Accessing Lithium–Oxygen Battery Discharge Products in Their Native Environments via Transmission Electron Microscopy Grid Electrode

ABSTRACT: High-fidelity and facile ex situ transmission electron microscopy (TEM) characterization of lithium–oxygen (Li–O2) batteries is still limited by challenges in preserving the native environment of Li–O2 discharge products. The extreme reactivity and moisture sensitivity of the discharge products means that they are quickly altered during sample retrieval from cycled batteries and transfer for TEM analysis, resulting in loss of original information. We here demonstrate that by using a TEM specimen grid directly in Li–O2 batteries as both support electrode and sample collector overlaid on a standard oxygen diffusion electrode, discharge products that are formed on the grid can be kept pristine.

KEYWORDS: Li–O2 chemistries, electron microscopy, electrodes, carbon specimen grid and batteries

Comprehensive understanding of high-energy battery chemistries underpinning their optimization is urgently needed for further aiding global electromobility via battery technologies. Among the many potential electrochemical storage chemistries being developed, lithium–oxygen (Li–O2) batteries have been the focal point for battery researchers over the past decade,1–3 because Li–O2 features a high theoretical energy density of ~3500 Wh/kg, which corresponds to an increase of about 1 order of magnitude of what today’s Li-ion technology can provide at system level. Despite this potential, real-world Li–O2 batteries at system level have not been built to date, because the complex Li–O2 battery chemistry is plagued by many challenges at both fundamental and technology levels.4–7 Particularly, the electrolyte used—either aqueous or nonaqueous—on the fuel-gas supply system—gas-open or closed-gas—catalyst/redox mediator supported or unsupported, in the presence of impurities (e.g., H2O)—tends to alter the reaction courses leading to the formation of various discharge products (e.g., Li2CO3, Li2O, LiOH, and Li2O2) and therefore impacts the practical energy/power capabilities and lifetime of these batteries, meaning that their actual deliverable performance can vary significantly (compared to their theoretical values when translating from cell to system level). A Li–O2 battery is assembled with Li metal as anode and porous carbon as oxygen diffusion electrode, which are separated by an ion conducting membrane (e.g., cellgard, Whatman papers, and so on) soaked in with an electrolyte. The discharge cycle of a nonaqueous Li–O2 battery involves the formation of Li2O2, which is then decomposed during charge according to the reaction 2Li+ + O2 + 2e− → Li2O2 (∼3.0 V vs Li/Li+).5,6,8 This lithium peroxide formation via oxygen reduction reaction (ORR) and its decomposition via oxygen evolution reaction (OER) during charge–discharge cycling is the cornerstone of Li–O2 battery chemistry, which determines capacity, longevity and round-trip efficiency of Li–O2 batteries. The formation of discharge products are known either to occur via direct deposition at the porous cathode surface or to grow in the electrolyte before being precipitated on the porous electrode surface, and the occurrence of either of these depends on the effective donor number (DN) and acceptor number (AN) of the electrolyte used,6,9,10 which is an indicator for the degree of solubility of discharge products in electrolytes (as solvent). For example, electrolytes with high DN promote the growth of more crystalline disk and toroidal shaped Li2O2 via solution-mediated growth, while low DN induces a passivation of carbon electrodes with amorphous Li2O2 film via surface-mediated growth, which typically results in electrode pore clogging and leading to diminished discharge capacity and premature battery failure.9,10 Because the morphology and structure of discharge products are of crucial importance to the
operation, cycle life, and viability of Li–O₂ batteries, a wide range of spectroscopic and diffraction techniques have been employed to study the underlying mechanisms that dictate Li–O₂ battery cycling behavior in terms of ORR products. While each of these provides valuable information on Li–O₂ electrode processes, much of the obtainable information is mostly about the whole electrode, i.e., the average electrochemical processes taking place across the electrochemically active sites of electrodes, meaning that the crucial details of local electrochemical processes involving intermediates at the nanoscale are not fully captured. Transmission electron microscopy (TEM) as a material characterization tool is routinely used to visualize local morphological, structural, and compositional information down to atomic scales and also to visualize battery electrode processes/products via either ex situ/postmortem analysis of cycled electrodes or in situ/operando investigation mainly using open-cell configuration with either ionic liquid or oxidized lithium or LiPON as electrolyte. Although MEMS chips allow for the use of liquid electrolyte for in situ battery experiments, electron beam even in low dosage generates considerable amount of solvated species during TEM imaging which can affect the inherent mechanism. In theory, although these solvated species can be flushed out from the system by a continuous liquid flow, there is a prevailing doubt with regard to its (degree of) effectiveness. Unlike the traditional Li-ion batteries where only the transfer of Li-ions is mediated by electrolytes, the Li–O₂ electrode processes additionally rely on solvated species in electrolytes whose reactivities strongly influence the local Li–O₂ electrode processes and so the end results. Because of these reasons, Li–O₂ battery characterization aimed at understanding the mechanistic processes of discharge products via operando TEM is not straightforward, with many possible outcomes that are mutually inclusive. Therefore, there is still a greater reliance on ex situ characterization approaches because (i) they allow for battery cycling in well-controlled electrochemical conditions so that discharge products can be terminated and investigated in desired charge/discharged states and (ii) the quality/state of discharge products can be varied depending on cycling conditions. Despite these advantages, ex situ TEM’s applicability in studying the discharge products of Li–O₂ battery is limited by the many practical difficulties presented by the nature of Li–O₂ battery chemistry.

First, upon dismantling cycled batteries and scratching discharge products off Li–O₂ battery electrodes (for TEM sample preparation), reactions between discharge products and electrolyte and electrode support are already significant enough to alter the native environment. Use of the state-of-the-art TEM sample preparation methods using focused ion beam (FIB) is also limited as the Ga-ion beam tends to modify discharge products. On top of that, the highly air/moisture sensitive nature of Li–O₂ discharge products further complicates the transfer of samples (from Ar/He filled glovebox to TEM via sample preparation and mounting), as even slight air exposure can potentially cause new features to be developed, thus masking as well as modifying the original Li–O₂ battery discharge products. Second, the instability of Li–O₂ discharge products during TEM imaging where the electron beam sensitivity of discharge products can trigger their disintegration or transformation while performing TEM measurements, giving rise to misleading information about Li–O₂ battery cycling products. While the issue of discharge products decomposing during TEM investigation can be somewhat mitigated by the combination of moderate acceleration voltage (e.g., 200 kV) and low electron beam dose in short exposure especially in scanning transmission electron microcopy (STEM) mode as both support electrode and sample preparation, reactions between discharge products and electrolyte and electrode support are already significant enough to alter the native environment. Use of the state-of-the-art TEM sample preparation methods using focused ion beam (FIB) is also limited as the Ga-ion beam tends to modify discharge products. On top of that, the highly air/moisture sensitive nature of Li–O₂ discharge products further complicates the transfer of samples (from Ar/He filled glovebox to TEM via sample preparation and mounting), as even slight air exposure can potentially cause new features to be developed, thus masking as well as modifying the original Li–O₂ battery discharge products.

Figure 1. Schematic showing the use of conventional perforated TEM copper grid with holey carbon film as both support electrode and sample collector in Li–O₂ batteries: (a) the components of the Li–O₂ battery rig (custom-built)—a stainless steel mesh which allows O₂ introduction into the cell through porous carbon paper coated with active carbon slurry as cathode, on which a TEM grid is placed and lithium foil as anode is separated using separators soaked with electrolyte; (b) SEM image of a carbon porous electrode; (c) SEM images of the TEM grid showing the regular perforations in it.
TEM sample preparation and transfer are still needed to support a whole range of TEM characterization, thus enabling high-fidelity local analysis of Li−O₂ battery discharge products in their original environments. In this report we show that conventional TEM grids with holey carbon film that are typically used as specimen substrates for general imaging purposes can be employed as electrodes in a custom-built rig (Figure 1), such that Li−O₂ chemistry can be performed directly on TEM grids by taking advantage of their similar geometry to that of a porous carbon oxygen diffusion electrode, which then can be reliably employed for post TEM analysis; thereby, the grids are always kept in protected environments for TEM analysis.

A typical electrode for Li−O₂ battery is prepared by casting carbon- or non-carbon-based active materials (with/without catalyst nanoparticles) onto a porous carbon paper/felt, which serves as oxygen diffusion cathode. Figure 1a shows schematic of the rig used in our experiments, where a TEM grid is placed on top of a porous carbon electrode, which with a Li metal foil served as a Li−O₂ battery. Figure 1b shows an SEM image of such porous carbon (commercial) featuring an open pore network. On the other hand, TEM imaging grids are basically copper mesh on which a thin carbon-coated polymer film is laminated. Since the carbon films are perforated (Figure 1c), this combination of Cu mesh and holey carbon allows for the retention of thin samples and for direct transmission of electron beam (for imaging purposes). It can be noticed that this TEM grid with holey carbon is somewhat similar to that of the planar cross-section of a porous carbon paper typically used in a Li−O₂ cell (Figure 1b). Because of this, it is possible to employ TEM grids directly in place of porous carbon paper electrode and to perform Li−O₂ electrochemistry on it. The carbon film (on TEM grid) itself can act as an active material or the active material in the form of slurry can be added externally via drop-casting onto the grids to fabricate O₂ diffusion electrodes for TEM studies (the other electrode being Li metal) as shown in Figure 1. After cycling they can be removed at ease from the rig and transferred to a TEM holder, which is performed in an Ar filled glovebox using a vacuum transfer holder (Supporting Information). Previously, TEM Cu grids (with or without carbon films have been employed for studying Li metal dendrites, which involved Li plating directly on TEM grids in coin type cells, followed by breaking battery to retrieve grids that were flash-frozen by liquid nitrogen. But Li−O₂ battery studies via TEM grid present different issues, because, first, ensuring the discharge products formed on the TEM grid in appreciable densities is difficult and, second, it is imperative to establish that the discharge products formed on TEM holey carbon grids exhibit similar characteristics to that typically formed on the standard porous carbon paper (given the higher sensitivity of Li−O₂ chemistry). If these can be achieved, the direct use of TEM grids for studying Li−O₂ discharge products can then eliminate the need of strenuous sample preparation methods while retaining the native electrode environments. First, to compare the morphology of discharge products that can be formed on both types of electrodes, they were (carbon paper and TEM grid) coated with activated carbon slurry. More details of electrode preparation and Li−O₂ battery assembly can be found in the Supporting Information. These batteries with 1 M LiTFSI in TEGDME serving as electrolyte were discharged to 2.2 V vs Li/Li⁺ at a current density of 50 μA/cm² (Figure S2). The discharge curve in terms of its voltage plateau is characteristic of ORR in a Li−O₂ cell. X-ray diffraction (XRD) patterns obtained from porous carbon confirm that the discharge products were indeed Li₂O₂ and can be found in Supporting Information (Figure S3). We then carefully compared the SEM images of both porous carbon electrode, Figure 2a,b, and the TEM grid, Figure 2c,d. In Figure 2c, the holes on the TEM grids can be spotted through incomplete slurry coating. The appearance of identical donut shaped (toroidal) particles on both types of electrodes are characteristics of Li₂O₂ particles formed on a typical Li−O₂ battery discharge cycle. Scanning electron microscopic energy dispersive X-ray (SEM-EDX) mapping also highlights the oxygen-rich discharge products on the TEM grid as shown in Figure S4 of the Supporting Information. The results obtained on both types of electrodes are in line with literature, in particular those with the use of electrolyte (e.g., 1 M LiTFSI in TEGDME) having an intermediate donor number, which is known to trigger both solution-mediated and surface-mediated Li₂O₂ growth, especially at low current densities. This shows that the TEM grid can perfectly act as both support electrode and sample collector with their pores (holes) enabling O₂ diffusion. Therefore, having a TEM grid alongside the traditional carbon electrode is the most effective way to capture/collect discharge products reliably onto TEM grids in densities suitable for further investigation, and the nature of discharge products formed on grids is the same as that of standard oxygen electrodes, obtained at full discharge capacities, which also eliminates any possibilities of grid influencing the course of reactions.

The next step was to explore whether the processes such as surface-mediated and solution-mediated growth of Li−O₂ discharge products can be studied comparatively by extending this grid approach, in such a way that relative distinctions between the two types of growth modes can be made. We therefore covered one-half of the TEM grid with 20 nm thick gold coating (for this the grids were placed under metal masks before e-beam evaporation). This gold coating can make this side of the grid electrically more conductive, while the other half of the grid still has carbon film which is not very conductive, and in this way it is possible to perform Li−O₂ chemistry on two different surfaces using the same TEM grid. It is known that gold
does not actually act as a catalyst aiding the formation of Li$_2$O$_2$ but tends to provide stability to Li–O$_2$ batteries (by minimizing electrolyte decomposition and avoiding CO$_2$ formation). Thus, the gold coating of electrodes does not necessarily alter the local electrochemistry in terms of discharge products but may influence the deposition pathways of discharge products. The cell containing a porous carbon paper (coated with active carbon slurry) along with a TEM grid (this time is not coated with active slurry but half the part of the grid coated with gold) is discharged to 2.2 V at a current density of 50 μm/cm2. Figure 3 shows the discharge product formed at various locations of the gold-coated areas of the grid. From the bright field TEM images (Figure 3a–c) and energy filtered TEM (EFTEM) thickness maps (Figure 3d–f), performed with 10 eV slit, three distinct size variations in the discharge products can be observed, which are randomly shaped deposition (>20 nm) around the edges of the holes (marked with red dotted lines), large particles (with a size range of ~100–600 nm) throughout the grid, and a few very large sized particles (>1 μm) randomly on the grid. Figure S5 in the Supporting Information shows the selected area diffraction pattern (SAED) and electron energy loss spectra (EELS) of the random shaped discharge product formed around the hole, which demonstrate that these lithium containing discharge products are amorphous in nature. Thickness maps of particles (Figure 3d–f) reveal their donut shapes (toroidal), which are a typical morphology of Li–O$_2$ battery discharge products. On the other hand, Figure 4 shows the discharge product formed at various locations on a grid without gold coating, where most of the discharge products are seemingly of one size with a particle size > 1 μm, which are also typical of Li–O$_2$ discharge products in terms of their shape. But the appearance of some flake-like discharge products as in Figure 4b is very surprising and has not been observed before under similar conditions. This could possibly be the very early stages of discharge products growth.

Figure 3. BF-TEM images showing discharge products formed at various locations on the gold coated part of TEM grid (a–c) and thickness map using EFTEM imaging (d–f). The scale bar is 500 nm.

Figure 4. Discharge products formed at various locations on the non-gold-coated part of the TEM grid (a–c). The scale bar is 500 nm.

Figure 5. Electron beam induced lithium peroxide transformation/disappearance at dose rate of 89 (e/Å2)/s (a) at initial time, (b) after 90 s, and (c) after 180 s exposure. The scale bar is 200 nm.
Figure 6. Schematic showing discharge product formation pathways at highly electron conductive substrate (gold-coated part) and poorly electron conductive substrate (noncoated part) during oxygen reduction reaction in medium donor number electrolytes.

However, the beam sensitivity of the sample restricted recording reliable oxygen core loss spectra, as recording O K-edge requires either long exposure time (≈5 s in TEM mode with ≈100 (e/Å²)/s dose rate) or long dwell time (in STEM mode). Since the size of flakes is very small, their rapid degradation under electron beam can be observed in Figure 5. Therefore, those flakes are assumed to be the discharge products consisting of LiO₂, although it was not characterized fully by EELS (O K-edge), which in fact needs more sophisticated imaging conditions, for example, the use of fast detectors, and is recommended for future studies.

Although our study is to mainly demonstrate that TEM grid electrodes are a viable solution to further characterize the complex Li−O₂ chemistry in their native environments, we summarized the above observations, which is schematically presented in Figure 6, in an attempt to rationalize why the discharge products formed at the different parts of the TEM grid (gold coated and noncoated) are apparently different (given that gold here is not a catalyst but a better electron conductor). We therefore considered different possible pathways for the formation of discharge products.

As discussed earlier, given that the medium donor number electrolyte (1 M LiTFSi in TEGDME) used in this study can induce both surface mediated growth and solution mediated growth, LiO₂*(adsorbed), formed according to LiO₂* ↔ Li⁺ + O₂*, requires an electron supply from the surface to undergo a single electron reduction, forming film-like amorphous discharge product, resulting in surface-mediated growth. On the gold-coated part of the grid, this process can proceed readily due to better electronic conductivity of the surface (via path I as in Figure 6). However, after initial deposition, the electronic contact is significantly removed because Li₂O₃ is an insulator. On the non-gold-coated part of the grid with a thin layer of amorphous carbon, this reaction side has limited electron conductivity, indicating that a one electron reduction step may not be as good as the gold-coated surface; therefore, this should favor the reverse of the above reaction, leading to solution-mediated growth, through which discharge products can form at the electrode surface, according to 2LiO₂ → Li₂O₂ + O₂, where the growth occurs in solution followed by deposition at the electrode surface via disproportion. Because this does not rely entirely on electronic contribution from the electrode surface, it is therefore equally probable for both a gold-coated and a noncoated surface.

On the noncoated surface (Figure 4) the particles mostly were >1 μm, alongside some small flake-like particles, whereas a small random deposition at the edge of the holes and medium (100–600 nm) as well as big particles (>1 μm) can be seen on the gold-coated part as in Figure 3. Therefore, the small amorphous deposition at the edges of the holes (Figure 3) is most likely a result of surface-mediated growth (path I), which may be facilitated by better electron conductivity of the gold surface. We note that these types of growths also occur throughout the gold-coated part but cannot be observed easily from the TEM images due to the presence of the gold coating (high-Z contrast material) underneath the discharge products. Since the batteries (containing the porous carbon support electrodes with activated carbon) were discharged for ∼40 h, solution-mediated growth resulted in large and different sized Li₂O₂ particles that are evident on both gold-coated and noncoated parts of the grid (path II). However, more detailed work is required to understand why smaller toroids were not observed on the noncoated surface under these conditions. Since the small flakes on the noncoated surface were not characterized via EELS due to their high e-beam sensitivity, we did not include that in Figure 6.

Similar results were obtained when we replaced the half-gold-coated grid with either a fully gold coated or nongold coated grid. Also, when we had used only the grids (without the porous carbon support electrode), toroid shaped Li₂O₂ were not formed, due to the limited capacity of batteries; therefore it is recommended that TEM grids be used alongside the carbon support electrodes in order to collect representative discharge products onto grids. Despite this ability to visualize the initial stages of discharge products which is critical to the understanding of the Li−O₂ battery mechanism, this calls for more systematic works on discharge products under various electrochemical conditions, e.g., different stages of discharge at different current densities and overpotentials which are known to produce Li₂O₂ having different structures and morphologies and more elaborate imaging conditions and analysis. Using this grid approach from revisiting the previously established mechanisms based on the use of ORR catalysts to the state-of-the-art Li−O₂ batteries that make use of redox mediators, a better understanding of Li−O₂...
chimistries can be established. This method is particularly suitable for identifying whether parasitic discharge products, e.g., Li₂CO₃, are formed regardless of their structure and morphology. This method can also be extended to investigate other metal-air chemistries (Na-air, Zn-air, and Mg-air, etc.) in terms of the nature of discharge products formed on different active materials.

In conclusion, loss of details about the surroundings of the discharge products and lack of preservation of the pristine environment of Li-O₂ batteries. We have also shown that using conventional holey carbon TEM grids alongside porous carbon as cathode, discharge products formed on the TEM grid are established to be identical with that of the standard carbon electrodes, providing electrode samples for high-fidelity TEM studies. We have also shown the TEM grid can be used to distinguish as well as analyze solution-mediated and surface-mediated Li₂O₂ deposition. This method to preserve the native environment of Li-O₂ electrode processes together with its simplicity can facilitate widespread use of TEM for better understanding of Li-O₂ reaction mechanism toward the realization of real-world Li-O₂ batteries.

ASSOCIATED CONTENT

1. Supporting Information (PDF). The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaem.0c01803.

 Methods section; figures and graphs regarding experiments (PDF)
 Movie S1 showing degradation of the discharge product under electron beam. (AVI)

AUTHOR INFORMATION

Corresponding Author
Shibhabrata Basak — Department of Applied Sciences, Delft University of Technology, Delft 2628CJ, The Netherlands; Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich 52425, Germany; Email: s.basak@fz-juelich.de

Authors
Siemen Baaij — Department of Applied Sciences, Delft University of Technology, Delft 2628CJ, The Netherlands
Swapna Ganapathy — Department of Radiation Science and Technology, Delft University of Technology, Delft 2629JB, The Netherlands
Chandramohan George — Dyson School of Design Engineering, Imperial College London, London SW7 2AZ, United Kingdom; orcid.org/0000-0003-2906-6399
Hermann Tempel — Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
Hans Kungl — Institute of Energy and Climate Research, Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
Erik M. Kelder — Department of Radiation Science and Technology, Delft University of Technology, Delft 2629JB, The Netherlands
Henny W. Zandbergen — Department of Applied Sciences, Delft University of Technology, Delft 2628CJ, The Netherlands

ACKNOWLEDGMENTS

This work was financially supported by NWO NANO Project 11498 and BMBF Projects—CatSE (Project 13MP0223A) and LiSi (Project 13MP0224B). C.G. acknowledges funding from the Royal Society, London for an URF (Grant UF160573).

REFERENCES