AlwaysSafe: Reinforcement Learning without Safety Constraint Violations during Training

Simão, T. D.; Jansen, Nils; Spaan, M.T.J.

Publication date
2021

Document Version
Final published version

Published in
Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.
AlwaysSafe: Reinforcement Learning without Safety Constraint Violations during Training — Supplementary Material

Thiago D. Simão¹, Nils Jansen², Matthijs T. J. Spaan³

¹ Delft University of Technology, The Netherlands
t.diasimao@tudelft.nl
² Radboud University, Nijmegen
n.jansen@science.ru.nl
³ Delft University of Technology, The Netherlands
m.t.j.spaan@tudelft.nl

S-1 PROOF OF THEOREM 3.2

We restate the theorem for clarity.

Theorem (3.2). \(\phi_C \) is cost-model-irrelevant.

Proof. Given \(a, s_1, s_2, \bar{s} \in A \times \mathbb{S} \times \mathbb{S} \times \bar{\mathbb{S}} \). If \(\phi_C(s_1) = \phi_C(s_2) \) then we have

\[
C(s_1, a) = \sum_{i \in \mathbb{N}_a} C_i(s_1[\Lambda^C_i], a) = \sum_{i \in \mathbb{N}_a} C_i(s_2[\Lambda^C_i], a) = C(s_2, a).
\]

The first and last derivations come from the definition of the factored cost function. The middle derivation comes from the fact that both states were mapped together, so from (4) we conclude that \(s_1[\Lambda^C_i] = s_2[\Lambda^C_i] : \forall i \in \mathbb{N}_a \).

In the following derivation, we use \(P(s'[\Lambda] \mid s, a) = \prod_{X_i \in \Lambda} P(s'[X_i] \mid s, a) \) where \(\Lambda \subseteq X, s, a, s' \in \mathbb{S} \times \mathbb{S} \times A \) and \(\text{NotAnc}(C) = X \setminus \text{Anc}(C) \). If \(\phi_C(s_1) = \phi_C(s_2) \) then we have

\[
\sum_{s' \in \Phi^{-1}(\bar{s})} P(s' \mid s_1, a) = \sum_{s' \in \Phi^{-1}(\bar{s})} P(s'[X] \mid s_1, a) = \sum_{s' \in \Phi^{-1}(\bar{s})} P(s'[\text{Anc}(C)] \mid s_1, a)P(s'[\text{NotAnc}(C)] \mid s_1, a),
\]

\[
= \sum_{s' \in \Phi^{-1}(\bar{s})} P(\hat{s}[\text{Anc}(C)] \mid s_1, a)P(s'[\text{NotAnc}(C)] \mid s_1, a),
\]

\[
= P(\hat{s}[\text{Anc}(C)] \mid s_1, a)\sum_{s' \in \Phi^{-1}(\bar{s})} P(s'[\text{NotAnc}(C)] \mid s_1, a),
\]

\[
= P(\hat{s}[\text{Anc}(C)] \mid s_1, a)\sum_{s' \in \Phi^{-1}(\bar{s})} P(s'[\text{NotAnc}(C)] \mid s_1, a),
\]

\[
= P(\hat{s}[\text{Anc}(C)] \mid s_1, a),
\]

\[
= \prod_{X_i \in \text{Anc}(C)} P(\hat{s}[X_i] \mid s_1[\text{Pa}_a(X_i)], a)
\]

\[
= \prod_{X_i \in \text{Anc}(C)} P(\hat{s}[X_i] \mid s_2[\text{Pa}_a(X_i)], a)
\]

\[
= \sum_{s' \in \Phi^{-1}(\bar{s})} P(s' \mid s_2, a).
\]

In this derivation,

(a) shows we are considering the values of each variable in state \(s' \);
(b) decouples ancestors from non ancestors;
(c) removes the dependence on the state s', since $\forall s' \in \phi_C^{-1}(s)$, the values of variables in Anc(C) are the same, by the definition of ϕ_C;
(d) factors out the probability term, since it is now independent of s';
(e) removes the summation that results in 1;
(f) uses the conditional independence from the factored CMDP;
(g) swaps s_1 and s_2, since they were mapped to the same abstract state, the values of their parents are the same;
(h) uses the same reasoning from (f) to (a).

\(\square \)

S-II PROOF OF THEOREM 4.4
We restate the theorem for clarity.

Theorem (4.4). Given an abstract CMDP built according to a cost-model irrelevance abstraction and a fixed $\delta \in (0, 1)$, the algorithm AlwaysSafe equipped with policies π_A, π_T or π_α has no constraint violation regret with probability $1 - \delta$.

Proof. We split the proof in three parts related to the three policies considered.

AlwaysSafe π_A From Theorem 4.1 we know that

$$V_{C}^{\pi_A}(\mu) \leq \hat{c}.$$

This is enough to conclude that AlwaysSafe with π_A does not violate the safety constraints.

AlwaysSafe π_T First let us define the maximum expected cost of executing the policy π_G in an CMDP of the uncertainty set:

$$\max C = \max_{P \in \Xi} V_{C}^{\pi_G}(\mu, P').$$

From (7) we must show that π_T is safe in both cases.

- **Case 1** ($\max C \leq \hat{c}$): in this case the policy executed is π_G. This way, we have that the expected cost for executing π_G in any of the CMDP of the uncertainty set is smaller than $\max C$:

$$V_{C}^{\pi_G}(\mu, P') \leq \max C \leq \hat{c}, \forall P' \in \Xi.$$

Therefore, if the true CMDP is in the uncertainty set, then the expected cost of the policy π_G is less or equal to the cost bound:

$$P \in \Xi \implies V_{C}^{\pi_G}(\mu) \leq \max C \leq \hat{c},$$

where the last inequality comes from the condition of this case. By construction, the transition function of the true CMDP belongs to the uncertainty set Ξ with high probability $1 - \delta$:

$$Pr(P \in \Xi) \geq 1 - \delta.$$

(8)

Therefore, we have from (8) and (9) that:

$$Pr\left(V_{C}^{\pi_G}(\mu) \leq \hat{c}\right) \geq Pr\left(P \in \Xi\right) \geq 1 - \delta.$$

(9)

- **Case 2** ($\max C > \hat{c}$): in this case the policy executed is π_A, which is safe (Theorem 4.1).

AlwaysSafe π_α This proof is similar to the proof for AlwaysSafe π_T. In this case, the only difference is that π_G might be computed with a bound $\beta \hat{c}$ that is lower than the original bound \hat{c}.

\(\square \)
S-III ENVIRONMENTS FROM THE EMPIRICAL ANALYSIS

S-III.1 Cliff environment

In the cliff environment (Figure 4 left) the agent starts in position S and must reach position G (an absorbing state with no cost or reward). The agent also gets a reward of -1 for each movement. If the agent falls from the cliff (stepping in one of the grey areas), it is sent back to state S and gets a reward of -100.

The agent gets a cost of 2 for walking in cells adjacent to the cliff (second row) and a cost of 1 for walking 2 cells away from the cliff (third row).

Figure 4 (right) shows the optimal paths (dashed lines) for a cost bound $\hat{c} = 2$. The agent needs to randomize between two paths, taking each path 50% of the time, which gives an expected cost of 2 and expected value of 10.

S-III.2 Simple CMDP

The simple CMDP (Figure 5) was adapted from a problem proposed by Zheng and Ratliff [55]. It has 3 states and 2 actions. The agent can move from one state to the other, which give a cost of 1 and a reward equals to the index of the current state. Therefore, the agent has to balance between the actions move and stay to get the maximum reward without violating the cost constraints. Finally, since the reward for moving changes from one state to the other, the optimal policy is not equal in all the ground states.
S-IV CONFIDENCE INTERVALS FROM EXPERIMENTS

We use the following confidence intervals in the experiments:

\[e^P(s, a, s') = \frac{1}{\max\{n(s, a), 1\}} + \frac{\text{Var}(\hat{P}(s' | s, a))}{\max\{n(s, a), 1\}} \]

\[e^R(s, a) = \frac{R_{\max} - R_{\min}}{\max\{n(s, a), 1\}}, \]

\[e^C(s, a) = \frac{C_{\max} - C_{\min}}{\max\{n(s, a), 1\}}. \]

where

- \(n(s, a) \) is the number of times action \(a \in A \) has been executed in the state \(s \in S \),
- \(R_{\min} \) and \(R_{\max} \) (\(C_{\min} \) and \(C_{\max} \)) are the minimum and maximum value of the reward (cost) function,
- \(\text{Var}(x) = x \ast (1 - x) \).

We removed the subscript \(\delta \) since these bounds are tighter than the theoretical bounds and do not depend on \(\delta \).

S-V CODE

The code to reproduce the experiments is available at https://github.com/AlgTUDeift/AlwaysSafe. The interested reader can follow the instructions in the README.md file to install and run the scripts for each experiment.