as this new steady state of perfor-
mance, or temporary equilibrium P3 at time T3 (dark triangle).
Yet, this equilibrium is typically lower than the peak performance
level P2, defined as maximum performance that is reached in re-
sponse to the disaster indicating an overshoot to compensate for the
backlog caused by the increased load needed.

For the rapidity dimension, we go beyond the traditional defi-
nition that focus on recovery to the initial state and follow D’Lima
and Medda (2015) who understand the rapidity dimension of resil-
ience as the time of return to an equilibrium after a disturbance.
Here, the new equilibrium is the adaptation level P3. Therefore,
the rapidity of adaptation is measured as the time after the disaster,

Fig. 1. (Color) Triple resilience triangle.
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or disturbance to achieve adaptation (T3 � T0). In most traditional
framework, such as Bruneau’s original work, the disruption or dis-
turbance is disturbed immediately (Bruneau et al. 2003), and in
these cases, T0 ¼ T1. Because we are here interested in the perfor-
mance of a hub infrastructure that is subject to feedback loops and
delays in other parts of the system, however, airport T0 < T1. The
use of T0 as a reference point also refers to the need to achieve
specific performance levels in terms of time post disturbance. In
humanitarian relief, for instance, it is instrumental to reach vulner-
able populations within a specific time after the disaster to ensure
they are supplied with vital relief items, such as water, food, or
medical supplies.

In addition, it is possible that predisaster levels are not achieved.
In this case, the adaptive level P3 will be below P0, and the
peak level or overshoot P2 is not achieved. Fig. 1 also highlights
that the resilience and recovery functions are nonlinear. This triple-
resilience-triangle approach allows policy-makers to gain insights
into the performance of critical hub infrastructures, because it
combines the analysis based on established resilience concepts
with an analysis of the required adaptation and rapidity.

Measuring Airport Resilience: Process Model and
Key Performance Indicators

To frame and scope the system, we first map out key actors and
their influence on the operations of a disaster-affected airport based

on a literature analysis including reports and guidelines from prac-
tice as shown in Fig. 2. We focus here on those key actors that make
decisions about or carry out physical movements in the system
(displayed in grey in Fig. 2).

In the case of airports, key processes such as scheduling, park-
ing, and loading/unloading are impacted by a disaster and hence
have an important effect on the airport operations (Veatch and
Goentzel 2018). As such, what is needed is a systematic con-
sideration of rapid adaptation at the process level reflecting the
changed system properties. Process models have been used fre-
quently to study airport systems (Manataki and Zografos 2010;
De Neufville 2016). Particularly, discrete event models have been
used successfully to study passenger streams (Verbraeck and
Valentin 2002; Joustra and Van Dijk 2001) or air cargo operations
(Nsakanda et al. 2004). Typically, such models are built for each
airport individually although the underlying questions for each
model and airport are similar. Therefore, we here follow Verbraeck
and Valentin (2002) and Manataki and Zografos (2009) and pro-
pose a generic mesoscopic model that captures key features and can
be easily adapted to a specific airport.

The effect of policies to improve resilience is measured via a set
of key performance indicators (KPIs). The KPIs are measured for
three key subsystems/components of the system, i.e, gate selection,
aircraft unloading, and warehouse operations. By quantifying these
indicators for every component, overall insights are gained into the
resilience of the airport system. To test their robustness, the policies
will be evaluated under different scenarios.

Fig. 2. Key actors at airports in disasters. Focus of this paper highlighted in grey.
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Process Model

We develop a conceptual model of an airport to investigate the op-
erations of the system and analyze generalized dynamics of the
adaptation processes. We assume that the main shock to the airport
consists in the rapid and massive influx of flights and goods, re-
sulting in strained airport processes. While we assume there is
no direct damage to the physical airport infrastructure such as run-
way or warehouse buildings, stresses stem from limited capacity in
terms of human resources and equipment. Within the overall airport
logistics system, Fig. 3 highlights that we focus on the following
three critical system components:
1. Gate selection: assignment of incoming aircraft to docks and

taxi time;
2. Aircraft unloading: loading of cargo from aircrafts and move-

ment to transit warehouse taking into account aircraft type,
cargo, available resources, and equipment;

3. Warehouse operations: handling, customs clearance, bulk break-
ing, and loading on trucks for transport to the affected region,
typically via a Humanitarian Staging Area. Processes depend on
cargo type, available resources, and equipment.

Key Performance Indicators

The resilience challenge for an airport impacted by a disaster is to
adapt their logistics and cargo performance beyond the normal level
of operations to cope with the increase of incoming flights and
freight as part of the unfolding disaster response operations. We
selected the following three throughput-related KPIs to measure
the ability of the airport to rapidly adapt to these new requirements:
(1) the total amount of cargo handled per hour; (2) the total amount
of idle cargo, i.e., cargo that is still in the system (in tons); and
(3) the average throughput time of one unit of cargo (in hours).
These KPIs are motivated and characterized in more detail below.
Importantly, we here focus on the resilience of the airport system as
such to ensure its rapid adaptation to the surge of incoming flights,
thereby focusing on the supply side. If a policy-maker rather fo-
cuses on the role of infrastructures for community resilience, met-
rics that take into account the demand-side such as suggested by
Didier et al. (2018) need to be used.

The KPIs are presented individually and not combined into a
single measure for three reasons: (1) different decision-makers
may have different priorities, and displaying the results separately
enables them to make choices and trade-offs based on their pref-
erences; and (2) the KPIs are correlated, e.g., idle cargo and
throughput, and therefore a (linear) aggregation to a single indicator
is flawed as the necessary condition of independence is violated;
and (3), showing how the KPIs evolve over time allows decision-
makers to gain important insights into the timing of their policies
and the resulting behavior of the airport system.

KPI 1: Cargo Processed (tons/hour): The cargo processed at the
airport measures the number of tons of cargo that leaves the airport
system (or system components) per hour, which is an indicator
for the processing capacity of the airport. The inflow of cargo is
beyond the control of the decision-makers at the airport (Veatch
and Goentzel 2018). As such, it presents one of the external factors
to which the airport system rapidly needs to adapt. Following Chen
and Miller-Hooks (2012) and their work on express logistics, the
total cargo processed or throughput is decisive for airport logis-
tics under time pressure. The prototypical behavior of KPI1 is
shown in Fig. 1. After an initial drop in the response to the dis-
aster to P1, the performance increases to peak level P2 and the
reaches a new steady state P3. The absorptive capacity of KPI1 is
measured by comparing the relative difference between P0 and P1.

Adaptive capacity is measured by comparing the relative difference
between P3 and P1.

KPI 2: Idle Cargo (tons): The amount of unused aid at airports is
a well-document significant problem that leads to congestion at the
airport (Holguín-Veras et al. 2012). The severity of the congestion
is measured by the amount of cargo (in tons) that is not handled or
idle. Idle cargo needs to be minimized because it affects the airport
system, and too much idle cargo will disrupt the entire airport. For
example, planes are unable to land if the runway is blocked by
parked aircrafts.

As the idle cargo needs to be minimized, the expected typical
behavior of this KPI is flipped upside down. In the initial state P0,
the airport is free of idle cargo. But with the surge of incoming
flights and goods, the maximum idle cargo at the airport P1 rep-
resenting the absorption level. The shape of the curve of idle cargo
is influenced by two main factors: (1) the inflow (cf. KPI 1), and
(2) the outflow of cargo. The inflow will reflect the amount of in-
coming flights, and the cargo processed, while the outflow can be
addressed by changed handling policies or creating additional stor-
age capacity. Through an implementation of policies, or change of
flight schedule, the idle cargo is reduced and reaches a new steady
state. According to the work on material convergence at airport
(Holguín-Veras et al. 2012; Veatch and Goentzel 2018), airport are
unlikely during the response phase to clear all idle cargo, and
P2 ¼ P3. This implies that the airport does not reach predisaster
performance levels P0, and the time difference T2 � T0 represents
the rapidity of adaptation.

KPI 3: Throughput Time (hours): The massive influx of aircraft
and goods combined with reduced capacity of the airport will typ-
ically increase throughput times in the initial phase of the response.
Here, we measure the average throughput time as an indication how
long cargo remains in the airport system. Because the KPI needs to
be minimized, the absorption level P1 for KPI3 is defined as the
maximum average throughput time owing to the shock. The higher
the absorptive capacity of the airport is, the smaller the difference
between P0 and P1. The adaptation level P2 ¼ P3 is defined as the
new stable state after implementation of all adaptive measures at
process level and the processing of any potential backlogs. The
adaptive capacity of the airport with respect to KPI3 is measured
by the relative difference between P2 and P1. The rapidity of adap-
tation capacity is given by the time difference between T2 and T0.

For each KPI the following three variables have to be defined:
a critical bottom level value for the absorptive capacity, a required
service level value for the adaptive capacity, and the rapidity of
adaptation. These levels define the values within which the airport
needs to operate, or the safe operating space. If those values are
exceeded, the airport system is said to collapse with detrimental
consequences to both the operations at the airport as well as the
humanitarian relief. Table 1 summarizes the critical threshold val-
ues for absorption, adaptation, and rapidity for the three KPIs and
the three system components, according to the above discussion.
For all KPIs the rapidity is measured by the time between T4
and T0. Here, we choose a threshold of 14 days as a typical recov-
ery time, corresponding to experiences from the earthquakes in
Nepal and Haiti (Stanhope 2010; Logistics Cluster 2015). After this
initial chaotic period, the response will transition into a more sta-
bilize and planned phase (Baharmand et al. 2019), in which ground
transportation and sea ports become increasingly important, intro-
ducing another yet another regime and equilibrium for the airport.

The critical levels for absorption and adaptation are defined per
KPI. For KPI1 (cargo processed), the critical absorption level is set
to 0, meaning that cargo must be processed. Based on past studies
about airports in disasters (Neudert 2010; Veatch and Goentzel
2018), the critical level for the adaptive capacity that must be
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Fig. 3. Metamodel of the airport system simulation. Arrows from top to bottom represent control factors. Arrows from bottom to top represent
resources needed. Horizontal arrows represent flows for the three system components: (a) dock and gate selection; (b) aircraft unloading; and
(c) warehouse operations.
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