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Reinforcement Learning based Online Adaptive Flight Control
for the Cessna Citation II(PH-LAB) Aircraft
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Gertjan Looye‡

German Aerospace Center, 82234 Wessling, Germany

OnlineAdaptive FlightControl is interesting in the context of growing complexity of aircraft
systems and their adaptability requirements to ensure safety. An Incremental Approximate
Dynamic Programming (iADP) controller combines reinforcement learning methods, optimal
control and online identified incremental model to achieve optimal adaptive control suitable for
Nonlinear Time-Varying systems. The main contribution of this paper is twofold. Firstly, the
iADP controller is designed to achieve automatic online rate control to track pilot commands
via setpoints provided by the manual outer loop on Citation II Aircraft model. Secondly, to
assess the controller performance in the presence of sensor dynamics and actuator dynamics,
an analysis is carried out to identify causes of any performance degradation. The simulation
results from iADP longitudinal control using full state feedback indicate that the discretization
of sensor signals, sensor bias and transport delays did not have any significant effect on the
controller performance or on the incremental model identification. However noisy signals and
sensors delays are found to cause controller performance degradation. Appropriate filtering
of signals resulted in better estimation of the incremental model subsequently improving the
controller performance due to noisy signals. Control performance degradation due to sensor
delays should be addressed in future before conducting flight tests on Citation II Aircraft.

Nomenclature

U, V Angle of attack, Sideslip angle
-,* State, Control input
' Reward
+ Value function estimate
c Policy
` Deterministic policy
� Cost-to-go
% Kernel matrix
X0, X4, XA Aileron, Elevator and Rudder deflections
W Discount factor
g Time constant
&, ' Weighting matrices
Θ, �>E Parameter matrix, Covariance matrix
?, @, A Roll, Pitch and Yaw rate
q, \, k Roll, Pitch and Yaw
+C0B , ℎ, W, =I True airspeed, Altitude, Flight path angle and Load factor
�C , �C State matrix, Input matrix
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I. Introduction
The surge in the air traffic growth and increased complexity of the modern day aircraft systems in recent decades

made flight safety a priority in the modern day aviation. According to the International Civil Aviation Organization
(ICAO), a statistical analysis on risk category effecting the flight safety show that most number of fatalities are due to
the Loss of Control-In Flight (LOC-I). Designing a Flight Control System (FCS) that is resilient to system failures,
external disturbances, inappropriate control inputs by the crew and/or autoflight systems is one of the ways to ensure
flight safety by preventing LOC-I[1].

Modern day FCS is designed using Fly-By-Wire (FBW) system and Flight Control Computer (FCC) which interprets
the pilot’s inputs as the desired outcome and converts these commands to the appropriate control surface actions for the
actuators based on a Flight Control Law (FCL). However the underlying FCL should be both adaptive and robust to cope
up with unforeseen situations or failure. Incremental model based NDI and backstepping versions viz,. Incremental
Nonlinear Dynamic Inversion (INDI) and Incremental Backstepping (IBS) are some of the popular control methods
designed with the aim of improving flight safety. In these incremental based methods, the model to be inverted is written
in an incremental form using Taylor series expansion and an incremental control input is evaluated at every time step.
These methods are found to increase the robustness against model uncertainties[2] [3] and similar observations are
validated through flight tests in cooperation with the Aircraft System Dynamics department, DLR Oberpfaffenhofen
on a fixed wing Cessna Citation II PH-Lab aircraft[4][5][6]. Another interesting approach in designing FCS is using
Reinforcement Learning (RL) based FCL. Active research is going on in RL based control to achieve model free
nonlinear optimal control with online learning capability. In RL based control, a control problem is defined as an
objective to achieve and the optimal control law is achieved by solving for optimization using Dynamic Programming
(DP) techniques[7]. In practice achieving control for real systems using DP is not viable as DP assumes a perfect known
model of the system and high computational expense needed to solve optimization problem for larger state space. The
former problem in the context of RL is referred to as "Curse of Dimensionality".

Approximate Dynamic Programming (ADP) combines generalization methods like function approximators with DP
techniques rendering these methods suitable to achieve optimal control for larger state space systems. The ADP methods
are used to achieve feedback control for dynamical systems using a cost-to-go function with online learning capability
using data observed along the system trajectories[8][9]. This ADP method is further extended to solve for reference
tracking problem[10, 11]. Although these methods are model free, they assume a linear time-invariant model of the
system to be controlled, thus making it difficult to extend these methods for nonlinear aerospace systems. Based on
theory from INDI and IBS, an incremental version of ADP is proposed, which is referred to as Incremental Approximate
Dynamic Programming (iADP) for stabilizing control problem using a quadratic cost function approximation. This
method which uses an online identified local linearized model using Least squares or Recursive Least squares approach,
making this method suitable for nonlinear time varying systems. This method is further extended to achieve more
general reference tracking control[12] and two algorithms with full state feedback and output feedback are proposed and
the control approach is verified on a F-16 aircraft model. However the iADP controller is yet to be verified on a real
system.

The aim of this paper is to extend the RL based controller to Cessna Citation II aircraft and evaluate the viability of
using this controller for a real system. To attend this objective, additional research has to carried out on integrating the
RL based controller within FCS Cessna Citation II aircraft and study the effects of typical aircraft characteristics like
sensor, actuator dynamics, time delays on the controller. The main contributions of this paper are as follows: Firstly,
iADP controller is integrated into FCS of Citation II Aircraft to achieve automatic online rate control. Secondly, iADP
controller performance is assessed considering sensor and actuator dynamics. The controller performance is evaluated
for longitudinal control of the aircraft using full state feedback and output feedback.

The contents of this paper are structured as follows. In Section II, basic concepts of Reinforcement Learning are
discussed followed by derivation of the iADP algorithms. In Section III, Cessna Citation II aircraft model along with
sensor and actuator models used for simulations is discussed. FCS design of iADP controller for Citation II is explored
in Section IV. Section V contains the results from the controller evaluation on the aircraft model. Finally, in Section VI
main conclusions from this paper are presented.

II. Reinforcement Learning for optimal adaptive control
Optimal control design involves designing a controller to optimize a cost function that characterizes the desired

behaviour of a system. Techniques like Linear Quadratic Gaussian(LQG) are often used to achieve optimal control
through a quadratic cost function and a linear model of the system to be controlled. It is desirable to have a controller
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that does not completely rely on the model of the system as it is difficult to obtain a perfect model of the system due to
modelling uncertainties. Optimal adaptive control methods address this issue by redesigning optimal controllers for
varying models of the system which are identified using system identification techniques. A direct way to achieve this
optimal adaptive control is a model free controller that learns the control scheme online using real time observations
along system trajectories[13] and Reinforcement Learning(RL) schemes are found to be useful in designing this direct
approach.

Reinforcement Learning

Fig. 1 Actor critic structure of RL agent

RL process essentially involves an agent interacting in
an environment which learns to choose actions such that a
certain goal/objective is reached. The RL agent achieves this
through a trail and error search method and memorization
of situations/states and suitable actions reinforced through
the rewards yielded from the environment. Many of the
RL algorithms adopt an actor-critic architecture as shown
in Fig. (1) which enables online learning through real
time observations. In an actor-critic setting, the actor does
the job of control policy (mapping from system states to
the control action inputs) implementation with the policy
updates provided by the critic. The critic evaluates the
current policy by updating the value associated with the
current state using the cost information provided by the
system/environment and updates the control policy for the
actor such that the cost associated with the new policy is
smaller than the previous one.

The RL problem is formalized mathematically as a Markov Decision Process(MDP) which assumes that the process
obeys the memoryless Markov property, which is the concept that a future state is independent of the preceding states
given the current state. The MDP is then solved for optimality using techniques like Dynamic Programming(DP).

To solve a DP problem it should have an optimal substructure and overlapping sub problems. The DP algorithms
require the complete knowledge of the environment to estimate the state value functions. However it is not practical to
have knowledge of the environment in all the cases and thus methods like Monte Carlo(MC) Methods which attain the
optimal behaviour through experience can be used to attend RL problem. Monte Carlo refers to the use of random
sampling methods to approximate numerical results. Monte Carlo methods in the context of RL refer to the learning of
the agent in an environment through experience using sample returns observed. Thus instead of evaluating value function
for all the states using a perfect known model of the environment we estimate the value of the states through some policy
using the experience gained while visiting those states in an episode. The MC methods differ from DP methods in two
ways. Firstly the agent learns from experience instead of state space sweep to estimate value functions and secondly the
value functions are estimated directly from returns instead of other value estimates. Temporal Difference(TD) learning
combines the advantage of sampling from experience in MC methods and learning from incomplete episodes in DP
methods. While in the MC prediction we need to wait till we finish the episode to estimate the value function for a
particular state, in a TD prediction we can instead estimate the value of the state by taking one step ahead and then using
the value estimate of the new state that we have landed in. Another difference between TD and MC method is that
the TD learning algorithm exploits the Markov property by first building an approximate model of the MDP and then
converging the solution from the data for the estimated MDP.

Consider a MDP : (-,*, %, ') where - denotes set of states,* denotes set of control actions/inputs. The conditional
probability of the MDP to transition from state G ∈ - to G ′ ∈ - by taking action D ∈ * is %D

GG′ = %A{G ′ |G, D} and the
expected immediate cost necessary for the transition is 'D

GG′ . The control policy or action strategy c(G, D) = %A{D |G} is
the mapping from states - to actions *. The policy can be stochastic c(G, D) where there is non zero probability of
selecting more than one control D or deterministic `(G) policy which admits only one control given state G. The goal of
the RL problem is to find the optimal policy c∗(or `∗ for deterministic optimal policy) which minimizes the expected
future cost. Extending the MDP framework to a dynamical system which evolves through time we assume that the state
transitions happen at discrete time steps : :, : + 1, : + 2.... The one step cost necessary for the transition G: → G:+1 by
taking action D: is defined by A: = A: (G: , D: , G:+1). The discounted infinite horizon cost �: provides measure of sum
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of future costs incurred by the dynamical system to evolve through time in the future and is given by

�: =

∞∑
8=:

W8−:A8 (1)

where 0 ≤ W ≤ 1 discounts the costs incurred in further in future. Consider the RL agent selects control actions at every
time step : following control policy c: (G: , D: ). The value for a policy + c is defined as the expected value of the future
cost for a dynamical system starting from state G at time : and following the policy c(G, D) subsequently, thus providing
a measure of the value being in state G with the policy being followed as c. The value function is given by,

+ c (G) = �c{�: |G: = G}

= �c

{ ∞∑
8=:

W8−:A8 |G: = G
}

= �c

{
A: + W

∞∑
8=:+1

W8−(:+1)A8 |G: = G
} (2)

Here �c denotes expectation of the value over all possible transitions conditional on policy c being followed. The
Bellman equation is a fundamental concept in solving reinforcement learning problems which helps in arriving at
optimal policies using experiences received further in time. The Bellman equation can be obtained from (2) as follows,

+ c (G) =
∑
D

c(G, D)
∑
G′
%DGG′ ['DGG′ + W+ c (G ′)] (3)

The value function should satisfy the Bellman equation at all stages of time. This equation can be interpreted as the
relation between the current value of state G = G: and the value of state G ′ = G:+1 whilst following policy c(G, D). For
an ergodic dynamical system it is proved that the MDP will have an deterministic optimal policy [14] to minimize the
expected future cost. Policy evaluation is the procedure of arriving at the value of a policy which can be obtained using
Bellman equation (3). If we know the value for a given policy c(G, D) we can find another policy c′ which is at least
better than c and this step is referred to as Policy improvement which can be written as

c′(G, D) = 0A6<8=
D

∑
G′
%DGG′ ['DGG′ + W+ c (G ′)] (4)

The optimality is reached when c′(G, D) = c(G, D) and according to the Bellman’s optimality principle[15] the
optimal control policy and the optimal cost can be written as

D∗ = 0A6<8=
D

∑
G′
%DGG′ ['DGG′ + W+∗ (G ′)] (5)

+∗ (G) = <8=
c

∑
G′
%DGG′ ['DGG′ + W+∗ (G ′)] (6)

The objective of the RL problem is to arrive at the optimal control policy and this can be achieved using two iterative
algorithms which use mapping between value and policy through policy evaluation and policy improvement steps.
Policy iteration(PI) is the method of solving the RL problem through repeated sequence of policy evaluation and policy
improvement steps until optimal solution is found. Value iteration(VI) is a special case of policy iteration method where
instead of waiting for the exact convergence of policy evaluation, it is truncated to just one iteration and based on the
approximate value function obtained policy improvement is done and the entire process is repeated till convergence.
These DP based algorithms require the state transition probabilities %D

GG′ and the cost 'D
GG′ of the MDP to arrive at the

optimal control policy and can only be solved offline. To design optimal adaptive controllers it is desirable to have a
method which does not rely on the full knowledge of the system. Temporal Difference(TD) is a model free RL method
when applied for control systems has the capability of online learning using observed data measured along the system
trajectories, which can be used to design optimal adaptive controllers.

In a TD method, the policy evaluation step is done using observed data collected along one sample path of MDP
which the agent follows. The equation (3) now becomes a deterministic equation and the Bellman equation for TD can
be written as
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+ c (G: ) = A: + W+ c (G:+1) (7)

where the observed data is (G: , A: , G:+1) at time step : . The TD error is given by the equation (8) and the objective
is to update the value such that the TD error is minimized using PI or VI.

4: = −+ c (G: ) + A: + W+ c (G:+1) (8)

For discrete systems the TD method provides exact solutions which can be arranged in a n-dimensional lookup table
where = is the size of the state vector. In control systems we deal with continuous state and control spaces and when
discretized, the state-space increases the number of states in the lookup table exponentially, a phenomenon referred to as
"curse of dimensionality". This problem is addressed by approximating the value function using unknown parameters
and suitable approximation structure. For a linear system the value function can be approximated to be quadratic in
state[16] as shown in equation (9) which benefits from having one local/global minimum

+ c (G: ) = G): %G: (9)

where P is a positive definite symmetric kernel matrix. These methods form class of Approximate Dynamic
Programming(ADP) methods. The one-step cost A: can be constructed based on the requirements of the control to be
achieved viz, regulation, tracking with minimum control. A standard form is a quadratic energy function represented as
equation (10) where Q,R are state weighting and control weighting matrices which provides trade off between objective
to be achieved and the control effort required.

A: = &(G: ) + D): 'D: (10)

Because of the quadratic value function assumption, the ADP methods are suitable for dynamical systems which are
Linear Time Invariant(LTI). However as most of the aerospace systems are nonlinear it is desirable to design controller
which can deal with system nonlinearities and model uncertainties. Incremental model techniques approximate the
original nonlinear dynamical system to linear time varying system around an operating point using first order Taylor
series expansion. ADP methods are combined with incremental approach to design optimal controllers suitable for
nonlinear systems referred to as Incremental Approximate Dynamic Programming (iADP) controllers[17, 18]. As these
iADP controllers use only observed data for achieving the control iADP controllers can be classified as model free
methods that has online learning capability.

A. Incremental Approximate Dynamic Programming for Tracking control
Here the methodology of extending iADP controllers to solve more general tracking control problems will be

explained considering both the availability of full state observations and partial observability conditions.

1. Incremental model for Nonlinear system
Consider a Non-linear continuous system represented as follows:

¤G(C) = 5 [G(C), D(C)]
H(C) = ℎ[G(C)]

(11)

where 5 [G(C), D(C)] ∈ '=, D(C) = '< and output measurements are obtained using the measurement vector
ℎ[G(C)] ∈ '? . As in practice we work with the discrete systems for achieving the control the above nonlinear system is
discretized using a high sampling frequency and is represented as (12).

G:+1 = 5 (G: , D: )
H: = ℎ(G: )

(12)

The objective is to design the iADP controller such that the system tracks a reference signal. Let the reference
trajectory dynamics be represented for a discrete case as

A:+1 = 5A (A: )
HA: = ℎA (A: )

(13)
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where 5A (A: ) ∈ '; . By representing the reference signal in this form one can generate large class of reference
trajectories. Augmenting the system dynamics with the reference dynamics we can generate the following augmented
nonlinear system

-:+1 =

[
G:+1
A:+1

]
=

[
5 (G: , D: )
5A (A: ) =

]
= C (-: , D: ) (14)

where C (-: , D: ) ∈ '=+; . The quadratic cost function will now be a quadratic in augmented state -: . Linearizing
the above augmented nonlinear discrete system around -0, D0 by taking the first order Taylor series expansion we get

-:+1 = C (-: , D: ) ≈ C (-0, D0) +
mC (-: , D: )
m-:

����
-0 ,D0

(-: − -0) +
mC (-: , D: )

mD:

����
-0 ,D0

(D: − D0) (15)

As it is assumed that the discretization is done at a high sampling frequency we can consider ΔC to be very small
and can approximate -:−1 ≈ -: and can replace -0, D0 with -:−1, D:−1 to get (16)

-:+1 − -: ≈ ) (-:−1, D:−1) (-: − -:−1) + � (-:−1, D:−1) (D: − D:−1)
Δ-:+1 ≈ ):−1Δ-: + �:−1ΔD:

(16)

where ):−1 = ) (-:−1, D:−1) ∈ ' (=+;) × (=+;) is the system matrix and �:−1 = � (-:−1, D:−1) ∈ ' (=+;) ×< is the
control effectiveness matrix. This regression model represented by �:−1, �:−1 can be identified using Recursive Least
Squares(RLS) techniques which provides a Linear Time Variant(LTV) approximation to the original model.

2. Full state feedback
For dynamical systems where full state measurements are available the observed measurements can be written as:

.: =

[
H:

HA
:

]
= -: (17)

Using the utility function (10) for achieving tracking control and extending the concept of Bellman equation (7) to
the incremental model we get the optimal Value function (18)

+∗ (-: ) = <8=
ΔD:
[(H: − HA: )

)&(H: − HA: ) + (D:−1 + ΔD: )) '(D:−1 + ΔD: ) + W+∗ (-:+1)] (18)

Where the optimal control at time step : is given by (19)

ΔD∗ = 0A6<8=
ΔD:

[(H: − HA: )
)&(H: − HA: ) + (D:−1 + ΔD: )) '(D:−1 + ΔD: ) + W+∗ (-:+1)] (19)

using the quadratic value function approximation (9) we get (20)

-): %-: = (H: − H
A
: )
)&(H: − HA: ) + D

)
: 'D: + W-

)
:+1%-:+1

= (H: − HA: )
)&(H: − HA: ) + (D:−1 + ΔD: )) '(D:−1 + ΔD: )+

W(-: + ):−1Δ-: + �:−1ΔD: )) %(-: + ):−1Δ-: + �:−1ΔD: )
(20)

For optimal control we can set the derivative of the above cost function with respect to ΔD: to 0 and we get the
optimal control law (21)

ΔD: = −(' + W�):−1%�:−1)−1 ['D:−1 + W�):−1%-: + W�:−1%):−1Δ-: ] (21)

The VI algorithm for iADP-FS is given by the Algorithm (1)
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Algorithm 1 iADP for tracking control using Full State Feedback[12]

Initialize a arbitrary control policy ΔD0
:
= `(-: )

repeat
Value Update Step: -)

:
%-: = (H: − HA: )

)&(H: − HA: ) + D
)
:
'D: + W-):+1%-:+1

Policy Improvement Step: ΔD: = −(' + W�):−1%�:−1)−1 ['D:−1 + W�):−1%-: + W�:−1%):−1Δ-: ]
until Convergence

3. Output feedback
Often in practice, as measurement of full system states is not available, controller design using input-output

measurement data over suitable time horizon is desirable. In this method the input output measurements are used to
indirectly construct the state information, under the assumption that the system is observable. The measured data is then
used to arrive at the optimal control using iADP method.

Consider we measure the data at N time steps between interval [: − #, :], using equations (16) and (25) we can
write (22),

Δ-: =

[
ΔG:

ΔA:

]
≈

[
�̃:−2,:−#−1 0

0 �̃:−2,:−#−1

] [
ΔG:−#
ΔA:−#

]
+

[
*#

0

]
Δ̄D:−1,:−# (22)

where �̃:−0,:−1 = Π:−18=:−0�8 and �̃:−0,:−1 = Π
:−1
8=:−0�8 , the input-output measurements captured over the time

horizon [k-N,k] and the controllability matrix*# are given by equations (23) and (24) respectively

Δ̄D:−1,:−# =


ΔD:−1

ΔD:−2
...

ΔD:−#


∈ '<# , Δ̄H:,:−#+1 =


ΔH:

ΔH:−1
...

ΔH:−#+1


∈ '?# (23)

*# =

[
�:−2 �:−2�:−3 . . . �̃:−2,:−#�:−#−1

]
∈ '= ×<# (24)

Linearizing the output of the nonlinear system(12) and the reference output of the system (13) using First order
Taylor series expansion around G:−1 we get (25) and (26) respectively

ΔH: ≈ �:−1ΔG: (25)

ΔHA: ≈ �
A
:−1ΔA: (26)

where �:−1 =
mℎ (G)
mG
|G:−1 ∈ '? × = and �A

:−1 =
mℎA (G)
mG
|G:−1 ∈ 'A × = are the observation matrices. Now using the

input-output data from (22) we can write (25) and (26) as follows

Δ̄H:,:−#+1 ≈ +#ΔG:−# +,# Δ̄D:−1,:−#

Δ̄H
A

:,:−#+1 ≈ '#ΔA:−#
(27)

The matrices +# ,,# and '# are given by equations (28), (29) and (30) respectively

+# =


�:−1�̃:−2,:−#−1

�:−2�̃:−3,:−#−1
...

�:−# �:−#−1


∈ '?# × = (28)
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,# =



�:−1�:−2 �:−1�:−2�:−3 �:−1�̃:−2,:−3�:−4 . . . �:−1�̃:−2,:−#�:−#−1

0 �:−2�:−3 �:−2�:−3�:−4 . . . �:−2�̃:−3,:−#�:−#−1

0 0 �:−3�:−4 . . . �:−3�̃:−4,:−#�:−#−1
...

...
... . . .

...

0 0 . . . 0 �:−#�:−#−1


∈ ' (?+<) ×# (29)

'# =


�A
:−1�̃:−2,:−#−1

�A
:−2�̃:−3,:−#−1

...

�A
:−# �:−#−1


∈ 'A# × ; (30)

We can extract ΔG:−# and ΔA:−# from (27) as follows

ΔG:−# ≈ ++# (Δ̄H:,:−#+1 −,# Δ̄D:−1,:−# )
ΔA:−# ≈ '+# Δ̄H

A

:,:−#+1
(31)

where++
#
= (+)

#
+# )−1+)

#
and '+

#
= (')

#
'# )−1')

#
are the pseudo inverses of the respective matrices. Substituting

(31) in (22) we get

Δ-: ≈
[
�̃:−2,:−#−1+

+
#

0
0 �̃:−2,:−#−1'

+
#

] [
Δ̄H:,:−#+1
Δ̄H

A

:,:−#+1

]
+

[
*# − �̃:−2,:−#−1+

+
#
,#

0

]
Δ̄D:−1,:−#

≈
[
*# − �̃:−2,:−#−1+

+
#
,# �̃:−2,:−#−1+

+
#

0
0 0 �̃:−2,:−#−1'

+
#

] 
Δ̄D:−1,:−#
Δ̄H:,:−#+1
Δ̄H

A

:,:−#+1


≈

[
"ΔD "ΔH "ΔHA

]
Δ̄/ :,:−#

(32)

Thus augmented state can be reconstructed using the input output data over a certain time horizon using above
equation. It can also be shown that the output increments can also be constructed using past data measurements as
follows:

ΔH:+1 ≈ �: Δ̄D:−1,:−# + �: Δ̄H:−1,:−#

≈ �
:,11ΔD: + �:,12

¯ΔD:−1,:−#+1 + �: Δ̄H:,:−#+1
(33)

where �
:
∈ '?×#< is the extended control effectiveness matrix, �: ∈ '?×# ? is the extended system matrix,

�
:,11 ∈ '?×< and �

:,12 ∈ '?×(#−1)< are partitioned matrices from �
:
.

Similarly ΔHA
:+1 can also be constructed as:

ΔHA:+1 ≈ �
A
: Δ̄H:−1,:−# (34)

where �A
:
∈ 'A×#A . We define the quadratic cost to go function using a kernel matrix and the measured data as

follows
+ (/̄:,:−#+1) = /̄):,:−#+1%̄/̄:,:−#+1 (35)

where /̄ contains the input output data given by

/̄:,:−#+1 =


D̄:−1,:−#
H̄:,:−#+1
H̄A
:,:−#+1

 ∈ '
(<+?+A )# (36)
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Extending the Bellman equation for tracking control with the incremental model representation, using the input
output data we get

/̄):,:−#+1%̄/̄:,:−#+1 = (H: − H
A
: )
)&(H: − HA: ) + (D:−1 + ΔD: )) '(D:−1 + ΔD: ) + W/̄):+1,:−#+2%̄/̄:+1,:−#+2 (37)

where,

/̄):+1,:−#+2%̄/̄:+1,:−#+2 =



D:−1 + ΔD:
D̄:−1,:−#+1
H̄: + ΔH:+1
H̄:,:−#+2
H̄A
:
+ ΔHA

:+1
H̄A
:,:−#+2



) 

%11 %12 %13 %14 %15 %16

%21 %22 %23 %24 %25 %26

%31 %32 %33 %34 %35 %36

%41 %42 %43 %44 %45 %46

%51 %52 %53 %54 %55 %56

%61 %62 %63 %64 %65 %66





D:−1 + ΔD:
D̄:−1,:−#+1
H̄: + ΔH:+1
H̄:,:−#+2
H̄A
:
+ ΔHA

:+1
H̄A
:,:−#+2


(38)

The optimal control policy in terms of the measured data is now given by (39)

ΔD: = 0A6<8=
ΔD:

[(H: − HA: )
)&(H: − HA: ) + (D:−1 + ΔD: )) '(D:−1 + ΔD: ) + W/̄):+1,:−#+2%̄/̄:+1,:−#+2]

= −[' + W%11 + W(�):,11)%33�
)
:,11 + W%13�:,11 + W(%13�:,11)

) ]−1

[[' + W%11 + W(�:,11)
) %)13]D:−1 + W [�):,11%33 + %13]H:

+ W [%12 + (�:,11)
) %23]D̄:−1,:−#+1 + W [%14 + (�:,11)

) %34] H̄:,:−#+2
+ W [(�

:,11)
) %33 + %13] ((�:,12

¯ΔD:−1,:−#+1 + �: Δ̄H:,:−#+1))
+ W [%15 + (�:,11)

) %35]HA: + W [%15 + (�:,11)
) %35]�A: Δ̄H

A

:,:−#+1)) + W [%16 + (�:,11)
) %36] H̄A:,:−#+2

(39)

The VI algorithm for iADP using output feedback is given by the Algorithm (2)

Algorithm 2 VI algorithm for iADP using output feedback[12]

Initialize a arbitrary control policy ΔD0
:
= `(/̄:,:−#+1)

repeat
Value Update Step:
ΔD: = −[' + W%11 + W(�):,11)%33�

)
:,11 + W%13�:,11 + W(%13�:,11)

) ]−1

[[' + W%11 + W(�:,11)
) %)13]D:−1 + W [�):,11%33 + %13]H:

+ W [%12 + (�:,11)
) %23]D̄:−1,:−#+1 + W [%14 + (�:,11)

) %34] H̄:,:−#+2
+ W [(�

:,11)
) %33 + %13] ((�:,12

¯ΔD:−1,:−#+1 + �: Δ̄H:,:−#+1))
+ W [%15 + (�:,11)

) %35]HA: + W [%15 + (�:,11)
) %35]�A: Δ̄H

A

:,:−#+1)) + W [%16 + (�:,11)
) %36] H̄A:,:−#+2

until Convergence

B. Online Incremental Model Identification
The Incremental Model is identified in real time using Recursive Lease Squares (RLS) method assuming high

sampling rate. The RLS is a recursive variant of Ordinary Least Squares (OLS) method which consists of simple matrix
operations, whereas the OLS has a matrix inversion step[19]. Avoiding matrix inversion is ideal as the online model
identification is done through some excitation signal and during phase of no excitation matrix, inversion might lead to
numerical instability. The RLS method can also deal with time-varying systems and they demand small computational
requirements which makes them suitable for online implementation. The derivation of Incremental model identification
using RLS method with Full State measurements is adopted from[20].
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1. Full State Measurements
For the implementation of iADP algorithm in section II.A.2, the augmented state transition matrix ):−1 and input

distribution matrix �:−1 has to be identified online. The equation (15) can be segmented by row as follows:

ΔGA ,:+1 =
[
ΔG)

:
ΔD)

:

] [
5 )
A ,:−1
6)
A ,:−1

]
(40)

where ΔGA ,:+1 is the A Cℎ state increment yielding 5 )
A ,:−1 and 6)

A ,:−1, the A
Cℎ row elements of �:−1 and �:−1

respectively. We can construct the parameter matrix Θ:−1 as follows

Θ:−1 =

[
�)
:−1

�)
:−1

]
∈ R(=+<)×< (41)

The state prediction in terms of parameter matrix is:

Δ Ĝ):+1 = ,
)
: Θ̂:−1, ,: =

[
ΔG:

ΔD:

]
∈ R(=+<)×1 (42)

The parameter matrix is updated as follows:

n: = ΔG
)
:+1 − Δ Ĝ

)
:+1

Θ̂: = Θ̂:−1 +
�>E:−1,:

W'!( +,)
:
�>E:−1,:

n:

�>E: =
1

W'!(

(
�>E:−1 +

�>E:−1,:,
)
:
�>E:−1

W'!( + -)
:
�>E:−1-:

)
∈ R(=+<)×(=+<)

(43)

where n: is the innovation or state prediction error, �>E is the estimation Covariance matrix and W'!( ∈ [0, 1] is the
forgetting factor.

Similar procedure can be adopted for identifying reference dynamics to obtain �A
:−1. Now the system transition

matrix can be created for the augmented system as follows

):−1 =

[
�:−1 0

0 �A
:−1

]

2. Output Feedback
The incremental model in input output data in equation (33) can also be constructed using RLS method. Here as

the full state measurements are not available, the incremental model is constructed using incremental input output
measurements over a time horizon. Equation (40) is now modified to include historical incremental data instead of state
measurements as follows :

ΔHA ,:+1 =
[
Δ̄H

)

:,:−#+1 Δ̄D
)

:,:−#+1

] [
5 )
A ,:

6)
A ,:

]
Using the similar procedure mentioned above RLS can be used to estimate �: , �: , �A: .

III. Cessna Citation II PH-Lab Research Platform
The Cessna Citation II(Model 550) twin-jet business aircraft is a pressurized, low-wing monoplane that is certified

for up to 10 persons including two pilots[21], is jointly operated by TU Delft and National Aerospace Laboratory (NLR).
The aircraft has maximum operating altitude 13 km and maximum cruising speed of 710 km/h. The aircraft is modified
as a airborne research platform(PH-lab) and flight tests are organized in cooperation with external partners like DLR,
Oberpfaffenhofen to test the FCL developed by Aircraft System Dynamics Department. The aircraft has a mechanically
linked Flight Control System (FCS), an autopilot system facilitated by FCC, a Flight Test Instrumentation System (FTIS)
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and an experimental Fly-By-Wire (FBW) system. The control system of the Cessna Citation II consists of cables that are
connected to the control surfaces. The movements of the control surfaces are converted to electronic signals and the
FCC determines these signals based on expected actuator response and provides them to the servo amplifiers of the
actuators that deflect the control surfaces. The FTIS consists of a data acquisition computer and signal conditioning
unit that can process information from sensors and can provide measurements at a high sample rate of upto 1000Hz
that can be available for controllers[22]. Some of the sensor signals made available for FTIS are Attitude Heading and
Reference System (AHRS), Digital Air Data Computer (DADC), air data boom, control surface synchros which measure
deflection angles of the control surfaces. Angle of attack is also available from a body mounted vane sensor. The FBW
is developed based on the existing original autopilot system of the aircraft[23] which uses the position setpoint values
from the FCL and feed back signals from servo which command the actuators. The overall PH-Lab aircraft diagram
integrated with components useful for flight testing is shown in Fig. 2.

Pilot
command

Flight
Control Laws FBW Actuators Aircraft Sensors

A4 5?;C *2<3 *0? X H

sensors

Fig. 2 Overview of PH-Lab integrated with Flight Control Laws and Fly-By-Wire system

Aircraft, sensor and actuator models that are available for testing the FCL’s are discussed here.

A. DASMAT Aircraft Model
A simulation model for Cessna 500 aircraft was designed as a standard Flight CAD package referred to as DASMAT

[24] and further improvements using this baseline model were made through flight tests on Citation II [25]. The baseline
model is based on a generic nonlinear aircraft model with aerodynamic,propulsion and engine models. Models of
external conditions like atmospheric wind and turbulence are also available which can be interfaced with the aircraft
model. These models use the 6-DOF combined translational and rotational nonlinear equations of motion for the rigid
body aircraft. The state vector is constructed using these 6-DOF equations and without the engine model the following
12 state variables and 8 Aerodynamic control inputs are available.

G =

[
? @ A +C0B U V q \ k ℎ4 G4 H4

]
D =

[
X4 X0 XA XC4 XC0 XCA X 5 ;6BF

]
where X 5 denotes flap control surface, ;6BF denotes the landing gear. Further the model also provides observations

which will be useful for control design viz,. aircraft states, their derivatives, accelerations, force and moment components
from aerodynamic and propulsion models. An accurate mass model was developed and adopted to Citation II which
provides aircraft mass, inertia and center of gravity position[4].

B. Sensor model
The sensors instrumentation model of the PH-Lab is identified using flight test data[4][26]. These are modelled

taking into account the practical phenomenon like bias, noise, delays, resolution and sampling rate. The noise of sensors
are modelled as Gaussian white noise with zero mean. The sensor characteristics available from different sensor systems
are shown in the Table 1.

C. Actuator model
A high fidelity actuator model is developed and adopted for use within Citation II with better estimation along

elevator and aileron channels[6]. As this model assumes smaller control system movements which cannot be guaranteed
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Table 1 PH-LAB Sensor characteristics [6]

Signal Noise (f2) Bias Resolution Delay[ms] Sampling rate [Hz]

?, @, A, ¤q, ¤\, ¤k [A03/B] 4.0 × 10−7 3.0 × 10−5 6.8 × 10−7 90 52
\, q[A03] 1.0 × 10−9 4.0 × 10−3 9.6 × 10−7 90 52

�G , �H , �I [6] 1.5 × 10−5 2.5 × 10−3 1.2 × 10−4 117 52
+) �( , +��( [</B] 8.5 × 10−4 2.5 3.2 × 10−2 300 16,8
X0, X4, XA [A03] 5.5 × 10−7 2.4 × 10−3 − 0 100

U1>><, V1>>< [A03] 7.5 × 10−8 1.8 × 10−3 9.6 × 10−5 100 100
U1>3H [A03] 4.0 × 10−10 − 1.0 × 10−5 280 1000

during the iADP controller training process, a low fidelity first order actuator model is chosen. This low fidelity actuator
model is developed using flight test data to accommodate the dynamics of FBW[4] system. It is modelled as a first order
system with a lag component, actuator deflection and rate saturation limits and transport delay as follows:

¤X(C) = B0C ¤X{g−1
02CX2><(C − _02C ) − g−1

02C B0CX [X(C)]} (44)

Where B0CX and B0C ¤X represent the saturation function for actuator deflection and rate respectively. g02C is the time
lag component identified using a step input response and the delay between FBW and the control surface deflection is
modelled as the transport delay _02C . The actuator model characteristics are listed in the Table 2.

Table 2 PH-LAB Actuator characteristics [4]

X<0G [◦] X<8= [◦] ¤X<0G [◦/B] _02C [<B] g02C [<B]
Aileron 15 -19
Elevator 15 -17 19.7 39.8 84
Rudder 22 -22

IV. iADP Control Law Design
This section presents the control law design for integrating iADP controller within the FCL’s of Citation II aircraft.

iADP controller is used for automatic control of inner loop while the outer loop is based upon the previously designed
manual control[4] laws. The output from the slow outer loop is used as the reference signal to be tracked by the faster
inner loop. The outer loop contains Command and reference model and a side-slip controller. The command module
ensures safety through attitude flight envelope protection. The reference model is a second order model which converts
the commanded signals from pilot into values achievable by aircraft. Smooth reference signals are necessary for iADP
controller to ensure any sharp increase on cost function which might result in numerical instability in updating the
kernel matrix %. A coordinated flight is desirable due to the absence of FBW for yaw channel. Thus, an outer loop
controller for yaw channel is designed which generates reference for yaw rate such that any side slip angle is rejected.
Standard flight maneuvers like 3211 for pitch tracking, bank to bank maneuvers for roll are simulated and are provided
as input pilot commands to the outer loop.

A coupled longitudinal and lateral rate iADP controller is designed for the automatic inner loop which can learn to
control all the available control surfaces at the same time. The advantage of having a combined longitudinal and lateral
control is that it can learn control parameters without neglecting any coupling effects.
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A. iADP-FS Online Rate Control Design

Command &
Reference module

Sideslip
Controller

iADP FS
Controller Actuators Aircraft

Sensors

Online
Learning

Incremental
Model /−1

+Σ


¤q?;C
¤\?;C
V?;C


[
¤qA4 5
¤\A4 5

]

AA4 5

ΔD D2<3 D02C H

D

G, H, D

%

+ (G)

Inner Loop
Outer Loop

Fig. 3 Controller architecture with online training using Full State Feedback for combined longitudinal and
lateral control of Cessna Citation II

The control system architecture with integrated iADP controller using full state feedback is shown in Fig. 3. iADP
is used for rate control design as the rate control has least learning complexity. This is due to the fact that the effect
of control surfaces input on aircraft angular rates are faster as compared to that of control surface effect on angle of
attack, due to time scale principle. However in theory iADP should be able to achieve control involving slower dynamic
variables even as it does not assume time scale separation[20]. Assuming actuators are modelled as first order systems
the order of learning complexity according to time scale separation is as follows:

?, @, A < q, \, k, U, V < +, W, j (45)

The states, control input, output and reference vectors used by the iADP controller are

G =

[
? @ A U V q \

])
, D =

[
X0 X4 XA

])
H =

[
¤q ¤\ A

])
, HA =

[
¤qA4 5 ¤\A4 5 AA4 5

])
The air speed information is not included in the state vector due to slower local variations in the airspeed variable

which might effect the incremental model identification. The previous implementations are designed using a air speed
controller, however this is not possible on Cessna citation because of lack of auto throttle functionality. The effect of
variations in air speed on the controller are mitigated by choosing the reference commands to track such that variations
in air speed are restricted to smaller values. Also as the controller is implemented with online learning capability this
might reduce effects of air speed variations further.

The incremental model for the system is provided with state information, actuator position measurements(G, D).
The incremental model for the reference dynamics is identified using the reference signal from the outer loop. Online
incremental model for the system as well as the reference dynamics is identified online using RLS approach and the
identified model coefficients are provided to the iADP controller. The iADP controller calculates the control increments
using the model information from the incremental model and the measurements from the system. For online controller
adaptation the kernel matrix % is updated at every time step using a Least Squares method with the data collected along
the system trajectory. Recalling equation (20) we can write:

-): %-: = (H: − H
A
: )
)&(H: − HA: ) + D

)
: 'D: + W-

)
:+1%-:+1

-): %-: = + (-: )
(-: ⊗ -: )) ®% = + (-: )

- :A ®% = + (-: )
®% = - :A+.+ (-: )

(46)
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where - :A = (-: ⊗ -: )) is the Kronecker product, ®% is the kernel matrix reorganized as a vector, - :A+ is
the pseudo inverse of - :A . The online learning block stores the cost function estimate + (-) and the Kronecker
product(- :A = (- ⊗ -: )) ∈ R(1×(=+;)

2) ) of augmented state vector - from the iADP controller over a certain time
window C>; = #>; × 5 , where #>; are the number of samples collected during this window and 5 is the frequency of
simulation. The collected cost estimate and state vector are stacked as follows:

+̄ (G) =
[
+ (-: ) . . . + (-:−#>;

)
])
∈ R(#>;×1)

-̄ :A =

[
- :A
:

. . . - :A
:−#>;

])
∈ R(#>;×(=+;)2)

(47)

Now the kernel matrix can be updated recursively using the data observed over this window as :

®% = -̄ :A+.+̄ (-: ) (48)

It is assumed for the iADP combined control design, clean measurements from sensors are available, thus effects of
sensor dynamics like noise,delays, bias and quantization are neglected.

B. iADP-FS Online Longitudinal Rate Control Design
A simple longitudinal control design is considered to analyze the effects of real world phenomenon on the controller

performance as this design needs only limited sensor measurements of states/outputs and actuators to study the individual
effects of different phenomenon. The control architecture is as shown in Fig. 4 where only variables related to
longitudinal rate control are considered. The manual outer loop provides the reference signal to be tracked to the
automatic inner rate control loop. The iADP controller is used for the inner rate control with full state feedback. The
states, outputs, reference and control vectors used by the iADP controller are

G =

[
@ U

])
, D = X4, H = ¤\, HA = ¤\A4 5

.
Further as the primary aim of this analysis is to study the influence of real world phenomenon on controller

performance, effects of sensor dynamics like bias, noise, delays, transport delay and quantization effects are considered.
Transport delay for citation model is added in the control channel. To mitigate the effect of sensor noise, processing
of noisy signals is done through signal filtering as shown in Fig. 4 and filtered signals (Ĝ, Ĥ, D̂) are used by the iADP
controller and also for the incremental model identification. Similar to the combined control approach, the online
learning is achieved by updating the kernel matrix % at every time step using the data within a window.

C. iADP-OPFB Longitudinal Rate Control Design
Similar to previous section a simple longitudinal control design is considered to evaluate the output feedback

algorithm. The control architecture is as shown in Fig. 5 where it is assumed that the full state feedback is not available
and the task of the iADP is to achieve longitudinal rate control using only output measurements over a time horizon. As
the effects of sensor dynamics are considered, the noisy sensor measurements are processed through signal filtering.
Due to higher learning complexity of the algorithm the controller is trained offline to arrive at a baseline controller %
which is used to evaluate the controller. The offline training is done by certain number of episodes where the kernel
matrix is updated at the end of every episode. Every episode is initialized with kernel matrix % that is carried on from
the previous episode and the aircraft is reset to steady wing level flight condition at the beginning of episode. The
incremental model identifies the model coefficients necessary predict the next incremental output. The output,reference
and control vectors used by the iADP controller are

H = ¤\, HA = ¤\A4 5 , D = X4

D. Signal filtering
The iADP controller is a model free controller which is based only on the measurements that are obtained along the

system trajectory. For Full State Feedback controller as shown in Fig. 3 the controller needs full state measurement
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Command &
Reference module

iADP FS
Controller Actuators Aircraft

SensorsSignal Filtering

Online
Learning

Incremental
Model /−1

+
¤\?;C ¤\A4 5 ΔD4 D2<3 D02C H

D̂

Ĝ, Ĥ, D̂

%

+ (G)

Inner Loop

Outer Loop

Fig. 4 Controller architecture with online learning using Full State Feedback for longitudinal control of
Cessna Citation II

and the actuator deflection measurements. State information is made available through various sensors like AHRS
for attitude and angular rates while angle of attack and side slip angle are measured using vane type sensors. Control
surface deflection measurements are available for Citation-II aircraft which are measured using synchros. This alleviates
the need for an actuator model to estimate the actuator position.

To mitigate the effects of noisy sensor measurements appropriate signal filtering is required. All the signals are
filtered using a first order low-pass filter (49) unless specified with a cut off frequency of l= = 20A03/B.

� (B) = l=

B + l=
(49)

E. Implementation issues
The following section provides discussion on some of the implementation issues related to the iADP Controller viz,

Incremental model identification, Persistent excitation and parameter tuning.

1. Online Incremental Model Identification
The iADP controller performance is dependent on good identification of the incremental model parameters. As the

controller do not have any prior knowledge of the model, procedures similar to online system identification have to be
adopted for incremental model identification. Online system identification typically involves exciting the aircraft through
specific control inputs along different channels. Some of the common flight maneuvers used for system identification
are listed in [19] and some of these maneuvers and necessary control input parameters are adopted here.

(a) For estimation of parameters related to longitudinal motion a short period motion is selected as this motion can
provide most information for parameter estimation related to vertical and pitching motion. A multi step input
like 3211, which consists of alternative positive and negative steps with relative duration of 3,2,1,1 respectively
is chosen . The duration of the time step can be tuned to excite mode of interest.

(b) For lateral motion parameter estimation, banking roll maneuver and dutch roll motion are chosen. The banking
maneuver is achieved through multi step aileron pulses while the dutch roll is excited through a doublet input.

The control inputs are chosen such that the aircraft can come back to steady state condition and are skewed in time
across the channels such that different dynamic motions across different axes are excited. Another advantage of these
control inputs is that the pilot can easily provide these inputs during flight avoiding automated control input generation.
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Fig. 5 iADP controller architecture with offline learning using Output Feedback for longitudinal control of
Cessna Citation

2. Persistent Excitation
The need for Persistent excitation is two fold. One for online system identification such that all the modes of

the system are excited continuously so that the model parameters can be updated. Second it serves for state space
exploration which is a necessary condition for RL algorithm to arrive at good policies that can minimize the cost
function. Although the input signals mentioned above are useful in identifying the initial model parameters, such signals
cannot be implemented continuously. To aid continuous learning for model identification and controller state space
exploration, white noise is added to the control input along with the incremental control input across the three channels.
Thus the control input becomes

D: = D:−1 + ΔD: + %�

where %� is white noise. During initial mode excitation phase, %� is white noise combined with control input used for
model identification mentioned in previous section. The reference tracking problem includes a feedback loop from
output H to D. For systems involving feedback loop it is also necessary that the reference signal is also persistently
exciting to estimate the model parameters[27].

3. Parameter tuning
For optimal control performance parameter tuning is essential. For online incremental model identification the

following hyperparameters are involved viz,. forgetting factor W'!( , initial covariance matrix �>E0 and the initial
parameter matrix Θ0. For the 803? controller the following hyperparameters are involved viz,. forgetting factor W,
weighting matrices Q and R, initial kernel matrix %0.

The RLS algorithm for model identification uses forgetting factor W'!( which provides control over the importance
of data and its recency. For time-varying models W can be chosen to be a value less than 1 to rely on the most recent data.
However this makes the parameter updates more sensitive to the noise in the data. This is important if the real time
data is obtained from noisy sensors. Typical range of values for the forgetting factor are 0.95 ≤ W'!( ≤ 1[27]. The
Covariance matrix(�>E) is a measure of confidence in the parameter matrix Θ. It is generally initialized as an identity
matrix scaled by a factor. During the phases of poor excitation, covariance matrix parameters might grow exponentially
leading to covariance wind up[28] causing numerical instability errors. The initial parameter matrix(Θ0) contain the
control effectiveness matrix and dynamic model information. These are typically initialized as zero matrices.

The hyperparameters of the iADP controller directly influence the controller performance. The discount factor
60<<0 ∈ [0, 1] is a measure of importance of cost information from future states. Typically, W is initialized to value
smaller than 1 to contain the infinite horizon cost to a finite value. Another advantage of discount factor is that it can
reduce the bias effects that is introduced by the white noise during persistent excitation and the effects of improper
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initial conditions[13]. The weighting matrices Q and R provide a trade off between the tracking performance and
control input energy[12]. The choice of Q and R will also effect the stability and robustness of the controller and
hence should be initialized to appropriate values. Initialization of Q and R is done through trial and error such that
satisfactory performance can be achieved. Fine tuning of Q and R might be essential for systems involving multiple
inputs and outputs. In such scenarios fine tuning of parameters can be achieved through optimization techniques like
Multi Objective Parameter Synthesis (MOPS)[29] such that certain control design requirements like overshoot, settling
time, rise time and tracking error are met. However tuning control parameters to meet control design requirement is
beyond the scope of this paper. Finally the kernel matrix is typically initialized as a identity matrix scaled by a small
factor.

V. Control Law Evaluation
This section presents the results of the iADP controller implementation on Cessna Citation II aircraft. The results

are simulated in MatLab/Simulink environment using a Cessna Citation model that simulates the data required for the
controller evaluation. The simulations are performed at 100 Hz sampling frequency using Heun’s second order fixed
step solver. As data is sampled from sensors at fixed time steps in real time applications, using a fixed time solver is
ideal to evaluate the controller learning performance. Unless specified the simulations are started from a steady straight
and level trim flight condition which is a wings-level constant flight path condition. The trimming conditions of the
aircraft at the start of the simulation are provided in Tables 3 and 4. PLA stands for power lever angle and an equal
constant throttle power is provided to left and right engines.

Table 3 State Trim conditions

State ? [◦/B] @ [◦/B] A [◦/B] +C0B [</B] U[◦] V[◦] q[◦] \ [◦] k [◦] ℎ4 [<] G4 [<] H4 [<]
Value 0 0 0 90 3.76 0 0 3.76 0 2000 0 0

Table 4 Actuator Trim conditions

Actuator X0 [◦] X4 [◦] XA [◦] %!�1,2

Value 0 −1.727 0 0.6335

A. iADP-FS Online Rate Control
The simulation results for combined Online rate control design using iADP full state feedback controller are

presented in this section. The control law is designed based on the procedure discussed in section IV.A and clean
sensor measurements are assumed. The hyperparameters are tuned according the principles mentioned before. The
parameters for incremental model identification and iADP controller used in this simulation are presented in Tables 5
and 6 respectively. The forgetting factor W'!( is chosen to be one to provide better convergence of model parameters.
The weighting matrices are manually tuned such that a satisfactory controller performance can be achieved. Typically
values of weighting matrices R are fixed and Q are varied to achieve satisfactory performance. Higher weightage is
given to the yaw rate control to maintain zero side slip to avoid adverse yaw. The task of the controller is two fold.
Firstly an incremental model of the aircraft has to be identified online ensuring that the aircraft retains the steady state
flying condition. Secondly aircraft should learn the control parameters online and perform a defined flight maneuver
and achieve satisfactory tracking performance. The flight maneuver involves a combined longitudinal and lateral
motion, where the aircraft performs a bank to bank roll maneuver and tracking a 3211 reference in the longitudinal
direction, while ensuring coordinated turn using rudder. The necessary pilot commands to achieve this flight maneuver
are simulated which are then fed to the manual control loop. The manual control loop provides the set points of the
reference signals to be tracked for the automatic inner loop by ensuring that the aircraft stays within safe flight envelope
and the reference commands are achievable by the inner loop.

Figures 6 and 7 shows the time responses and control inputs(D02C ) acting on the aircraft. During the first 30 seconds,
control inputs are generated such that online incremental model can be identified. Firstly, a 3211 input is commanded by
elevator to excite short period dynamics. After the aircraft has reached steady state then the lateral dynamics are excited
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Table 5 Parameters for Incremental Model Identification

Parameter W'!( �>E0 Θ0

Value 1 1000� 0

Table 6 Controller tuning parameters

Parameter 3806(&? , &@ , &A ) 3806('X0 , 'X4 , 'XA ) W %0

Value 3806(80, 100, 200) 3806(1, 1, 0.25) 0.4 0.001�

through a banking motion by commanding a pulsed input through aileron and dutch roll motion is excited through
doublet by rudder. As the reference model also needs to be identified online reference signals are provided during this
period. The controller is then activated at t = 30 seconds and the parameters of the kernel matrix are updated online
from there after. The iADP controller needs data over a window period of C>; before the parameters of the kernel matrix
are updated. A window of 20 seconds is chosen in this case where the data is collected during this window viz,. +̄ (G),
-̄ :Aand used to update the kernel matrix % at every time step according to equation (48). From the time responses we
can see that the controller is able learn the policy online using data collected from just 2000 samples in the 20 second
window period and is able to track the reference signals with satisfactory performance. The small oscillations observed
at the control surface is due to the persistent excitation which is required for continuous online learning. Also the small
peaks at control surfaces are visible at C = 30 seconds due to the kernel matrix update however the deflections are found
to be within the actuator limits. High control activity in the rudder can be seen which is due to less weight('XA ) given
to rudder. Observing the pitch attitude rate tracking response, we can see that the controller is able to adapt to time
varying reference signals. Higher aileron control activity can be seen whenever there is a non zero pitch rate command,
implying the controller is able to learn the coupling effects as the designed controller does not assume a decoupled
controller for longitudinal and lateral dynamics.
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Fig. 6 Time responses of theCessnaCitationwith combined iADPOnline rate control usingFull State Feedback

From Fig. 7 we can see that the aircraft is able to perform bank to bank(±20[◦]) manoeuvre while restricting the
side slip angle to value ±0.5[◦]. Safety critical parameters like U and load factor =I are found to be within safety limits
throughout the flight maneuver including the initial model identification phase. Good longitudinal tracking response is
seen even when the velocity conditions are changing which might be due to the online learning aided with persistent
excitation. However for large changes in velocity we might have to excite the dynamic modes of the aircraft again if any
performance degradation is observed.
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Fig. 7 Time responses of theCessnaCitationwith combined iADPOnline rate control usingFull State Feedback

Fig. 8 shows the evolution of incremental model parameters viz,. state transition matrix �C , control effectiveness
matrix �C and diagonal values of the kernel matrix parameters. The incremental model parameters have converged after
the initial model identification phase of 30 seconds. We can see the effect of different modes of aircraft being excited at
different times from the diagram. The kernel matrix parameters have converged within a short time after activating the
kernel matrix at 30 seconds. However some of the parameters are fluctuating during the flight maneuver which might be
because the controller is finding the need to update its policy for changing flight conditions and the coupling effects not
encountered before.

Fig. 8 Evolution of model coefficients and kernel matrix parameters during online learning
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B. iADP-FS Online Longitudinal Rate Control
To assess the effect of sensor dynamics a simple longitudinal control task is considered. The time response and

the control input is shown in Fig. 9. First 25 seconds is the model identification phase through short period dynamics
excitation and the controller is activated after 25 seconds. The evolution of model coefficients and kernel matrix
parameters are shown in Fig. 10. The model coefficients have converged after 10 seconds and for the remainder of this
section the converged model coefficients will be considered as a measure to evaluate the model identification. Controller
performance is assessed by considering three metrics viz, Root Mean Square Error (RMSE) between reference and
actual pitch attitude rate, max absolute elevator deflection angle(<0G(X4)) and max elevator deflection rate(<0G( ¤X4)).
The rate saturation limit of the elevator is 20 deg/s. To minimize the transient effects of controller learning process,
these metrics are evaluated between 40 - 80 seconds period.

Fig. 9 Time responses of the Cessna Citation with longitudinal iADP Online rate control using Full State
Feedback

Fig. 10 Evolution of model coefficients and kernel matrix parameters during online learning

1. Selection of Weighting matrices
Before studying the effect of sensor dynamics a robustness analysis of controller is performed to assess the stability

of the controller against change in weighting parameters. Fig. 11 shows the variation of the controller performance
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metrics against the weighting matrices. It is clear that the tracking error is minimum for higher values of Q and lower
values of R. However the tracking error seems to increase after a certain limit indicating oscillatory behaviour after
certain threshold. This is confirmed from the elevator deflection rate graph as the actuator rate saturation limits are
found to have reached beyond this threshold. For constant values of Q an increase in R will reduce the control activity
but will increase the RMSE. For constant values of R an increase in Q results in less RMSE but it is also increasing the
control activity. To ensure stability, lower values of Q and higher values of R are preferred.

Fig. 11 Effect of weighting matrices on tracking performance and control activity

2. Real world phenomenon investigation
Before studying the effects of sensor dynamics the weighting matrices are readjusted to Q = 20 and R = 1 so that

influence of weighting matrices is minimized during this analysis. The effect of sensor dynamics on the performance
metric namely RMSE, actuator maximum deflection and rate and converged model parameters are evaluated which is
listed in Table 7.

Fig. 12 Effect of sensor dynamics on tracking performance

For a comparison a baseline controller performance is included where sensor dynamics are neglected. Each
phenomenon is considered separately based on one factor at a time method. Finally controller performance is evaluated
considered combined phenomenon referenced as Total in the table. Comparing with baseline performance, we can
see that the controller performance is not effected by discretization. The model parameters are identified without any
difference. The effect of sensor bias on controller performance is also minimal, however small changes in the model
parameters in the presence of bias is observed. Transport delay has also minimal effect on the controller performance.
Noise and delays are found to degrade the controller performance and RLS algorithm is unable to identify the model
parameters in the presence of noise/delays. These effects can be visualized from Fig. 12.

Note that the baseline performance is not optimal as the weighting matrices are retuned such that the controller
performance is stable. Noise has degraded controller performance considerably. In the presence of delays, although the
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Table 7 Effect of Sensor dynamics on Controller performance and Model Identification

'"(� [◦/B] <0G(X4) [◦] <0G( ¤X4) [◦/B] �C [−] �C [−]
Baseline 57.45 2.11 3.58 [0.492, -0.032, 0.034, 0.032] [-0.092, 0.044]

Discretization 57.27 2.11 3.60 [0.492, -0.032, 0.034, 0.032] [-0.092, 0.044]
Bias 58.73 2.09 3.55 [0.492, -0.034, 0.034, 0.035] [-0.089, 0.045]
Noise 193.75 1.85 4.47 [0.410, -0.006, 0.016, -0.015] [-0.046, -0.064]

Sensor Delay 110.82 2.04 3.46 [0.501, -0.011, 0.026, 0.032] [-0.035, 0.044]
Transport Delay 55.21 2.11 3.50 [0.492, -0.032, 0.034, 0.032] [-0.093, 0.045]

Total 170.70 1.90 2.40 [0.409, -0.010, 0.017, -0.017] [-0.049, -0.063]

controller performance has degraded, it is observed that the controller is still trying to track the reference signal but with
higher tracking error. Oscillatory behaviour can also be observed.

Table 8 Effect of Sensor dynamics on Controller performance and Model Identification with filtering

'"(� [◦/B] <0G(X4) [◦] <0G( ¤X4) [◦/B] �C [−] �C [−]
Baseline 57.53 2.11 4.16 [0.481, -0.030, 0.034, 0.032] [-0.092, 0.044]

Discretization 57.51 2.11 4.15 [0.481, -0.030, 0.034, 0.032] [-0.092, 0.044]
Bias 59.19 2.09 4.08 [0.481, -0.032, 0.035, 0.035] [-0.088, 0.045]
Noise 61.49 2.10 4.03 [0.480, -0.026, 0.034, 0.032] [-0.091, 0.042]

Sensor Delay 94.77 2.12 3.73 [0.488, -0.014, 0.027, 0.033] [-0.046, 0.047]
Transport Delay 57.87 2.11 4.05 [0.481, -0.030, 0.034, 0.032] [-0.092, 0.044]

Total 101.30 2.09 2.94 [0.487, -0.011, 0.027, 0.036] [-0.045, 0.046]

To mitigate the effect of noise, signals are filtered using a first order low pass filter. Table 8 lists the effect of filtering
on the controller performance. Using filtering, the controller performance degradation has been reduced considerably
and RLS is able to learn the model parameters with improved accuracy. The improvement in the controller performance
with filtering is shown in the time response plots in Fig. 13.
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Fig. 13 Effect of Filtering on tracking performance

C. iADP-OPFB Longitudinal Rate Control
This section presents the results of iADP-OPFB controller evaluation to achieve longitudinal rate control of Citation

II. As mentioned before, full state information is not provided to the controller and the controller has to achieve
longitudinal tracking by using the input output measurements over a certain time horizon. Recalling the methodology
from Section II.A.3, N=2 samples is used to construct the state. The weighting matrices(& = 10, ' = 1) are tuned to
achieve satisfactory performances. The results are summarized in Fig. 5. The model is identified using a 3211 maneuver
in every episode and the objective of the controller is to track the 3211 signals commanded by the pilot. The evolution
of kernel matrix parameters over episodes is shown in Fig. 15. The parameters have converged after 13 iterations. The
controller performance using the converged kernel matrix parameters for tracking is shown in Fig. 14. The controller is
able to track the reference in the presence of noisy signal measurements and time delays when state information is not
provided to the controller. Small steady state errors are visible which might due to the sensor bias and as the full state
information is not available for this controller the effects of bias is higher compared to the controller where full state
feedback is available.
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Fig. 14 Time responses of Cessna Citation with longitudinal iADP rate control using Output Feedback

Fig. 15 Evolution of kernel matrix parameters of iADP rate control using Output Feedback

VI. Conclusion
This paper presents design of Incremental Approximate Dynamic Programming based flight control law for Cessna

Citation II aircraft. The iADP controller is designed to achieve automatic online rate control to track pilot commands
via setpoints provided by the manual outer loop. The incremental model necessary for the iADP controller is identified
online through appropriate system excitation using control surfaces. The simulation results show that the combined rate
control using full state feedback is able to learn online to control the aircraft without any knowledge of the system but
just using the data collected along the system trajectories. To assess the controller performance in the presence of sensor
dynamics and actuator dynamics, an analysis is carried out to identify causes of any performance degradation. The
simulation results from iADP longitudinal control design using full state feedback indicate that the discretization of
sensor signals, sensor bias and transport delays did not have any significant effect on the controller performance or on the
incremental model identification while noisy signals and delays in sensors are found to effect the controller performance.
The noisy signals resulted in incorrect estimation of incremental model parameters affecting the controller performance.
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It is observed that appropriate filtering of signals resulted in better estimation of the incremental model subsequently
improving the controller performance. Sensor delays also resulted in incorrect estimation of model parameters, however
the controller is found to track the reference inspite of the incorrect incremental model parameters but with reduced
tracking performance. Finally an iADP controller using output feedback is designed to achieve longitudinal control in
the absence of full state information. The controller is trained offline due to higher learning complexity and performance
is evaluated in the presence of sensor and actuator dynamics. The results from output feedback method show the
controller can achieve satisfactory tracking control but with reduced tracking performance.

For a successful implementation of iADP controller on Cessna Citation II aircraft, further research needs to be
conducted to validate this controller on a real system through flight tests. The effect of sensor delays on controller
performance should be investigated in future by conducting stability and robustness analysis as they are found to degrade
the controller performance.
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