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Abstract—We study the optimal design of an aperture coding
mask, and the optimal sensing positions of a single ultrasound
sensor with a scanning configuration. In previous works, we have
shown that 3D ultrasound imaging is possible using a randomly
shaped coding mask with randomly chosen sensing positions.
Here we propose an optimization algorithm for the joint design
of the coding mask and the sensing positions. We first define
a linear measurement model and parameterize it with respect
to the mask shape. To optimize the shape of the mask, we
use a greedy descent algorithm to minimize the imaging MSE,
assuming a Wiener estimate is used for image reconstruction.
To optimize the sensing positions, we pre-define a set of such
sensing positions by gridding the measurement plane, and regard
each sensing position as a virtual sensor candidate. We then use
a greedy sensor selection algorithm to find a good selection of
sensing positions. To jointly optimize for both the mask and
the sensing positions, we alternatingly optimize between them,
keeping either the mask shape or the sensing positions fixed.
Using simulations we show that the joint optimization results in
better imaging performance than optimizing for the mask or the
sensing positions alone, or using a completely random design.

I. INTRODUCTION

In recent years there has been a growing interest in reduc-
ing the amount of measurement data from ultrasound arrays
while retaining image quality. The theory of Compressive
Sensing ( [1]–[4]) provides us with tools for undersampling
measurement data below the Nyquist limit, provided that
the signal under recovery has a sparse representation in a
known domain. This resulted in a large number of studies
in the medical ultrasound imaging community, typically using
random subsampling in space and/or time, or using random
compression schemes ( [5]–[10], amongst others). Recently,
we demonstrated a single sensor ultrasound imaging system
by equipping the sensor with a coding mask [11], that does
not rely on sparsity, but uses straight-forward `2 regularization
for imaging. The basic principle is as follows. Consider a
circular single ultrasound sensor, its flat surface aligned to a
reference plane, without a coding mask. Ultrasound reflectors
at the same range, and the same altitudinal angle with respect
to the reference plane have the same pulse-echo signal shape
across all the azimuth, making them unresolvable. If, on the
other hand, a irregular material is placed in between the
ultrasound sensor and the imaging object, this will distort
the ultrasound waves in a direction-dependent manner. As a
result, two scatterers at the same range will reflect different
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ultrasound wavefields to the sensor (for a more detailed review,
see [11]). These scatterers can then be resolved based on the
difference of the measured waveforms.

As an extension of this idea, we recently showed a single
sensor with a coding mask that is translated in space [12]. By
moving the sensor to a different position, more information
about the image target is obtained. These kind of imaging
systems can be used in a catheter-based imaging scenario,
where the inside of the veins, arteries, or the heart is imaged
to assist in minimally invasive surgery. Since a single sensor
is employed instead of an array, a very small amount of data
is transferred to an imaging unit outside the patient, resulting
in smaller devices and less data cables.

In our works so far, we have only considered using a
randomly shaped coding mask, and in [12] we also used
randomly selected sensing positions. However, it is not known
how optimal a random setup performs, or whether a perfor-
mance increase is possible using a deterministic design. In this
paper, we propose a greedy optimization algorithm to find a
good mask shape, as well as a good set of sensing positions.
Since this greedy algorithm is sub-optimal, it is not guaranteed
to find the true optimum, but our simulation results show
a significant performance increase compared to randomized
sensing configurations.

II. METHODS

Denoting vectors in lowercase bold, and matrices in upper-
case bold, we assume the following linear model

yk = Akx+ nk, (1)

where yk ∈ CN is the pulse-echo measurement vector
consisting of frequency domain samples for measurement
position k. The vector x ∈ RM is a real-valued vector
containing the image values of each pixel in the ROI, and
Ak ∈ CM×N describes the relation between yk and x,
consisting of Green’s functions for each image pixel. The
vector nk ∈ CN represents additive measurement noise, which
we assume is white, independent and identically distributed,
and Gaussian: nk ∼ N (0, σ2

nI), where σ2
n is the noise

variance.
If K measurements are taken by scanning the ultrasound

probe, the measurements can be stacked to obtain a larger
system of equations:[

yT
1 yT

2 . . . yT
K

]T
=
[
AT

1 AT
2 . . . AK

T
]T

x+ n, (2)

which we will denote shortly as y = Ax + n. In this paper,
we assume that an estimate of x is obtained by using a Wiener
estimator. Since A describes the difficulty of the imaging



problem, we will use it to find a good mask and set of sensing
positions. Therefore, we will parameterize the measurement
matrix A by the mask shape parameter w and the sensing
positions parameter v, denoted as A(v,w).

To find a good v and w, we will use the estimation error
covariance matrix given by

Cε = (C−1x + 1/σ2
nA(v,w)HA(v,w))−1, (3)

where Cx is the covariance matrix of x, and we assume in this
work that Cx = I. The imaging mean squared error (MSE) is
simply the sum of the diagonal entries of Cε:

MSE = trace(Cε) (4)

Hence, we would ideally minimize this MSE with respect to
v and w. This is, however, a non-convex problem, so in the
next section we present two algorithms to find sub-optimal
solutions.

A. Optimizing for sensing positions

We first define a grid of candidate sensing positions. If the
mask is fixed, each of these points can be seen as a virtual
sensor, and we can easily pre-compute the Ak for each of
these sensor candidates. If the v-th element of v ∈ {0, 1}V
indicates whether the sensing position v (with corresponding
sensing matrix Av(w) is used or not, the matrix C−1ε is then
expressed as

C−1ε = C−1x + 1/σ2
n

V∑
v=1

[v]vAv(w)HAv(w). (5)

Of course, if we want to select K sensing positions, then
only K components of v should be one, and all others zero.
This is a well known sensor-selection problem, which can be
solved using convex optimization techniques [13], [14]. An
alternative approach in sensor-selection literature is to use a
greedy optimization algorithm [15]–[17], which has known
worst-case bounds on the optimality of the solution if the
considered cost-function is sub-modular [18]. Inspired by such
works, we will use the same greedy algorithm to find a good
set of sensing functions. Although the MSE (4) is not a sub-
modular function with respect to v, there are studies that show
the MSE cost-function can be solved near-optimally using
greedy selection (e.g. [19]). The algorithm is shown in Alg.
1.

Algorithm 1 Greedy position selection algorithm

1: Input: set of sensor candidates A
2: Output: measurement matrix of selected positions Â
3: Initialize Â = [ ]
4: for k = 1, 2, . . . ,K do
5: Âk = argminA∈AMSE(

[
ÂT AT

]T
)

6: Â =
[
ÂT ÂT

k

]T
7: A = A \Ak

8: end for

B. Optimizing for the mask shape

If the sensing positions v are known, we use the mask
optimization algorithm we proposed in [20]. To summarize
our previous work, the mask surface is first discretized into
many small patches, such that the entire mask geometry is
known if the mask thickness in each patch is known (we
refer to a patch as a ‘channel’). We then discretize the
mask thickness levels in each channel, and the optimization
problem becomes a selection problem. That is, we want to
select one thickness level per channel while minimizing the
MSE (4). Consequently, if we have S channels, and each
channel is divided into R thickness levels, we can re-arrange
w ∈ {0, 1}RS into a matrix W ∈ {0, 1}R×S . The matrix W
is hence a selection matrix and should only have one non-zero
element per column. To find a good mask, we want to select
one such virtual sensor (or mask thickness level) per channel.
In our previous works [11], [12], [20] we show that the final
measurement matrix then becomes a summation of matrices:

A(v,w) =

R∑
r=1

S∑
s=1

[W]r,sAr,s(v) (6)

where each column of W has only one non-zero component,
corresponding to the mask thickness of that channel. Equation
(6) is how we parameterize A(v,w) with respect to the mask
shape.

Using a slight abuse of notation, the greedy algorithm is
shown in Alg. 2. We use ws to denote column s of matrix
W, and we use minws

MSE(ws) to indicate that we minimize
over column s of W only, keeping the other columns fixed. In
Alg. 2, line 5-7 is used to pre-compute the MSE decrease per
channel, and lines 8-9 then select a single channel to change
the mask thickness (the channel that most decreases the MSE).

Algorithm 2 Greedy mask optimization algorithm

1: Input: starting mask W0

2: Output: optimized mask Ŵ
3: Initialize: Ŵ = W0

4: do
5: for s = 1, 2, . . . , S do
6: e(s) = min‖ws‖0=1 MSE(ws)
7: end for
8: ŝ = argmins e(s)
9: ŵŝ = argmin‖wŝ‖0=1 MSE(wŝ)

10: until local minimum is reached

C. Joint optimization

Finally, to jointly optimize for both parameters, we will
alternate between optimizing only one of them, and keeping
the other parameter fixed. As an initial mask, we take a
completely flat mask. As an initial set of sensors, we take
3K randomly selected scanning positions. The algorithm will
then optimize for the mask for these 3K positions, followed
by selecting K positions out of all candidates, followed by re-



optimizing the mask, and so on and so forth. We summarize
the procedure in Alg. 3.

We alternate between these two since both Alg. 1 and 2
are sub-optimal. If we, for example, fix the positions and
optimize the mask, we may not find the best mask for this
set of positions. Consequently, the optimal set of positions for
this optimized mask may be different from the current set,
and it is still possible to further optimize by running Alg.
1. The same can be said if we fixed the mask and optimize
for positions. Hence, we alternate between the two algorithms
multiple times until convergence, and the final result of Alg.
3 is not guaranteed to reach the global optimum.

Algorithm 3 Greedy sensor selection algorithm

1: Input: initial mask w0, initial positions v̂0

2: Output: v̂, ŵ
3: do
4: ŵ← output of Alg. 2, keeping v̂ fixed.
5: v̂← output of Alg. 1, keeping ŵ fixed.
6: until local minimum is reached

III. RESULTS

To verify the performance of our algorithm, we compare the
joint design to 1) optimizing only the mask with fixed random
scan positions, 2) optimizing only the scan positions with a
fixed random mask, 3) randomly choosing both the mask and
the sensing positions.

We use the following parameters. We assume the imaging
medium consists of water with a speed of sound of 1491 m/s,
and a plastic mask with a speed of sound of 2730 m/s. Hence
the center wavelength in the imaging medium is λ0 = 372 µm.
The excitation pulse is a Gaussian-window modulated cosine
with 4MHz center frequency. The mask is discretized into a
circular shape of 437 channels on a Cartesian grid, and has a
3mm diameter, thereby sampling the mask at 2.8 channels per
λ0. The maximum mask thickness is 0.45 mm, whose range
we discretize into 8 levels (5.7 levels per λ0), to ensure that the
mask has enough resolution to let the optimization algorithm
create any possible pressure field. The imaging pixels are
located within this area, at a depth of 6 mm, with dimensions
of 11x11 mm (9x9 pixels). We use a 15x15 Cartesian grid of
candidate scanning positions in a 14x14 mm area, parallel to
the imaging plane, of which we want to select 11 scanning
positions, resulting in a very high spatial undersampling (at
best 11 samples for 11 mm in one spatial dimension, or 1
sample per 3λ0). During optimization, we choose a noise
energy σ2

n such that the average SNR for a random mask with
random sensing positions is around 10 dB.

Figure 1 shows the resulting mask shapes after optimiza-
tion for all design strategies, and the sensing positions after
optimization are shown in Fig. 2. The random masks are
completely randomly drawn from a uniform distribution. A
very clear structure is seen in the optimized masks, which
shows a clustering, and many channels with the maximum
mask thickness. The somewhat binary pattern of the mask may

be due to the relatively low maximum mask thickness, (less
than 2λ0). The mask may thus be a thresholded version of the
optimal mask with a larger maximum mask thickness range.

Fig. 1: Resulting mask for various design strategies.
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Fig. 2: Resulting sensing positions for various design strategies. The
outer box indicates the region of candidate scanning positions. The
inner box indicates the pixel ROI.

The optimal mask should be such that the received pulse-
echo signals from overlapping beams of different scan posi-
tions are uncorrelated. Consequently, the mask should transmit
different ultrasound fields to each direction, resulting in a
non-symmetric mask. In other words, the spatial pressure
field caused by the mask should have as much variation as
possible. We plot the pressure fields for the center frequency
f0 = 4 MHz, as well as its spatial frequency spectrum in
Fig. 3. The optimized mask is able to spread energy in space,
creating overlap between different sensing positions, while
also creating a highly varying pressure field. The random mask
in this example is not able to create these high variations,
resulting in poor imaging performance.

In Fig. 4, we show some example reconstructions for a
test image shaped like a letter R, under an SNR of 10 dB,
making sure that the variance of the test image is equal to
one. In Fig. 5 we show the MSE (4) for varying SNR using
the optimized setups at 10 dB. From these figures, we see
that the jointly optimized setup greatly outperforms the other
design strategies. Another observation is that the setup where
only the mask is optimized has relatively good performance,
suggesting that optimizing the mask is more important than
finding good positions.

IV. CONCLUSION

We proposed an optimization scheme that alternatingly
optimizes between the mask geometry and the sensor scan
positions, keeping the other fixed. For either optimization step,
we use a greedy optimization algorithm. We compared the
imaging MSE for a 2D target image, and showed the superi-
ority of the jointly optimized setup compared to a completely



Fig. 3: Top: spatial normalized pressure distributions for the jointly
optimized mask, and a realization of a random mask. Bottom: their
respective spatial frequency spectra.

Fig. 4: Example reconstruction for a letter-shaped target image.

random design strategy. Moreover, we compared our design
to two alternative designs. In the first setup the positions are
random, and only the mask is optimized. In the second, the
mask shape is random, and only the scanning positions are
optimized. By analyzing the spatial wavefields, we observed
that a good mask creates a highly varying pressure field in
space. Our results show that optimizing for the mask is more
important than finding good scan positions, although the joint
design outperforms all other setups.
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