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Optimal duration and planning of switching treatments taking drug
toxicity into account: a convex optimisation approach

Carlos Andrés Devia and Giulia Giordano

Abstract— We consider a multi-compartment evolutionary
model representing growth, mutation and migration of cancer
cells, as well as the effect of drugs, and we design optimal
switching targeted cancer therapies where a single drug, or
suitable drug combination, is given at each time so as to
minimise not only the overall tumor size over a finite horizon,
but also drug-provoked side effects. The strong diagonally-
dominant structure of the model allows to solve the problem
via convex optimisation. We provide an algorithm that yields
optimality throughout the whole treatment duration by solving
the convex optimisation problem with different horizons, and
show how dwell time can be enforced via heuristics. Also
the optimal treatment duration can be computed via convex
optimisation. The proposed approaches are applied to a model
of ALK-rearranged lung carcinoma.

I. INTRODUCTION AND MOTIVATION

Designing optimised treatment protocols for HIV or cancer
is an open challenge. Switching among different therapies
allows to counteract resistance phenomena occurring in the
presence of mutations, and reduce (or mitigate the increase
of) the viral load or the tumor mass over a finite horizon.
Treatment design can be cast as an optimal control problem
associated with the evolutionary dynamics of the disease,
where the state components represent the number of viruses
or cancer cells of each mutant type, the inputs are the drug
doses given at each time, while the function to be minimised
is the total viral load or the total number of cancer cells.

Switching strategies to minimise the total HIV load over
a finite horizon, in the presence of mutations, were designed
in [13]; the associated cost functional is convex [3], [5].
Infinitely fast switching may be needed [10], but is clinically
infeasible: each drug must be given for a minimum time
before switching, which requires a dwell-time constraint
on the switching rule [11]. The optimal control problem
was also solved in a receding horizon fashion [12] and its
robustness to uncertainty was investigated [7]. Treatment
protocols that prevent or delay cancer progression and are
robust to parameter uncertainty were planned via optimal
and receding horizon control [2], [4] and gain scheduling [1].
For the multi-compartment evolutionary model in [9], [14],
[15], describing replication, mutation and migration of cancer
cells, and drug response, optimal switching treatments were
designed in [9] via convex optimisation, exploiting convexity

Research supported by the DTF Grant at TU Delft and by the Dutch
Research Council through the NWO Talent Scheme grant VI.Veni.192.035.
The authors are grateful to Anders Rantzer, Vanessa D. Jonsson, and Franco
Blanchini for valuable discussions.

The authors are with the Delft Center for Systems and
Control, Delft University of Technology, The Netherlands;
{c.a.deviapinzon,g.giordano}@tudelft.nl

and monotonicity [3], [5], [16]. Since growth phenomena are
dominant with respect to mutation and migration, the state
matrix is practically diagonal; hence, the tumor size at the
end of the treatment horizon is invariant with respect to the
order in which the drugs (or suitable drug combinations) are
given, and the variables of the convex optimisation problem
can be the total times for which each drug is used [9].

In this paper, we consider the same multi-compartment
evolutionary model as in [9], but we include in our novel
cost not only the total amount of cancer cells over a finite
horizon, but also an integral cost, to prevent the tumor mass
from increasing too much during the transient, and a cost that
represents drug-provoked side effects. Moreover, we address
the problem of choosing an optimal treatment horizon. We
consider both the general case, and the special diagonal case
when only the final tumor size and the drug-provoked side
effects are minimised. We show that:
• convexity of the optimisation problem for the design of

the optimal switching treatment is preserved, in general,
even when the more complex cost is considered;

• in the special diagonal case, the cost value depends
exclusively on the overall treatment duration with each
drug, regardless of the time instants when the different
drugs are given: we can compute the optimal adminis-
tration times for each drug via convex optimisation;

• in the special diagonal case, by solving the convex op-
timisation problem with different horizons, we can plan
the treatment to ensure that, if it must be prematurely
interrupted at time t̂, the achieved cost is practically
the optimum for time horizon t̂: even though the state-
dependent integral cost is not explicitly considered, we
achieve optimality along the whole transient;

• we can compute the optimal treatment duration by
iteratively solving a convex optimisation problem; in
the special diagonal case, we can compute the optimal
treatment duration and the optimal intervals for each
drug by solving a single convex optimisation problem.

For the model of metastatic ALK rearranged lung adeno-
carcinoma considered in [9], our approach yields clinically
feasible switching therapies that limit the overall disease
progression as well as drug-provoked side effects.

II. PROBLEM FORMULATION

We consider the multi-compartment evolutionary model
[9], [14], [15]

ẋ(t) =

[
A−

d∑
s=1

Ds`s(t)

]
x(t), (1)
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where xi, i = 1, . . . , n, is the number of cells of line i, a
certain mutant type located in a given body compartment,
Aii ∼ 10−1 is its growth rate, while the off-diagonal entries
of A represent either mutation (if cell lines j and k are
different mutants within the same compartment, Ajk ∼
10−19 is the probability that a cell of line k mutates into
a cell of line j), or migration (if cell lines j and k belong to
the same mutant type but are in different body compartments,
Ajk ∼ 10−27 is the probability that a cell of line k migrates
to the same compartment where the cells of line j are
located). Hence, A ∈ Rn×n is a Metzler matrix representing
tumor growth, mutation and metastasis in the absence of
therapy. Matrices Ds are diagonal and [Ds]ii ≥ 0 represents
the effect of drug s on the ith cell line, while

`s ∈ {0, 1} (2)

is the normalised concentration of drug s: either `s = 1, if
drug s is used at its maximum tolerated dose, or `s = 0, if it
is not used at all. A possible choice s could also be no drug,
Ds = 0. At each time, the total maximum tolerated dose is

d∑
s=1

`s(t) = 1, (3)

hence at most one drug can be given at a time. Another
clinical requirement is that each `s is piecewise-constant in
time, and is kept constant for a minimum time interval Tmin.

Mutation and migration are strongly dominated by cancer
growth rates: the off-diagonal entries of A are several orders
of magnitude smaller than its diagonal entries. Therefore, in
the sequel we sometimes consider a simplifying assumption.

Assumption 1: Matrix A is diagonal. �
Our first goal is to design an optimal switching therapy

that, over a given finite horizon tF , minimises:
• the final tumor size h>x(tF ), with h ∈ Rn+ (h = 1n);
• the side effects

∫ tF
0
g>`(ζ)dζ arising due to drug toxic-

ity where vector g ∈ Rn+ quantifies drug toxicity levels;
• a state-dependent integral cost

∫ tF
0
f>x(ζ)dζ, with

f ∈ Rn+, which prevents the components of x from
excessively increasing during the transient.

The resulting cost to be minimised is

J(`) = h>x(tF ) + cg

∫ tF

0

g>`(ζ)dζ + cf

∫ tF

0

f>x(ζ)dζ,

(4)
where cg and cf are positive scalar weights.

Remark 1: Healing does not require 1>x(tF ) = 0: when
1>x(tF ) goes below a certain threshold, the therapy can be
successfully interrupted and the immune system will destroy
a small enough number of cancer cells. �

Given the integer constraint (2) and the sum constraint (3),
we can equivalently rewrite system (1) as

ẋ(t) = Aσ(t)x(t) = [A−Dσ(t)]x(t), (5)

where σ(t) ∈ I .
= {1, . . . , d} for all t, with σ(t̃) = m when

drug m is used at time t̃, and a dwell time Tmin is enforced.
Considering system (5) with dwell time corresponds to the

exact clinical problem (C). When dwell time is not enforced,

infinite-frequency switching is possible (S). Moreover, we
can relax the integer constraint and consider A(`) = A −∑d
s=1Ds`s with continuous variables `s ≥ 0 (F). By

definition of Filippov solutions [8], the set of the trajectories
of (F) includes all the trajectories of (S), hence of (C), while
the set of the possible trajectories of (C), with an arbitrarily
small dwell time, is dense in the set of the trajectories of
(F), hence all the trajectories of (F) can be approximated
in the limit of infinite frequency switching (sliding modes).
Therefore, the formulations (S) and (F) are equivalent, since
x(t) − x(0) =

∫ t
0
Aσ(ζ)x(ζ)dζ =

∫ t
0
A(`(ζ))x(ζ)dζ, and

the optimal cost is also the same [5]. Although the clinical
problem is (C), the solution of problem (F) achieved with
`s(t) arbitrarily time-varying (corresponding to σ(t) allowed
to switch at infinite frequency: sliding modes, no dwell time)
is interesting because it provides a lower bound for the cost.

First, in Section III, we solve problem (F), equivalent to
(S), which turns out to be a convex optimisation problem;
under Assumption 1 and when f = 0, we provide an explicit
solution that already enforces the requirement not to mix
different drugs. We also address heuristics to enforce the
dwell time, thus solving the clinical problem 1, and provide
a scheme to optimise the cost over the whole horizon [0, tF ].
Then, in Section IV, we consider the cost

J(tF , `(t)) = h>x(tF ) + cg

∫ tF

0
g>`(ζ)dζ + cf

∫ tF

0
f>x(ζ)dζ (6)

where the treatment horizon tF is a free variable, and show
that also the optimal treatment horizon can be found via
convex optimisation (or analytically, in a special case).

III. OPTIMAL SWITCHING TREATMENTS

We first neglect the dwell time and consider the relaxed
problem with `s ≥ 0. Then, we need to solve the optimal
control problem:

min
`(t)∈L

h>x(tF ) + cg
∫ tF
0
g>`(ζ)dζ + cf

∫ tF
0
f>x(ζ)dζ(7)

s.t. ẋ(t) = A(`(t))x(t), x(0) = x0, (8)

where ` = [`1 . . . `d]
>, A(`(t)) = A −

∑d
s=1Ds`s(t) and

L = {` : 1>` = 1 and `s ≥ 0, s = 1, . . . , d}.
Remark 2: The evolutionary model (1) is a convex-

monotone system [16] and the objective function is convex.
In particular, convexity when the cost is a generic linear
combination of the final state was proven in [3] and in
Lemma 3, Lemma 4, Theorem 2 in [5]. However, as briefly
suggested in [6, Section 2.1], the convexity properties are
preserved even when more complex costs, such as (4), are
considered. Hence, we can recast the optimal control problem
as convex optimisation by augmenting the state. �

Define the augmented system

ẋ(t) =

[
A−

d∑
s=1

Ds`s(t)

]
x(t) (9)

χ̇(t) = cff
>x(t) (10)

ξ̇(t) = 0 (11)

ω̇(t) = g>`(t)ξ(t) (12)



with x(0) = x0, χ(0) = 0, ξ(0) = cg and ω(0) = 0, and the
new state vector z = [x> χ ξ ω]>.

Theorem 1: The optimisation problem (7)–(8) can be
equivalently rewritten as

min
`(t)∈L

ĥ>z(tF ) s.t. ż(t) = H(`(t))z(t), z(0) = [x>0 0 cg 0]>

(13)
where

H(`(t)) =


A(`(t)) 0 0 0
cff
> 0 0 0

0 0 0 0
0 0 g>`(t) 0

 , ĥ =

h10
1

 .
Proof. Since ξ(0) = cg and ξ is constant in view of
(11), integrating (12) gives ω(tF ) = cg

∫ tF
0
g>`(ζ)dζ. Also,

integrating (10) yields χ(tF ) = cf
∫ tF
0
f>x(ζ)dζ. Therefore

ĥ>z(tF ) is equal to the cost in (7). �
Even with this more complex cost, we simply have to

solve a convex programming problem, as in the case with the
terminal cost only [3], [5], [6], [16]. Since matrices H(`(t))
do not commute, even when A is diagonal (this is intuitive:
if the state transient is taken into account, then applying a
drug sooner or later can affect the cost), a simple solution
along the lines in [9] cannot be obtained.

Case f = 0: If only the terminal cost and the therapy
side-effects are considered, the optimal control problem is

min
`(t)∈L

h>x(tF ) + cg
∫ tF
0
g>`(ζ)dζ (14)

s.t. ẋ(t) = A(`(t))x(t), x(0) = x0. (15)

Define the augmented system

ẋ(t) = A(`(t))x(t) (16)

ξ̇(t) = 0 (17)

ω̇(t) = g>`(t)ξ(t) (18)

with x(0) = x0, ξ(0) = cg , ω(0) = 0, and y = [x> ξ ω]>.
Proposition 1: When f = 0, the optimisation problem

(14)–(15) can be equivalently rewritten as

min
`(t)∈L

h̃>y(tF ) s.t. ẏ(t) = M(`(t))y(t), y(0) = [x>0 cg 0]>,

(19)
where

M(`(t)) =

A(`(t)) 0 0
0 0 0
0 g>`(t) 0

 , h̃ =

h0
1

 .
Proof. Since ξ(0) = cg and ξ is constant in view of
(17), integrating (18) gives ω(tF ) = cg

∫ tF
0
g>`(ζ)dζ, hence

h̃>y(tF ) is equal to the cost in (14). �
In general, therefore, we need to solve a convex program-

ming problem [3], [5], [6], [16]. As in the simpler case in
which just the final tumor size has to be minimised [9], when
A is diagonal, we can exploit matrix commutation. Denote
by Mk (respectively Ak) the matrix corresponding to M(`)
(respectively A(`)) when ` = ek, a vector of the Euclidean
standard basis. Then we have the following result.

Theorem 2: When f = 0, under Assumption 1, we can
equivalently rewrite the optimisation problem (19) as

min
τ1,...,τd

h̃>
d∏
s=1

eMsτsy(0) s.t. τs ≥ 0, s = 1, . . . , d,

d∑
s=1

τs = tF .

Proof. It follows from the fact that, as can be easily verified,
matrices Ms commute as long as matrices As commute, and
matrices As commute if A is diagonal. �

In view of the commutation property, the value of y(tF )
does not depend on when each drug is given during the
treatment horizon, but only on how long each drug is given.
Thus, if the treatment duration with drug s is τs, the cost is
h̃>

∏d
s=1 e

Msτsy(0) = h>
∏d
s=1 e

Asτsx(0) + cg
∑d
s=1 gsτs.

Of course treatment durations τs must be nonnegative and
must sum up to the treatment horizon tF .

Enforcing no-drug-mixing and dwell time: Solving the
convex optimisation problems in Theorem 1 and Proposi-
tion 1 yields a minimising function `(t) that is not piecewise
constant and where, at each time instant, several entries can
be nonzero. To enforce the clinical requirements, we can
discretise as in [5] and divide the time interval T = [0, tF ]
into N intervals where `(t) remains constant: `(t) = `(i)

if t ∈ Ti = [ti−1, ti), for i = 1, . . . , N , with t0 = 0 and
tN = tF , where all intervals are chosen much longer than
Tmin. Problem (13) then becomes

min
`(i)∈L

ĥ>
N∏
i=1

eH(`(i))Tiz(0), (20)

with z(0) = [x>0 0 cg 0]>. Problem (19) when f = 0
becomes

min
`(i)∈L

h̃>
N∏
i=1

eM(`(i))Tiy(0), (21)

with y(0) = [x>0 cg 0]>, or equivalently

min
`(i)∈L

{
h>

N∏
i=1

eA(`(i))Tix(0) + cg

(
N∑
i=1

g>`(i)Ti

)}
, (22)

with x(0) = x0.
All the above are convex optimisation problems.
Each `(i) may be any vector with positive components

summing up to one. To enforce the no-drug-mixing require-
ment, we can approximate the “sliding mode” by choosing
each single drug for a fraction of the interval Ti corre-
sponding to the closest multiple of Tmin; this is why it was
suggested to pick Ti � Tmin.

Under Assumption 1, when f = 0, Theorem 2 gives a
solution that does not mix the drugs. To find a numerical
solution in practice, we can solve the convex problem:

min
τ1,...,τd

{
n∑
i=1

hie
Kixi(to) + cg

d∑
s=1

gsτs

}
(23)

s.t. τs ≥ 0, ∀s ∈ {1, . . . , d},
d∑
s=1

τs = tF , cg > 0,

where Ki = AiitF −
∑d
s=1[Ds]iiτs.

Then, to practically enforce a dwell time Tmin, it is
enough to set τs = Tmin whenever the solution of the
optimisation problem yields 0 < τs < Tmin, and decrease
some other τk � Tmin accordingly, so that

∑d
s=1 τd = tF .

Remark 3: The optimal therapy durations τ1, . . . , τd do
not completely determine the exact therapy scheduling. We
can choose the drug switching law to minimise the maximum
number of cancer cells over the whole horizon, or the integral



cost. Given the number of intervals (≈ tF /Tmin), we can
choose the best among all combinations that use drug s for a
total time ≈ τs, according to the desired performance index.
Another approach is suggested next. �

Optimal drug scheduling with A diagonal and f = 0:
Under Assumption 1 and when f = 0 in the cost (4), all the
switching rules that use drug s for a total time τs, obtained by
solving the optimisation problem in Theorem 2, lead to the
same (optimal) cost. This gives a degree of freedom worth
exploiting to optimally schedule drug administration. Here
we aim at minimising the value of the cost function not only
at the final time, but also throughout the whole time interval.
So, if the treatment is interrupted at time t̂ ∈ [0, tF ], the cost
function value is as close as possible the optimal solution of
the problem with horizon t̂.

We divide the complete time interval T = [0, tF ] into
n subintervals {[0, tF1], (tF1, tF2], . . . (tF (n−1), tFn]}, with
tFn = tF , and solve the optimisation problem (23) n times,
by taking the final time of each subinterval as the treatment
horizon: first we optimise over the horizon [0, tFn], then over
the horizon [0, tF (n−1)], and so forth, up to horizons [0, tF2]
and [0, tF1]. This yields a sequence of optimal drug delivery
times τ1[k], . . . , τd[k], for k = 1, . . . , n. We go backward
in time and we start by considering the n-th subinterval,
(tF (n−1), tFn]. In the i-th subinterval, each drug needs to be
given for a duration that can be computed as the difference
∆s[i] = τs[i] − τs[i − 1]. It is not always possible exactly
minimise the cost function at the end of each time interval,
since it might be ∆s[i] ≤ 0; hence a final step is added
where the total drug delivery time is computed and corrected
if necessary. The procedure is summarised in Algorithm 1.

Algorithm 1 Optimal Therapy and Drug Scheduling
1: Input: matrices A and Ds for s = 1, . . . , d, vectors h and g,

real scalars tF , cg , and integer n.
2: Divide the whole time interval T = [0, tF ] in n subintervals
{[0, tF1], (tF1, tF2], . . . (tF (n−1), tFn]}.

3: Set k = n.
4: Solve the optimisation problem (23) with final time tFn.
5: Set τs[n] = τs for s = 1, . . . , d
6: while k > 0 do
7: Compute the optimal times τs[k−1] by solving the convex

optimisation problem (23) with final time tF (k−1).
8: Compute for each drug: ∆s[k] = τs[k]− τs[k − 1]
9: Truncate negative values: if ∆s[k] < 0, then ∆s[k] = 0

10: Update the complete optimal time for the next iteration:
τs[k − 1] = τs[k]−∆s[k]

11: Choose the usage times for each drug in (tF (k−1), tFk]
12: Set k = k − 1

13: Add the drug usage times for each interval and, if necessary,
increase the times in order to meet the total optimal times τs.

Of course the cost is exactly optimal only at the end of
each interval (tF (k−1), tFk], and not at any time t̂ ∈ [0, tF ].
To maximise the optimality of the drug scheduling policy
over the whole horizon, we need to maximise the number
of time intervals: the optimal number of subintervals is
therefore nmax, i.e. the largest number of intervals in which
the treatment can be divided, given the dwell time constraint.

IV. OPTIMAL TREATMENT HORIZON

So far, the treatment horizon tF was fixed a priori. In this
section, we wish to find the optimal choice of tF .

Considering a free-horizon problem makes sense only if
each cancer cell line xi is knocked down by at least one drug.
Hence, in this section we make the following assumption.

Assumption 2: For i = 1, . . . , n, it is [A(`)]ii < 0 for at
least one choice of ` = ek. �

If drug toxicity is taken into account, even when the
treatment is effective in reducing the number of cancer cells,
it is not true that the longer the treatment, the better: the
longer the treatment lasts, the more the body is harmed by
the drug side-effects. Therefore, we expect that an optimal
treatment duration Topt exists. We consider the cost (6) and
choose a large enough tL. Then, we wish to compute

J∗ = min
tF≤tL

min
`(t)∈L

J(tF , `(t)) (24)

s.t. ẋ(t) = A(`(t))x(t), x(0) = x0. (25)

The value J∗, and the corresponding Topt, can be computed
in general by solving the inner convex optimisation problem
(minimisation with respect to `(t)) for m finely sampled
values of 0 < tF ≤ tL, and choosing the smallest; this
requires solving m convex optimisation problems.

When f = 0 and A is diagonal, we can compute
the optimal treatment horizon by solving a single convex
optimisation problem; in a particular case, we even have an
analytic expression.

The cost can be rewritten as J(tF , `(t)) = J(tF , τ), where
τ = [τ1 . . . τd]

> ∈ Rd and 1>τ = tF , and

J(tF , τ) = h>
d∏
s=1

eAsτsx0 + cg

d∑
s=1

gsτs. (26)

Proposition 2: Under Assumption 1, when f = 0 in the
cost J(tF , `(t)) as in (6), the optimisation problem (24)–(25)
can be equivalently rewritten as

J∗ = mintF≤tL minτ1,...,τd J(tF , τ) (27)
s.t. τs ≥ 0, s ∈ {1, . . . , d}, 1>τ = tF . (28)

Proof: It is an immediate consequence of Theorem 2. �
Then, we can denote

Jopt(tF ) = minτ1,...,τd J(tF , τ) (29)
s.t. τs ≥ 0, s ∈ {1, . . . , d}, 1>τ = tF (30)

and Topt = arg mintF≤tL Jopt(tF ). Since J(tF , τ) is convex
with respect to τ , we can show convexity of Jopt(tF ).

Theorem 3: Jopt(tF ) is a convex function of tF .
Proof: Pick tA < tB < tC , with tB = αtA + (1 − α)tC
for 0 < α < 1. Then, Jopt(tA) = J(tA, τ̂A) for some
τ̂A such that 1>τ̂A = tA and Jopt(tC) = J(tC , τ̂C) for
some τ̂C such that 1>τ̂C = tC . We can choose τ̃B =
ατ̂A+(1−α)τ̂C , so that 1>τ̃B = tB . If the optimal Jopt(tB)
is achieved for τ = τ̂B , then Jopt(tB) = J(tB , τ̂B) ≤
J(tB , τ̃B) ≤ αJ(tA, τ̂A) + (1−α)J(tC , τ̂C) = αJopt(tA) +
(1 − α)Jopt(tC), where the second inequality holds since
J(tF , τ) is convex with respect to τ . �



This implies that the minimum Topt is global. We now
show that problem (27)–(28) can be equivalently solved as a
single convex optimisation problem. We consider the system

ẋ(t) = A(ˆ̀)x(t) =

[
A−

d+1∑
s=1

Ds
ˆ̀
s(t)

]
x(t), (31)

where Dd+1 = A. We augmented the number of choices,
by introducing the “dummy” choice d + 1 that freezes the
time, since the corresponding state matrix is zero. Given this
system, under Assumption 1 and f = 0, we can find the
optimal time for each choice as per Theorem 2. Consider
the augmented vector τ̂ = [τ̂1 . . . τ̂d τ̂d+1]> ∈ Rd+1 and the
convex optimisation problem

J̃ = minτ̂1,...,τ̂d,τ̂d+1
J(tL, τ̂) (32)

s.t. τ̂s ≥ 0, s ∈ {1, . . . , d, d+ 1}, 1>τ̂ = tL. (33)

Theorem 4: The solution J∗ of the optimisation problem
(27)–(28) is equal to the solution J̃ of the optimisation
problem (32)–(33): J∗ = J̃ .
Proof: In problem (32)–(33) the time is freezed for a portion
τ̂d+1 of the horizon tL. If the optimal J∗ is obtained for
tF = t∗F , with τ = τ∗, then J̃ can be rendered at least as
small by choosing τ̂ = [(τ∗)> tL − t∗F ]>; hence, J̃ ≤ J∗.
If the optimal J̃ is obtained with τ̂ = τ̂∗, then J∗ can be
rendered at least as small by choosing tF = tL − τ̂∗d+1 and
setting τi = τ̂∗i for i = 1, . . . , d; hence, J∗ ≤ J̃ . Therefore,
the two problems have the same solution. �

Hence, a single convex optimisation problem (32)–(33)
can be solved to find Topt = tL − τ̂∗d+1.

Under suitable assumptions, we can directly compute
the optimal treatment durations for each drug, without
introducing the “dummy” mode. First note that the cost
J(τ1, . . . , τd) = h>

∏d
s=1 e

Asτsx0 + cg
∑d
s=1 gsτs =∑n

j=1 hjx0,je
∑d

s=1[As]jjτs + cg
∑d
s=1 gsτs, where the sum

of the τi’s is unconstrained, is convex. Then:
Lemma 1: The function J(τ1, . . . , τd) admits a minimum

with τi > 0 for all i if and only if ∂J(τ1,...,τd)
∂τi

= 0 for all i.
Even when there is no internal minimum (with all τi > 0),

a constrained gradient method can be used to find the global
minimum of the convex function.

If there is an internal minimum, we can give an analytical
expression for the optimal τi’s when the number of drugs is
equal to the number of cell lines, d = n. The expression is
based on the solution of two nested linear systems, associated
with matrices D ∈ Rn×d and S ∈ Rd×n, where [D]ij =
[Aj ]ii and [S]ij = hjx0,j [Ai]jj .

Theorem 5: Assume that matrices D and S, with n = d,
are nonsingular. Under Assumption 1, when f = 0 in (6),
if there exists a minimum of the cost J(τ1, . . . , τd) with all
τi > 0, then such an optimal choice of τ = [τ1 . . . τd]

>

is obtained as the solution of two nested algebraic systems:
Dτ = log v, where v ∈ Rn+ is the positive solution (if any,
otherwise no optimal choice of τ exists) of Sv = b, with
b ∈ Rd, bi = −cggi; namely, τ∗ = D−1 log[S−1b]. Then,
Topt = 1>τ∗.

Proof: The cost function J(τ1, . . . , τd) is convex. To find
its internal minimum, we can look at the choice of the
τi’s that zeroes all its partial derivatives ∂J(τ1,...,τd)

∂τi
=∑n

j=1 hjx0,j [Ai]jje
∑d

s=1[As]jjτs + cggi. By setting vj =

e
∑d

s=1[As]jjτs , bi = −cggi, and [S]ij = hjx0,j [Ai]jj , this
amounts to solving the algebraic system Sv−b = 0. Once we
have found the solution v, we can compute the τi’s by solving
a second algebraic system, Dτ = log v, where τ = [τ1 . . . τd]
and [D]ij = [Aj ]ii. �

V. CASE STUDY: ALK-REARRANGED LUNG CARCINOMA

We consider a model of metastatic ALK rearranged non-
small cell lung cancer [9], and show that the proposed
convex optimisation approach yields switching therapies that
optimally control tumor progression, in spite of imperfect
drug penetration in the two different compartments involved
(the lung and the brain) and heterogeneity (nine different
mutant types in each compartment). It is possible to switch
among four targeted therapies: crizotinib, alectinib, ceritinib
and lorlatinib. Unfortunately, many mutations have shown to
be resistant to at least one of these therapies [9]; therefore
switching is crucial to achieve the best possible treatment.

In our numerical simulations, we take matrices A
and Ds as in [9] and consider the initial condition
x̂0 = [956, 5, 5, 5, 5, 5, 5, 4, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0]> · 107.
We set h = 1>, g = [1 · 106, 5 · 104, 1 · 105, 1 · 106],
cg = cf = 0.7, and tF = 100 days. To apply Algorithm 1,
as well as to compute the solution of (22), the horizon tF
is divided into n = 10 subintervals of equal duration (10
days). The enforced dwell time is 1 day.

Figure 1A shows the drug scheduling policy obtained with
Algorithm 1. The switching law becomes periodic in the sec-
ond half of the time interval; this behaviour can be explained
by introducing the variables δs = τs

tF
. Since each subinter-

val in Algorithm 1 has the same duration, these variables
represent the ‘duty cycle’ of the control signal. With this
change of variables, the optimisation problem (23) becomes

minδ1,...,δd

{∑n
i=1 hie

tF eK̂ixi(to) + cgtF
∑d
s=1 gsδs

}
s.t.

δs ≥ 0, ∀s ∈ {1, . . . , d},
∑d
s=1 δs = 1, cg > 0, where

K̂i = Aii −
∑d
s=1(Ds)iiδs. For large values of tF the first

term dominates the cost function; the constant etF multiplies
the cost function and the solutions {δs}ds=1 converge to a
constant value as tF →∞. Figure 1B compares the optimal
times τs achieved by solving (23) and those obtained with
Algorithm 1, for different values of tF . When tF increases,
the two values become closer, as expected. Also during the
complete control interval both values remain close, meaning
that the drug scheduling policy given by the algorithm is
close to the optimal throughout the whole time interval, as
desired. Figure 1C compares the time evolution of the total
cost obtained with Algorithm 1 (solid) and with the optimisa-
tion problem (22) (dotted). The drug scheduling policy pro-
vided by Algorithm 1 minimises the cost function not only
for tF = 100 days but also for earlier values of time. This
ensures that, if the therapy is prematurely interrupted, the
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Fig. 1. Optimal therapy with Algorithm 1 and initial condition x̂0: (A) Drug choice with Algorithm 1 as a function of time. (B) Comparison between
the optimal drug times obtained by solving (23) (opt) and the times given by Algorithm 1 (alg). Red and violet lines are overlapped. (C) Comparison
between the cost achieved with Algorithm 1 (Alg) and with the optimisation problem (22) (Opt). (D) Number of total tumor cells for the initial condition
x̂0. Finding the optimal treatment horizon and the associated therapy: (E) Optimal cost obtained by solving the optimisation problem (23) for different
values of the horizon tF . (F) Time evolution of the total cost for the optimal treatment horizon t∗F = 64.24, obtained with Algorithm 1 with n = 13
equal subintervals. Optimal therapy with the full cost functional in (20): (G) Time evolution of the total cost in (20). (H) Time evolution of the unweighted
components of the total cost in (20): drug-associated cost (Drug), integral cost (Int) and total number of tumor cells (Tumor).

best possible outcome is obtained, and that the total number
of tumor cells and drug-provoked side effects are minimised
throughout the treatment duration. Comparing these results
with those obtained by solving (22) (dotted), which enables
drug-mixing (and hence provides the best result one could
get), the cost value at tF = 100 days is the same. Throughout
the whole time interval, the proposed algorithm approaches
the optimal solution and also guarantees patient safety, by
enforcing no-drug-mixing. The corresponding number of
total tumor cells over time is shown in Figure 1D. As
for the optimal treatment duration, Figure 1E shows the
optimal cost of problem (23) for different values of tF
(time horizon). Solving the augmented optimisation problem
(32) yields the optimal treatment duration t∗F = 64.24, in
agreement with Figure 1E. The corresponding optimal cost
evolution, computed via Algorithm 1, is shown in Figure 1F.
All the previously presented results consider the cost with
f = 0, i.e. without the state-dependent integral cost. The
optimal solution computed, when f = 1> · 10−1, by solving
the optimisation problem (20), which includes the full cost
functional, is shown in Figure 1G. Figure 1H shows the
(unweighted) components of the total cost: drug-associated
cost, state-dependent integral cost and total number of tumor
cells. The dominant term in the cost function is initially
related to the total number of tumor cells; however, as the
treatment reduces the number of tumor cells, the dominant
term becomes the state-dependent integral. In this particular
case (being the components of f relatively large), the drug-
associated cost is secondary throughout the whole interval.

VI. CONCLUSIONS

We showed convexity of the design of optimal switching
cancer therapies that minimise the tumor size, the tumor
integral and drug-provoked side effects; convexity enables
effective solutions when mutation and migration phenomena
are negligible with respect to cancer growth. When the
integral cost is neglected, we proposed an explicit algorithm
that, by solving n convex optimisation problems, minimises
the cost functional throughout the whole treatment horizon,

thus implicitly limiting tumor growth in the transient. We
showed that the optimal treatment duration can be computed
via convex optimisation.
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