
https://doi.org/10.4233/uuid:cf1e2110-0ce7-4cc1-956b-f221d5f7b605
https://doi.org/10.4233/uuid:cf1e2110-0ce7-4cc1-956b-f221d5f7b605


ITERATIVE DATA-DRIVEN LOAD CONTROL FOR

FLEXIBLE WIND TURBINE ROTORS





ITERATIVE DATA-DRIVEN LOAD CONTROL FOR

FLEXIBLE WIND TURBINE ROTORS

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magni�cus prof. ir. K. C. A. M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 06 december 2016 om 10:00 uur

door

Sachin Tejwant NAVALKAR

werktuigkundig ingenieur
geboren te Mumbai, India.



Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. G. A. M. van Kuik

Copromotor: Dr. ir. J. W. van Wingerden

Samenstelling promotiecommissie:

Rector Magni�cus, voorzitter
Prof. dr. ir. G. A. M. van Kuik, Technische Universiteit Delft, promotor
Dr. ir. J. W. van Wingerden, Technische Universiteit Delft, copromotor
Prof. dr. ir. M. Verhaegen Technische Universiteit Delft
Prof. dr. G. J. W. van Bussel Technische Universiteit Delft
Prof. L. Y. Pao University of Colorado at Boulder
Prof. dr. E. A. Bossanyi DNV-GL, University of Bristol
Dr. ir. T. A. E. Oomen Technische Universiteit Eindhoven

Keywords: Load control of wind turbines, data-driven control, recursive identi�-
cation, repetitive control, iterative feedback tuning, free-�oating �aps,
individual pitch control, �utter detection

Printed by: Ridderprint

Front & Back: A cover image.

Copyright © 2016 by S. T. Navalkar

An electronic version of this dissertation is available at
http://repository.tudelft.nl/ .

http://repository.tudelft.nl/


vA�yAvr soX�n phA!





CONTENTS

1 Background and Thesis goals 1
1.1 Wind energy in the past . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A case for wind energy in the future. . . . . . . . . . . . . . . . . . . 4

1.2.1 Energy Independence . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Di�useness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.4 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.5 The challenge for engineers. . . . . . . . . . . . . . . . . . . . 5

1.3 Aerodynamic control for exible rotors . . . . . . . . . . . . . . . . . 6
1.4 Integrated Data-Driven Control . . . . . . . . . . . . . . . . . . . . . 8
1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9

I Iterative Data-driven Control 11

2 State of the Art 13
2.1 Preliminaries to data-driven control . . . . . . . . . . . . . . . . . . . 13

2.1.1 The classical viewpoint: Controlling an ideal system . . . . . . 13
2.1.2 Control for uncertain systems . . . . . . . . . . . . . . . . . . 14
2.1.3 Control for time-varying systems . . . . . . . . . . . . . . . . 15
2.1.4 Data-driven control . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Two-step approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Recursive online identi�cation . . . . . . . . . . . . . . . . . . 17
2.2.2 Model Predictive control (MPC). . . . . . . . . . . . . . . . . 17
2.2.3 Adaptive MPC using Parametric models . . . . . . . . . . . . 18
2.2.4 Subspace predictive control . . . . . . . . . . . . . . . . . . . 19

2.3 Direct data-driven control . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Iterative Feedback Tuning . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Virtual Reference Feedback Tracking . . . . . . . . . . . . . . 21

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Closed-loop nuclear norm-based recursive identi�cation 23
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 The Online ADMM solution . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Fast singular value thresholding . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Randomised singular value thresholding. . . . . . . . . . . . . 31
3.4.2 Range propagation in SVT. . . . . . . . . . . . . . . . . . . . 32

vii



viii CONTENTS

3.5 Recursive PBSID with the nuclear norm: Algorithm . . . . . . . . . . 32
3.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.1 Linear Time-Invariant Dynamics. . . . . . . . . . . . . . . . . 33
3.6.2 The Bias/Variance Trade-o� . . . . . . . . . . . . . . . . . . . 37
3.6.3 Time-varying dynamics. . . . . . . . . . . . . . . . . . . . . . 37

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Subspace Predictive Repetitive Control 41
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 SPRC Step 1: Online system Identi�cation . . . . . . . . . . . . . . . 44

4.2.1 Time-domain identi�cation. . . . . . . . . . . . . . . . . . . . 44
4.2.2 Iteration-domain identi�cation . . . . . . . . . . . . . . . . . . 47

4.3 Step 2: In�nite Horizon Repetitive Control . . . . . . . . . . . . . . . 50
4.4 Stability of SPRC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Nominal stability . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.2 Stability and error in the Identi�cation Step . . . . . . . . . . 54
4.4.3 Robust Stability of the Closed Loop. . . . . . . . . . . . . . . 55
4.4.4 Practical Implications . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.1 LTI System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.2 Time-varying changes in dynamics . . . . . . . . . . . . . . . 58
4.5.3 The rôle of basis functions in control . . . . . . . . . . . . . . 60
4.5.4 The rôle of basis functions in identi�cation . . . . . . . . . . . 61

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Iterative Feedback Tuning for LPV Systems 67
5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 IFT of a Gain-Scheduled Feedforward Controller for LPV Systems . . 69

5.2.1 Preliminaries and Notation. . . . . . . . . . . . . . . . . . . . 69
5.2.2 IFT Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.3 Data-driven gain schedule synthesis . . . . . . . . . . . . . . . 73

5.3 IFT for Feedforward Control of Systems LPV in the Output Matrices 73
5.3.1 LPV Factorisation . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Experiment I . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.3 Experiment Set II. . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.4 Experiment Set III . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 IFT for Feedback control of LPV systems. . . . . . . . . . . . . . . . 79
5.4.1 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.2 LPV Factorisation . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.3 IFT Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.4 Case study: IFT-LPV for a switched system . . . . . . . . . . 85
5.4.5 Case Study: Early Termination of IFT experiments . . . . . . 88

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



CONTENTS ix

II For Flexible Wind Turbine Rotors 101

6 State of the Art 103
6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Control of Commercial Wind Turbines . . . . . . . . . . . . . . . . . 105

6.2.1 Components of a wind turbine . . . . . . . . . . . . . . . . . . 105
6.2.2 Baseline control of a wind turbine . . . . . . . . . . . . . . . . 106

6.3 Individual pitch control (IPC) . . . . . . . . . . . . . . . . . . . . . . 108
6.3.1 Control Approaches: LTI and Periodic Control . . . . . . . . . 109
6.3.2 Control Approaches: Multi-Blade Co•ordinate Transform. . . . 110
6.3.3 IPC Validation: Aeroelastic tools . . . . . . . . . . . . . . . . 112
6.3.4 IPC Validation: Field results. . . . . . . . . . . . . . . . . . . 113
6.3.5 IPC: Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 The Smart Rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4.1 Morphing aerofoil designs . . . . . . . . . . . . . . . . . . . . 119
6.4.2 Flap Control in the Simulation Environment . . . . . . . . . . 123
6.4.3 Flap Control: Experimental Investigations . . . . . . . . . . . 124

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Aeroservoelastic simulations 127
7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 SPRC for wind turbine pitch control . . . . . . . . . . . . . . . . . . 129

7.2.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2.2 Simulation results. . . . . . . . . . . . . . . . . . . . . . . . . 130
7.2.3 Simulation Results: Iteration-domain identi�cation . . . . . . 137

7.3 SPRC for trailing-edge ap control . . . . . . . . . . . . . . . . . . . 140
7.3.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.3.2 Simulation results. . . . . . . . . . . . . . . . . . . . . . . . . 141

7.4 IFT-LPV for wind turbine pitch control. . . . . . . . . . . . . . . . . 145
7.4.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 148

7.5 IPC for yaw control. . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.5.1 IPC-Y: Extending the MBC Transform . . . . . . . . . . . . . 152
7.5.2 Simulation results. . . . . . . . . . . . . . . . . . . . . . . . . 154

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8 Wind Tunnel Experiments: Pitch Control 161
8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.2 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.2.1 Wind tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.2.2 Blades and hub . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.2.3 Nacelle and tower . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.2.4 Control and the real-time environment . . . . . . . . . . . . . 166



x CONTENTS

8.3 Experiments: IPC with SPRC . . . . . . . . . . . . . . . . . . . . . . 167
8.3.1 Constant operating conditions . . . . . . . . . . . . . . . . . . 168
8.3.2 Convergence Tuning . . . . . . . . . . . . . . . . . . . . . . . 170
8.3.3 Varying wind conditions: Nonadaptive SPRC. . . . . . . . . . 171
8.3.4 Varying wind conditions: Adaptive SPRC . . . . . . . . . . . 174

8.4 Experiments: IPC for yaw control . . . . . . . . . . . . . . . . . . . . 177
8.4.1 IPC for yaw control: Manually tuned PI control . . . . . . . . 178
8.4.2 IPC for yaw control: IFT at constant wind speeds . . . . . . . 179
8.4.3 IPC for yaw control: Controller gain sensitivity . . . . . . . . 180

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9 Wind Tunnel Experiments: Flap Control 185
9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.2 Blade Design and Manufacture . . . . . . . . . . . . . . . . . . . . . 187
9.3 Aeroelastic blade analysis . . . . . . . . . . . . . . . . . . . . . . . . 192

9.3.1 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . 192
9.3.2 Analytical LPV Modelling . . . . . . . . . . . . . . . . . . . . 196
9.3.3 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . 201

9.4 Recursive system identi�cation . . . . . . . . . . . . . . . . . . . . . 206
9.4.1 Constant operating conditions . . . . . . . . . . . . . . . . . . 208
9.4.2 Time-varying operating conditions. . . . . . . . . . . . . . . . 213

9.5 Iterative Feedforward Tuning for combined pitch and ap control . . . 214
9.5.1 Constant wind speed: Pre-utter . . . . . . . . . . . . . . . . 215
9.5.2 Constant wind speed: post-utter . . . . . . . . . . . . . . . . 216
9.5.3 Varying wind speed. . . . . . . . . . . . . . . . . . . . . . . . 219

9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

III Conclusions and Recommendations 225

Bibliography 231

Summary 243

Samenvatting 245

List of publications 247

Curriculum Vit� 249



1
BACKGROUND AND THESIS GOALS

Als je sneller wilt spelen kun je wel harder lopen;
maar in wezen bepaalt de bal de snelheid van het spel.

Johan Cruijff, the Netherlands (1947-2016),
describing the effect of exogenous in�uences on all theoretical efforts.

This introductory chapter sets up the background in which wind energy �nds itself, in
terms of its origins and geographical distribution today. The chapter discusses the expec-
tations regarding the contribution of wind power towards the energy mix of the future, and
enumerates the roadblocks to its implementation, the primary obstacle being the high cost
of (offshore) wind energy. The concept of the `smart' wind turbine, with �exible, active ro-
tors is motivated, along with the need for data-driven control. Finally, the research ques-
tions sought to be answered are formulated, and the structure of the thesis is described.

Wind energy as a concept requires little introduction. Large, three-bladed machines,
that rotate slowly to convert wind energy into electrical power, are a common sight in
many parts of the world. The advantages and limitations of wind energy, and the mo-
tivating factors behind wind energy research, are, however, not as readily visible. This
chapter presents the current position of wind energy, and the issues that need to be
solved in terms of high dynamic lifetime loads, and hence high costs, that impede wind
energy deployment. Active control, especially performed in an adaptive manner, can
form a part of the solution to this problem, but there remain open research questions,
some of which will be addressed in this thesis. First, the chapter studies the climate in
which wind turbines are expected to operate, in order to understand the speci�c nature
of challenges faced by wind energy today.

1.1. WIND ENERGY IN THE PAST
Wind energy has been harnessed by humanity since the beginning of recorded history,
from the �rst windmills of ancient Iranians to the iconic Dutch windmills that dried
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Figure 1.1: Wind turbine designs over the years, Ragheb (2014).

the land and boosted industrial output to levels then unheard of. With the advent of
steam engines, wind energy was pushed to the fringes of economic activity: sailboats,
for instance, became a hobbyist's quirk, where once they had been at the forefront of the
global voyages of discovery.

Recent years have seen the development of the so-called `Danish' design of wind tur-
bines – slender, fast-spinning turbines, usually with three blades, producing electricity
that is fed directly into the grid. The wind turbine designs can be seen in Fig. 1.1. Mod-
ern wind turbines were meant initially for meeting the needs of individual farmers; the
design has now been extrapolated to massive utility-scale turbines, of rotor diameters
more than twice the wingspan of the largest commercial aircraft.

The global distribution of wind power in 2016 can be seen in Fig. 1.2. In Europe,
deployment of these wind power plants onshore has been concentrated in �at, wind-rich
regions of low population density with a stable grid connection and a green government
policy: the North Sea (and IJsselmeer) coastlines of the Netherlands and Germany, the
desert regions of central Spain and, most strikingly, in Denmark, where an approximate
42% of all electricity produced today comes from wind turbines.

One of the other large wind energy producers is the USA, where the central region to
the east of the Rocky mountains (the so-called `mid-west') has signi�cant wind potential
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Figure 1.2: Global wind power production in 2016, modi�ed from www.3tier.com.

where wind turbines need not compete with other economic activities for the use of the
vast tracts of land (low land-use competition). Wind power plants in the US are hence
also typically larger (upto 10x) than onshore farms in Europe. The wind energy market
in the US has been signi�cantly more volatile than elsewhere, driven primarily by the
vagaries of the national economy and politics, with periods of frenetic wind energy de-
ployment interspersed with periods in which it slowed almost to a standstill.

Two other large wind energy producing nations are China and India, with China be-
ing the largest single producer of wind energy today. Good locations for wind turbine
siting are Inner Mongolia, the plateaux of Tibet, the west Indian marshlands of the Rann
and the plains south of the Nilgiri range. As opposed to wind energy in developed na-
tions, wind power deployment in these countries has been driven mainly by the large
growth in energy consumption. However, these nations, like most of the world, face an
economic limit in wind energy growth due to grid strength: beyond this limit, wind en-
ergy can grow only at a rate proportional to the growth of other energy sources.

Finally, a small but important part of wind energy comes from wind turbines located
offshore. These windfarms, starting from the �rst Danish offshore windfarm of Horns
Rev, are located mainly in and around the North Sea, to take advantage of the high wind
speeds, and because the wind and wave characteristics of the North Sea are relatively
well-understood. Offshore wind farms are also planned along the Atlantic coastline of
the US, and in the East and South China Seas.

The map in Fig. 1.2 also shows that the largest and best reserves of wind power occur
in relatively inaccessible locations: the mountains of Norway, Scotland and the Andes,
the thinly populated regions of weak grid connection in Greenland, Western Sahara and
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Somalia; and over Antarctica and the high seas. Barring a massive and unexpected hu-
man relocation in the near future, this wind resource is likely to remain untapped.

While the recent decades have shown a revival of wind energy as a viable addendum
to energy production capabilities in diverse locations, the continued interest and invest-
ment in wind power is still a matter of sociopolitical debate. The next section questions
whether wind energy will still make sense in the future.

1.2. A CASE FOR WIND ENERGY IN THE FUTURE
The energy mix is the portfolio of electricity generation plants in an economy. Mod-
ern industrial economies rely heavily on fossil fuel-based power plants, and, where
favourable resources exist, on large hydroelectric plants. Wind energy is a relative new-
comer in this energy mix and brings with it its own unique set of costs and bene�ts. The
energy mix of the world is in �ux: the western economy is in the process of decommis-
sioning fossil- and nuclear-based power plants with outdated and potentially hazardous
technology, while the developing economies attempt to bring energy consumption upto
acceptable levels via the expansion of their energy production capabilities. This implies
an impending shortfall in and a large demand for safe and reliable sources of energy.
This section establishes the need for and challenges in deploying wind energy in spe-
ci�c, in terms of its primary characteristics: a localised, sustainable source of energy
which is hindered by its diffuse nature and relatively high initial investment costs.

1.2.1. ENERGY INDEPENDENCE
It is no coincidence that wind energy development accelerated after the oil price shock
in the 1970s. Even today, a majority of investment in wind power aims primarily at in-
sulating electricity production, and hence, economic activity, against �uctuations in the
price of oil and other fossil fuels.

1.2.2. SUSTAINABILITY
A longer-term motivation for wind energy is its minimalistic ecological footprint. Re-
cent decades, with the ozone and leaded fuel crises, have shown that human activity can
have severe adverse effects on the environment. With large uncertainties involved in the
modelling of human-induced climate change, and the potentially catastrophic conse-
quences of unchecked fossil-fuel consumption, global attention is currently focussed on
sustainable sources of energy production, in which wind energy �gures prominently.

1.2.3. DIFFUSENESS
One of the most signi�cant disadvantages of wind energy is its diffuse nature. To match
the nameplate capacity of the nuclear reactors at Doel in Belgium, a modern onshore
wind farm would require roughly 1160 modern wind turbines, covering an area of
225 km2. For comparison, the Doel power station covers an area of 0.8 km 2, excluding
the area for mining, transport, storage of nuclear waste. These numbers do not present
the full picture, since wind turbine land can also be used simultaneously for other pur-
poses, such as farming. However, they give an idea about the investment required to
move from nuclear power to wind power.
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Unless it is supplemented by investment in energy storage solutions, wind power is
incapable of supporting the electricity grid by itself; its variable nature is today offset
by a strong, stable grid balanced by an adequate number of `base-load' conventional
power plants. The diffuse nature of wind energy is however also an advantage; since
control over power output can be achieved at a micro-scale, and wind turbines can pro-
vide grid support in a much more responsive manner than conventional power plants:
wind power plants can help stabilise the grid to reduce grid faults and improve power
quality.

1.2.4. COST
What �nally makes or breaks the appeal of wind energy is the costs associated, both in
terms of capital costs and downtime costs. For a wind-rich onshore site, wind energy
can indeed be cheaper than fossil fuel-based energy. However, especially in Western Eu-
rope, such sites are increasingly dif�cult to �nd due to land-use competition. The move
offshore is logical in this sense, since these sites possess many desirable characteristics:
high wind speeds, low turbulence, which reduces turbine loads, low land-use competi-
tion and a relative proximity to population-dense coastal regions that provide a ready
market for energy consumption.

Unfortunately, offshore wind energy is not yet as cost-effective as its onshore coun-
terpart. The primary cost, as can be expected, is the installation of massive rotating
structures offshore, with the concomitant exponentially increased tower, foundation
and support structure cost and complexity. Equally important is the downtime cost: a
turbine that stops working due to a fault is a turbine that stops delivering returns on the
initial investment. Maintenance is signi�cantly more dif�cult offshore; it can become
prohibitively expensive to convey maintenance personnel by helicopter or to wait for
the right sea conditions to access the turbine.

1.2.5. THE CHALLENGE FOR ENGINEERS
Turbine manufacturers now design wind turbines that are even larger in size to access
the economies of scale, upto and exceeding 164 m in diameter. A graph, typically found
in most works of wind research, demonstrating the increase in the size of wind turbines,
is seen in Fig. 1.3. Already today we have reached the limit of our engineering knowledge:
wind turbines form the largest rotating structures ever designed, exposed to signi�cantly
stochastic and largely uncertain wind-induced loads. Traditional engineering wisdom is
to prevent load-induced failure by compensating for uncertainty by introducing conser-
vatism; in other words, engineers simply make turbines too strong to fail. This conser-
vatism, interestingly, also found in the design of wind turbine controllers, feeds directly
into the cost of modern offshore wind energy, making it less attractive as an economic
investment.

Hence, the scienti�c community working in the �eld of wind energy today places
special focus on �exible, lightweight turbine rotors, where the loads are held within ac-
ceptable limits using active or passive load control techniques. Such a turbine would
potentially be able to compensate for an uncertain dynamically-changing environment
by sensing disturbances and acting to counter their detrimental effect on the turbine
loads. Such a `smart' turbine would essentially tailor itself optimally to the conditions it
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Figure 1.3: Increase in the size of modern wind turbines, Rodrigues et al. (2016).

�nds itself in, and can thereby be manufactured to be more cost-effective than its clas-
sical counterpart. This forms motivations for the current research, which is part of the
EU INNWIND program, a consortium of industrial and academic partners investigating
innovations in modern wind energy, INNWIND (2012).

1.3. AERODYNAMIC CONTROL FOR FLEXIBLE ROTORS
Recent literature from the wind research community describes the �exible rotor of the
future as a `smart' rotor; one that can actively measure the incoming wind �eld, or its
effects, and manipulate the �ow around its blades so as to control and reduce structural
loads. The degree of `smartness' of a rotor is open to interpretation, covering as it does
both conventional pitch control, as well as more exotic instrumentation like plasma ac-
tuators. A `smart' �exible rotor may also react passively or actively. Passive control is the
case wherein blades deform structurally in response to an undesirable load, so as to be
able to mitigate it. This form of control was proposed in the 1800s for Dutch windmills by
Arrenberg (1779), to increase the longevity of the erstwhile wooden blades. Active con-
trol involves an active element, such as a hinged �ap, which is commanded to deform in
response to a measured load.

As compared to active control, passive control can be more robust and more au-
tonomous, with little to no external power consumption. It may also be limited in control
authority, and require signi�cantly more hardware modi�cations as compared to active
control. Perhaps a commercial design of a smart wind turbine will eventually combine
both passive and active control to exploit the advantages of both.

One of the �rst uses of active air �ow control was the development of the pitch actu-
ator, a device that rotates a blade partially or fully around its longitudinal axis. Commer-
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Figure 1.4: An example of an implementation of a smart �exible rotor, adapted from Barlas and
Van Kuik (2010).

cial wind turbines today are invariably equipped with full-span pitch actuators, which
are massive devices capable of rotating blades each weighing upto and exceeding 33
tonnes. The pitch action serves to limit the energy captured when operating at very high
wind speeds, thereby reducing the loads on the turbine. These actuators serve admirably
to respond to variations in the mean wind speed, as well as to the �rst dominant peak in
the load frequency spectrum using Individual Pitch Control (IPC), but this appears to be
the limit of their capabilities, as suggested by discussions with pitch manufacturers.

Blades equipped with trailing edge �aps, taking inspiration from the helicopter in-
dustry, have also been proposed and tested on turbine prototypes, an example layout
has been shown in Fig. 1.4. Flaps change the curvature of the blade locally, and induce
aerodynamic forces that can counter the wind-induced loads. These actuators serve to
extend the applicability of the pitch actuator by addressing higher frequency loads in the
load spectrum. While they have less control authority, their higher bandwidth in terms
of time and space implies that �aps can potentially address loads and structural modes
above and beyond that of pitch actuators. Currently, �aps have shown the potential to
reduce loads that can also be targetted by the pitch actuators, the challenge for control
engineers is to extend their applicability in combination with pitch actuation.

Other air �ow control actuators, such as microtabs, micro�aps and synthetic jets,
have also been explored in the literature; however they have not yet been demonstrated
directly on turbine prototypes. At the other end of the control spectrum, reliable sen-
sors are necessary for the success of smart turbines. Commercial turbines are currently
instrumented with strain gauges and accelerometers for measuring turbine response to
the incoming wind. Feedforward measurements are also now becoming available via Li-
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dar (light detection and ranging) instruments that can measure the incoming wind �eld
and issue a much more suitable turbine actuation command.

The major issue with the new actuators and sensors is that they usually produce
sign�cant changes in the dynamic behaviour of the underlying system. Not only does
the altered system dynamics depend upon the unique physical composition, con�gu-
ration and condition of each turbine, it also varies with wind conditions. With increas-
ing aeroservoelastic complexity as we move towards the high-frequency end of the load
spectrum, the task of system modelling, robust control design and controller tuning can
become either extremely time-consuming or unnecessarily conservative, with no ulti-
mate guarantee of optimal turbine performance, motivating the need for an iterative
autonomous controller design approach, that uses operational data to improve turbine
performance.

1.4. INTEGRATED DATA-DRIVEN CONTROL
Commercial wind turbines use control for both regulating power production and for
load control. These controllers are (despite the best efforts of the control community)
typically PID (proportional-integral-differential), which provides easy tuning knobs for
achieving the desired turbine performance. With increasing complexity, such simple
controllers are no longer adequate; the unintended cross-in�uence of actuators on dif-
ferent loads needs to be decoupled using special engineering tricks. With new actuators
and sensors, the complexity of decoupling can increase exponentially and it becomes
desirable to consider integrated, multivariable control techniques as more viable alter-
natives to PID controllers. A further drawback of PID controllers is that manual tuning
of parameters is unlikely to result in optimal system performance.

To ensure stability and determine the expected performance of a (PID) controller,
tuning is usually done in conjunction with a system model. Such a model can be ob-
tained by �rst principles; however, several turbine parameters (for instance, structural
damping) are dif�cult to estimate, and can vary signi�cantly across turbines. Further,
physical models may contain irrelevant dynamics that can lead to very high-order con-
trollers and prolong simulation and validation times needlessly. Finally, since the system
model will not be exactly the same as the actual turbine, retuning of the parameters is of-
ten done in the �eld to adjust the performance of each individual turbine, a process that
causes substantial delays in the commissioning after construction or recommissioning
after maintenance.

One of the alternatives is to use system identi�cation methods, which use experi-
mental input-output data from a wind turbine to determine its dynamic behaviour to
synthesise a model. Such a method skips the stage of determining physical parame-
ters and focusses purely on relevant system dynamics, simplifying the controller design
process. However, this method still requires manual intervention for conducting exper-
iments on each individual turbine and for tuning an effective controller.

Much interest has been devoted to data-driven control techniques by the control en-
gineering community. In effect, these techniques combine identi�cation and controller
synthesis autonomously and require in principle no user interaction. Alternatively, these
methods directly use operational data to tune �xed-structure controller gains directly.
Such techniques have been demonstrated for simple systems; however, guaranteeing
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stability is notoriously hard. Furthermore, unless the structure of the plant is exploited,
the computations required for data-driven control can become extremely dif�cult to im-
plement on a real system.

Data-driven control techniques like Iterative Learning Control and Iterative Feed-
back Tuning have shown considerable potential for online adjustment of controller per-
formance to adapt to a variety of different systems in industrial environments. As per
their name, these techniques are iterative, in that they update the control law over a
number of iterations, in such a manner that control performance improves over time
with limited computational complexity per iteration. Such techniques, combined with
system identi�cation and adjusted to exploit the structure of the modern wind turbine
system, could prove to be interesting for developing self-commissioning wind turbines
that can autonomously optimise their load alleviation performance given any current
and future set of actuators and sensors.

This motivation yields the fundamental question sought to be answered:
Main research question:
How can we use operational data to synthesise a fully multivariable load controller for

a �exible wind turbine rotor, that is able to improve its own performance autonomously
in real-time?

1.5. STRUCTURE OF THE THESIS
In order to answer the main research question, the thesis, like its title is divided into two
parts. The �rst part explores and extends the concept of iterative data-driven control
to make it more applicable for real-time implementation for wind turbine load control,
while the second part explores the implementation of these techniques on �exible wind
turbine rotors, in the simulation environment and on a scaled wind turbine.

The �ow of logic, and the reading order, can be visualised in Fig. 1.5. Each of the
chapters in the thesis is geared towards exploring a different aspect of the main research
question. As such, the following component questions will be addressed in the sequel:

RESEARCH SUBQUESTIONS
PART I: ITERATIVE DATA-DRIVEN CONTROL

Chapter 2: State of the art
What is the current state of the art in iterative data-driven control, and how can it be

made suitable for the current application?
Chapter 3: Closed-loop nuclear norm-based recursive regularisation
How can recent advances in low-variance system identi�cation be modi�ed to �t a

closed-loop, online environment?
Chapter 4: Subspace Predictive Repetitive Control
How can online system identi�cation be combined with controller synthesis to min-

imise periodic loads, with precise control over the shape and smoothness of the actuator
commands?

Chapter 5: Iterative Feedback Tuning for LPV systems
How can the gains of low-order �xed-structure LPV controllers be optimally tuned for

LPV systems?
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Figure 1.5: Flow of logic, and reading order of this thesis.

PART II: FOR FLEXIBLE WIND TURBINE ROTORS
Chapter 6: State of the art
What is the current state of the art in the load control of �exible rotors, and how can

the controller be improved to enhance performance?
Chapter 7: Aeroelastic simulations
How do the control strategies discussed in Part I behave in a fully non-linear simula-

tion environment for commercial wind turbines?
Chapter 8: Wind tunnel experiments: Pitch Control
How do the control strategies discussed in Part I affect the loading behaviour of a scaled

prototype of a pitch-controlled wind turbine, under controlled, wind tunnel conditions?
Chapter 9: Wind tunnel experiments: Flap Control
How can a pitch-controlled turbine be extended to include trailing-edge �aps, and

how should the control strategies of Chapter 8 be modi�ed to achieve optimal load control
for the wind turbine?

Chapter 10: Conclusions and recommendations
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2
STATE OF THE ART

En ekspert er en person, som har begået alle der fejl,
som det er muligt at begå inden for et begrænset område.

Niels Bohr, Denmark (1885-1962),
describing the iterative and data-driven nature of scienti�c endeavour.

This chapter explores the evolution and current state of the art of data-driven control.
Classical control is brie�y introduced, as the best-possible theoretical control design ap-
proach for ideal systems that can be modelled without uncertainty, subject to disturbances
whose stochastic properties are well-known. For practical systems, where such informa-
tion is not available, robust control design is described as the alternative; however the
inherent conservatism of robust control may be considered one of the motivating for seek-
ing other alternatives, such as data-driven control approaches. Two distinct approaches
towards data-driven control are then discussed, along with their evolution over the years:
in the two-step data-driven approach, input-output data is �rst used to develop a sys-
tem dynamics predictor, based on which a (receding horizon-) control law is synthesised
and implemented. The second approach discussed is the direct data-driven approach,
wherein input-output data is used to construct the gradient of closed-loop performance
with respect to controller parameters, and gradient-based optimisation schemes are used
to optimally tune these parameters. Both approaches show potential for use in complex
realistic applications like wind turbine load control, however further research into these
techniques is deemed necessary for their realisation in practice.

2.1. PRELIMINARIES TO DATA-DRIVEN CONTROL

2.1.1. THE CLASSICAL VIEWPOINT: CONTROLLING AN IDEAL SYSTEM
Traditional wisdom suggests that a controller be designed to ensure that the closed loop
is stable, and to achieve a certain level of performance in terms of reference tracking
or disturbance rejection. Classically, the synthesis of the controller and the analysis of
the closed-loop system demands a high-accuracy, low-order model of the system to be

13
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controlled, preferably linear, that still incorporates the relevant dynamics within the fre-
quency band of interest, Ogata (1997). In the case where the states are required to be
reconstructed from the measurements, an observer is required to be synthesised: clas-
sical control design therefore also demands knowledge of the �rst- and second-order
properties of stochastic disturbances, and/or knowledge about the characteristics of de-
terministic disturbances. The basic building block of control theory is the Linear Time-
Invariant (LTI) system that can be expressed either as a transfer matrix or with a state-
space realisation of the form:

xkÅ1 ÆAxk Å Buk Å w k (2.1)

yk ÆCxk Å Du k Å vk .

Here, the controlled inputs to the system are uk 2 Rnu and the measured outputs are
yk 2 Rn y . The term xk 2 Rn is the state vector; its dimension is de�ned as the order of
the system. The signals w k 2 Rn and vk 2 Rn y are the process and measurement noise,
uncontrollable quantities that often require stochastic representations. The system be-
haviour is determined by the matrix tuple ( A,B,C,D), of appropriate dimensions. For an
LTI system, these matrices are deterministic and do not change over time.

When the system sought to be controlled can be described exactly by a description
of the form of (2.1), where stochastic properties of noise are known, it is possible to syn-
thesise an LTI controller (such as an LQG controller, Ogata (1997)) aimed at optimising
a certain performance criterion. However, it may be impossible to guarantee the perfor-
mance of a classical controller, Doyle (1978), since practical systems pose further control
challenges on account of the inherent uncertainty in the modelling step.

2.1.2. CONTROL FOR UNCERTAIN SYSTEMS
The modelling of complex systems like wind turbines is rarely exact, Versteijlen et al.
(2016): system parameters can often only be estimated to within a certain tolerance. For
instance, for a �exible beam, the modal frequencies depend on the mass and structural
stiffness, and can typically be predicted with high �delity. The damping of the differ-
ent modes, however, is far more dif�cult to measure, and one is forced to resort to some
form of experimental testing to infer the modal damping based on the decay in the vi-
bration measurements. Such parametric uncertainty can strongly in�uence the analysis
of the closed-loop. Further, �rst-principles modelling often yields unwieldly, non-linear
models that have to be simpli�ed for controller design. For instance, the �nite-elements
model of a wind turbine blade is usually reduced to a second- or fourth-order model for
blade load controller design; the (non-linear) effect of the higher-order modes, and of
aerodynamic lag are then ignored. Such simpli�cations produce modelling uncertainty,
typically in the high-frequency range of the spectrum.

Such a system, subject to uncertainty, can be modelled using an uncertain system
representation using the uncertain matrix tuple ( A,B,C,D), where

A ÆĀÅ ±A, (2.2)

where Ā is the exactly known `nominal' or average value of the matrix A, and the term
±A is an unknown, but bounded, uncertainty. The other matrices can be described in a
similar manner.
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A consequence of the uncertainty arising out of modelling is that a classical con-
troller designed for the nominal plant ( Ā,B̄,C̄,D̄ ) within the set of possible plants may
practically cause a degradation of closed-loop performance, and may possibly even lead
to closed-loop instability. One solution to this issue is to design the controller for the
worst-possible combination of uncertain model parameters so that stability and perfor-
mance can still be achieved; this is the `Robust' approach to controller design and usu-
ally involves the minimisation of an H 1 criterion, Skogestad and Postlethwaite (1996).
Robust controllers have enjoyed considerable success in the literature, but their per-
formance is contingent on a reasonably accurately bounded uncertainty description
(±A,±B,±C,±D). Robust controllers, per de�nition, are synthesised to be conservative,
and may not command the best performance possible from the true system. Further, as
the uncertainty set grows, so does the conservatism of the controller. In extreme cases,
with large model uncertainties, robust control designs may indicate that a stabilising
controller is not feasible.

While time-invariant nominal systems have been considered here, several practical
systems show dynamics that vary with time. This time variance can be modelled either
as a bounded uncertainty, or, with less conservatism, using a time-varying system de-
scription.

2.1.3. CONTROL FOR TIME-VARYING SYSTEMS
Systems that do not admit a Linear, Time-Invariant (LTI) system description, but dis-
play dynamics that vary with time, can be modelled with time-varying parameters
(Ak ,Bk ,Ck ,Dk ). Globally stabilising time-varying system is considerably more complex
than the equivalent LTI systems, Kwon and Pearson (1978). Such systems can be lin-
earised around operating points, and LTI controllers can be designed for these operating
points. With some form of interpolation, a time-varying controller can then be approx-
imated for the entire range of operation. Such `gain-scheduled' controllers, Leith and
Leithead (2000), may not necessarily be optimal, and a small increase in non-linearity
can lead to a combinatorial explosion in the number of operating points required for
reasonably adequate performance.

A special case of time-varying systems are Linear Parameter-Varying (LPV) sys-
tems, Shamma (2012), where the system dynamics change as a function of scheduling
parameters. The system matrices can then be expressed as:

Ak ÆA[0] Å
nÃX

i Æ1
Ã i (¹ k )A[i ] , (2.3)

and similarly for the other matrices. Here, ¹ k 2 Rn ¹ is the vector of scheduling param-
eters. As seen, the matrices (Ak ,Bk ,Ck ,Dk ) are af�ne combinations of the nÃ number
of basis functions Ã k scheduled on ¹ k . As an example of LPV systems, wind turbine dy-
namics have been shown to depend strongly on the operating wind conditions, primarily
on the ambient wind speed, Van Wingerden et al. (2010a). For LPV systems, it is possi-
ble to synthesise a global controller (LTI or LPV) that delivers good performance for all
scheduling trajectories, Emedi and Karimi (2013). However, LPV control design is also
highly sensitive to uncertainty: modelling errors/approximations or noise in the mea-
surement of the scheduling parameter can drastically degrade controller performance.
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Robust approaches can, as before, cause intractability or excessive conservatism.

2.1.4. DATA-DRIVEN CONTROL
An alternative to the robust model-based controller design approaches is the data-
driven controller design approach. Here, input-output data collected online is used to
synthesise a controller that optimises a certain criterion. Two kinds of data-driven ap-
proaches have been studied in the literature: the two-step data-driven control approach,
and the direct data-driven control approach. In the two-step approach, the objective is
to �rst identify the system parameters from the input-output data, Ljung (1987), and in
the next step synthesise an optimal control law. On the other hand, the direct approach
starts with an initial nominally stabilising controller and then, based on the measured
performance, iteratively improves the controller parameters until they converge to their
optimal values. All data-driven approaches require a persistency of excitation; in other
words, the input data has to excite all the relevant modes of the system sought to be
controlled.

Data-driven approaches are usually aimed at LTI systems with extremely uncertain
properties, or for time-varying systems the changing dynamics of which are dif�cult to
predict.

LTI SYSTEMS

For the case where the underlying system is LTI and the disturbances acting on the sys-
tem are stationary, both data-driven approaches converge to an LTI control law. Since
the controller is then tailored to the speci�c characteristics of the system, it is typically
less conservative than a controller designed using robust control techniques. However,
since the data-driven approach involves the estimation of system parameters or per-
formance gradients from noisy data, these estimates are themselves uncertain. Provid-
ing robustness proofs for data-driven methods is challenging. Proving the stability of
the controlled system, for model and disturbance uncertainty, even in the LTI case, is
for many data-driven techniques still an open question, Goodwin et al. (1980), Åström
(1987); very few analyses exist in the literature for time-varying systems.

SLOWLY TIME-VARYING SYSTEMS

For the case where the underlying system or systemic constraints change slowly with
time, data-driven approaches usually consider the system to be instantaneously LTI, and
iteratively update the synthesised control law. Effectively, the control law itself does not
remain constant, but changes progressively over time. If the variation in dynamics is
slow, the controller may be close to optimal throughout its operation. Here, the data-
driven quasi-LTI controller is clearly superior to an LTI controller designed of�ine, which
will be by de�nition more conservative as it cannot update itself to changes in system
characteristics. However, as before, proving stability can be dif�cult, especially since the
variation in system dynamics always causes a lag in the estimation of system parameters
or gradients. Also, continuous reëstimation is required to be performed online to ensure
that the control law does not become outdated and suboptimal. An alternative is global
identi�cation and control law formulation, which often demands a more speci�c system
description, such as the LPV formulation.



2.2. TWO-STEP APPROACH

2

17

LPV SYSTEMS

For an LPV system, it is possible to synthesise an LPV controller in a data-driven man-
ner. Unfortunately, due to the complicating presence of the scheduling dependence, a
signi�cantly larger amount of data is demanded by the data-driven approach to optimise
the controller parameters, since the persistency of excitation condition applies to both
the input data as well as the scheduling parameters. On the other hand, an LPV data-
driven approach can in principle converge to a constant global LPV control law that is
applicable for all scheduling trajectories. Once convergence is reached, the iterative op-
timisation process can be terminated, and further controller modi�cation is no longer
necessary. In the literature, very little attention has been given to the formal treatment
of such controllers.

This chapter studies the literature regarding data-driven control using both the two-
step, as well as the direct approaches.

2.2. TWO-STEP APPROACH
The two-step approach to data-driven control, also called the `self-tuning' approach by
Mosca (1995), separates the online, recursive identi�cation of system parameters and
control law synthesis into two separate steps.

2.2.1. RECURSIVE ONLINE IDENTIFICATION

The �rst step, online system identi�cation can typically be performed using either para-
metric models, Ljung and Söderström (1983), where a speci�c parameterised structure,
such as a Box-Jenkins structure of �xed order is assumed for the underlying dynamic
system. Alternatively, subspace identi�cation can be used, as in Houtzager et al. (2012),
where the subspaces of data matrices are manipulated to obtain an (LTI) model, often
using a rank-revealing intermediate step used for model order reduction. Both meth-
ods have their advantages and drawbacks, as described in Verhaegen and Verdult (2003).
As long as the identi�ed model lies within the set of parameterised models, paramet-
ric identi�cation typically yields accurate models, and affords the possibility to identify
non-linear, time-varying models in an online manner. On the other hand, parametric
identi�cation often requires the solution of complex, non-convex optimisation criteria
that can be dif�cult to perform online, and are susceptible to the problem of local min-
ima. Subspace identi�cation usually uses convex optimisation criteria that can be ef�-
ciently solved online, even for highly multivariable systems. It is, however, non-trivial to
prove the accuracy of the identi�ed (typically linear) model, or the effect of modelling
error on the adaptively controlled system.

Once system estimates are available, it is possible to proceed to the second step of
the two-step approach, and synthesise a control law online.

2.2.2. MODEL PREDICTIVE CONTROL (MPC)
The standard approach to MPC involves the prediction of the system states and outputs
over a time horizon, as a function of the control sequence. The deviation of the states
(or outputs) from the desired value is penalised, and the optimal control sequence is
synthesised, subject to practical system constraints. This process is repeated at every
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time instant in order that the optimal control input is continuously updated. The MPC
optimisation function, for the case of full state knowledge, is described as:

min
u1,...uNc

NX

i Æ1
(xi ¡ xi ,ref)

T Q(xi ¡ xi ,ref) Å
NcX

i Æ1
uT

i Rui . (2.4)

Here, xk ,ref is de�ned as the ideal state trajectory that the system is required to follow,
while Q and R are the weighting matrices that de�ne the trade-off between controller
performance and control effort. Further, N and Nc are the prediction and control hori-
zon, respectively. This optimisation function is solved at every time instant, subject to
system dynamics and other physical constraints, and control is implemented in a reced-
ing horizon fashion.

In Dougherty and Cooper (2003), an interesting half-way step between model-based
MPC and data-driven MPC has been proposed. The system is modelled as a set of lin-
ear plants, each describing the system dynamics at one speci�c operating point, and
an MPC controller is synthesised for each of these linear models. Based on the current
input-output data, the actual control action implemented is a weighted average of the
control actions demanded by each LTI MPC controller. While this approach simpli�es
the system identi�cation component signi�cantly, its drawbacks are similar to those of
a gain-scheduled controller, viz. that good linear models are required, the number of
models required can increase exponentially, and linear interpolation schemes are rarely
amenable to optimality proofs.

MPC can also readily be extended to the two-step approach for data-driven con-
trol. At every instant that a new system model estimate is available, the MPC optimi-
sation routine is updated using these estimates, and the controller is able to adapt to the
changes in system dynamics.

2.2.3. ADAPTIVE MPC USING PARAMETRIC MODELS

Since the introduction of MPC, several investigations have been made into its synergy
with system identi�cation, for instance the books by Bitmead et al. (1990) and Mosca
(1995), which combine MPC with parametric identi�cation to obtain a data-driven con-
trol law. As described above, it is only when the system admits a model representation
linear in parameters that the identi�cation can be carried out ef�ciently using RLS; oth-
erwise, recourse needs to be taken to iterative methods for identi�cation. Bitmead et al.
(1990) highlight the shortcoming of this approach: if the true system does not belong to
the model set in which the identi�cation process seeks a solution, there is no guarantee
that the devised controller will stabilise the system. For the sake of robustness, therefore,
one needs as general a parameterisation as possible. This requirement directly contra-
dicts the constraint that the number of parameters to be optimised should be held low
for low-variance estimation from a limited amount of data.

Neural networks form a speci�c form of parametric modelling, well-suited for the
identi�cation of highly non-linear data-generating systems; the extension of neural net-
works to data-driven control has been described by Narendra and Parthasarthy (1990).
However, as with many other parametric identi�cation methods, a non-convex optimi-
sation process is involved in the estimation of the weights and biases of the neurons



2.2. TWO-STEP APPROACH

2

19

in the network, and the real-time implementation of neural network-based data-driven
control can be challenging.

Adaptive MPC with parametric models targets SISO (single input single-output) sys-
tems speci�cally, extensions to MIMO systems can greatly increase the number of coef-
�cients to be identi�ed, and hence the amount of data required to achieve good model
estimation.

Even for an underlying LTI system, proving convergence and stability of the data-
driven approach can be dif�cult, Åström and Wittenmark (1973); Mosca (1995) provides
a convergence proof only for the very speci�c case where the prediction horizon is one
step ahead. For time-varying systems, the stability of data-driven controllers can only
hold for a slow rate of adaptation of the controller. If this rate is slower than the rate at
which plant dynamics change, then there may occur a controller-plant mismatch which
could possibly cause closed-loop instability. Bitmead et al. (1990) also describes syn-
thetic approaches to restoring stability from an unstable operating point: projection , or
the reinitialisation of plant estimates, and leakage, the forcing of plant estimates to phys-
ically acceptable values. Both methods are ad hoc in the sense that they require prior
knowledge, and yield highly non-linear behaviour that is dif�cult to analyse.

Several of the adaptive MPC methods described in the references, e.g. Mosca (1995),
utilise parametric identi�cation methods that depend, not only on the plant dynam-
ics, but also on the controller dynamics, which, in an adaptive application, change over
time. This complicating factor reduces the �delity of the identi�cation part of the cycle.
Subspace-based methods typically do not suffer from this drawback.

2.2.4. SUBSPACE PREDICTIVE CONTROL

Traditional approaches to controller design based on experimental data perform the
identi�cation and controller design steps separately, with an intermediate step being
the synthesis of a full system model. A subspace-based alternative is the use of canon-
ical variate analysis that uses the covariance structure of the past data to obtain the
state trajectory predictions required by the MPC cost function, as in Larimore (1990).
With subspace identi�cation, it is also possible to derive the controller directly from the
subspace predictor, rendering a state-space realisation ( A,B,C,D) unnecessary. Such
a combination of (partial) subspace identi�cation and predictive control, called Sub-
space Predictive Control (SPC), was introduced by Favoreel and De Moor (1999), and ex-
tended to cover the functionality of a standard MPC controller with an H 2 cost criterion
by Kadali et al. (2003) and an H 1 cost criterion by Woodley et al. (2001). The equivalence
of the controller derived from subspace identi�cation to a standard MPC controller, and
to LQG in the in�nite horizon case, has been given in Favoreel et al. (1999), however, the
effect of parameter estimation error is not investigated.

To be noted in this discussion is the fact that identi�cation for data-driven con-
trol demands closed-loop identi�cation, since the plant is usually operated in closed
loop with the controller that is being recursively updated by new parameter estimates
from the identi�cation process. Both parametric and subspace methods, Van der Veen
et al. (2013), can be augmented to account for the closed-loop nature of the data,
while some identi�cation algorithms such as Predictor-Based Subspace Identi�ca-
tion (PBSID), Chiuso (2007), are inherently able to perform system identi�cation from
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closed-loop data. PBSID has been used for SPC in Dong et al. (2008). In Dong and Ver-
haegen (2009), the authors evaluate the uncertainties associated with the SPC predictor
estimation, and lay down a cautious framework for control design robust to these un-
certainties. SPC lends itself to different adaptive applications: Hallouzi and Verhaegen
(2008) investigate the extension to fault tolerance: the simultaneous identi�cation and
control law synthesis allows the controller to detect the occurrence of faults and to adapt
the control action for speci�c known or anticipated faults.

While subspace identi�cation simpli�es the �rst step of the two-step approach by
enforcing convexity, this method of data-driven control is contingent on the system ad-
mitting a (temporally local) LTI model that needs continuous reïdenti�cation. Exten-
sions to LPV or time-varying systems, Lovera et al. (2013), require large amounts of ex-
perimental data or yield high-variance estimates that can adversely affect the stability
of the data-driven control approach. The order of the controller synthesised is also usu-
ally signi�cantly larger than strictly necessary for control. As an alternative, direct data-
driven approaches have been explored in the literature that avoid the system identi�-
cation step. Low-order controllers, such as PID controllers, can herewith be optimised
directly using gradient-based methods.

2.3. DIRECT DATA-DRIVEN CONTROL

2.3.1. ITERATIVE FEEDBACK TUNING
The concept of Iterative Feedback Tuning (IFT) is explained in Hjalmarsson (2002), and
it can be described using Fig. 2.1. The system to be controlled, G is connected in closed
loop with a controller C(½) that is parameterised using the parameters ½, initialised to an
arbitrary value that stabilises the system. In addition to the control input commanded
by the controller, u , the auxiliary input q is fed to the system in order to analyse its be-
haviour. The terms r and v correspond to exogenous known or unknown disturbances.
Based on the system response y, the gradient of system performance J with respect to ½,
viz. @J

@½can be determined. Typically, at least two experiments are needed to �nd this gra-
dient; they are termed the `reference' and the `gradient' experiments. For each of these
methods, the respective auxiliary input is given by:

qreference Æ0, (2.5)

qgradient Æ
@C(½)

@½
(r ¡ yreference), (2.6)

where the reference and gradient subscripts indicate quantities measured in the reference
and the gradient experiments, respectively. With these quantities, the (ergodically unbi-
ased) gradient @J

@½can be estimated. Gradient-based methods can then be used to opti-
mise the controller parameters such that the closed-loop system performance criterion
is maximised.

Gevers (2002) demonstrates in a review paper that IFT can be applied readily to mul-
tiple industrial applications. To be noted is the fact that, although IFT was originally
designed for SISO systems, it can be directly extended to apply to multivariable systems.
However, multivariable systems require more than one gradient experiment; generally,
one gradient experiment per controller parameter is required for controller tuning.
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Figure 2.1: Iterative Feedback Tuning experiment layout for an LTI controller in closed loop with
an LTI plant.

As for general adaptive systems, proving robust stability for IFT can be challenging.
An incorrectly designed performance criterion can lead to closed-loop instability even in
the ideal noise-free case. As a result of this, Lyapunov theory and passivity theory have
been suggested by Mosca (1995) for implementation in direct data-driven control.

Further, the IFT performance criterion is typically non-convex, implying that opti-
mality may be achieved, depending on the initial controller con�guration, only in a local
sense. Hjalmarsson (2002) describes a method to track the stability of the closed loop
through iterations, wherewith the step size can be manipulated to ensure that closed-
loop instability does not occur during the IFT process.

2.3.2. VIRTUAL REFERENCE FEEDBACK TRACKING

In a manner similar to IFT, Virtual Reference Feedback Tracking (VRFT), Campi and
Savaresi (2006), utilises a parameterised controller C(½). VRFT then postulates an ideal
or desired closed-loop transfer function M , which delivers the performance required
from the controlled system: this approach is similar to the Model Reference Adaptive
Control (MRAC) discussed in Mosca (1995). Based on input-output data, the controller
parameters are then optimised to minimise the distance between the actual output and
the output delivered by the transfer function M . In other words, the minimisation crite-
rion in VRFT is given by:

min
½

kC(½)e¡ uk, (2.7)

where e Æ(M ¡ 1 ¡ z¡ 1)y, the deviation of the actual performance from the desired one.
It can be directly appreciated that this approach is equivalent to parametric identi�ca-
tion of the optimal controller, based on input-output data, and the theory of parametric
identi�cation is also applicable here.

The VRFT optimisation cost function forms a convex envelope of the IFT cost func-
tion; the VRFT optimisation can be performed in one single step. However, while the IFT
controller tuning process eventually leads to a (local) minimum, the convex relaxation
implies that the VRFT controller may be arbitrarily far from the optimal controller.

The data-driven techniques developed in the literature have also been extended to
apply to LPV systems, Dong et al. (2009), Formentin and Savaresi (2011). The LPV exten-
sion generally requires a larger amount of experimental data for convergence; however
the techniques are therewith applicable to a larger class of controllable systems.
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2.4. CONCLUSIONS
Both the two-step and the direct approaches to data-driven control show potential for
the control of complex realistic systems with unknown or time-varying dynamics. How-
ever, the data-driven approach also presents considerable challenges in that guarantees
for convergence and optimality are dif�cult to postulate. The two approaches also dif-
fer from each other in implementation, and these differences dictate the control setting
wherein they would be most suitable.

The two-step approach, speci�cally when it uses subspace identi�cation, typically
poses a convex optimisation problem that can be solved with relative ease online, and
is not susceptible to local minima. While the intermediate step of system model realisa-
tion is not strictly necessary for control, it provides useful information in practice. For
instance, for systems that transition between stable and unstable operating points, the
system identi�cation step reveals information about the current regime of operation.
Further, the control law can be synthesised to be globally optimal, in an LQG sense. For
the case where the system identi�cation provides high-�delity estimates of the true LTI
system parameters, the two-step method approaches classical of�ine control design in
terms of stability and performance.

With increasing system complexity and non-linearity, the direct data-driven ap-
proach becomes more attractive. For such complex practical systems that demand
control, �xed-structure low-order controllers, such as PID controllers, are typically al-
ready in place. However, a manually-tuned �xed-structure controller is rarely optimal,
the optimal controller parameters may also drift with time. For such a case, it would
be desirable to use a direct approach that starts from the initial stabilising controller
parameters and converges to their optimal values. Since they use gradient-based meth-
ods, direct methods can readily �nd the local minimum of the cost function, and can
be used to �ne-tune other, more global control design techniques. However, since no
knowledge of the true system is used in controller design, proving steady-state stability
or convergence can be challenging.

The objective of the �rst part of this thesis is to set up data-driven control approaches
in a manner suitable for wind turbine load control; in the sequel the developed algo-
rithms will be validated numerically and experimentally to assess their potential in real-
time under realistic conditions of operation.
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CLOSED-LOOP NUCLEAR NORM-BASED

RECURSIVE IDENTIFICATION

For an example of a recursive citation, please refer to Navalkar (2016).

Paolo Pozzi, the Netherlands (2016).

Recursive identi�cation oftens forms the �rst step in online data-driven control. This
chapter explores the extension of standard recursive online identi�cation methods de-
signed to reduce the variance in the estimate of the system parameters, while retaining
the sensitivity to changes in system dynamics. First, the closed-loop Predictor Based Sub-
space Identi�cation (PBSID) cost function is augmented with a nuclear norm-based cost
function to this effect. Next, since the new cost function uses the system Markov parameters
as optimisation variables, which are assumed to vary slowly over time, a recursive version
of this extended PBSID method is readily set up. The recursive solution to this optimi-
sation problem is then synthesised using the Alternating Direction Method of Multipliers
(ADMM). This method demands a time-consuming recursive singular value threshold-
ing step, which is replaced by a fast randomised method that also recursively updates the
range of the system based on previously used data. The bene�ts of using the nuclear norm
for recursive system identi�cation are then evaluated using a case study.

3.1. INTRODUCTION
The �rst step of the two-step data-driven control approach is the identi�cation of system
dynamics. Since a control law, adaptive to changing dynamics and environments, is
to be synthesised on the basis of the identi�ed system parameters, the identi�cation
process is designed to be able to operate online, in a recursive manner, and preferably in
closed loop.

Parts of this chapter have been published in the Proceedings of the American Control Conference, Boston,
USA, Navalkar and Van Wingerden (2016) and submitted to the IEEE Transactions on Control Systems Tech-
nology, Navalkar and Van Wingerden (2016).
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The online identi�cation of system dynamics also yields interesting insights into the
current operational condition of the plant. Several references in the literature investi-
gate the use of online identi�cation for fault diagnosis, Rodrigues et al. (2006), Uppal and
Patton (2005). A `fault' in this case could be de�ned, for instance, by a change in the esti-
mated poles of the system, from one region to another (either pre-de�ned or unknown).
In the case of applications like �exible aircraft or wind turbine blades, the coupling of
aerodynamics and structural dynamics implies that there are certain conditions under
which the stable poles of the system migrate into the unstable region, Bernhammer et al.
(2013). In such a case, online system identi�cation can be used in order to identify the
point where the system becomes unstable, and to adjust the control strategy accordingly.

As discussed in the previous chapter, in order to preserve convexity and for the ease
of handling multivariable systems, subspace identi�cation may be considered suitable
for online, recursive implementation. Further, as an inherently closed-loop strategy,
Predictor-Based Subspace Identi�cation (PBSID), Chiuso (2007), is explored for exten-
sions to online recursive identi�cation. A recursive implementation of this method have
been considered using projection approximation for subspace tracking, Lovera (2003).
In this method, however, it is not guaranteed that the identi�ed state-space parameters
converge to a coherent state basis. The authors in Houtzager et al. (2012), on the other
hand, use a propagator-based technique for estimating the state sequence in a coherent
basis. In all, three Recursive Least Squares (RLS) problems are solved online in order
to estimate the state-space realisation of the system in real time. In the case where the
true system is LTI and the persistency of excitation condition is satis�ed, the state-space
matrices estimated by this method ergodically approaches the true underlying system
parameters.

One of the issues faced by Houtzager et al. (2012) in the implementation of recursive
PBSID is that the variance of the estimates can be held to within small bounds only by
employing a large forgetting factor. In a batchwise sense, this high value is equivalent
to using a large past window of data to estimate the current dynamics of the system,
which causes a severe lag in the responsiveness of the algorithm to changes in system
dynamics. It is therefore desirable to extend the algorithm in such a manner that the
dominant system dynamics can be rapidly identi�ed from short batches of data, with
low estimate variance.

Recent studies in system identi�cation suggest that such an extension can be
achieved by exploiting the low-rank structure of the predictor state matrix, Fazel et al.
(2001). In this work, the rank penalty is approximated by the nuclear norm, de�ned as
the sum of singular values of the argument. Since the addition of the nuclear norm re-
tains the convexity of the optimisation function, the regularised identi�cation problem
yields a unique solution and can be solved ef�ciently. Verhaegen and Hansson (2016)
use the nuclear norm to extend the open-loop batchwise N2SID subspace identi�ca-
tion technique, and demonstrate that the nuclear norm enables low-variance system
identi�cation from short batches of data.

As such, in the recursive sense, one might expect the addition of the nuclear norm
to reduce the estimate variance with a low value of forgetting factor (which is equiva-
lent to a short data batch). Since the optimisation function now consists of a mixture
of norms, RLS cannot be used by itself. However, since the cost function is still convex,
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a method such as the Alternating Direction Method of Multipliers (ADMM), Annergren
et al. (2012), could be used for online minimisation of the cost function.

The ADMM solution demands the thresholding of singular values; a Singular Value
Decomposition (SVD) required for this step can be computationally expensive, and may
render the algorithm intractable in real time. Different alternatives have been explored
in the literature for speeding up the SVD computations in practice. For instance, Cai
(2010) avoids the SVD step entirely. Instead, singular value thresholding is achieved via a
polar decomposition step followed by norm shrinkage through projection. This method
reduces the computation time of the thresholding step by upto 50%. Another alternative
to the full SVD is the fast randomised SVD, which randomly samples the columns of the
argument matrix and performs a singular value decomposition of the smaller sampled
matrix, Oh et al. (2015). Further savings in computational complexity can be achieved
using the concept of r̀ange propagation' for the case where the range of state predic-
tor matrix remains almost the same across time instants, as is the case for time-varying
systems where the dynamics changes slowly over time.

The key contribution of this chapter is thus threefold: �rstly, a closed-loop subspace
identi�cation method will be extended to include the nuclear norm penalty, to facilitate
system identi�cation from short batches of data. Unlike the reference Verhaegen and
Hansson (2016), which formulates a nuclear norm extension to the (open-loop) sub-
space identi�cation method N4SID, the current chapter explicitly formulates an exten-
sion of the predictor-based method PBSID. In the method developed, the output vari-
ables, which change with time, do not form an optimisation variable in the method de-
veloped. Instead, the variables to be optimised are the Markov parameters of the system,
which are invariant for an LTI system. For a slowly time-varying system, these param-
eters can also be expected to vary slowly. As such, this method of identi�cation is es-
pecially amenable to implementation in a recursive form, and can be formulated using
ADMM for the identi�cation of real-time systems with time-varying dynamics. Finally,
the developed algorithm will be made numerically more ef�cient by replacing the SVD
step with a fast randomised version.

The �rst section sets up the notation and formulates the problem statement. Next,
the ADMM approach to an online solution is described. The following section describes
the replacement of the SVD with a faster alternative. Finally, a case study is described
to evaluate the proposed strategy for a simple system with time-varying dynamics, and
conclusions are drawn from the results.

3.2. PROBLEM FORMULATION
Conventional predictor-based subspace identi�cation algorithms, Chiuso (2007), typi-
cally take a two-step approach in order to arrive at a state-space model estimate on the
basis of input-output data. In the �rst step, an extended Vector Auto-Regressive with eX-
ogenous inputs (VARX) model is constructed from the experimental data, using a least-
squares approach with a 2-norm cost function. In the second step, the state sequence is
reconstructed and the state-space matrices are estimated based on the data. Since the
goal is the rapid identi�cation of the dominant system dynamics, it would be desirable
to synthesise a low-order VARX model in the �rst step. To achieve this goal, the 2-norm
cost function in the �rst step is augmented with a nuclear norm penalty on the state ma-
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trix, which exploits the low-rank property of this matrix. With this penalty, the effect of
noise on the VARX model and the eventual state-space model is reduced, thereby reduc-
ing estimate variance and increasing the responsiveness of the algorithm to changes in
the dominant system dynamics.

Let us consider that the underlying system whose parameters are to be identi�ed can
be modelled, at a given instant of time, as an LTI system in the predictor form:

xkÅ1 ÆÃxk Å Buk Å K yk , (3.1)

yk ÆCxk Å Fdk Å ek .

Here, yk 2 Rn y are the outputs of the system, while uk 2 Rnu are the inputs. The state
vector xk 2 Rn has an unknown length. The signal dk 2 Rnd is the deterministic part
of the disturbance, and is modelled as a combination of basis functions. On the other
hand, the signal ek 2 Rn y is the innovation sequence, considered to be zero-mean white
noise. The state-space matrices Ã, B, C, K and F are unknown; they may also vary slowly
over time. The objective of recursive identi�cation is to estimate these matrices at every
instant of time.

As discussed earlier, for PBSID, the output of the system can be approximated using
a truncated VARX representation in the following manner:

yk ¼CK̃ (s)zk Å Fdk Å ek , (3.2)

where zk is the input-output data stacked over a past horizon s. Thus,

zk Æ

2

6
6
6
6
6
6
6
6
6
6
4

uk¡ s

yk¡ s

uk¡ sÅ1

yk¡ sÅ1
...

uk¡ 1

yk¡ 1

3

7
7
7
7
7
7
7
7
7
7
5

. (3.3)

The term K̃ (s) is the extended controllability matrix of the system:

K̃ (s) Æ
£
Ãs¡ 1B Ãs¡ 1K ¢¢¢ B K

¤
. (3.4)

The block terms in CK (s) are de�ned as the Markov parameters ¥ 2 Rn y£ (nu Ån y )s of
the system, and are required to be identi�ed to complete the �rst step of PBSID. The
Markov parameters are partitioned in the following way:

¥ Æ
£
¥ 1 ¥ 2 ¢¢¢ ¥ (nu Ån y )(s¡ 1) ¥ (nu Ån y )s

¤
(3.5)

ÆCK̃ (s) Æ
£
CÃs¡ 1B CÃs¡ 1K ¢¢¢ CB CK

¤
.

From Equation (3.2), it can be seen that the Markov parameters can be obtained by di-
rectly minimising the quantity kyk ¡ ¥ zk k over the past window. This approach is fol-
lowed in conventional PBSID, as well as the recursive version, Houtzager et al. (2012).
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However, as noted, this approach is sensitive to noise in the data, and requires large
datasets (or high forgetting factors) to give reasonably accurate results in practical situ-
ations.

The objective is to estimate ¥ such that the state predictions are adequately low rank,
so that this sensitivity to noise is reduced. The state prediction matrix over the past batch
of N data points can be synthesised by extending the system description, Equation (3.1)
to form the following data equation:

Yk ,s,N ÆÕsXk ,1,N Å T̃u,sUk ,s,N Å T̃y,sYk ,s,N Å F̄Dk ,s,N Å Ek ,s,N . (3.6)

Here, the output data is arranged in Hankel matrices of the form:

Yk ,s,N Æ

2

6
6
6
6
4

yk ykÅ1 ¢¢¢ ykÅN ¡ s¡ 1

ykÅ1 ykÅ2 ¢¢¢ ykÅN ¡ s
...

...
. . .

...
ykÅs¡ 1 ykÅs ¢¢¢ ykÅN ¡ 2

3

7
7
7
7
5

, (3.7)

with similar expressions for the known quantities uk and dk , and the unknown quantities
xk and ek . The predictor above involves the unknown system Toeplitz matrices that can
be de�ned as:

T̃u,s Æ

2

6
6
6
6
6
6
4

0 0 0 ¢¢¢ 0
CB 0 0 ¢¢¢ 0

CÃB CB 0 ¢¢¢ 0
...

...
...

. . .
...

C Ãs¡ 2B CÃs¡ 3B CÃs¡ 4B ¢¢¢ 0

3

7
7
7
7
7
7
5

, (3.8)

with a similar expression for T̃y,s obtained by replacing B by K . The term Õs represents
the extended observability matrix of the system, given by:

ÕT
s Æ

£
CT (C Ã)T ¢¢¢ (CÃs¡ 1)T ¤

. (3.9)

Finally, the term F̄ 2 Rn y s£ nd s is a block diagonal matrix with the matrices F along the
diagonal.

In order to estimate the state sequence Xk ,1,N in terms of the past input-output data,
one can refer back to the expression (3.2), whence the following can be stated:

Xk ,1,N ÆK̃ (s) £
zk zkÅ1 ¢¢¢ zkÅN ¡ 1

¤
(3.10)

Xk ,1,N ÆK̃ (s)Zk ,1,N .

Replacing this estimate in the data equation (3.6),

Yk ,s,N ÆÕsK̃ (s)Zk ,1,N Å T̃u,sUk ,s,N Å T̃y,sYk ,s,N Å F̄Dk ,s,N Å Ek ,s,N . (3.11)

As noted by Verhaegen and Hansson (2016), the term ÕsK̃ (s)Zk ,1,N is low rank, since the
window size s is typically larger than the order n of the system. If the Markov parameter
identi�cation problem kyk ¡ ¥ zk k is conditioned on solutions that simultaneously (in
a Pareto optimal sense) minimise the rank of the matrix ÕsK̃ (s)Zk ,1,N , then the Markov
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parameters can be identi�ed in a manner that is less sensitive to measurement noise. As
such, the cost function to be minimised can be stated as:

min
¥

kÕsK̃ (s)Zk ,1,N k¤ Å
¸

N

NX

i Æ1
kyi ¡ ¥ zi k

2
2, (3.12)

where ¸ is a user-de�ned weighting parameter that can be used to tune the trade-off
between accuracy and model complexity.

At this point it is to be noted that the argument of the nuclear norm, ÕsK̃ (s)Zk ,1,N , is
not an independent variable, but can be expressed as a function of the system Markov
parameters in the following manner:

ÕsK̃ (s)Zk ,1,N Æ
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6
6
6
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Æ
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¥ 1 ¥ 2 ¢¢¢ ¥ 2s¡ 1 ¥ 2s
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Zk ,1,N ÆA (¥ ).

Herewith, the cost function can be expressed purely in terms of the unknown Markov
parameters ¥ in the following manner:

min
¥

kA (¥ )k¤ Å
¸

N

NX

i Æ1
kyi ¡ ¥ zi k

2
2. (3.13)

The minimisation of this cost function at every time instant would provide the low-
rank VARX model that can be further utilised in the next steps of the recursive PBSID
algorithm. The next section details a method for minimising this cost function online, in
a recursive manner.

3.3. THE ONLINE ADMM SOLUTION
The online, recursive implementation of PBSID has been discussed in Houtzager et al.
(2012). In this reference, since the cost function to �nd the system Markov parameters
only contains a 2-norm term, the minimisation can be performed ef�ciently in a recur-
sive manner using Recursive Least Squares (RLS). However, the cost function augmented
with the nuclear norm can no longer be solved using this direct technique, although this
function remains convex and admits a unique solution. This cost function, containing a
mixture of norms, can be solved online and in a recursive manner using the Alternating
Direction Method of Multipliers (ADMM), as described in Annergren et al. (2012).

In order to make the cost function separable in norms, an auxiliary variable X 2
Rn y s£ N is introduced in Equation (3.13), such that a constrained optimisation problem



3.3. THE ONLINE ADMM SOLUTION

3

29

is formulated:

min
X ,¥

kX k¤ Å trace((¥ ¡ ¥̂ )C(¥ ¡ ¥̂ )T ), (3.14)

s. t. X ÆA (¥ ). (3.15)

Here, the term ¥̂ is the RLS solution to the 2-norm minimisation problem, kyk ¡ ¥ zk k,
which is updated at every instant of time that new data is available. In the batchwise
sense, if the forgetting factor in this RLS solution corresponds to a batch of N̄ data points,
the value of this quantity becomes:

¥̂ ÆYk ,1,N̄ Z †
k,1,N̄

, (3.16)

where the symbol † represents the Moore-Penrose pseudo-inverse of a matrix. Com-
paring the equations, it can be concluded that the weighting matrix is given by C Æ
¸ Zk ,1,N Z T

k,1,N .
The constrained optimisation problem can be solved in a straightforward manner

by considering its Lagrangean and determining the saddle point of the extended cost
function:

max
Z

min
X ,¥

kX k¤ Å trace((¥ ¡ ¥̂ )C(¥ ¡ ¥̂ )T ) Å Z T (X ¡ A (¥ )) Å
t

2
kX ¡ A (¥ )k2

F . (3.17)

In this expression, the new dual variable Z is introduced, over which the Lagrangean is to
be maximised, while simultaneously minimising the function over the primal variables
X and ¥ . The penalty term t is held constant and represents the relative trade-off be-
tween the primal and dual residuals. The objective of this exercise is to speci�cally �nd
the minimiser ¥ ¤ , an estimate of the true system Markov parameters, which can then be
used in the next steps of the PBSID algorithm to arrive at a system realisation.

The saddle point of the Lagrangean can be found by alternatingly optimising the
function over each variable independently, in the following sequential manner:

1. At the initial instant, initialise the values of the primal and dual variables to 0. With
the superscripts corresponding to the iteration number,

¥ (0) Æ0, X (0) Æ0, Z (0) Æ0. (3.18)

Alternatively, since it is assumed that the system dynamics will not change signif-
icantly from one instant of time to the next, the variables can be initialised to the
converged values from the previous instant of time.

2. At iteration number i , since the term ¥ only appears in quadratic functions in
Equation (3.17), the minimiser can be found by directly setting the gradient of the
function with respect to ¥ to zero, giving the following result:

¥ (i ) Æ(CÅ tM )¡ 1A adj (t X (i ¡ 1) ¡ Z (i ¡ 1) Å C¥̂ (i )). (3.19)

Here, the terms A adj (.) refers to the adjoint of the function A (.) and the matrix M
is de�ned such that M (¥ ) ÆA adj (A (¥ )).
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3. At this iteration, in order to minimise the Lagrangean with respect to X , it is re-
quired to perform a singular value thresholding operation, in the following man-
ner:

U diag(¾)V T ÆA (¥ (i )) Å Z (i ¡ 1)/ t , (3.20)

X (i ) ÆU diag(max(0, ¾¡ 1/ t ))V T . (3.21)

This step can be de�ned using the singular value thresholding operator S t as:

X (i ) ÆS t (A (¥ (i )) Å Z (i ¡ 1)/ t ). (3.22)

4. The dual variable Z can be updated at iteration i in a linear manner:

Z (i ) ÆZ (i ¡ 1) Å t (A (¥ )(i ) ¡ X (i )). (3.23)

5. The steps 2. to 4. are then repeated until convergence is reached, as indicated by
an acceptably small value of the primal and dual residuals.

The ADMM algorithm, for an LTI system, always reaches convergence, as shown by
Nishihara et al. (2015). If the system dynamics are assumed to vary slowly over time, the
optimal values of the variables ¥ , X and Z can be considered to also vary slowly over
time. As such, it is not necessary to proceed to convergence at every instant of time,
as approximate convergence can be considered to be reached after an adequately large
number of time samples. Hence, the iterative ADMM process for the purpose of �nding
the optimal Markov parameters ¥ ¤ can be terminated after a �xed number of iterations
at every instant of time, without signi�cantly impairing the accuracy of the solution. In
practical terms, this early termination before convergence can ease the computational
burden, which is especially important for real-time applications.

It is possible to arrive at analytical expressions for the terms A adj (.) and M , for the
given formulation of the function A (.). These quantities can be obtained in the following
manner:

A adj (X ) Æ

2

6
6
6
6
4

P s
j Æ1 x̄ j z̄T

k, jP s¡ 1
j Æ1 x̄ j z̄T

k, j Å1
...

x̄1z̄T
k,s

3

7
7
7
7
5

, (3.24)

M Æ[m i j ], m i j Æ

( P 2s¡ i Å j
pÆi »p(pÅi ¡ j ), if i ¸ j

m j i , otherwise.
(3.25)

The terms x̄ j 2 Rn y£ N and z̄k , j 2 R(nu Ån y )£ N are obtained by block partitioning the
matrices X and Zk ,1,N respectively:

X T Æ
£
x̄T

1 ¢¢¢ x̄T
s

¤
, (3.26)

Z T
k,1,N Æ

h
z̄T

k,1 ¢¢¢ z̄T
k,s

i
. (3.27)
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On the other hand, the terms »i j 2 R(nu Ån y )£ (nu Ån y ) are the block elements of the matrix
Zk ,1,N Z T

k,1,N .

Following the above method, it is possible, at each instant of time k, to have avail-
able an optimal regularised estimate of the system Markov parameters, ¥ ¤ . On the basis
of this estimate, it is possible to identify the system parameters, following the approach
laid out by Houtzager et al. (2012). However, it must be noted that this process involves
the computationally expensive SVD step, which can, for many practical applications,
render the algorithm intractable in real-time. In order to circumvent this issue, the fast
randomised SVD process used by Oh et al. (2015) is described as a means to reduce com-
putational complexity in the next section.

3.4. FAST SINGULAR VALUE THRESHOLDING

3.4.1. RANDOMISED SINGULAR VALUE THRESHOLDING

In Oh et al. (2015), the problem of computational complexity in image processing
with nuclear norm regularisation is dealt with by speeding up the SVD step with the
randomised approximation introduced by Halko et al. (2011); this method can also
be adapted for the ADMM solution for recursive identi�cation. The bottleneck in the
ADMM process described in the previous section lies in step 3., which demands the SVD
of a large matrix A (¥ ) Å Z / t 2 Rn y s£ N . However, taking into consideration that the rank
n of this matrix is typically far smaller than the size N of the collected data points, a
considerable speed-up can be achieved. For this, the columns of the matrix A (¥ ) Å Z / t
are sampled randomly by post-multiplication with a small random Gaussian matrix
 2 RN £ ` :

Y Æ(A (¥ ) Å Z / t ) , Y 2 Rn y s£ ` . (3.28)

As long as the column size ` of the random matrix  is larger than the rank n of the
original matrix A (¥ ) Å Z / t , the new sampled matrix Y approximately spans the range
of the original matrix. Thus, the singular value thresholding (SVT) operator S t can be
applied to this smaller matrix Y instead of the original matrix:

S t (Y) ¼S t (A (¥ ) Å Z / t ). (3.29)

With this approximation, the column size of the matrix, the SVD of which is required,
reduces drastically. Since computational costs of the SVD step scale linearly with the
column size, there is a proportionate decrease in computational complexity by taking
the SVD of the smaller matrix. It has been shown by Halko et al. (2011) that the approx-
imation error reduces exponentially with the value of the quantity ` ¡ n , with the error
becoming negligible when this value exceeds 5. Also, for the case where the underly-
ing system is LTI, the repeated application of this randomising step at each time instant
implies that the approximation error vanishes ergodically.

Thus, with the randomised sampling of the argument of the SVT operator, a signi�-
cant reduction in computational complexity is achieved, at the cost of an approximation
error that becomes negligible over time.
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3.4.2. RANGE PROPAGATION IN SVT
It has been shown in Oh et al. (2015), that a further reduction in the computational bur-
den can be achieved through the use of range propagation. In other words, use can be
made of the fact that the range of the matrix Y changes slowly with the changing dynam-
ics of the system, and remains virtually constant across consecutive instants of time. For
an LTI system, this assumption is exactly true. The term Y is hence decomposed as fol-
lows:

Y ÆQB, (3.30)

where the orthonormal matrix Q spans the range of Y . The matrix B can be directly
synthesised, given Y and its range as: B ÆQY . Since the term Q is orthonormal, the SVT
step from Equation (3.29) can be updated as follows:

S t (A (¥ ) Å Z / t ) ÆS t (Y) ÆQS t (B). (3.31)

Since the size of B is smaller than that of Y , the computational complexity is reduced
further. Also, the range at the i th iteration, Q(i ) can be updated recursively as new data
becomes available, based on its value from the previous iteration, Q(i ¡ 1). For instance,
the new sample matrix Yq can be given such that:

Yq Æ(A (¥ (i )) Å Z (i ¡ 1)) q ,  q 2 Rn y s£ q , (3.32)

where q is a small number that indicates the extent to which the range is expected to
evolve. Based on this new data, the range can be updated by a partial orthogonalisation
and renormalisation step as follows:

Q̃ ÆPartialOrthogonalisation(
£
Q(i ¡ 1) Yq

¤
) (3.33)

Q(i ) ÆRenormalisation( Q̃). (3.34)

The term B can then be synthesised as before, and the SVT step can be carried out. Thus,
the computational complexity reduces from the full SVD of a large matrix to the SVD of
a considerably smaller matrix, in the ideal case of size n £ ` , if n is a known quantity.
Further, an additional QR-update step is necessary to track the range of the matrix Q.
With these modi�cations, it is expected that the recursive PBSID algorithm regularised
by the nuclear norm becomes tractable in real time for a larger class of systems.

At this point, with the use of fast ADMM, it is possible to arrive at an estimate of
the Markov parameters that optimise the nuclear norm-augmented cost criterion (3.13).
These Markov parameters can be used further to estimate the state-space parameters of
the data-generating system, as described in the next section.

3.5. RECURSIVE PBSID WITH THE NUCLEAR NORM: ALGO-
RITHM

The regularised Markov parameters estimated from the previous sections can be used
directly in a data-driven strategy like Subspace Predictive Control (SPC), introduced in
the previous chapter; or in Subspace Predictive Repetitive Control, a new strategy for
the control of periodic disturbances, that will be developed in detail in the next chapter.
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However, if the objective is to analyse the properties of the system, for instance, in terms
of the poles of the system, then it may become necessary to be able to get an estimate
of the state-space matrices of the system. To arrive at these state-space matrices at ev-
ery instant of time, starting from an estimate of the system Markov parameters, in an
online manner, two more RLS problems can be solved. Each of the RLS problems that
is required to be solved in the Recursive PBSID algorithm is associated with a forgetting
factor 0 Ç f · 1, which determines the adaptivity of the algorithm to changes in the un-
derlying data-generating system. Also, the �delity of the estimate obtained at every step
in the RLS method can be measured in terms of the covariance matrix P, of appropri-
ate dimensions. The algorithm for recursive PBSID, extended with the nuclear norm, is
given in Algorithm 1.

Herewith, it is possible to obtain an estimate of the A, B, C, K and F matrices of
the system, starting from input-output data. It can be seen from the algorithm that the
term f (1) refers to the forgetting factor associated with the determination of the Markov
parameter estimate based on the data. Reducing the value of the estimate can increase
the adaptivity of the algorithm, but it can also cause a strong increase in the estimate
variance. However, with the addition of the nuclear norm regularisation, it is possible
to reduce the sensitivity of the Markov parameter estimation process to external noise,
thereby keeping the estimate variance under control. Thus, with the addition of the nu-
clear norm, it is expected that the forgetting factor can be reduced, thus increasing the
responsiveness of the algorithm to changes in system dynamics, without affecting the
variance of the estimate.

The potential of the algorithm will be demonstrated using a case study in the next
section. The application of the algorithm to experimental data is deferred to the second
part of this book.

3.6. CASE STUDY
The behaviour of the nuclear norm-enhanced closed-loop identi�cation algorithm de-
veloped in the previous sections is studied. First, the ability of the algorithm to identify
system parameters for an LTI system, both stable and unstable, is investigated. Then, the
responsiveness of the algorithm to changes in system dynamics is explored and com-
pared with that of the conventional recursive PBSID algorithm from Houtzager et al.
(2012).

3.6.1. LINEAR TIME-INVARIANT DYNAMICS

This section describes the results obtained using two different synthetic LTI systems,
one system Gs that is open-loop stable and one open-loop unstable Gu . Both systems
are single-input single-output (SISO). The transfer function realisations of these systems
are given as follows:

Gs Æ
s/ ! Å 1

(s/ ! )2 Å 2¯ s(s/ ! ) Å 1
, Gu Æ

s/ ! Å 1

(s/ ! )2 Å 2¯ u (s/ ! ) Å 1
. (3.35)

As can be seen, the LTI systems have one pair of poles each; for the purposes of this
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Algorithm 1 Recursive identi�cation with the nuclear norm

input: s, n ,
£
Ã¡ 1 B¡ 1 K¡ 1

¤
, f (1),(2),(3), P(1),(2),(3)

¡ 1
for k Æ0, 1, 2 ...

input: uk , yk

Step 1: Update ¥ (0)
k

P(1)
k Æ 1

f (1) P(1)
k ¡ 1 ¡ 1

f (1) P
(1)
k ¡ 1zk ( f (1) Å zT

k P(1)
k ¡ 1zk )¡ 1zT

k P(1)
k ¡ 1,

¥ (0)
k Æ¥ (0)

k ¡ 1 Å (yk ¡ ¥ (0)
k ¡ 1zk )zT

k P(1)
k .

Step 2: Update ¥ k

From ¥ (0)
k , obtain ¥ k using ADMM as described in Section 3.3. The ADMM variables

¥ , X and Z are initialised from the values at the previous iteration. The SVT step in
ADMM is carried out using the randomised variant, with range propagation, as de-
scribed in Section 3.4.

Step 3: Estimate xk

From ¥ k , construct ÕsK̃ (s) and T̃y,s.
With selection matrix S described in Houtzager et al. (2012) Section IV-B,
xk ÆS(I ` s ¡ T̃y,s)¡ 1ÕsK̃ (s)zk .

Step 4: Estimate the C matrix at time k,

P(2)
k Æ 1

f (2) P(2)
k ¡ 1xk ( f (2) Å xT

k P(2)
k ¡ 1xk )¡ 1xT

k P(2)
k ¡ 1,

Ck ÆCk¡ 1 Å (yk¡ 1 ¡ Ck¡ 1xk )xT
k P(2)

k .

Step 5: Estimate ek

ek Æyk ¡ Ck xk .

Step 6: Estimate the Ã, B and K matrices at time k,

©k Æ

2

4
xk¡ 1

uk

ek

3

5, £ k Æ
£
Ãk Bk Kk

¤
,

P(3)
k Æ 1

f (3) P(3)
k ¡ 1©k ( f (3) Å ©T

k P(3)
k ¡ 1©k )¡ 1©T

k P(3)
k ¡ 1,

£ k Æ£ k¡ 1 Å (xk ¡ £ k¡ 1©k )©T
k P(3)

k .

end for
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case study, the value of the frequency and damping of the poles is taken as:

! Æ2¼rad/s, ¯ s Æ0.05, ¯ u Æ ¡0.05. (3.36)

The computational software Matlab TM is used for simulating the system numerically.
A sampling time Ts Æ12.5 Hz is used for the simulations. Since one of the systems is un-
stable, the systems are both simulated in closed loop with a nominally stabilising con-
troller (designed using classical loop-shaping), described by:

Kc Æ0.997z¡ 1 Å 0.00475
Tsz¡ 2

1¡ z¡ 1 . (3.37)

In order to ensure that adequate persistency of excitation is available at the system in-
put, a zero-mean white noise signal, with covariance 1, is added to the output of the
controller. Further, the output measurements are considered to be perturbed by an
unknown external disturbance, simulated by superposing a zero-mean white noise of
covariance 0.01 on to the output data collected from the system. The objective of the
identi�cation algorithms is to identify the frequency and damping of the pole pair, in a
recursive manner. The recursive PBSID algorithm of Houtzager et al. (2012) (RPBSID)
is used as a baseline in this case study in order to compare its results to the results ob-
tained by using the nuclear norm-enhanced recursive PBSID developed in this chapter
(RPBSID-NN), as given in Algorithm I.

It should be noted that Algorithm I requires the solution of three RLS problems and
delineates the direct process of obtaining an RLS solution. However, the recursively up-
dated inverse-QR method, Sayed (2003), is far more numerically stable, and is utilised
in this section to obtain solutions to the three least squares problems in the simulation
results described below.

As described in Section 3.3, the ADMM method is used to obtain an estimate of the
Pareto optimal Markov parameters at each time instant. However, in pursuit of reducing
the computational burden, ADMM is not allowed to proceed to convergence; instead,
a single step of the ADMM algorithm is executed at every instant of time. The ADMM
primal and dual variables are not reinitialised at each time instant, they are assigned the
(non-converged) values obtained from the previous instant of time. In a sense, there-
fore, ADMM is warm-started at all time steps using data from the previous time steps.
This approach is considered valid for the case where the underlying system dynamics
change slowly over time; this assumption may break down for rapid changes in system
dynamics.

The fast randomised SVD described in Section 3.4 is not utilised in the results in this
chapter; however it will be employed in Part II, with the experimental results.

The results obtained using the recursive identi�cation algorithms can be seen in
Fig. 3.1. Both methods perform well in the identi�cation of the damping, for the sta-
ble system as well as the unstable system. It can be seen that the addition of the nuclear
norm signi�cantly reduces the variance in the parameter estimate. However, it can also
be observed that, after convergence, there remains a small but �nite bias between the
true value of the parameter and its online, recursive estimate.

The steady-state estimated Markov parameters can be visualised in Fig. 3.2. As per
the �gure, the addition of the nuclear norm tends to weight the more recent data to a



3

36 3. CLOSED-LOOP NUCLEAR NORM-BASED RECURSIVE IDENTIFICATION

Figure 3.1: Damping estimate using RPBSID and RPBSID-NN

larger extent at the expense of the older data. For a low-order system, the dependence
on older data is likely to be corrupted much more by artefacts in the noise, and hence
the addition of the nuclear norm reduces the sensitivity of RPBSID to external noise.
However, the suppression of the higher-order Markov parameters can be a contribut-
ing factor to the bias in the system parameter estimates, which causes, in this case, an
overestimation of the damping of the estimated system poles.

Figure 3.2: Markov parameter estimate using RPBSID and RPBSID-NN
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3.6.2. THE BIAS/VARIANCE TRADE-OFF
In the noiseless case, optimal unbiased parameter estimates for the LTI case (with an
in�nitely large past window) can be obtained by setting the weight on the nuclear norm
penalty to 0. In other words, if in Equation (3.13), the weight ¸ ! 1 , unbiased system
estimates can be obtained. However, from the previous results, a non-zero weight on the
nuclear norm is necessary to reduce the variance in the estimates of the system param-
eters. As such, by tuning the weighting parameter ¸ , it is possible to achieve the desired
bias/variance trade-off. This trade-off is depicted in Fig. 3.3. It can be seen that increas-
ing the weight on the nuclear norm term (reducing ¸ ) causes an increase in estimate
bias, while reducing the estimate variance, and vice-versa.

Figure 3.3: Tuning the bias/variance trade-off using ¸

3.6.3. TIME-VARYING DYNAMICS
The value of the weight is kept �xed at ¸ Æ160, and the recursive algorithms are applied
to a time-varying system. The transfer function of this system has the same form as Gs

and Gu , however the damping of the poles, ¯ (¿), is not constant, but varies with time ¿.
The damping follows the trajectory:

¯ (¿) Æ

8
>>>>>>><

>>>>>>>:

0.05, if ¿ · 900

0.05¡ 0.1¿¡ 900
900 , if 900 Ç ¿· 1800

¡ 0.05, if 1800Ç ¿· 2700

¡ 0.05Å 0.1¿¡ 2700
900 , if 2700 Ç ¿· 3600

0.05, if ¿È 3600.

(3.38)

Both recursive algorithms are used with the data generated by the system as the pole
damping follows the above trajectory; the results can be seen in Fig. 3.4. According to the
�gure, RPBSID can track the unstable-to-stable transition with low variance and almost
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no delay. However, the stable-to-unstable transition causes a sudden large transient in
the damping estimate, and a signi�cant delay of nearly 750 s occurs before the instabil-
ity is detected. Overall, the estimates also show more variance than the estimates with
RPBSID-NN. This nuclear norm-enhanced method does not show any unexpected tran-
sients, and it is able to smoothly track the changes in the system dynamics. RPBSID-NN
is able to track the onset of instability in less than half the time taken by the conven-
tional RPBSID method. Further, the forgetting factor in the RPBSID-NN approach can
be reduced from 0.9999 to 0.999, thereby increasing the rate of convergence. This change
does not alter the estimate variance signi�cantly. It can be noted that RPBSID-NN shows
a bias in the damping estimates, but this bias does not affect the detection of the occur-
rence of the instability.

Figure 3.4: Time-varying damping estimate using RPBSID and RPBSID-NN

3.7. CONCLUSIONS
In this chapter, the closed-loop subspace identi�cation algorithm PBSID for slowly time-
varying plants was augmented with a nuclear norm rank penalty. The structural knowl-
edge of the low-rank nature of the state predictor matrix was exploited by levying a cost
on its nuclear norm. The objective of this extension is to penalise the high-order arte-
facts produced by noise and therewith reduce the sensitivity of the algorithm to noisy
data. The state predictor matrix was reformulated as a function of the system Markov
parameters, which then form the only optimisation variable in the identi�cation cost
function. Since these parameters vary slowly with time for a slowly time-varying plant,
the recursive extension of this method is straightforward. The convex optimisation cri-
terion, a mixture of nuclear and 2-norms, was approximately minimised at every time
instant using a few steps of ADMM. While the ADMM process can be sped up by reduc-
ing the dimensionality of the SVD step, this step was not implemented in the simulation
case study, but will become important when using experimental data.
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In the simulation environment, the RPBSID-NN algorithm presented in this chapter
was shown able to identify the damping parameters of both stable as well as unstable LTI
systems operating in closed-loop. The weighting of the nuclear norm can be tuned to
adjust the bias/variance characteristics of the system parameter estimates. Depending
on the signal-to-noise ratio (SNR) of the input-output data, increasing the weight on the
nuclear norm can increase the bias but leads to a reduction in the estimate variance,
and vice-versa. The Pareto weighting parameter can hence be adjusted to achieve the
optimal bias/variance balance for the expected SNR.

For plants with time-varying dynamics, the damping can be tracked with more �-
delity by RPBSID-NN as compared to conventional RPBSID. Due to its reduced sensitiv-
ity to noise, the speed of detecting changes in system dynamics is greater, and can be
further improved by reducing the forgetting factor without causing a large increase in
estimate variance. In the example, RPBSID-NN is shown to rapidly detect the onset of
an instability, in less than half the time taken by the conventional RPBSID algorithm.

Thus, for plants with time-varying dynamics, RPBSID-NN shows potential for track-
ing changes in pole locations over time. It can also furnish, with low time lag, a reason-
able estimate of the system Markov parameters that are relatively uncorrupted by exter-
nal disturbances. These system parameters can, going forward, be utilised to synthesise
a time-varying data-driven control law that is able to adapt to changes in the dynamic
behaviour of the underlying data-generating system.





4
SUBSPACE PREDICTIVE REPETITIVE

CONTROL

To the best of my knowledge, he has never encountered a charging rhinoceros,
but should this contingency occur, I have no doubt that the animal, meeting his eye,

would check itself in mid-stride, roll over and lie purring with its legs in the air.

Bertram Wooster in `Right Ho Jeeves', authored by P. G. Wodehoouse, the UK (1934),
describing the extraordinary adaptivity of his controller, Jeeves.

Several industrial systems require the rejection of periodic disturbances, or periodic refer-
ence trajectory following. This chapter describes the data-driven implementation of repet-
itive control, termed as Subspace Predictive Repetitive Control (SPRC). In this method,
�rst, the system Markov parameters are determined recursively from the input-output
data: both in the time domain, as described in the previous chapter, as well as in the
iteration domain, where an iteration is taken to be a multiple of the period of the peri-
odic disturbance. The dimensionality of the identi�cation in the iteration domain can be
reduced by projecting the data into a smaller subspace de�ned by basis vectors. Next, an
output predictor is synthesised, and an LQ-like cost criterion is minimised over a �nite
and receding horizon. This control law can also be synthesised in a basis function space.
The chapter then describes the stability characteristics of the two-step data-driven control
approach developed. Finally, with the help of a case study, the implementation of the new
control methodology is investigated, speci�cally for a case with constant and time-varying
system dynamics. The case study also explores the bene�ts and drawbacks of using basis
functions in the identi�cation and/or control steps of the data-driven SPRC controller.

Parts of this chapter have been published in Mechatronics 24, Navalkar et al. (2014), in the Proceedings of the
American Control Conference, Portland, USA, Navalkar et al. (2014c), in the Proceedings of the IFAC World
Congress, Cape Town, South Africa, Navalkar et al. (2014a) and the IEEE Transactions on Control Systems
Technology 23, Navalkar et al. (2015).
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4.1. INTRODUCTION
Data-driven control based on recursively identi�ed system dynamics shows sign�cant
potential for the control of systems with time-varying dynamics, as discussed in the pre-
vious chapters. Typically, the system parameters identi�ed online are used to synthesise
an MPC law, which is then implemented in a receding horizon sense. For the special
case where the objective of the controller is to reduce periodic disturbances, or where
the system is required to follow a periodic trajectory, the periodicity can be exploited to
enhance the controller performance even further. It should be noted that, from the point
of view of control design, the rejection of periodic disturbances and periodic reference
trajectory following are exactly identical.

High-performance control design methods for addressing the periodic disturbance
rejection issue have been explored in the literature: “learning control", as introduced
in Arimoto et al. (1984), is one such methodology. In this approach, a feedforward se-
quence is successively optimised over a number of iterations to minimise the effect of
the periodic disturbance. A distinction is made between “Iterative Learning Control"
(ILC), which is applicable to systems that undergo a reset in initial conditions at the be-
ginning of each periodic iteration, and “Repetitive Control" (RC), where the initial con-
ditions are not reset. The current chapter focusses on RC, as described by Longman
(2000), and is aimed towards systems that evolve continuously over time and do not un-
dergo jumps in the state sequence. However, it should be noted that the treatment of ILC
and RC is very close in practice. The developments in ILC have been reviewed in Bristow
et al. (2006), speci�cally dealing with issues of stability, performance and robustness.
Tousain and Van Casteren (2007) show that ILC outperforms the traditional combined
feedforward-feedback control design approach in terms of periodic reference trajectory
tracking. Since the formulation of ILC, as used by Van de Wijdeven and Bosgra (2007) for
the control of �exible structures, is analogous to that of an MPC controller, it can be con-
sidered amenable to a data-driven extension. Further, as with Wang et al. (2010), MPC
can be combined readily with RC, with a view towards synthesising a control law with
constraint handling capabilities.

The objective of RC is to arrive at an optimal periodic “feedforward" control input
sequence in order to attenuate the periodic disturbance. However, if the period is large
as compared to the sampling time, as is often the case for many practical applications,
the optimisation problem has an argument of a considerably large size. Such an ill-
conditioned optimisation problem may cause numerical issues or slow the rate of con-
vergence of RC to the ideal feedforward sequence. This problem can be overcome by
de�ning the control input as a linear combination of basis functions, as is done by Van de
Wijdeven and Bosgra (2010) and Bolder et al. (2013) in ILC and Shi et al. (2014) for RC.
This approach has a few advantages and disadvantages:

• The computational burden is reduced since the length of the optimisation variable
reduces to the number of basis functions chosen.

• The control input is constrained to remain within the basis function subspace,
thereby allowing precise control over the frequency content or the smoothness of
the control input signal.
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• If identi�cation is to be done in the lower-dimensional basis function subspace,
then persistency of excitation is required only in this subspace.

• For a linear system, the disturbances that lie in the null space of the basis functions
cannot be attenuated. On the other hand, these disturbances cannot be magni�ed
either.

Such an implementation has been demonstrated experimentally by Van Wingerden et al.
(2010b) on a wind turbine operating inside a wind tunnel, for the purpose of rejecting
blade load disturbances that are sinusoidal in nature. The exogenous forcing frequen-
cies 1P (rotor speed) and 2P (2x rotor speed) were signi�cantly attentuated with an RC
method designed of�ine, with control signals synthesised as (optimally) weighted com-
binations of sinusoidal basis functions of frequency 1P and 2P.

It should be noted that, in all the above references, the starting point is an approxi-
mate (LTI or linear periodic, Dijkstra and Bosgra (2002)) model of the system to be con-
trolled, which may not be readily available in all cases and all operating conditions; as
such, a data-driven extension may become necessary. Some data-driven extensions to
ILC exist: for instance, in Frueh and Phan (2000), the basis functions are optimally syn-
thesised based on input-output data. Of�ine identi�cation can also be done as a pre-
cursor to synthesising an RC control law, as in Ye and Wang (2005). However, an online
combination of system identi�cation and repetitive control would be able to address the
problem of slowly time-varying dynamics or periodic disturbances; such a combination
is not available in the literature.

As discussed in the Chapters 2 and 3, subspace identi�cation can be performed re-
cursively by solving a convex cost function to obtain the system Markov parameters for
systems with slowly time-varying dynamics. These parameters can be used, in an RC
control design approach, to iteratively synthesise the ideal feedforward sequence that
would minimise external periodic disturbances.

The key contribution of this chapter is thus the full integration of an online sub-
space identi�cation strategy with a repetitive control law formulation for periodic distur-
bance rejection. Further, both the identi�cation and control steps are cast into a lower-
dimensional basis functions subspace, to minimise computational complexity and to
ensure control over the smoothness of the control input. Since identi�cation is done by
lifting the system over the period of the disturbance, and then casting the data into a
basis-function subspace, the method is applicable to LTI systems as well as to systems
that admit an (instantaneously) linear periodic state-space realisation. Finally, as the
developed method is analogous to MPC, constraint handling is possible. Both equality
and inequality constraints are then required to be cast into the basis function subspace
in which the algorithm is implemented.

With this data-driven extension of RC, irrespective of changes in dynamics and dis-
turbance properties, the control law is formulated to adapt itself in such a manner that
maximal periodic disturbance rejection is still achieved.

In this chapter, �rst, the problem is introduced mathematically and the input-output
data equation is set up. Then, the identi�cation step is explained. The next step involves
the synthesis of a repetitive control law based on the parameter estimates obtained from
the identi�cation step. A stability metric is set up that can be tracked to ensure that the
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uncertainty in the estimates does not affect the closed-loop stability of the data-driven
controller. Finally, a numerical case study demonstrates the potential of this method.
The experimental application of this method is deferred to the second part of the book.

4.2. SPRC STEP 1: ONLINE SYSTEM IDENTIFICATION
In common with all two-step data-driven approaches to control, the �rst step is to de-
vise a system description that can be used to identify key system dynamics based on
input-output data. As in the previous chapter, the system dynamics can be estimated
in terms of the (regularised) Markov parameters identi�ed from input-output data. This
section formulates a predictor in terms of such Markov parameters, and de�nes the sys-
tem matrices, in terms of the identi�ed parameters, that can be used for synthesising a
control law. The identi�cation can be carried out either in the time domain, or in the
iteration domain, where an iteration is taken to be an integral multiple of the period of
the periodic disturbance to be rejected.

4.2.1. TIME-DOMAIN IDENTIFICATION
The time-domain identi�cation laid out in this section is similar to the �rst step of
the RPBSID method discussed in the previous chapter: the objective is to estimate the
system Markov parameters from the input-output data obtained in the time domain.
Hence, as in the previous chapter, let us consider that the underlying system to be
controlled, at a given instant of time, as an LTI system in the innovation form:

xkÅ1 ÆAxk Å Buk Å Edk Å K ek (4.1)

yk ÆCxk Å Du k Å Fdk Å ek .

Here, as previously de�ned, the state xk 2 Rn is the state vector of unknown length n,
while the inputs are denoted by uk 2 Rnu and the outputs by yk 2 Rn y . The periodic
disturbances are dk 2 Rnd , while ek 2 Rn y is the zero-mean white innovation sequence.
The system parameters A, B, C, D, E, F and K have the appropriate dimensions and are
unknown. These parameters are considered to either remain constant or evolve slowly
over time. For brevity, they have not been subscripted with k . However, especially for
a linear periodic system which has the same period N as that of the disturbance, the
extension is straightforward.

To be able to formulate a state predictor, the system is recast into its predictor form:

xkÅ1 ÆÃxk Å B̃uk Å Ẽdk Å K yk , (4.2)

yk ÆCxk Å Du k Å Fdk Å ek ,

where,
Ã ÆA¡ KC, B̃ ÆB ¡ K D, Ẽ ÆE ¡ K F. (4.3)

To simplify the identi�cation process, the effect of the periodic disturbance on the state
and the output is eliminated by using the periodic difference operator ± de�ned as:

±yk Æyk ¡ yk¡ N , ±uk Æuk ¡ uk¡ N , ±dk Ædk ¡ dk¡ N Æ0. (4.4)
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The term N is in this case the period of the periodic disturbance; it is in this case taken to
be equal to the size of the data batch that will be used for identi�cation. This is not a strict
requirement: the size of the data batch can also be an integral multiple of the period of
the periodic disturbance. Applying this operator to the system description (4.2), we get

±xkÅ1 ÆÃ±xk Å B̃±uk Å K ±yk (4.5)

±yk ÆC±xk Å D±uk Å ±ek .

The key step in predictive control is the prediction of state evolution as a function of
the control input sequence. From the equations above, in a manner analogous to the
previous chapter, the differenced state can be predicted in terms of the past input-output
data as:

±xk ÆÃs±xk¡ s Å K̃ (s)±zk , (4.6)

with the differenced, stacked input-output data ±zk 2 R(nu Ån y )s de�ned as:

±zk Æ

2

6
6
6
6
6
6
4

uk¡ sÅ1 ¡ uk¡ s¡ N Å1

yk¡ sÅ1 ¡ yk¡ s¡ N Å1
...

uk ¡ uk¡ N

yk ¡ yk¡ N

3

7
7
7
7
7
7
5

. (4.7)

The term K̃ (s) refers once more to the extended controllability matrix,

K̃ (s) Æ
£
Ãs¡ 1B̃ Ãs¡ 1K ¢¢¢ ÃB̃ ÃK B̃ K

¤
. (4.8)

As before, the approximation is made that Ã j ¼0 for j ¸ s, which is true, for an ar-
bitrarily large value of s for a stable system or a system where K stabilises A ¡ KC. With
this, it is possible to describe the state purely in terms of the input-output data as:

±xk ¼K̃ (s)±zk . (4.9)

Usually, in two-step data-driven control, two data windows are taken into consider-
ation: the past window, from which the system parameters can be estimated, and the
future window, over which the output is to be optimised by manipulating the control
sequence. The above equation describes the state in terms of the past window of data,
of block size s. For control, the output can be predicted over the window size N in the
following manner:

±Yk ,N ,1 ÆÕN ±xk Å
£
T̃u,N T̃y,N

¤
·
±Uk ,N ,1

±Yk ,N ,1

¸
. (4.10)

Since the innovation sequence is zero-mean, and its actual realisation over a future win-
dow is unknown, it is omitted in the equation above. The state is replaced by its estimate
from the past input-output data per (4.9),

±Yk ,N ,1 ÆÕN K̃ (s)±zk Å
£
T̃u,N T̃y,N

¤
·
±Uk ,N ,1

±Yk ,N ,1

¸
. (4.11)
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The system matrices in this equation can be described in terms of the system
Markov parameters. The Toeplitz matrix from the previous chapter is extended to
T̃u,N 2 Rn y N £ nu N such that:

T̃u,N Æ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

D 0 0 ¢¢¢ 0
CB̃ D 0 ¢¢¢ 0

CÃB̃ CB̃ D ¢¢¢ 0
...

...
...

. . .
...

C Ãs¡ 1B̃ CÃs¡ 2B̃ CÃs¡ 3B̃ ¢¢¢ 0
0 CÃs¡ 1B̃ CÃs¡ 2B̃ ¢¢¢ 0
0 0 CÃs¡ 1B̃ ¢¢¢ 0
...

...
...

. . .
...

0 0 0 ¢¢¢ D

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

. (4.12)

In a similar manner, T̃y,N 2 Rn y N £ n y N can be de�ned, replacing B̃ by K and D by 0.
Equivalent open-loop Toeplitz matrices Tu,N and Ty,N can also be de�ned in terms of
the “open-loop system matrices", replacing Ã by A and B̃ by B. These matrices will be
required in the predictor formulation in the next section. Finally, the extended control-
lability matrix ÕN 2 Rn y N £ n is de�ned in the same manner as in the last chapter:

ÕT
N Æ

£
CT ¢¢¢ (CÃs¡ 2)T (C Ãs¡ 1)T 0 ¢¢¢ 0

¤
. (4.13)

As for the Toeplitz matrices, an “open-loop" version of the extended controllability
matrix, ON can also be de�ned by replacing Ã in its de�nition by A. It can be directly ob-
served that the block elements of the extended observability times controllability matrix,
ÕN K̃ (s) are the system Markov parameters that can readily identi�ed from the input-
output data:

ÕN K̃ (s) Æ

2

6
6
6
6
6
6
6
6
6
4

CÃs¡ 1B̃ CÃs¡ 1K CÃs¡ 2B̃ CÃs¡ 2K ¢¢¢ CB̃ CK
0 0 CÃs¡ 1B̃ CÃs¡ 1K ¢¢¢ CÃB̃ CÃK
...

...
...

...
. . .

...
...

0 0 0 0 ¢¢¢ CÃs¡ 1B̃ CÃs¡ 1K
...

...
...

...
. . .

...
...

0 0 0 0 ¢¢¢ 0 0

3

7
7
7
7
7
7
7
7
7
5

. (4.14)

Thus, were the Markov parameters of the system known, it would be possible to pre-
dict system output over the period N using Equation (4.11). As done in the previous
chapter, the Markov parameters of the system can be identi�ed by considering the fol-
lowing regression problem obtained from the �rst block row of (4.11):

±yk ÆCK̃ (s)±zk Å D±uk . (4.15)

As de�ned in the previous chapter, CK̃ (s) Æ¥ , the system Markov parameters. Once
identi�ed, the Markov parameters can be used to reconstruct ÕN K̃ (s), as well as the
Toeplitz matrices de�ned above. On the basis of these matrices, the system output can
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be predicted as a function of the future control sequence and a predictive control law
can be set up. Hence, the objective of the �rst step of the two-step data-driven control
design approach is the identi�cation of the system Markov parameters from the regres-
sion problem set up in (4.15). Taking into account the fact that the actual measurements
are perturbed by the innovation sequence, we have that:

±yk Æ¥ ±zk Å D±uk Å ±ek . (4.16)

Given measurements of input-output data, the objective of the �rst step is to identify ¥
and D such that they minimise the norm:

min
¥ ,D

1X

i Æ1
k±yi ¡ ¥ ±zi ¡ D±u i k

2
2. (4.17)

For low estimate variance and rapid convergence, this minimisation function can be
regularised with the nuclear norm, as described in the previous chapter. The method
devised in that chapter needs to be modi�ed minimally to include differenced input-
output signals and a direct feed-through term, but it is otherwise directly applicable to
obtain optimal estimates of the system Markov parameters ¥ . As discussed, the cost
function above (extended with a nuclear norm if necessary) can be solved recursively
and online to yield a unique minimising solution ¥̂ k at every instant of time, as long as
the persistency of excitation condition holds.

Once the Markov parameters estimate ¥̂ k is available, it can be partitioned and rear-
ranged to obtain the matrix ÕN K̃ (s) and the Toeplitz matrices T̃u,N and T̃y,N . From these
matrices, it is possible to formulate a predictive control law.

One of the drawbacks of time-domain identi�cation is that persistency of excitation
in all possible directions is required for uniqueness of the estimate. This condition could
interfere with the normal operation of the plant, especially since identi�cation and con-
trol is expected to occur simultaneously in this data-driven approach. Alternatively, it
is possible, using iteration-domain identi�cation, to excite the system only along spe-
ci�c directions important for control, and perform identi�cation only in this limited
subspace. This approach is described in the next section.

4.2.2. ITERATION-DOMAIN IDENTIFICATION
In this section, identi�cation will be performed at the level of the iteration, de�ned as N ,
an integral multiple of the period of the system. As opposed to the previous section, the
system description will not be differenced, instead it is directly lifted over the period N
as in Bamieh et al. (1991):

xkÅN ÆÃN xk Å K̃ (N )Z (N )
k Å K̃ (N )

d D̄ (4.18)

Yk ,N ,1 ÆÕN xk Å T̃u,NUk ,N ,1 Å T̃d ,N D̄ Å Ek ,N ,1.

It should be noted that K̃ (N ) and Z (N )
k are de�ned in the same way as K̃ (s) and zk , re-

placing the window size s by N . The term D̄ denotes the stacked disturbance, since it is
periodic with period N , D̄ is constant across iterations. The term K̃ (N )

d is de�ned as:

K̃ (N )
d Æ

£
0 0 ¢¢¢ Ãs¡ 1Ẽ Ãs¡ 2Ẽ ¢¢¢ Ẽ

¤
. (4.19)
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Further, the Toeplitz matrix T̃d ,N is de�ned in the same manner as T̃u,N , replacing B̃ by
Ẽ and D by F.

Since identi�cation will be done in the iteration domain, the time index ( k ,k Å N ,...)
is replaced by the iteration index ( k̄ , k̄ Å 1, ...). In the previous section, the assumption
has been made that Ã j ¼0 for j ¸ s. Typically, the length of the iteration is much larger
than the window size, N ÈÈ s, and as such, it can be assumed that ÃN ¼0. The system
description (4.18) reads:

xk̄Å1 ÆÃN xk̄ Å K̃ (N )Z (N )
k̄

Å K̃ (N )
d D̄ (4.20)

Yk̄ ,N ,1 ÆÕN xk̄ Å T̃u,NU k̄ ,N ,1 Å T̃d ,N D̄ Å Ek̄ ,N ,1.

The state and output equations in the iteration domain become:

xk̄Å1 Æ
h
K̃ (N ) K̃ (N )

d D̄
i

"
Z (N )

k̄
1

#

Yk̄ ,N ,1 Æ
h
ÕN K̃ (N ) T̃u,N (ÕN K̃ (N )

d Å T̃d ,N )D̄
i

2

6
4

Z (N )
k̄ ¡ 1

U k̄ ,N ,1
1

3

7
5 Å Ek̄ ,N ,1. (4.21)

In the above data equation, it should be noted that the innovation sequence Ek̄ ,N ,1

is uncorrelated with the input-output data of the previous iteration, Z (N )
k̄ ¡ 1

. Also, if an RC
law is the only form of control used, it is updated at the end of every iteration. So, while
U k̄ ,N ,1 is correlated with Ek̄ ¡ 1,N ,1, it is not correlated with Ek̄ ,N ,1. As such, Ek̄ ¡ 1,N ,1 in
Equation (4.21) is an uncorrelated white noise and the equation can be used to estimate

the values of the coef�cients
h
ÕN K̃ (N ) T̃u,N (ÕN K̃ (N )

d Å T̃d ,N )D̄
i

in a least-squares

sense. This regression can be performed online, recursively, as and when data becomes
available.

However, at this point, using Equation (4.21) instead of Equation (4.15) is not attrac-
tive, since the dimensionality of the optimisation variables in (4.21) is signi�cantly large
as the input-output data has been stacked over a length of N . If the input-output data
can be projected into a subspace of a lower dimensionality, the regression (4.21) could
become more viable.

BASIS FUNCTION PROJECTION

In order to reduce the dimensionality of the regression problem (4.21), the stacked input-
output data can be projected into a lower-dimensional subspace using basis functions.
The limitation of this approach is that the identi�ed parameters are then able to describe
the behaviour of the system only in this limited-dimensional space. This aspect is not
necessarily a drawback for SPRC, if the target of the controller is to achieve performance
in this speci�c subspace. The input basis functions Áu are used to project the stacked in-
put data into a lower-dimensional space. This projection is also used when synthesising
a control law, to ensure that the shape and smoothness of the commanded input signals
can be exactly controlled. Output basis functions Áy are used to shape the performance
requirements and/or to signify that a restricted subspace of the stacked output space is
controllable by the restricted control inputs.
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Accordingly, the stacked input projected into the input basis function subspace is
denoted by Ū k̄ ÆÁuU k̄ ,N ,1 and similarly for the stacked output and stacked input-output
data. The projection matrices are spanned by the basis vectors as:

Áu Æ
h
ÁT

u,1 ÁT
u,2 ¢¢¢ ÁT

u,bu

i T
, (4.22)

where the basis vectors Áu,i 2 Rnu N , i Æ1,2, ...,bu . In practice, a limited number of ba-
sis vectors is chosen, such that nu N À bu . In this case, the basis function projection
strongly reduces the dimensionality of the regression problem and therewith the com-
putational complexity. If the basis function matrix Áu is chosen to be the identity matrix,
then the full input space is recovered. As such, the original regression problem can be
considered to be a special case of the problem projected into the basis function sub-
space, where the projection matrix is identity. A similar treatment can be done for the
output and the input-output projection matrices.

Since the control input is required in the full-dimensional subspace, it can be recon-
structed using the Moore-Penrose pseudo-inverse of the projection matrix, denoted by
the symbol †. Thus, the original control signal is:

U k̄ ,N ,1 ÆÁ†
uŪ k̄ . (4.23)

By construction, U k̄ ,N ,1 will contain energy only along the basis function directions. On
the other hand, the output, especially when perturbed by an exogenous source, will con-
tain energy both along the basis vector directions as well as orthogonal to it:

Yk̄ ,N ,1 ÆÁ†
yȲk̄ Å Á?

y Y ?
k̄

. (4.24)

The residual signal Y ?
k̄

lies outside the output basis function subspace, mapped by

Á?
y . Since ÁyÁ?

y is identically zero, the effect of the residual ouptut is projected away
by using the output basis functions. Since, by design, the residual output can either
not be reached by the input, or this part of the output is not relevant for the controller
performance. In both cases, it is then unnecessary to identify the transfer between Ū k̄
and Y ?

k̄
. A similar consideration can be done for the noise Ek̄ ,N ,1 and the effect of the

periodic disturbance ( ÕN K̃ (N )
d Å T̃d ,N )D̄ . Thus, projecting (4.21) into the basis function

subspace,

Ȳk̄ Æ
h
ÁyÕN K̃ (N )Á†

z Áy T̃u,N Á†
u Áy(ÕN K̃ (N )

d Å T̃d ,N )D̄
i

2

6
4

Z̄ (N )
k̄ ¡ 1

Ū k̄
1

3

7
5 Å ÁyEk̄ ,N ,1. (4.25)

The objective of the iteration domain identi�cation step is then to identify the de-
pendence of the past projected input-output data on the future projected output, so that
this dependence can be used to synthesise a predictive control law. The above equation
can be used to formulate a regression problem by de�ning the projected system Markov
parameters ¥ Á as:

¥ Á Æ
h
ÁyÕN K̃ (N )Á†

z Áy T̃u,N Á†
u Áy(ÕN K̃ (N )

d Å T̃d ,N )D̄
i

. (4.26)
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Given input-output data in iteration k̄ ¡ 1, it is possible to generate an estimate of
¥̂ Á,k̄ at iteration k̄ , in a recursive and online manner in closed loop RC control operation.
Thus, from the relation:

Ȳk̄ Æ¥ Á

2

6
4

Z̄ (N )
k̄ ¡ 1

Ū k̄
1

3

7
5 Å ÁyEk̄ ,N ,1, (4.27)

an RLS approach can be taken to obtain the estimate ¥̂ Á,k̄ that solves the minimisation
problem:

¥̂ Á,k̄ Æargmin
¥ Á

1X

i Æ1

°
°
°
°
°
°
°
Ȳk̄ ¡ ¥ Á

2

6
4

Z̄ (N )
k̄ ¡ 1

Ū k̄
1

3

7
5

°
°
°
°
°
°
°

2

2

. (4.28)

It should be noted that, for the case of an RC control law, Ek̄ ,N ,1 is uncorrelated with

the input-output data in the iteration k̄ . Further, the product of Ek̄ ,N ,1 with the non-
zero constant projection matrix Áy will remain uncorrelated with the projected input-
output data. As such, RLS will yield unbiased unique estimates of ¥ Á as long as per-
sistency of excitation holds in the projected space. This condition is less strict than the
requirement of persistency of excitation in the time domain, required by time-domain
identi�cation. Also, since the basis function projections can take the controller band-
width into account, excitation energy is also typically required only in the low-frequency
region, thereby reducing the actuator duty that would otherwise be required for full-
dimensional persistency of excitation.

Herewith, the iteration-domain identi�cation yields, at every time step, an estimate
of the projected Markov parameters ¥̂ Á,k̄ which can then be partitioned and manipu-
lated to obtain a prediction of the future behaviour of the plant, and hence formulate an
RC control law.

4.3. STEP 2: INFINITE HORIZON REPETITIVE CONTROL
From the previous section, it is possible to use input-output data to obtain the system
Markov parameters, either in the full-dimensional space, ¥̂ or in the reduced dimension
basis function space, ¥̂ Á. If the commanded control input is to be constrained to re-
main in the space de�ned by the basis functions, then the time-domain full-dimensional
Markov parameters from Section 4.2.1 can be directly projected into the basis function
space to obtain Áy ¥̂ k̄ Á†

z. On the other hand, if control is expected to be performed in the
full-dimensional input-output space, then the input and output basis function projec-
tion matrices can be chosen to be identity (of the appropriate dimensions).

The RC law can be formulated based on the identi�ed Markov parameters to obtain
a law of the generic form from Van de Wijdeven and Bosgra (2010):

Ū k̄Å1 Æ®Ū k̄ Å ¯
·

xk̄
² k̄ ¡ 1

¸
. (4.29)

Thus, the control input sequence over the next iteration is obtained by updating the
control input from the last iteration with a weighted combination of the new initial state
and the error from the previous iteration, ² k̄ ¡ 1. The term ¯ 2 Rbu £ (nÅby ) is de�ned as
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the learning gain matrix, which will be synthesised in this section. The term ® is used
to denote the “Q-�lter" that is typically used in ILC/RC literature to alleviate robustness
concerns.

The objective of the controller developed in this section is to minimise the output
over an in�nite horizon, assuming that the output channel coincides with the perfor-
mance channel. For the case where the performance is distinct from the output, the
extension is straightforward. Further, in this section, a “Q-�lter" will not be used, specif-
ically to avoid compromising on performance. Instead, an in�nite-horizon cost func-
tion is minimised, which yields, for the case of exact parameter identi�cation, a stable
closed-loop system. Now, reformulating the data equation (4.11) as a predictor equation
in terms of the estimated system properties,

±Yk̄ ,N ,1 Æ(ÕN K̃ (s)
V

)k̄ ±zk̄ Å ˆ̃Tu,N ,k̄ ±U k̄ ,N ,1 Å ˆ̃Ty,N ,k̄ ±Yk̄ ,N ,1. (4.30)

If the Markov parameters are obtained from iteration-domain identi�cation, then the
window size s ÆN . Eliminating the predicted output from the right-hand side of the
equation,

±Yk̄ ,N ,1 Æ(ON K̃ (s)
V

)k̄ ±zk̄ Å T̂u,N ,k̄ ±U k̄ ,N ,1. (4.31)

This step involves making use of the following equalities:

(In y N ¡ T̃y,N )¡ 1ÕN K̃ (s) ÆON K̃ (s), (In y N ¡ T̃y,N )¡ 1T̃u,N ÆTu,N . (4.32)

In order to predict the absolute value over an in�nite horizon, the left hand side of the
equation (4.31) is expanded:

Yk̄ ,N ,1 Æ
h
(ON K̃ (s)
V

)k̄ In y N

i ·
±zk̄

Yk̄ ¡ 1,N ,1

¸
Å T̂u,N ,k̄ ±U k̄ ,N ,1. (4.33)

The objective is to write this statement in a state-transition form. For this, the term
K̃ (s)±zk̄ is rearranged and partitioned in such a manner that:

K̃ (s)±zk̄ Æ
h
K̃ (N )

u K̃ (N )
y

i ·
±U k̄ ,N ,1
±Yk̄ ,N ,1

¸
. (4.34)

Here, the data window has been extended from s to N by introducing zero padding at
the appropriate locations. Substituting this separation into (4.33),

Yk̄ ,N ,1 Æ
h
(ON K̃ (N )

u

V

)k̄ (ON K̃ (N )
y

V

)k̄ In y N

i
2

4
±U k̄ ,N ,1
±Yk̄ ,N ,1
Yk̄ ¡ 1,N ,1

3

5 Å T̂u,N ,k̄ ±U k̄ ,N ,1. (4.35)

This statement is reformulated into a state-transition equation that operates in the
iteration domain instead of the time domain, such that an LQR-like control law can be
devised. Such a method has been followed by Dijkstra and Bosgra (2002); however the
current approach formulates the state-transition matrices directly from data and can
hence be considered to be an adaptive extension of Dijkstra and Bosgra (2002). Since an
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LQR-type controller is set up, for the case where the true system parameters are identi-
�ed by the system, stability of the closed-loop system is guaranteed. The state-transition
form of (4.35) is:
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4
Yk̄ ,N ,1

±U k̄ ,N ,1
±Yk̄ ,N ,1
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5

| {z }
X̃ k̄Å1

Æ
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In y N (ON K̃ (N )
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y

V

)k̄
0nu N £ n y N 0nu N £ nu N 0nu N £ n y N

0n y N £ n y N (ON K̃ (N )
u

V

)k̄ (ON K̃ (N )
y

V
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4
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±Yk̄ ¡ 1,N ,1
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5
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X̃ k̄

Å

2
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T̂u,N ,k̄
Inu N

T̂u,N ,k̄

3

5

| {z }
B̃k̄

±U k̄ ,N ,1.

(4.36)
It should be noted that, in this case, the system matrices Ã k̄ and B̃k̄ are updated once

every iteration, based on the system identi�cation from input-output data. Since it is as-
sumed that the change in system dynamics is slow, this system description is considered
to remain approximately correct for generating the system control law. If the identi�-
cation was performed in the basis function space, or if the objective of RC is to achieve
control only in the restricted input-output basis function space, then the state-transition
equation (4.37) can be projected into this smaller subspace as follows:
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±Ȳk̄ ¡ 1,N ,1

3

5

| {z }
X̄ k̄

Å

2

6
4

Áy T̂u,N ,k̄ Á†
u

Inu N

Áy T̂u,N ,k̄ Á†
u

3

7
5

| {z }
B̄k̄

±Ū k̄ ,N ,1. (4.37)

The projected system matrices can either be obtained directly from the iteration-
domain identi�cation, as in Section 4.2.2, or by projecting the identi�ed time-domain
system matrices into the basis function subspace. Thus, at this point, an iteration-
domain state-transition description of the system is available. The objective of the SPRC
controller is then to minimise the (performance) output over an in�nite horizon. In
other words, the following minimisation problem is to be solved:

min
1X

k̄Æ1

(X̄k̄Å1)T Q f X̄k̄Å1 Å (±U k̄ )T Rf ±U k̄ , (4.38)

where Q f and Rf are user-de�ned positive (semi-)de�nite weighting matrices. These
terms can be used to tune the weighting on the control effort. A high value of Q f and a
low value of Rf indicate cheap control effort, and achieve larger disturbance rejection,
while the opposite is true for a low value of Q f an a high value of Rf . Increasing Rf

typically also increases the robustness of the controller. Finally, the weighting matrices
can be taken as diagonal for the sake of ease of tuning.
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The similarities between the above minimisation problem and the conventional LQR
minimisation problem are evident, however it should be noted that this problem is for-
mulated in the iteration domain (projected into a basis function subspace), and not in
the time domain, as with a conventional LQR problem. Making use of its similarity to
the LQR problem it is possible to synthesise an iteration-domain state-feedback matrix
K f . Speci�cally, the Discrete Algebraic Riccati Equation (DARE) can be solved ef�ciently
online, at each iteration, to obtain the (updated) value of K f . Solution methods for the
DARE are given in Arnold III and Laub (1984). For instance, starting with an initial esti-
mate of PR,k̄ , a positive de�nite solution of the DARE, the solution is iteratively optimised
using the same equation repeatedly until convergence is achieved:

PR,k̄Å1 ÆQ f Å Ā T
k̄

(PR,k̄ ¡ PR,k̄ B̄T
k̄

(Rf Å B̄T
k̄

PR,k̄ B̄¡ 1
k̄

B̄T
k̄

PR,k̄ Ā k̄ ). (4.39)

The state feedback matrix in this case is given by:

K f ,k̄ Æ(Rf Å B̄T
k̄

PR,k̄ B̄k̄ )¡ 1B̄T
k̄

PR,k̄ Ā k̄ . (4.40)

Thus, it is possible to synthesise a repetitive control law directly on the basis of the
system Markov parameters, identi�ed as per the previous section or the previous chap-
ter. The repetitive control law gives the optimal input control sequence for the next iter-
ation:

U k̄ ,N ,1 ÆU k̄ ¡ 1,N ,1 Å Á†
u K f ,k̄

2

4
ÁyYk̄ ¡ 1,N ,1

Áu ±U k̄ ¡ 1,N ,1
Áy±Yk̄ ¡ 1,N ,1

3

5 . (4.41)

Since the control input only has energy along the basis vector directions, precise control
over the shape and smoothness of the actuator signal is possible. Hereby, it is possi-
ble to formulate an RC control law starting from input-output data, where very limited
knowledge about system dynamics is available.

4.4. STABILITY OF SPRC
For two-step data-driven algorithms, guarantees of stability are dif�cult to postulate. As
shown in Dong and Verhaegen (2008), the two-step data-driven approach of Subspace
Predictive Control has been shown to be equivalent to LQG control, and does not admit
performance guarantees.

The discussion on stability in this section will proceed in the following manner: �rst,
the nominal stability of the algorithm is discussed. Next, the stability of the system iden-
ti�cation process and the resultant parameter estimate error is analysed. The effect of
this error on the synthesis of the control law and the robust stability of the closed-loop
system is described. Finally, the practical implications for the implementation of SPRC
will be discussed. It should be noted that this discussion is valid for a slow evolution
of plant dynamics; a breakdown in this assumption will imply that the stability of the
algorithm cannot be guaranteed.

4.4.1. NOMINAL STABILITY
For the case where the underlying system is LTI and the identi�cation step converges
instantaneously to the true system parameters, the LQR formulation of the control law
ensures that nominal stability of the closed-loop system is achieved.
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4.4.2. STABILITY AND ERROR IN THE IDENTIFICATION STEP

First, it is assumed that the true Markov parameters of the system evolve slowly in such
a manner that their evolution can be modelled as a random walk:

¥ k̄ Æ¥ k̄ Å ° w k , (4.42)

where w k is a zero-mean white noise sequence. As per Equation (4.16), the output can
be predicted in terms of the past input-output data as:

±yk Æ¥ k ±zk Å ±ek . (4.43)

Here, the feedthrough term has been taken to be zero for simplicity, but it can also
be directly absorbed into the array of Markov parameters by extending the de�nition of
zk to include the current input uk . The aim of this section is to determine the estimation
error X̃k , de�ned as the deviation of the Markov parameter estimate from its true value,
¥̃ k Æ¥̂ k ¡ ¥ k . If RLS is used for parameter estimation, with forgetting factor f and co-
variance matrix Pk , then the estimation error is given by Ljung and Gunnarsson (1990)
to be:

¥̃ k Æf Pk Pk¡ 1¥̃ k¡ 1 Å Pk (±zT
k ±ek ¡ P¡ 1

k ° w k ). (4.44)

Also, according to Ljung and Gunnarsson (1990), the RLS algorithm is convergent for the
case where:

• The condition of persistency of excitation holds.

• The inverse covariance P¡ 1
k increases at a rate that is smaller than exponential.

With an arbitrarily large value of persistency of excitation, and an adequately large
value of f , these conditions can be satis�ed, given that the closed-loop system is stable.

In order to approximate the parameter estimation error, the random perturbing dis-
turbances are considered to admit a bounded description with arbitrarily high con�-
dence. Hence, rede�ning the disturbance signals in terms of the real bounded uncer-
tainty ¢ K 2 [¡ 1,1],

w k ¼W̄ ¢ k , ±ek ¼Ē¢ k , (4.45)

are obtained with scaling factors W̄ and Ē. Substituting this description in Equa-
tion (4.44),

¥̃ k Æf Pk Pk¡ 1¥̃ k¡ 1 Å Pk (±zT
k Ē ¡ P¡ 1

k ° W̄ )¢ k . (4.46)

Thus, at every instant of time, it is possible to obtain a bound on the system Markov
parameters estimation error,

¥ k Æ¥̂ k Å ¢ ¥ ,k . (4.47)

Herewith, it is possible to get an estimate of the system parameters and an uncer-
tainty description. The effect of the uncertainty on the stability of the closed loop is
discussed in the next section.



4.4. STABILITY OF SPRC

4

55

4.4.3. ROBUST STABILITY OF THE CLOSED LOOP
At this point, the system description is available in the form of a nominal system de-
scription perturbed by an unknown, but bounded, uncertainty. Based on the estimated
Markov parameter ¥̂ k̄ and the uncertainty bounds ¢ ¥ ,k̄ , it is possible to synthesise the

nominal state-transition and input matrices ˆ̄A k̄ and ˆ̄Bk̄ , along with the corresponding
uncertain matrices ¢ A ,k̄ and ¢ B,k̄

1:

Ā k̄ Æ ˆ̄A k̄ Å ¢ A ,k̄ , B̄k̄ Æ ˆ̄Bk̄ Å ¢ B,k̄ . (4.48)

Here the uncertain matrices are constructed by considering ¢ ¥ ,k̄ elementwise as follows:

¢ A ,k̄ Æ
naX

i Æ1
D i f i , j Ci , ¢ B,k̄ Æ

nbX

i ÆnaÅ1
D i f i , j Ci , (4.49)

with Ci and D i the appropriate selection matrices, and f i , j 2 [¡ 1,1] the bounded uncer-
tainty. The stability parameter can be de�ned, according to Neto et al. (1992) as:

³ k̄ ÆX̄ T
k̄

(Q f Å K T
f ,k̄

Rf K f ,k̄ )X̄k̄ ¡
nbX

i Æ1

¯̧ f 2
i , j X̄

T
k̄

CT
i Ci X̄k̄ (4.50)

¡ 2
nbX

i Æ1
f i , j

³
X̄ T

k̄
( ˆ̄A k̄ ¡ ˆ̄Bk̄ )T PR,j D i D

T
i PR,k̄ ( ˆ̄A k̄ ¡ ˆ̄Bk̄ )X̄k̄ X̄ T

k̄
CT

i Ci X̄k̄

´ 1
2 . (4.51)

In this equation, ¯̧ is the maximum eigenvalue of DT PR,k̄ D , with D Æ
£
D1 D2 ¢¢¢ Dnb

¤
.

For closed-loop stability, the following condition has to hold:

³ k̄ È 0. (4.52)

Herewith, the adaptive controller developed in the previous section yields a closed-
loop stable system if the stability parameter is strictly positive.

4.4.4. PRACTICAL IMPLICATIONS
Since the bounds on the parameter estimation error and the stability parameter can be
tracked online, it is possible to predict whether the synthesised control law will stabilise
the system. If the stability parameter ³ k̄ · 0, then the control law may result in an unsta-
ble control loop. In such a case, if the nominal open-loop system is stable, the control
input can be set trivially to zero.

In practice, when cold-starting the algorithm, several computational variables, such
as the estimate covariance matrices in the RLS algorithm, may not have converged to
their quasi-steady values, and as such the estimate of the stability parameter may be
sign�cantly inaccurate. In such a situation, it would be advisable to use the stability
parameter as an indication of closed-loop stability only after an adequate amount of data
has been collected, and the Markov parameter estimates and their covariance matrices
have converged to relatively stable values. It should also be noted that the computations
required for tracking the stability parameter are numerically expensive, and computing
this parameter in real-time may prove intractable. In the next section, the use of SPRC
for rejecting periodic disturbances is described using a case study.

1The time index k has been replaced by iteration index k̄ since the control law is synthesised in the iteration
domain
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4.5. RESULTS

The methodology of SPRC is demonstrated using a case study. First, SPRC applied to an
LTI system is described, in terms of the performance of identi�cation and control. Next,
the effect of a sudden change in plant dynamics on SPRC disturbance rejection is evalu-
ated. Finally, the advantages and disadvantages of the use of basis functions in the iden-
ti�cation and the control step are investigated. In all simulations, the controller starts
with zero knowledge about the system dynamics, and iteratively synthesises a control
law.

4.5.1. LTI SYSTEM

An arbitrary LTI system G is generated, with three inputs and three outputs; the norm of
the output is intended to be minimised. The block diagram representation of the SPRC
controller can be seen in Fig. 4.1. In order to simulate the effect on a realistic plant, the
plant order is taken to be relatively high, with the number of states n Æ49. At each of the
output, a periodic disturbance v is present; this disturbed output is to be rejected such
that the net output y of the controlled system is 0.

Figure 4.1: Scheme for the implementation of SPRC

The periodic disturbance is a superposition of two sinusoids such that:

vk Æ

2

4
sin(2¼k/ N Å ª 1) Å sin(4¼k/ N Å ª 2)
sin(2¼k/ N Å ª 3) Å sin(4¼k/ N Å ª 4)
sin(2¼k/ N Å ª 5) Å sin(4¼k/ N Å ª 6)

3

5 , (4.53)

where the term ª ¤ refers to an arbitrary value of the phase of the sinusoid.

As such, since the system is linear, it is expected that an input combination of si-
nusoids of the same frequency will be able to exactly cancel the periodic disturbance.
Hence, the input is taken to be a combination of sinusoidal basis functions of the same
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frequency:

uk Æ

2

4
Ū1 Ū2 Ū3 Ū4

Ū5 Ū6 Ū7 Ū8

Ū9 Ū10 Ū11 Ū12

3

5

2

6
6
4

sin(2¼k/ N )
cos(2¼k/ N )
sin(4¼k/ N )
cos(4¼k/ N )

3

7
7
5 . (4.54)

The objective of the SPRC algorithm is then to iteratively optimise the values of Ū i , i Æ
1, ...,12, in order to minimise the effect of the disturbance on the output. For the sake of
brevity, Fig. 4.1 only shows control inputs Ū1 and Ū2.

In order to formulate the stacked vectors for the SPRC law, the lifting window is taken
the same as the period of the disturbance, N , where for these simulations, N Æ334 sam-
ples. The lifting window is treated as the size of the iteration, thus the objective of SPRC
is to update the control sequence over each iteration to achieve disturbance rejection.
Identi�cation of system parameters is done in the time domain, however the control se-
quence is optimised in the iteration domain. Since the argument of the optimisation
would be large (of size U k̄ ,N ,1 2 Rnu N , or 1002 elements long), the control input is pro-
jected into the basis function space de�ned by the projection matrices:

Áu Æ

2

6
6
4

sin(2¼/ N ) sin(4¼/ N ) ¢¢¢ sin(2¼)
cos(2¼/ N ) cos(4¼/ N ) ¢¢¢ cos(2¼)
sin(4¼/ N ) sin(8¼/ N ) ¢¢¢ sin(4¼)
cos(4¼/ N ) cos(8¼/ N ) ¢¢¢ cos(4¼)

3

7
7
5 , Ū k̄ ÆÁuU k̄ ,N ,1. (4.55)

It can be seen that the new optimisation variable Ū k̄ is now only nu b Æ12 elements long.
Similarly, since the input can only in�uence sinusoids in the output of the same fre-
quency, the stacked output is also projected into the same basis function subspace using
projection matrix Áy ÆÁu . Herewith, the dimensions of the problem can be strongly re-
duced without compromising on disturbance attenuation properties of the control law.

The iterative behaviour of SPRC in terms of rejecting the periodic disturbances acting
on the output of the linear system can be observed in Fig. 4.2. In this �gure, the control
error has been normalised such that its value at the initial instant of time is unity. The
performance of the identi�cation part of the algorithm is measured in terms of the Vari-
ance Accounted For (VAF), Verhaegen and Verdult (2003). A value close to a 100% VAF
implies that the system dynamics are described well by the identi�ed model. It can be
seen from the �gure that, within 6 iterations, the identi�cation part of SPRC reaches a
VAF value greater than 90%. In the �rst two iterations, since the system dynamics have
not been identi�ed well (as shown by the low value of VAF), the SPRC control law am-
pli�es the periodic disturbance instead of attenuating it. However, as a good model be-
comes available, the performance improves rapidly, with nearly perfect disturbance re-
jection after 30 iterations. It must be noted that the control input is always overlaid with
a small random component (with power 1% that of the periodic disturbance), which is
required by the identi�cation part of SPRC to provide persistency of excitation. However,
it can be seen that this component does not signi�cantly degrade the performance of the
SPRC control law.

The behaviour of the control input and system output over successive iterations can
be seen in Fig. 4.3. In the initial iteration, the control input is zero, and the output con-
tains a large periodic component. Over the iterations, the control input is updated until
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Figure 4.2: Iterative improvement in Identi�cation VAF and disturbance rejection over iterations

it reaches its optimal value, at which point the effect of the periodic disturbance on the
output is almost entirely eliminated. It can be seen that the control input is not exactly
sinusoidal, but it also contains a small random variation which provides the required
persistency of excitation.

Figure 4.3: Iterative improvement of system output and control input over iterations

4.5.2. TIME-VARYING CHANGES IN DYNAMICS
The purpose of SPRC is to track changes in plant dynamics over time and accordingly
change the control law so as to account for these changes. The same LTI system used
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in the previous section is simulated for a duration of 50 iterations. Then, the sign of
the transfer functions abruptly inverts itself at iteration number 51, and it is evaluated
whether SPRC is able to estimate the changed system Markov parameters and adjust the
control input sequence accordingly. The results can be seen in Fig. 4.4. As before, the
cold-started SPRC algorithm converges to a good system estimate and a near-optimal
control law after 20 iterations. However, after iteration 51, due to the large change in sys-
tem Markov parameters, the identi�cation VAF drops drastically to 18%. As a result of the
model mismatch, the output error increases dramatically, upto a factor twice that of the
uncontrolled system. However, the system identi�cation step is able to recalibrate itself
and reëstimate the system Markov parameters, once again achieving a VAF exceeding
90% within 10 iterations. As the system parameter estimate becomes better, the control
law is also able to attenuate the periodic disturbances, and reach near-optimal distur-
bance rejection once more after 30 iterations.

Figure 4.4: SPRC Identi�cation VAF and disturbance rejection over iterations with changed plant
dynamics at iteration 51

The change in the control input and performance output can be seen in Fig. 4.5.
Initially, the control input is zero, and the periodic disturbance is directly fed through to
the output. As the SPRC iterations proceed, the control input is successively updated,
and at iteration 40, it is near ideal, such that the system output is virtually zero over
time. However, when the system changes sign, the control input is exactly 180 ± out of
phase, and it ampli�es the disturbance instead of reducing it; this can be observed in
the system response of iteration 55. However, with recursive reïdenti�cation, SPRC is
able to detect the changes in the system dynamics, and converge to the near-optimal
control sequence at iteration 90, which is almost identically mirrored from the optimal
sequence of iteration 40. Thus, SPRC is shown able to handle sudden large changes in
system dynamics.
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Figure 4.5: System output and control input with changing plant dynamics

4.5.3. THE RÔLE OF BASIS FUNCTIONS IN CONTROL
Thus far, it has been assumed that the frequency content of the periodic disturbance is
exactly known, so that the basis functions used in the controller form sinusoids of these
frequencies. However, in case the periodic disturbance contains frequency content out-
side of these frequencies, this component cannot be attenuated by SPRC control inputs
that are constrained to remain within the basis functions space. On the other hand, if
full-dimensional SPRC is used, then the entire periodic content of the disturbance sig-
nal can be targetted. This section compares basis-function SPRC with full-dimensional
SPRC.

Since full-dimensional SPRC is a computationally heavy problem, a simpler LTI sys-
tem is simulated in this section. An arbitrary second-order SISO system is generated
for this purpose; the size N is limited to 100. Two different realisations of the periodic
disturbance are used:

vk ,1 Æsin(2¼/ N Å ª 1) Å sin(4¼/ N Å ª 2), (4.56)

vk ,2 Æsin(2¼/ N Å ª 3) Å sin(4¼/ N Å ª 4) Å sin(10¼/ N Å ª 5). (4.57)

However, the basis functions used are the same as those used previously:

uk Æ
£
Ū1 Ū2 Ū3 Ū4

¤

2

6
6
4

sin(2¼k/ N )
cos(2¼k/ N )
sin(4¼k/ N )
cos(4¼k/ N )

3

7
7
5 . (4.58)

Thus, the control input can provide energy only along the two lower frequencies. As
such, when the SPRC law is implemented, the output error converges to zero for vk ,1, but
remains non-zero for vk ,2, as seen in Fig. 4.6. The reason can be immediately deduced
from Fig. 4.7. The optimised control input for both disturbance realisations is almost
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identical, and contains energy only at the two low frequencies. While this is suf�cient
to drastically reduce the effect of vk ,1 on the output, the effect of vk ,2 is only partially
reduced, and it still contains a high-frequency periodic disturbance.

Figure 4.6: Control using basis functions sin µ and sin2µ

On the other hand, if full-dimensional SPRC is used, then, for both realisations of
the periodic disturbance, SPRC is able to reduce the output error to nearly zero, as seen
in Fig. 4.8. From Fig. 4.9, it can be seen that, for both vk ,1 and vk ,2, the output is re-
duced nearly to zero. It can be seen that in the former case, the optimised control input
contains energy only at the two lower frequencies, and is identical to the control input
synthesised by using the appropriate basis functions. On the other hand, for the case
of rejection of periodic disturbance vk ,2, the optimal control input is different from the
previous case, and it contains energy at three discrete frequencies in the spectrum, cor-
responding to the three frequencies in the periodic disturbance.

Thus, full-dimensional SPRC can give more accurate results for the case where the
frequency content of the periodic disturbance is not exactly known. However, the com-
putational complexity increases considerably if full-dimensional SPRC is used; this topic
will be discussed in detail in the next section.

4.5.4. THE RÔLE OF BASIS FUNCTIONS IN IDENTIFICATION
As discussed in Section 1.2.2, identi�cation can also be performed in the iteration do-
main, with the stacked input-output data projected into the basis functions subspace.
This projection has the potential to drastically reduce the size of the identi�cation prob-
lem. It also yields system Markov parameters directly suitable for use in the SPRC con-
trol law, formulated in the same basis. However, this form of identi�cation is only able
to predict the transfer along the basis vector directions.

The LTI system used in the previous section is used here once again to perform iden-
ti�cation and control in the basis function space, using the same basis functions as de-
scribed in the previous section. The performance of SPRC using basis functions for iden-
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Figure 4.7: Performance output and control input using basis functions sin µ and sin2µ

ti�cation and control is compared in Fig. 4.10 to that of SPRC using basis functions only
for control. It can be seen that basis function space identi�cation increases the time
required by the algorithm to reach convergence.

One of the advantages of performing identi�cation in the basis function space is that
persistency of excitation is also required only in this subspace. Thus, instead of super-
posing a random white noise on the control signal, the persistency of excitation is pro-
vided in this case by superposing the signal upers,k such that:

upers,k Æ0.01(sin(2¼k/ N Å ª 1) Å sin(4¼k/ N Å ª 2)), (4.59)

where, as before, the terms ª ¤ refer to randomly generated sine phases. As a result of
this, the control input of SPRC using basis functions for identi�cation is smoother than
the control input of standard SPRC, as depicted in Fig. 4.11.

Finally, the three versions of the SPRC algorithm, with and without basis functions for
identi�cation and/or control, can be compared against each other in Table 9.3. The com-
putational times given are representative averages, for a problem of the size described in
this section, run in a Matlab environment on an i3 core laptop.

From the table, it can be seen that the choice of using basis functions depends upon
the intended application of SPRC. All algorithms tested in this section show good con-
vergence properties, and are able to synthesise a control law starting from very limited
system knowledge.

4.6. CONCLUSIONS
The new control strategy Subspace Predictive Repetitive Control (SPRC) was developed
in this chapter speci�cally as a data-driven method for rejecting periodic disturbances or
for periodic trajectory tracking. This two-step data-driven control approach uses black-
box identi�cation techniques, discussed in the previous chapter, to obtain the current
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Figure 4.8: Full-dimensional SPRC Control

Table 4.1: SPRC: The Use of basis functions

SPRC: SPRC: SPRC:
Full-dimensional Basis functions Basis functions

only control identi�cation and control

Time per iteration (s) 760.4 10.01 1.821
Convergence Fast Fast Slow
Accuracy High Restricted Restricted
Actuator Duty Unconstrained Moderate Extremely smooth

system Markov parameters. Based on these parameters, an LQR-like control law is syn-
thesised online to reject periodic disturbances in a lifted `iteration' domain. Since SPRC
uses a state-space representation of the plant for the identi�cation and control synthesis
steps, this method is inherently MIMO by nature.

Simulations using a case study show that SPRC is able to correctly identify the system
parameters and synthesise a control law to achieve near-optimal rejection of periodic
disturbances, for the case where appropriate basis functions are used. Further, if the
plant undergoes sudden changes in system dynamics, SPRC is able to detect these
changes and reïdentify the system. Herewith, the control law can adapt to the changes
and achieve near-optimal disturbance rejection again, once convergence has been
reached.

The rôle of basis functions in the identi�cation and control steps of SPRC has been
studied. For full-dimensional SPRC, the stacked control sequence is optimised over a
time horizon, taken to be an integral multiple of the period of the periodic disturbance.
High accuracy is observed, however it involves a large dimensional optimisation prob-
lem, and is hence computationally expensive. When the stacked input-output data is
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Figure 4.9: Performance output and control input using full-dimensional SPRC

projected into a basis function space for synthesising the control law, computational
complexity is reduced, however, all components of the periodic disturbance cannot be
rejected. While smooth control input sequences are synthesised, the identi�cation step
requires persistency of excitation across the frequency spectrum. When identi�cation
is performed in the basis function space, persistency of excitation is only required in
this space; hence the control inputs demanded by SPRC are extremely smooth. This ap-
proach strongly reduces the computational time per iteration, however, it requires mul-
tiple iterations for convergence. The choice of using basis functions for identi�cation
and/or control thus depends mainly upon the application at hand.

This chapter explores the use of a predictive control cost function that is optimised
over an in�nite horizon. This implementation ensures that when the true system pa-
rameters are available to SPRC, the control law synthesised will always be stabilising.
However, in case hard constraints are to be imposed on the inputs or outputs of the sys-
tem, optimisation can be performed over a �nite horizon subject to these constraints.

Finally, the overall stability of the algorithm depends upon the uncertainty involved
in the estimation of the system Markov parameters in the identi�cation step. The effect
of this uncertainty can be tracked using a stability parameter developed in this chapter.
However, the recursive calculation of this parameter is computationally expensive; it is
also sensitive to initial conditions.

Thus, it may be concluded that a cautious implementation of SPRC may be useful
for the control of periodic disturbances for the case where the plant dynamics are un-
known or highly uncertain. Hence, this algorithm will be validated for the application
of wind turbine load control in the second part of this book. One of the drawbacks of
this approach is that continuous reïdenti�cation is necessary to track changes in system
dynamics, which appears super�uous for plants known to admit LPV realisations. The
repeated identi�cation step can be avoided by formulating an LPV extension of SPRC.
Alternatively an LPV extension of a direct data-driven approach can be developed, such
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Figure 4.10: SPRC using identi�cation in the basis function space, comparison with standard SPRC

an approach is investigated in the next chapter.
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Figure 4.11: Control input synthesised by SPRC using identi�cation in the basis function space,
comparison with standard SPRC



5
ITERATIVE FEEDBACK TUNING FOR LPV

SYSTEMS

Dans ses écrits, un sage Italien;
Dit que le mieux est l'ennemi du bien.

Voltaire quoting Proverbi Italiani, France (1772),
extolling the virtues of local optimisation.

While the previous chapter dealt with the two-step data-driven approach to control, this
chapter will focus on the Iterative Feedback Tuning (IFT) of controllers, which is a di-
rect data-driven approach to control. This method directly optimises controller param-
eters from data, and is hence able to autonomously tune low-order �xed structure con-
trollers, such as PID controllers, online. The chapter explores an extension of IFT to Linear
Parameter-Varying (LPV) systems, such that a global controller can be synthesised that is
valid for any scheduling sequence that the plant is subject to. First, the methodology of IFT
is extended to the tuning of feedforward controllers for LPV systems. Next, this methodol-
ogy is extended to IFT for the tuning of feedback controllers in closed loop, where the curse
of dimensionality is encountered, which implies that exact gradient estimation demands
a combinatorial explosion in the number of IFT experiments. A practical method is then
described, designed to perform IFT by approximating the performance gradient estimate.
Finally, a case study is used to describe the performance of IFT for LPV systems.

5.1. INTRODUCTION
The previous chapters describe data-driven control using a two-step approach, with re-
cursive online identi�cation and control law synthesis forming two distinct steps. While

Parts of this chapter have been published in the Proceedings of the IFAC Workshop on Linear Parameter Vary-
ing Systems, Grenoble, France, Navalkar and Van Wingerden (2015), the Proceedings of the IFAC Symposium
on System Identi�cation, Beijing, China, Navalkar et al. (2015a) and under review in Wind Energy Science,
Navalkar et al. (2016).

67



5

68 5. ITERATIVE FEEDBACK TUNING FOR LPV SYSTEMS

the identi�cation step may provide additional data, for instance regarding the open-loop
stability of the plant, it is not strictly necessary to synthesise the control law, and it may
introduce an avoidable source of error. Secondly, while both the identi�cation and con-
trol involve convex optimisations, the dimensionality may become arbitrarily large and
intractable in real time; they may also yield unnecessarily high-order controllers which
are typically sought to be avoided in practical applications. Finally, while two-step ap-
proaches have been extended to handle non-linear, especially Linear Parameter-Varying
(LPV) systems, the identi�cation step typically demands a large amount of data that may
affect the feasibility of their implementation in practice.

These drawbacks motivate the use of a direct data-driven approach for autonomously
optimising low-order controllers. Iterative Feedback Tuning (IFT), described in Chap-
ter 2, is considered suitable to locally optimise �xed-structure controllers in closed loop.
To brie�y recapitulate, IFT assumes that there exists a nominally stabilising, parame-
terised controller in closed loop with the plant. Based on a set of the so-called r̀eference'
and `gradient' experiments, IFT determines the performance gradient with respect to
the controller parameters. Once such a gradient estimate becomes available, a standard
gradient descent method can be used to optimise the parameters. IFT offers no guaran-
tees of stability; indeed, if the cost function is poorly de�ned, IFT can yield an unstable
closed loop after convergence. However, for a correctly de�ned optimisation criterion,
if suf�ciently small steps are taken in the gradient descent algorithm, IFT will �nd the
local minimum of the de�ned (non-convex) cost function.

As referenced in Chapter 2, IFT has been applied successfully to applications where
the underlying plant is considered Linear Time-Invariant (LTI). However, this method
cannot be directly applied to LPV plants, since the gradient estimates from the IFT ex-
periments are then a function of the scheduling trajectory during the experiments. If
IFT-LTI experiments are done for an LPV plant, the controller gains would not stabilise
to their (locally) optimal values, but would instead vary with time. One method to cope
with the LPV nature of the plant would be to �nd the optimal values of the controller
gains for (approximately) constant operating points, and then interpolate a gain sched-
ule between these points. However, such an approach revisits the drawbacks of gain-
scheduled controllers: the exponential increase in the number of operating points re-
quired with an increase in non-linearity or dimensionality, and the non-optimality of
the gain schedule at the interpolated operating points. Some other alternatives found
in the literature include the treatment of scheduling variation as an uncertainty, Van der
Velden et al. (2014), which is then dealt with by synthesising a robust controller. Another
possible alternative is the use of a switching controller, Koumboulis et al. (2007), tuned
using IFT, that detects changes in the plant dynamics and switches to the appropriate
LTI controller for the corresponding operating point. However, the tuning of a fully LPV
controller that globally optimises a fully LPV plant using IFT has not yet been addressed.

The �rst contribution of this chapter hereby involves the recasting of the IFT frame-
work into a state-space form, such that multivariable systems and fully LPV systems can
be handled with ease. Initially, the use of IFT, for optimally tuning a gain schedule for an
LPV plant, is discussed. The system matrices are then decomposed into two factors: a
known, scheduling-dependent factor that varies with time, and an unknown factor that
stays constant over time. The objective of IFT here is to perform an adequate number
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of gradient experiments to compensate for this unknown factor and estimate the perfor-
mance gradient in an unbiased manner. As done in standard IFT, the gradient can then
be used to optimise the parameters of the full LPV controller.

To achieve LPV control, the next section describes the methodology of IFT used for
tuning a gain-scheduled feedforward controller. In the following section, IFT will be
used for synthesising an LPV feedforward controller. Finally, the method of IFT will be
employed for the tuning of a fully LPV feedback controller. A case study will be used
to demonstrate the working of such an IFT-LPV strategy, and this chapter will end with
conclusions.

5.2. IFT OF A GAIN-SCHEDULED FEEDFORWARD CONTROLLER

FOR LPV SYSTEMS
As a �rst step, standard IFT for LTI systems will be extended such that it is able to tune
a gain schedule for an LPV system, using input-output data. First, the notation will be
set up. Then, the IFT experiments required to obtain the performance gradients will be
de�ned. Finally, the synthesis of a gain schedule based on these experiments will be
discussed.

5.2.1. PRELIMINARIES AND NOTATION
Let us consider that the system to be controlled admits an LPV state-space realisation
given by:

xkÅ1 ÆAk xk Å Bk uk (5.1)

yk ÆCk xk Å Dk uk Å vk . (5.2)

Here, it is assumed that the system is stable. If it is not open-loop stable, then it is as-
sumed that the system is operating in closed loop with a nominally stabilising controller
such that its closed-loop representation admits a stable LPV state-space representation
like the one given above. Here, xk 2 Rn is the state vector, of unknown length. The input
signal is represented by uk 2 Rnu , while the output signal is represented by yk 2 Rn y . The
signal vk 2 Rn y is the measurement noise; although no process noise has been included
in this model, the extension thereto is direct. The system matrices Ak , Bk , Ck and Dk are
of the appropriate dimensions, and vary with time.

Since the system is taken to be LPV, the same matrices are at any point of time con-
sidered to be af�nely dependent on a weighted combination of basis functions that take
the instantaneous value of the scheduling variable, ¹ k 2 Rn ¹ as argument:

Ak ÆA[0] Å
nÃX

i Æ1
Ã i (¹ k )A[i ] , (5.3)

and similarly for Bk , Ck and Dk . Here, Ã i : Rn ¹ ! R, i Æ1,..,n ¹ is a set of basis func-
tions chosen such that they best describe the dependence of the system matrices on the
scheduling variable. It is assumed here and throughout this chapter that ¹ k is exoge-
nous, perfectly measurable, and cannot be controlled.
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Figure 5.1: IFT experiment for tuning an LPV feedforward controller for an LPV plant.

The objective of IFT is to synthesise a parameterised controller that adjusts to the
instantaneous value of ¹ k and generates the appropriate control inputs, described in its
state-space form as:

xc,kÅ1 ÆAc,k (½)xc,k Å Bc,k (½)r k (5.4)

uk ÆCc,k (½)xc,k Å Dc,k (½)r k ¡ qk .

Here, the state-space matrix Ac,k (½) is also scheduled on the scheduling variable ¹ in
the following manner:

Ac,k ÆA[0]
c Å

nÃX

i Æ1
Ã i (¹ k )A[i ]

c , (5.5)

and similarly for Bc,k , Cc,k and Dc,k .
The controller is taken to be a �xed-structure controller, such as a PID controller.

Hence, the size of the state vector xc,k 2 Rnc is small and �xed. The controller is pa-
rameterised using the controller parameters ½2 Rn½; these parameters are sought to be
optimised by using IFT. The term qk 2 Rnu refers to an auxiliary input required for the
IFT gradient experiments. The signals can be visualised in Fig. 5.1.

The objective of IFT is to tune the controller parameters, such that a performance cri-
terion J is minimised. Preferably, the performance should be convex and differentiable,
for instance, this chapter considers a quadratic cost criterion given as:

J Æ
1

2N
((Rk ,N ,1 ¡ Yk ,N ,1)T (Rk ,N ,1 ¡ Yk ,N ,1) Å ¸ JU

T
k,N ,1Uk ,N ,1). (5.6)

It should be noted here that, since IFT is used to tune a feedforward controller, the
system will always be stable. The effect of the control effort vis-à-vis the output error
is weighted by the user-de�ned tuning parameter ¸ J. As in the previous chapters, the
vectors Y T

k,N ,1 Æ
£
yT

k yT
kÅ1 ¢¢¢ yT

kÅN ¡ 1

¤
are stacked vectors, with similar expressions

for the stacked reference signal Rk ,N ,1 and the input signal, Uk ,N ,1. The objective of the
IFT experiments is to estimate, from input-output data, the gradient of this performance
criterion J, with respect to the controller parameters ½, given by:

@J

@½
Æ

1

N
(¡

@Y T
k,N ,1

@½
(Rk ,N ,1 ¡ Yk ,N ,1) Å ¸ J

@U T
k,N ,1

@½
Uk ,N ,1). (5.7)
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As in the previous chapters, the system behaviour over a time horizon is described in
terms of the Toeplitz matrix Tu,N ,k 2 Rn y N £ nu N , de�ned in this LPV case as follows:

Tu,N ,k Æ

2

6
6
6
6
6
6
6
6
4

Dk 0 ¢¢¢ 0
CkÅ1Bk DkÅ1 ¢¢¢ 0

CkÅ2AkÅ1Bk CkÅ2BkÅ1 ¢¢¢ 0
CkÅ3AkÅ2AkÅ1Bk CkÅ3AkÅ2BkÅ1 ¢¢¢ 0

...
...

. . .
...

CkÅN ¡ 1AkÅN ¡ 2 ¢¢¢Bk CkÅN ¡ 1AkÅN ¡ 2 ¢¢¢BkÅ1 ¢¢¢ DkÅN ¡ 1

3

7
7
7
7
7
7
7
7
5

(5.8)

A similar Toeplitz matrix can be de�ned using the controller state-space matrices,
Tc,N ,k 2 Rnu N £ n y N . As distinct from the previous chapters, these Toeplitz matrices ex-
plicitly vary with time, speci�cally, with the scheduling variable ¹ k . For the case where
the scheduling variable is approximately constant at ¹ ¤ , these matrices take the constant
values Tu,N (¹ ¤ ) and Tc,N (¹ ¤ ). A series of IFT-LTI experiments can then be conducted to
obtain the ideal controller parameters at this operating point.

5.2.2. IFT EXPERIMENTS
As per Hjalmarsson (2002), given an LTI plant, three IFT experiments are necessary for
an unbiased estimate of the performance gradient with respect to controller parameters.
Since the scheduling variable is here held constant, the plant can be considered to be an
LTI system, and the performance gradient can be directly obtained using these standard
IFT experiments. This approach is recast in a state-space framework in this section, so
that it is directly applicable to multivariable systems.

For the �rst experiment, also called the `reference' experiment, the auxiliary input is
set to zero, Q I

k ,N ,1 Æ0. The data equation then becomes:

Y I
k ,N ,1 ÆTu,N (¹ ¤ )Tc,N (¹ ¤ )Rk ,N ,1 Å V I

k ,N ,1(¹ ¤ ). (5.9)

In order to �nd the performance gradient, from Equation (5.7), it is necessary to
evaluate the gradient of the system output with respect to the controller parameters,
@Y I

k ,N ,1
@½ . So, the equation above is differentiated with respect to each controller parameter

½j ½, j ½Æ1,2, ...,n½, giving:

@Y I
k ,N ,1

@½j ½

ÆTu,N (¹ ¤ )
@Tc,N (¹ ¤ )

@½j ½

Rk ,N ,1. (5.10)

The system matrix Tu,N (¹ ¤ ) is the only unknown in this equation. To be able to esti-
mate the required gradient, hence, one more experiment is required, the so-called `gra-
dient experiment'. For this experiment, the auxiliary input is taken to be:

Q I I
k ,N ,1 Æ

@Tc,N (¹ ¤ )

@½j ½

Rk ,N ,1. (5.11)

In this case, the output then becomes:

Y I I
k ,N ,1 Æ(Tu,N (¹ ¤ )Tc,N (¹ ¤ ) ¡ Tu,N (¹ ¤ )

@Tc,N (¹ ¤ )

@½j ½

)Rk ,N ,1 Å V I I
k ,N ,1. (5.12)
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From direct observation, the required output gradient
@Y I

k ,N ,1
@½j½

can be constructed as:

@Y I
k ,N ,1

@½j ½

ÆY I
k ,N ,1 ¡ Y I I

k ,N ,1 Å V I I
k ,N ,1(¹ ¤ ) ¡ V I

k ,N ,I (¹ ¤ ). (5.13)

In the case where the signal vk represents pure white noise, or white noise overlaid
with a periodic component of period N , the term V I I

k ,N ,1(¹ ¤ ) ¡ V I
k ,N ,I (¹ ¤ ) is also a stacked

zero mean white noise sequence in the iteration domain. Hence, if the output gradient
is constructed in the manner given below, it will be ergodically unbiased:

@̂Y I
k ,N ,1

@½j ½

ÆY I
k ,N ,1 ¡ Y I I

k ,N ,1. (5.14)

However, the performance gradient term contains a product of the gradient with the
output error, which cannot be directly estimated as:

¡ (
@Y I

k ,N ,1

@½j ½

)T (Rk ,N ,1 ¡ Y I
k ,N ,1) Æ(Y I I

k ,N ,1 ¡ Y I
k ,N ,1)T (Rk ,N ,1 ¡ Y I

k ,N ,1). (5.15)

This is because the noise in the output gradient estimate is correlated with the noise
in the output error, and hence the estimate of the performance gradient would be biased.
In order to remove the biasing in�uence of the noise, another reference experiment is
conducted, once again taking the auxiliary input as 0. In this case, the output Y I I I

k ,N ,1
will be deterministically equivalent to the output of reference experiment I , but its value
will be perturbed by an uncorrelated realisation of noise. As such, the �rst term of cost
equation (5.7) is estimated as:

¡ (
@Y I

k ,N ,1

@½j ½

)T (Rk ,N ,1 ¡ Y I
k ,N ,1) Æ(Y I I

k ,N ,1 ¡ Y I
k ,N ,1)T (Rk ,N ,1 ¡ Y I I I

k ,N ,1). (5.16)

Finally, the input gradient with respect to the controller parameters can be directly
synthesised as:

@U I
k ,N ,1

@½j ½

Æ
@Tc,N (¹ ¤ )

@½j ½

Rk ,N ,1. (5.17)

Based on the above gradients, it is possible to estimate the performance gradient,
@J

@½j½

¯
¯
¯
¹ Æ¹ ¤

, for a speci�c operating point denoted by ¹ ¤ , using equation (5.7). At this

juncture, it is possible to use a gradient-based optimisation method to optimise the con-
troller parameters. It should be noted that these parameters will be (locally) optimal only
for the speci�c value of the scheduling variable, ¹ Æ¹ ¤ . A typical gradient descent step
could be as follows:

½k̄Å1
j ½

(¹ ¤ ) Æ½k̄
j ½

(¹ ¤ ) ¡ ° k̄ R¡ 1
H

@J

@½j ½

¯
¯
¯
¹ Æ¹ ¤

. (5.18)

In this equation, the term ° k̄ is the (iteration-dependent) step size in the optimisation
algorithm. As long as this step size is adequately low, the optimisation procedure will
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converge to a local optimum. The term RH signi�es a positive de�nite matrix, which is
identity for the steepest descent method. The rate of convergence can be increased by
using an estimate of the Hessian of the optimisation cost function. Such an estimate
can be constructed from the data collected in the gradient experiment and the two ref-
erence experiments, but it will be biased. Unbiased Hessian estimates require more IFT
experiments.

Thus, for a constant value of the scheduling variable, the optimal controller gains can
be determined. This method can also be directly extended to tune a gain schedule, in a
data-driven manner, that is globally optimal for all values of the scheduling variable.

5.2.3. DATA-DRIVEN GAIN SCHEDULE SYNTHESIS
From the previous section, it is possible to derive the ideal controller parameters ½¤ for
every scheduling variable operating point ¹ ¤ . At iteration k̄ , it is assumed that the de-
pendence of these ideal parameters can be described as a weighted af�ne sum of basis
functions scheduled on the current value of the scheduling variable, ¹ k̄ :

½¤ (¹ k̄ ) Æ½[0],¤ Å
nÃX

i Æ1
Ã i (¹ k̄ )½[i ],¤ . (5.19)

It has here been assumed that the gain schedule uses the same basis functions as the
ones used for de�ning the LPV structure of the plant and/or controller. However, such a
de�nition is unnecessary, indeed, determining the best set of basis functions for de�ning
the gain schedule is a non-trivial task. The greater the non-linearity of the underlying
system, the larger is the number of basis functions required for describing a good gain
schedule. On the other hand, if the input-output data is noisy, estimating a smooth gain
schedule may become dif�cult, and it may be deemed necessary to reduce the number
of basis functions used in describing the gain schedule.

IFT can be used to iteratively determine the values of ½[i ],¤ , i Æ0, ...,nÃ directly from
the input-output data, using a least squares approach. Thus, after the following the ap-

proach of the previous section, when the pair of values ½k̄ and ¹ k̄ become available,
Recursive Least Squares (RLS) can be used to update the values of ½[i ],¤ following equa-
tion (5.19).

The experimental implementation of this approach will be discussed in the second
part of the thesis. It should be noted at this point, that the IFT approach in this section
demands that the scheduling remain approximately constant over the three IFT experi-
ments. This strict requirement is relaxed in the next sections and IFT will be discussed
for arbitarily varying exogenous scheduling sequences.

5.3. IFT FOR FEEDFORWARD CONTROL OF SYSTEMS LPV IN

THE OUTPUT MATRICES
The restriction on the exogenous scheduling is relaxed in this section, and the schedul-
ing sequence can vary arbitrarily over time, and is required to be persistently exciting.
This section will focus on the data-driven tuning of a feedforward controller, for the case
where the system is LPV in the output matrices. For this special class of LPV systems,
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the curse of dimensionality is not encountered, and IFT gradient estimation is still pos-
sible using a limited number of IFT experiments. The block diagram representation of
the IFT controller is identical to the one from the previous section, depicted in Fig. 5.1.
The objective of the IFT method is once more to use input-output data from the IFT ex-
periments to tune the parameters ½of the parameterised controller C(½) such that the
output error is minimised.

First, a factorisation of the system Toeplitz matrices is de�ned. Next, the updated IFT
experiments for gradient estimation in the presence of a varying scheduling sequence
are described. Finally, the use of the gradients for updating the controller parameters is
delineated.

5.3.1. LPV FACTORISATION
Let us consider that the system G in this case is LPV only in its output matrices, described
by the state space representation:

xkÅ1 ÆAxk Å Buk (5.20)

yk ÆCk xk Å Dk uk Å vk . (5.21)

The signals xk , uk , yk and vk are the state, input, output and disturbance signals as
de�ned in the previous section. The system matrices A and B are in this section taken to
be constant, while the matrices Ck and Dk are LPV and depend upon the current value
of the scheduling variable, ¹ k as follows:

Ck ÆC[0] Å
nÃX

i Æ1
Ã i (¹ k )C[i ] , (5.22)

and similarly for the LPV matrix Dk . As before, Ã i (¹ k ), i Æ1,...,nÃ are a series of ba-
sis functions scheduled on the variable ¹ k , which is considered exogenous but perfectly
measurable. The feedforward controller is described by (5.4), and it is parameterised us-
ing the parameters ½2 Rn½. The objective of IFT is to use input-output data to optimise
these parameters, with respect to the cost function (5.6). As this cost function is differ-
entiable, the objective is once more to �nd the performance gradient with respect to the
controller parameters, given by (5.7).

Data equations similar to the ones found in the previous section can be set up here.
Since the system is here considered to be LPV only in the output matrices, the de�nition
of the lifted system matrix Tu,N ,k 2 Rn y N £ nu N is simpli�ed as:

Tu,N ,k Æ

2

6
6
6
6
6
6
6
6
4

Dk 0 ¢¢¢ 0
CkÅ1B DkÅ1 ¢¢¢ 0

CkÅ2AB CkÅ2B ¢¢¢ 0
CkÅ3A2B CkÅ3AB ¢¢¢ 0

...
...

. . .
...

CkÅN ¡ 1AN ¡ 2B CkÅN ¡ 1AN ¡ 3B ¢¢¢ DkÅN ¡ 1

3

7
7
7
7
7
7
7
7
5

. (5.23)

In order to separate the known time-varying variables ¹ k from the unknown time-
invariant state-space matrices, the expansion (5.22) is made use of:
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Tu,N ,k Æ

2

6
6
6
6
6
6
6
6
4

D [0] 0 ¢¢¢ 0
C[0]B D [0] ¢¢¢ 0

C[0] AB C[0]B ¢¢¢ 0
C[0] A2B C[0] AB ¢¢¢ 0

...
...

. . .
...

C[0] AN ¡ 2B C[0] AN ¡ 3B ¢¢¢ D [0]

3

7
7
7
7
7
7
7
7
5

| {z }
T [0]

u ,N

Å
nÃX

i Æ1

2

6
6
6
6
4

Ã i (¹ k )I 0 ¢¢¢ 0
0 Ã i (¹ kÅ1)I ¢¢¢ 0
...

...
. . .

...
0 0 ¢¢¢ Ã i (¹ kÅN ¡ 1)I

3

7
7
7
7
5

| {z }
M N (Ã i (¹ k ))

2

6
6
6
6
6
6
6
6
4

D [i ] 0 ¢¢¢ 0
C[i ]B D [i ] ¢¢¢ 0

C[i ] AB C[i ]B ¢¢¢ 0
C[i ] A2B C[i ] AB ¢¢¢ 0

...
...

. . .
...

C[i ] AN ¡ 2B C[i ] AN ¡ 3B ¢¢¢ D [i ]

3

7
7
7
7
7
7
7
7
5

| {z }
T [i ]

u ,N

(5.24)

Here, I 2 Rn y£ n y is the identity matrix. A similar decomposition can be performed for
the controller system matrix, Tc,N ,k . Further, it is assumed that the disturbance proper-
ties also depend upon the scheduling trajectory in a similar manner:

Tc,N ,k ÆT [0]
c,N Å

nÃX

i Æ1
M N (Ã i (¹ k ))T [i ]

c,N (5.25)

Vk ,N ,1 ÆV [0]
k ,N ,1 Å

nÃX

i Æ1
M N (Ã i (¹ k ))V [i ]

k ,N ,1.

The objective of the IFT experiments is then to estimate the performance gradient in
the presence of the perturbing effect of the scheduling variation.

5.3.2. EXPERIMENT I
As in the previous section, the �rst IFT experiment is the reference experiment, con-
ducted with the auxiliary input qk set to zero. Herewith, as before, the data equation
becomes:

Y I
k ,N ,1 ÆTu,N (¹ I

k )Tc,N (¹ I
k )Rk ,N ,1 Å V I

k ,N ,1. (5.26)

From equation (5.7), in order to determine the performance gradient, it is necessary to
use input-output data to determine the output gradient:

@Y I
k ,N ,1

@½j ½

ÆTu,N (¹ I
k )

@Tc,N (¹ I
k )

@½j ½

Rk ,N ,1. (5.27)
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Factorising the effect of the scheduling variable out of the system matrices, using the
equations (5.24)-(5.25):

@Y I
k ,N ,1

@½j ½

ÆM (¹ I
k )T̄u,N

@T I
c,N

@½j ½

Rk ,N ,1, (5.28)

T̄ T
u,N Æ

h
(T [0]

u ,N )T (T [1]
u ,N )T ¢¢¢ (T

[nÃ ]
u ,N )T 0 ¢¢¢ 0

i
. (5.29)

Here, M (¹ I
k ) 2 Rn y N £

(nÃ Å1)(nÃ Å2)n y
2 is partitioned in the following manner:

M (¹ I
k ) Æ

£
In y N M (¹ I

k ) P (¹ I
k )

¤
, (5.30)

such that the block elements of the matrix M (¹ I
k ) 2 Rn y N £ nÃ n y N are given by:

M i (¹
I
k ) ÆM N (Ã i (¹

I
k )), i Æ1,...,nÃ . (5.31)

and the block elements of the matrix P (¹ k ) 2 Rn y N £
nÃ (nÃ Å1)n y

2 N is given as:

Pi n Ã ¡ (i ¡ 1)i
2 Å j (¹

I
k ) ÆM N (Ã i (¹

I
k ))M N (Ã nÃ ¡ j Å1(¹ I

k )), i Æ1,...,nÃ , j Æ1, ...,i ,

(5.32)
The data equation (5.26) can be factorised in a similar manner:

Yk ,N ,1 ÆM (¹ I
k )(T̄pcRk ,N ,1 Å V̄k ,N ,1), (5.33)

Here, T̄pc 2 R
nÃ (nÃ Å1)n y

2 N £ n y N , the constant part of the plant time controller matrix, is
partitioned in the following manner:

T̄ T
pc Æ

h
(T [0]

u ,N T [0]
c,N )T M̄ T P̄T

i
. (5.34)

Here, the appropriately dimensioned matrix M̄ is composed of the block rows:

M̄ i ÆT [0]
u ,N T [i ]

c,N Å T [0]
c,N T [i ]

u ,N , i Æ1, ...,nÃ , (5.35)

while the matrix P̄ is composed of the block rows:

P̄i n Ã ¡ (i ¡ 1)i
2 Å j Æ

(
T [i ]

u ,N T
[nÃ ¡ j Å1]
c,N Å T [i ]

u ,N T
[nÃ ¡ j Å1]
c,N , for i Æ1,...,nÃ , j Æ1, ...,i , i 6Æj

T [i ]
u ,N T

[nÃ ¡ j Å1]
c,N , for i Æ1,...,nÃ , j Æ1, ...,i , i Æj

(5.36)

Finally, the scheduling-dependent disturbance V̄ I
k ,N ,1 2 R

nÃ (nÃ Å1)n y
2 N is decomposed

such that:

V̄ I
k ,N ,1 Æ

h
(V [0], I

k ,N ,1)T ¢¢¢ (V
[nÃ ],I
k ,N ,1 )T 0 ¢¢¢ 0

i T
. (5.37)

At this point, in order to be able to estimate the output gradient
@Y I

k ,N ,1
@½j½

, a set of gradi-

ent experiments is necessary.
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5.3.3. EXPERIMENT SET II
As in IFT-LTI, the output gradient is determined by using a speci�c auxiliary input signal,
obtained by �ltering the reference through the controller gradient:

Q I I
k ,N ,1 Æ

@Tc,N (¹ I
k )

@½j ½

Rk ,N ,1. (5.38)

Herewith, the data equation becomes:

Y I I
k ,N ,1 ÆTu,N (¹ I I

k )Tc,N (¹ I I
k )Rk ,N ,1 ¡ Tu,N (¹ I I

k )
@Tc,N (¹ I

k )

@½j ½

Rk ,N ,1 Å V I I
k ,N ,1. (5.39)

The same factorisation as the one used in the previous section is used here to sep-
arate the known, time-varying effect of the scheduling variable ¹ k from the unknown
system matrices:

Y I I
k ,N ,1 ÆM (¹ I I

k )(T̄pcRk ,N ,1 ¡ T̄u,N
@Tc,N (¹ I

k )

@½j ½

Rk ,N ,1 Å V̄ I I
k ,N ,1). (5.40)

In order to eliminate the perturbing effect of the scheduling variable on the gradient
estimate, this equation could in principle be pre-multiplied by the left-inverse of M (¹ I I

k ).
However, with a single experiment, the system is underdetermined, and the required
left-inverse does not exist. Hence, a suf�cient number of experiments with the same
auxiliary input are required to be conducted in such a manner that the matrix M (¹ I I

k )

reaches full row rank (and is well-conditioned). For each such experiment ĵ ,

Y I I , ĵ
k ,N ,1 ÆM (¹ I I , ĵ

k )(T̄pcRk ,N ,1 ¡ T̄u,N
@Tc,N (¹ I

k )

@½j ½

Rk ,N ,1 Å V̄ I I , ĵ
k ,N ,1). (5.41)

In order to eliminate the in�uence of the disturbance quantity, the estimate of a dif-
ferenced output is taken in the following manner such that the biasing in�uence of the
disturbance vanishes ergodically:

¢ Y I I , ĵ
k ,N ,1 Æest{2Y I I , ĵ

k ,N ,1 ¡ Y I I ,1
k ,N ,1}, ĵ È 1, (5.42)

¢ Y I I , ĵ
k ,N ,1 Æ(2M (¹ I I , ĵ

k ) ¡ M (¹ I I ,1
k ))(T̄pcRk ,N ,1 ¡ T̄u,N

@Tc,N (¹ I
k )

@½j ½

Rk ,N ,1). (5.43)

When an adequate number of experiments n I I has been conducted, the output data
from each experiment is stacked into ¢ Yk ,n I I N ,1 such that the gradient can be obtained
using least squares:

¢ Yk ,n I I N ,1 Æ

2

6
6
6
6
6
4

¢ Y I I ,1
k ,N ,1

¢ Y I I ,2
k ,N ,1
...

¢ Y I I ,n I I
k ,N ,1

3

7
7
7
7
7
5

. (5.44)
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Lifting the equation (5.41) over the horizon n I I to obtain an overdetermined least
squares problem,

¢ Yk ,n I I N ,1 ÆM̄ (¹ I I
k )(T̄pcRk ,N ,1 ¡ T̄u,N

@Tc,N (¹ I
k )

@½j ½

Rk ,N ,1), (5.45)

where M̄ (¹ I I
k ) 2 Rn I I n y N £

nÃ (nÃ Å1)n y
2 N is a block diagonal matrix with the terms (2 M (¹ I I , ĵ

k )¡

M (¹ I I ,1
k )) along its block diagonal. The least squares solution to the problem stated

above is given as:

M̄ (¹ I I
k )†¢ Yk ,n I I N ,1 ÆT̄pcRk ,N ,1 ¡ T̄u,N

@Tc,N (¹ I
k )

@½j ½

Rk ,N ,1. (5.46)

It can be directly observed that the required output gradient
@Y I

k ,N ,1
@½j½

can be obtained

from the second term in this expression. In order to eliminate the effect of the �rst term,
a set of reference experiments is required.

5.3.4. EXPERIMENT SET III
In a similar manner, in order to remove the in�uence of the direct reference signal on
the output gradient estimate, a set of reference experiments is required. For these ex-
periments, the auxiliary input signal is set to zero, Q I I I

k ,N ,1 Æ0. With this, the �rst term in
equation (5.46) can be expressed as:

M̄ (¹ I I I
k )†¢ Yk ,n I I I N ,1 ÆT̄pcRk ,N ,1. (5.47)

Here, the term ¢ Yk ,n I I I N ,1 is the stacked output over an n I I I number of experiments,
conducted such that M̄ (¹ I I I

k ) has full row rank and is well-conditioned. Substituting this
estimate of the direct in�uence of the reference into equation (5.46), we get:

M̄ (¹ I I I
k )†¢ Yk ,n I I I N ,1 ¡ M̄ (¹ I I

k )†¢ Yk ,n I I N ,1 ÆT̄pc
@Tc,N (¹ I

k )

@½j ½

Rk ,N ,1. (5.48)

At this point, it is possible to obtain an estimate of the output gradient with respect to
the controller parameters, from equation (5.28) as:

@Y I
k ,N ,1

@½j ½

ÆM (¹ I
k )(M̄ (¹ I I I

k )†¢ Yk ,n I I I N ,1 ¡ M̄ (¹ I I
k )†¢ Yk ,n I I N ,1). (5.49)

At this point, the input gradient can be estimated, and the performance gradient
with respect to the controller parameters can be synthesised, as in equation (5.7), fol-
lowing the procedure in Section 5.2.2. With the gradient estimate available, as before,
a gradient-based optimisation method can be used to iterate to the optimal parameters
that satisfy the user-de�ned cost function.

Thus, in accordance with the steps laid out in this section, it is possible to use IFT for
tuning an LPV feedforward controller for a plant that is LPV in its output matrices. Such
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Figure 5.2: Iterative Feedback Tuning experiment layout for an LPV controller in closed loop with
an LPV plant.

a method may be considered applicable for load control of wind turbines; this applica-
tion will be discussed in the second part of the book. Here, it should be noted that the
key element is the LPV factorisation of the system matrices: the inner dimension scales
quadratically with nÃ and linearly with N . The number of IFT experiments required for
the inverse M̄ (¹ k )† to exist, and hence, for this method to be applicable, is directly re-
lated to this inner dimension.

For the case where the underlying system is fully LPV, and a feedback controller is to
be tuned in closed loop, the size of the inner dimension of this factorisation increases
exponentially with window size N , this is the well-known curse of dimensionality en-
countered in LPV identi�cation and control theory. The extension of IFT-LPV for such a
case will be dealt with in the next section.

5.4. IFT FOR FEEDBACK CONTROL OF LPV SYSTEMS
In this section, the parameters of a �xed-structure LPV controller is tuned using IFT
for the case of a plant with LPV state-transition properties. Once more, the exogenous
scheduling sequence ¹ is assumed perfectly measurable but uncontrollable, and persis-
tently exciting. The experimental layout is depicted in Fig. 5.2, and is similar to the layout
in the previous sections. It should, however, be noted that the parameterised controller
acts on the output error, ek , the difference between the reference r k and the output yk ,
thus ek Ær k ¡ yk . As before, the auxiliary input qk is added to the control input in order to
obtain performance gradients using IFT experiments. First, the notation for this closed-
loop setting is de�ned. Then, the closed-loop LPV factorisation is described. Based on
this new factorisation, the three sets of IFT experiments are then updated, such that the
performance gradient with respect to the controller parameters can be obtained, which
is used for tuning the controller as in the previous sections.

5.4.1. NOTATION
As distinct from the previous section, it is assumed here that the system is LPV in its
state-transition properties and admits a realisation of the form:

xkÅ1 ÆAk xk Å Bk uk (5.50)

yk ÆCxk Å vk . (5.51)
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The output matrix C has been taken to be constant, the direct feedthrough matrix D is
taken to be zero. The case for fully LPV non-zero output matrices follows as a direct ex-
tension of the concept described in this section. The system input uk , state xk , output yk

and the perturbing disturbance vk have already been de�ned in the previous sections.
In this section, the matrices Ak and Bk are considered to depend on the scheduling se-
quence ¹ k in the following manner:

Ak ÆA[0] Å
nÃX

i Æ1
Ã i (¹ k )A[i ] , Bk ÆB [0] Å

nÃX

i Æ1
Ã i (¹ k )B [i ] . (5.52)

The system is considered to be in closed loop with a nominally stabilising feedback
controller, acting on the output error ek , which is parameterised by ½2 Rn½:

xc,kÅ1 ÆAc,k (½)xc,k Å Bc,k (½)ek (5.53)

uk ÆCc,k (½)xc,k Å Dc,k (½)ek ¡ qk . (5.54)

As before, xc,k 2 nc is the state of the �xed-order controller, and the controller matrices
Ac,k (½), Bc,k (½), Cc,k (½) and Dc,k (½) are parameterised LPV matrices of the appropriate
dimensions, de�ned in detail in Section 5.2.1. As before, qk is the auxiliary input that
is used in the IFT experiments for the purpose of controller tuning. The objective of
IFT, as before, is to tune the controller such that a user-de�ned performance criterion is
minimised. The closed-loop controller criterion can be de�ned in terms of the stacked
output error Ek ,N ,1 and control effort, Uk ,N ,1, where the signals are stacked in a man-
ner described in the Section 5.2.1. The closed-loop optimisation criterion taken here is
quadratic:

J Æ
1

2N
(ET

k,N ,1Ek ,N ,1 Å ¸ JU
T
k,N ,1Uk ,N ,1). (5.55)

As before, the prediction horizon is N . For the case of feedback control, it has to
be ensured that this value is large enough to ensure stability of the tuned closed-loop
system. Since IFT-LPV is designed to use a gradient-based optimisation algorithm to
minimise the performance cost by optimising controller parameters, the objective of
the IFT experiments is to estimate the gradient of the performance cost with respect to
½. Thus, this gradient has to be estimated:

@J

@½
Æ

1

N
(
@ET

k,N ,1

@½
Ek ,N ,1 Å ¸ J

@U T
k,N ,1

@½
Uk ,N ,1). (5.56)

As before, the IFT experiments are designed to be able to obtain estimates of
@ET

k,N ,1
@½

and
@U T

k,N ,1
@½ . The data equations can be expressed in terms of closed-loop lifted system

matrices. Since the LPV realisation is different in the current section from that in the
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previous section, the system matrix Tu,N ,k is rede�ned as:

Tu,N ,k Æ

2

6
6
6
6
6
6
6
6
4

0 0 ¢¢¢ 0
CBk 0 ¢¢¢ 0

C AkÅ1Bk CBkÅ1 ¢¢¢ 0
C AkÅ2AkÅ1Bk C AkÅ2BkÅ1 ¢¢¢ 0

...
...

. . .
...

C AkÅN ¡ 1 ¢¢¢AkÅ1Bk C AkÅN ¡ 1 ¢¢¢AkÅ2BkÅ1 ¢¢¢ 0

3

7
7
7
7
7
7
7
7
5

. (5.57)

The lifted system matrix of the feedback controller, Tc,N ,k can be de�ned in the same
manner as done for the feedforward controller in the previous section. For this closed-
loop system, it is also possible to construct the closed-loop lifted system matrices. As
the lifted system matrices are lower-triangular, from Oomen et al. (2009), it is possible
to de�ne the sensitivity matrix Ts,k , the complementary sensitivity matrix Tcs,k and the
process sensitivity matrix Tps,k as:

Ts,k Æ(In y N Å Tu,N ,k Tc,N ,k )¡ 1, (5.58)

Tcs,k Æ(In y N Å Tu,N ,k Tc,N ,k )¡ 1Tu,N ,k Tc,N ,k , (5.59)

Tps,k Æ(In y N Å Tu,N ,k Tc,N ,k )¡ 1Tu,N ,k . (5.60)

Now, if the underlying plant and controller state-space matrices are LPV, then the
closed-loop system matrices are also LPV. Let the tuple ( Acc,k ,Bcc,k ,Ccc,k ,Dcc,k ) repre-
sent all three closed-loop systems described in the above equations. Then, according to
Chen and Francis (1995), the LPV expansion of each of the closed-loop system matrices
is given by:

Acc,k ÆA[0]
cc Å

n Ã̄X

i Æ1
Ã̄ i (¹ k )A[i ]

cc. (5.61)

Here, Ã̄ i (¹ k ), i Æ1,...,n Ã̄ are inner products of the original set of basis functions Ã i (¹ k ).
The total number of new basis functions is related to the original number of basis func-
tions as n Ã̄ Æ2nÃ . Similar LPV expansions can be de�ned for Bcc,k , Ccc,k and Dcc,k , for
all three closed-loop systems.

Thus, the closed-loop system matrices can be described as af�ne functions of the
new basis functions scheduled on ¹ k . As in the previous section, these closed-loop ma-
trices can also be expressed as a product of a known time-varying factor that is purely a
function of the scheduling variable, and an unknown time-invariant factor.

5.4.2. LPV FACTORISATION
The generic closed-loop lifted system matrix T can be factorised as follows:

T Æ
£
M cc,1(¹ k ) M cc,2(¹ k ) ¢¢¢ M cc,p (¹ k )

¤

| {z }
M cc(¹ k )

2

6
6
6
6
4

H 0 ¢¢¢ 0
0 H ¢¢¢ 0
...

...
. . .

...
0 0 ¢¢¢ H

3

7
7
7
7
5

| {z }
T̄

. (5.62)
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It should be noted that the term T̄ is time-invariant, but still a function of ½. For the
three closed-loop system matrices, the following factorisations then hold:

Ts,k ÆM cc(¹ k )T̄s, Tcs,k ÆM cc(¹ k )T̄cs, Tps,k ÆM cc(¹ k )T̄ps. (5.63)

The components of the factorisation are de�ned as follows, the term H 2 Rnz£ nu is
partitioned into block rows such that:

H T Æ
£
F T

1 ¢¢¢ F T
p

¤
. (5.64)

The block rows F j f 2 R
n yn

j f
Ã̄ £ nu are de�ned as below:

F T
1 Æ

h
(D [0]

cc )T ¢¢¢ (D
[n Ã̄ ]
cc )T

i
. (5.65)

The zth row of F j f is given by:

F (z)
j f

ÆC
[i z

1 ]
cc A

[i z
2 ]

cc ¢¢¢A
[i z

j f ¡ 1]

cc B
[i z

j f
]

cc , i z
1 ,¢¢¢, i z

j f
2 {1,¢¢¢,n Ã̄ }. (5.66)

The ordering of the indices i z
¤ in the above expression are such that ¾zÅ1 È ¾z where:

¾z Æ
h
i z
1 ¢¢¢ i z

j f

i

2

6
6
6
6
4

n
j f ¡ 1

Ã̄
...

n Ã̄

1

3

7
7
7
7
5

. (5.67)

With this de�nition of H , the unknown time-invariant factors T̄s, T̄cs and T̄ps are fully
de�ned. The measurable time-varying factor M cc(¹ k ) is de�ned in terms of its block
columns in the following manner:

M cc,1(¹ k ) Æ

2

6
6
6
6
4

Ã̄ (¹ k )T 0 ¢¢¢ 0
0 Ã̄ (¹ k )T  Ã̄ (¹ kÅ1)T ¢¢¢ 0
...

...
. . .

...
0 0 ¢¢¢ Ã̄ (¹ k )T ¢¢¢ Ã̄ (¹ kÅN ¡ 1)T

3

7
7
7
7
5

 In y

(5.68)

M cc,2(¹ k ) Æ

2

6
6
6
6
4

0 0 ¢¢¢ 0
Ã̄ (¹ k )T 0 ¢¢¢ 0

...
...

. . .
...

0 ¢¢¢ Ã̄ (¹ k )T ¢¢¢ Ã̄ (¹ kÅN ¡ 2)T 0

3

7
7
7
7
5

 In y (5.69)

and so on. Herewith, it is possible to fully de�ne the scheduling-dependent factor
M cc(¹ k ) and the unknown invariant factors T̄ of the closed-loop system matrices. It
needs to be observed that the inner dimension of this factorisation is ncc ÆN

P N
i Æ1 n yn i

Ã̄ .

Thus, the size of the factorisation grows exponentially with the size of the lifting window
N . This is the curse of dimensionality often also seen in global LPV identi�cation meth-
ods; it will have repercussions on the number of IFT experiments required for gradient
estimation, described in the next section.
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5.4.3. IFT EXPERIMENTS

EXPERIMENT I
As before, the reference experiment is conducted with auxiliary input Q I

k ,N ,1 Æ0. The
data equation is constructed from the input-output relations:

Y I
k ,N ,1 ÆTu,N (¹ I

k )U I
k ,N ,1 Å V I

k ,N ,1, (5.70)

U I
k ,N ,1 ÆTc,N (¹ I

k )(Rk ,N ,1 ¡ Y I
k ,N ,1). (5.71)

Combining the equations,

Yk ,N ,1 ÆTu,N (¹ I
k )Tc,N (¹ I

k )(Rk ,N ,1 ¡ Y I
k ,N ,1) Å V I

k ,N ,1. (5.72)

Since the performance gradient @J
@½is a function of the output gradient

@Yk ,N ,1
@½ , the above

equation is differentiated with respect to each controller parameter as below:

@Y I
k ,N ,1

@½j ½

ÆTu,N (¹ I
k )

@Tc,N (¹ I
k )

@½j ½

(Rk ,N ,1 ¡ Y I
k ,N ,1) ¡ Tu,N (¹ I

k )Tc,N (¹ I
k )

@Y I
k ,N ,1

@½j ½

, (5.73)

@Y I
k ,N ,1

@½j ½

Æ(In y N Å Tu,N (¹ I
k )Tc,N (¹ I

k ))¡ 1Tu,N (¹ I
k )

@Tc,N (¹ I
k )

@½j ½

(Rk ,N ,1 ¡ Y I
k ,N ,1). (5.74)

In terms of the closed-loop matrices, the output and its gradient can be written as:

@Y I
k ,N ,1

@½j ½

ÆTps(¹ I
k )

@Tc,N (¹ I
k )

@½j ½

(Rk ,N ,1 ¡ Y I
k ,N ,1), (5.75)

Y I
k ,N ,1 ÆTcs(¹

I
k )Rk ,N ,1 Å Ts(¹

I
k )V I

k ,N ,1. (5.76)

As in the previous section, the LPV factorisation is used to separate the known, time-
varying effect of the scheduling sequence from the unknown time-invariant system dy-
namics:

@Y I
k ,N ,1

@½j ½

ÆM cc(¹ I
k )T̄ps

@Tc,N (¹ I
k )

@½j ½

(Rk ,N ,1 ¡ Y I
k ,N ,1), (5.77)

Y I
k ,N ,1 ÆM cc(¹ I

k )(T̄csRk ,N ,1 Å T̄sV
I

k ,N ,1). (5.78)

Next, the gradient experiments are performed to estimate the output gradient with
respect to the controller parameters.

EXPERIMENT SET II
As in the previous sections, the auxiliary input, Q I I

k ,N ,1 is set to be the same as the input to
the controller from the reference experiment, �ltered through a gradient of the controller
with respect to the controller parameter ½j ½:

Q I I
k ,N ,1 Æ

@Tc,N (¹ I
k )

@½j ½

(Rk ,N ,1 ¡ Y I
k ,N ,1). (5.79)
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In this case, the data equation becomes:

Y I I
k ,N ,1 ÆTcs(¹

I I
k ) ¡ Tps(¹ I I

k )
@Tc,N (¹ I

k )

@½j ½

(Rk ,N ,1 ¡ Y I
k ,N ,1) Å Ts(¹

I I
k )V I I

k ,N ,1. (5.80)

Using the factorisation once more to separate out the effect of the scheduling sequence,

Y I I
k ,N ,1 ÆM cc(¹ I I

k )(T̄cs ¡ T̄ps
@Tc,N (¹ I

k )

@½j ½

(Rk ,N ,1 ¡ Y I
k ,N ,1) Å T̄sV

I I
k ,N ,1). (5.81)

The middle term on the right hand side can be used directly to construct an estimate
of the output gradient; to compensate for the effect of M cc(¹ I I

k ), it would be necessary
to left-multiply the equation by the left-inverse of this matrix. Once again, since the
matrix M cc(¹ I I

k ) is de�cient in terms of row rank, such a left-inverse does not exist, and
multiple gradient experiments are required to obtain an overdetermined system. For
each experiment ĵ , the above equation holds:

Y I I , ĵ
k ,N ,1 ÆM cc(¹ I I , ĵ

k )

Ã

T̄cs ¡ T̄ps
@Tc,N (¹ I

k )

@½j ½

(Rk ,N ,1 ¡ Y I
k ,N ,1) Å T̄sV

I I , ĵ
k ,N ,1

!

. (5.82)

For the case where the scheduling sequence varies randomly, the effect of the distur-
bance can be recast as:

M cc(¹ I I , ĵ
k )T̄sV

I I , ĵ
k ,N ,1 ÆT̄sW

I I , ĵ
k ,N ,1. (5.83)

The new stacked disturbance vector W ĵ
k ,N ,1 2 Rnccn y is given by:

W I I , ĵ
k ,N ,1 Æ

NX

i Æ1
v I I , ĵ

kÅi ¡ 1  M cc,i (¹
I I , ĵ
k ). (5.84)

This new signal is considered to be zero-mean, and its biasing effect on the output gra-
dient estimate should decay over time. Further, T̄s is time-invariant. Stacking equa-
tion (5.82) over an adequate number of experiments n I I ,

Yk ,n I I N ,1 ÆM̄ cc(¹ I I
k )

Ã

T̄csRk ,N ,1 ¡ T̄ps
@Tc,N (¹ I

k )

@½j ½

(Rk ,N ,1 ¡ Y I
k ,N ,1)

!

Å ¯̄TsW
I I
k ,n I I N ,1. (5.85)

Here, M̄ cc(¹ I I
k ) and ¯̄Ts are square block diagonal matrices of block size n I I , with the terms

M cc(¹ I I
k ) and T̄s on their block diagonals, respectively. In order to get an estimate of the

output gradient, the equation is pre-multiplied by the left-inverse of M̄ cc(¹ I I
k ), and the

estimate of the disturbance is set to zero, such that:

M̄ cc(¹ I I
k )†Yk ,n I I N ,1 ÆT̄csRk ,N ,1 ¡ T̄ps

@Tc,N (¹ I
k )

@½j ½

(Rk ,N ,1 ¡ Y I
k ,N ,1). (5.86)

The second term in this expression can be used to estimate the output gradient. In
order to remove the in�uence of the �rst term, which describes the direct in�uence of
the reference on the output, a third set of experiments is required to be conducted.
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EXPERIMENT SET III
In this experiment set, the auxiliary input Q I I I

k ,N ,1 is once again set to zero, such that the
�rst term in equation (5.86) can be estimated. Following the same set of steps as in the
previous section, this term can be estimated as:

M̄ cc(¹ I I I
k )†Yk ,n I I I N ,1 ÆT̄csRk ,N ,1. (5.87)

Subtracting (5.86) from the above equation,

M̄ cc(¹ I I I
k )†Yk ,n I I I N ,1 ¡ M̄ cc(¹ I I

k )†Yk ,n I I N ,1 ÆT̄ps
@Tc,N (¹ I

k )

@½j ½

(Rk ,N ,1 ¡ Y I
k ,N ,1). (5.88)

Referring to equation (5.77), the output gradient can be directly obtained as:

@Y I
k ,N ,1

@½j ½

ÆM cc(¹ I
k )(M̄ cc(¹ I I I

k )†Yk ,n I I I N ,1 ¡ M̄ cc(¹ I I
k )†Yk ,n I I N ,1). (5.89)

Since the performance criterion is expressed in terms of the output error gradient
@EI

k ,N ,1
@½j½

and the input gradient
@U I

k ,N ,1
@½j½

, these quantities can be derived in a straightforward man-

ner from the value of the output gradient
@Y I

k ,N ,1
@½j½

as:

@EI
k ,N ,1

@½j ½

Æ ¡
@Y I

k ,N ,1

@½j ½

, (5.90)

@U I
k ,N ,1

@½j ½

Æ
@Tc,N (¹ I

k )

@½j ½

(Rk ,N ,1 ¡ Y I
k ,N ,1) ¡ Tc,N (¹ I

k )
@Y I

k ,N ,1

@½j ½

. (5.91)

Thus, �nally, the required performance gradient with respect to the controller parame-
ters can be obtained as:

@J

@½j ½

Æ
1

N
((

@EI
k ,N ,1

@½j ½

)T Ek ,N ,1 Å ¸ J(
@U I

k ,N ,1

@½j ½

)T
@U I

k ,N ,1

@½j ½

). (5.92)

With this gradient, as in standard IFT, a gradient-descent method can be used to
optimise each controller parameter ½j ½ of the fully LPV controller, in closed loop with a
fully LPV plant, such that the performance criterion is (locally) optimised. A case study
is taken up next to describe the implementation of such a strategy.

5.4.4. CASE STUDY: IFT-LPV FOR A SWITCHED SYSTEM
The main requirement for performing IFT-LPV is the ability to factorise the lifted system
matrices into a known, time-varying component, and an unknown, time-invariant com-
ponent. The previous section showed that for IFT for full LPV feedback control of LPV
plants, the inner dimension of the factorisation increases exponentially with the size of
the lifting window. In order to uniquely estimate the effect of these unknown system
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dynamics on the performance gradient in a least-squares sense, it becomes necessary
to perform an exponentially increasing number of IFT experiments, which may prove
intractable for real-time implementation of the algorithm. As such, it is advisable to ex-
ploit the structure of the lifted system matrices as much as possible to reduce this curse
of dimensionality.

In this section, an example of a switched system is considered, which simpli�es the
factorisation. The use of full IFT-LPV for tuning a feedback controller for this special case
is then explored.

LPV FACTORISATION

Let us consider that the system switches between two realisations, described respectively
using the tuples ( A[0] ,B [0] ,C,0) and ( A[0] Å A[1] ,B [0] Å B [1] ,C,0). The system switches be-
tween these two models at an arbitrary instant of time, denoted by ¿. That is to say, the
scheduling variable ¹ k 2 R can be described as:

¹ k Æ

(
0, k · ¿

1, k È ¿.
(5.93)

The term ¿ is thus an integer and the switching occurs within the prediction horizon
N , thus 1 · ¿ · N . Now, with an LPV controller in closed-loop with the system, the
closed-loop system matrices before the time of switching become ( A[0]

cc ,B [0]
cc ,Ccc,Dcc).

After time instant ¿, the state transition matrix changes to A0
cc ÆA[0]

cc Å A[1]
cc with a similar

expression for B0
cc. The closed-loop system matrix lifted over the horizon N can then be

described as:

T (¿) Æ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

Dcc 0 ¢¢¢ 0
CccB [0]

cc Dcc ¢¢¢ 0
CccA[0]

cc B [0]
cc CccB [0]

cc ¢¢¢ 0
...

...
. . .

...
Ccc(A[0]

cc )¿¡ 1B [0]
cc Ccc(A[0]

cc )¿¡ 2B [0]
cc ¢¢¢ 0

Ccc(A0
cc)(A[0]

cc )¿¡ 1B [0]
cc Ccc(A0

cc)(A[0]
cc )¿¡ 2B [0]

cc ¢¢¢ 0
Ccc(A0

cc)2(A[0]
cc )¿¡ 1B [0]

cc Ccc(A0
cc)2(A[0]

cc )¿¡ 2B [0]
cc ¢¢¢ 0

Ccc(A0
cc)N ¡ ¿(A[0]

cc )¿¡ 1B [0]
cc Ccc(A0

cc)N ¡ ¿(A[0]
cc )¿¡ 2B [0]

cc ¢¢¢ Dcc

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

. (5.94)

This matrix can be approximated as the sum of the lifted system matrix of the original
system before the switching instant, and a weighted lifted system matrix of the updated
system parameters, as follows:

T (¿) ¼
£
I N QN (¿)

¤

| {z }
M ss(¿)

·
T [0]

T [1]

¸

| {z }
T̄

, (5.95)

QN (¿) Ædiag(0,0,¢¢¢,0
| {z }

¿ terms

1,1,¢¢¢,1
| {z }
N ¡ ¿ terms

). (5.96)
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the time-invariant, unknown system matrices are given as:

T [0] Æ

2

6
6
6
6
6
6
4

Dcc 0 ¢¢¢ 0
CccB [0]

cc Dcc ¢¢¢ 0
CccA[0]

cc B [0]
cc CccB [0]

cc ¢¢¢ 0
...

...
. . .

...
Ccc(A[0]

cc )N ¡ 2B [0]
cc Ccc(A[0]

cc )N ¡ 3B [0]
cc ¢¢¢ 0

3

7
7
7
7
7
7
5

, (5.97)

T [1] Æ

2

6
6
6
6
6
6
4

Dcc 0 ¢¢¢ 0
CccB [1]

cc Dcc ¢¢¢ 0
CccA[1]

cc B [0]
cc CccB [1]

cc ¢¢¢ 0
...

...
. . .

...
Ccc(A[1]

cc )N ¡ ¿̄(A[0]
cc )¿̄¡ 1B [0]

cc Ccc(A[1]
cc )N ¡ ¿̄¡ 1(A[0]

cc )¿̄¡ 1B [0]
cc ¢¢¢ 0

3

7
7
7
7
7
7
5

. (5.98)

Here, ¿̄ is the average value of ¿ expected over iterations. Thus, this special low-
dimensional factorisation yields a component M ss(¿) that varies per iteration, and an
unknown constant component T̄ . This factorisation can be used for the closed-loop
system matrices in the IFT experiments as described in the previous section, in order to
tune the values of a �xed-structure LPV controller for an LPV plant.

CASE STUDY RESULTS

This section uses the LPV model of a morphing aerofoil as a test case. The model is
described in Lee and Singh (2007), and it is a fourth-order model where the dynamics
change based on the ambient wind speed Vk (which here forms the scheduling ¹ k ). The
controller is to be designed to track aerofoil motion, by commanding the de�ection of a
small trailing edge �ap.

The system is recast as a switched system by considering that the operating wind
speed of the aerofoil is 6 m/s, but there occurs a sudden change in wind speed to a value
of 8 m/s, at an arbitrary instant of time within the time horizon, taken to be N Æ100
samples. For this special case, the LPV factorisation (5.95) is then applicable. The refer-
ence trajectory to be followed consists of a positive step at the initial instant of time, and
a negative step half-way through the time series.

A �xed-structure LPV PI controller was taken to be in closed-loop with the system,
and its time-varying gain values Kp,k and Ki ,k were assigned such that the closed-loop
tracking performance was arbitrarily poor. The gain values were taken to be af�ne func-
tions of the scheduling variable (wind speed) such that:

Kp ÆK [0]
p Å Vk K [1]

p , Kp ÆK [0]
i Å Vk K [1]

i . (5.99)

Thus, overall, an n½ Æ4 number of parameters were tuned for this fully LPV �xed-
structure controller to optimise the closed-loop performance of the LPV plant. It can be
seen in Fig. 5.3 that, the algorithm is able to tune the four parameters, even in the pres-
ence of noise, which is simulated as an additive zero-mean white measurement noise
signal with SNR 20.

The improvement in closed-loop performance can be observed from Fig. 5.4. The
initial controller, with arbitrary values of controller parameters, performs poorly in



5

88 5. ITERATIVE FEEDBACK TUNING FOR LPV SYSTEMS

Figure 5.3: IFT tuning of Kp and Ki parameters for LPV system and LPV controller.

terms of reference trajectory tracking. On the other hand, IFT-LPV is able to modify
the controller gains, purely based on input-output data, to achieve good controller
performance.

The performance of an LPV controller is compared, in Fig. 5.5, to that of an LTI con-
troller, both tuned using IFT. It can be seen that the LPV controller is able to adjust to
the changes in wind speed dynamics and accordingly change the controller gains such
that the performance deviates minimally irrespective of the actual scheduling sequence.
On the other hand, the LTI controller is unable to compensate for the changes in wind
speed, and shows poorer performance under off-design conditions.

While a switched-system setup has been explored here, the next section explores a
fully LPV factorisation modi�ed for practical tractability.

5.4.5. CASE STUDY: EARLY TERMINATION OF IFT EXPERIMENTS
One of the drawbacks of the IFT-LPV approach developed in this section is that, for the
unique estimation of the performance gradient, the number of IFT experiments required
increases exponentially with the size of the lifting window. At this point, a heuristic is
de�ned that forms a measure of the approximation error in the estimate of the gradi-
ent, and set a limit on the number of IFT experiments required. Herefor, two quantities
related to each set of IFT experiments ( I , I I and I I I ) are de�ned below:

Definition 1. The characteristic vector ´ (¹ ¤, ĵ
k ) is de�ned as the vectorised form of all

unique non-zero terms in the corresponding scheduling sequence factor M cc(¹ ¤, ĵ
k ), where

ĵ 2 {1,¢¢¢,n¤ } is the experiment number, and ¤ corresponds to (I , I I or I I I ).

Example. For instance, for the case where the lifting window has size N Æ5, and a single
basis function Ã(¹ k ) is scheduled on the variable ¹ k , then the characteristic vector ´ (¹ I

k )
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Figure 5.4: Comparison of controller performance before and after data-based controller tuning
with IFT.

Figure 5.5: Comparison of LTI and LPV controllers.
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for the experiment I is given by:

´ (¹ I
k ) Æ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
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Ã(¹ I
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Ã(¹ I

k )Ã(¹ I
kÅ1)Ã(¹ I

kÅ2)Ã(¹ I
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7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(5.100)

.

Definition 2. The residual metric ² ¤
m for experiment sets I I and I I I is de�ned as the norm

of the projection of the characteristic vector ´ (¹ I
k ) of experiment I on the null space of the

matrix ¯́ ¤ Æ
h
´ (¹ ¤,1

k ) ¢¢¢ ´ (¹ ¤,n¤
k )

i
, where ¤ stands for I I and I I I .

If the number of experiments conducted is not suf�cient such that the equa-
tions (5.86)-(5.87) represent an undetermined system of equations, then it is still possible
to generate a unique minimum-norm solution to the least-squares problem. However,
such a solution may be arbitrarily far from the true least-squares minimiser required for
an unbiased estimate of the performance gradient. The residual metric de�ned above
provides a measure of the distance between the true solution and the minimum-norm
solution obtained from a limited number of experiments. By thresholding this met-
ric such that the approximation error in the gradient estimate is within user-de�ned
tolerance limits, the IFT experiments can be terminated early, thereby increasing the
feasibility of the online implementation of IFT-LPV.

For example, consider the case where the scheduling trajectory is identical for exper-
iments I and the �rst experiments of set I I and I I I , which is the case for LTI systems, or
systems with periodic scheduling where N is a multiple of the period. The characterstic
vector ´ (¹ I

k ) is here identical to the vectors ´ (¹ I I ,1
k ) and ´ (¹ I I I ,1

k ). In this case, the residual

metric ² I I
m Æ² I I I

m Æ0 and the IFT experiments can be stopped after the �rst experiments
of set I I and set I I I . This special degenerate case of IFT-LPV is thus equivalent to IFT-
LTI.

On the other hand, if ´ (¹ I
k ) is not collinear with ´ (¹ I I ,1

k ), but coplanar with ´ (¹ I I ,1
k )

and ´ (¹ I I ,2
k ), then the number of experiments required in set I I is equal to two, at which

point the residual metric ² I I
m Æ0. Thus, as the complexity in the variation of the schedul-

ing trajectory grows, the number of IFT experiments required for the accurate estimation
of the performance gradient also increases.
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The algorithm is laid out in full in Algorithm 2, and the effect of early termination on
the optimum-seeking nature of IFT-LPV is described using two case studies.

IFT-LPV: STATE OF THE ART COMPARISON

The case study used by Formentin et al. (2013) is considered in this section. The authors
in the reference use a direct data-driven approach for optimising the controller parame-
ters of a simple LPV system, given as below:

xkÅ1 Æ¹ k xk Å uk (5.101)

yk Æxk . (5.102)

The system is connected in closed loop with a fully LPV controller, with a state-space
representation as in (5.4). The parameterised controller matrices are given as below:

Ac,k (½) Æ
·

¹ k ¡ ½0(¹ k ) 1
¡ ½0(¹ k ) ¡ ½1(¹ k ) 1

¸
, Bc,k Æ

·
½0(¹ k )

½0(¹ k ) Å ½1(¹ k )

¸
, (5.103)

Cc,k Æ
£
1 0

¤
, Dc,k Æ0. (5.104)

Here, the controller parameters are themselves LPV:

½0(¹ k ) Æ½[0]
0 Å ¹ k ½[1]

0 , ½1(¹ k ) Æ½[0]
1 Å ¹ k¡ 1½[1]

1 . (5.105)

The objective of the controller, as per Formentin et al. (2013), is to achieve closed-loop
behaviour that can be represented by the plant:

xcc,kÅ1 Æ
·

¡ 1 1
¡ 1¡ ¹ k Å ¹ k¡ 1 1

¸
xcc,k Å

·
1Å ¹ k

1Å ¹ k ¡ ¹ k¡ 1

¸
r k (5.106)

yM ,k Æ
£
1 0

¤
xcc,k . (5.107)

Here, yM ,k is then the output expected from the closed-loop system, tuned using IFT.
It should be noted that the IFT cost function is slightly different in the sense that the
output error is rede�ned as ek ÆyM ,k ¡ yk , and the control effort weight ¸ J Æ0. However,
this change does not alter the procedure of IFT-LPV. Formentin et al. (2013) also provide
the analytically optimal controller parameters, which take the values:

½[0]
0 Æ1, ½[1]

0 Æ1, ½[0]
1 Æ0, ½[1]

1 Æ ¡1. (5.108)

It is shown in this section that the IFT-LPV method is able to iterate to these analytically
optimal values using the algorithm described in the previous section. In this case, a
lifting window size of N is used, and the scheduling sequence is taken to be such that:

¹ k Æ0.5sin(
2¼k

N
Å ª 1), (5.109)

where ª 1 is a random phase that changes every iteration. Further, the threshold for
the metric ² ¤

m Æ1. The convergence of IFT-LPV to the analytically calculated optimal
values can be seen in Fig. 5.6. It can be seen that the developed IFT-LPV methodology is
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Algorithm 2 IFT-LPV with a limited number of experiments

for j Æ0, 1, 2 ...
for j ½Æ0, 1, 2 ... n½

Step 1: Perform reference experiment I with Q I
k ,N ,1 Æ0.

Obtain Y I
k ,N ,1 and ¹ I

k .

Calculate M cc(¹ I
k ) and ´ (¹ I

k ).

Calculate Q I I
k ,N ,1.

Set ĵ Æ1. Set ¯́ I I Æ ; , M̄ cc(¹ I I
k ) Æ ; , Y I I

k ,n I I N ,1 Æ ; .

Step 2: Perform gradient experiment I I ĵ with Q I I
k ,N ,1.

Obtain Y I I , ĵ
k ,N ,1 and ¹ I I , ĵ

k .

Calculate M cc(¹ I I , ĵ
k ) and ´ (¹ I I , ĵ

k ).

Extend the block diagonal matrix M̄ cc(¹ I I
k ) with new diagonal element M cc(¹ I I , ĵ

k ).

Extend the matrix Y I I
k ,n I I N ,1 Æ[Y I I

k ,n I I N ,1;Y I I , ĵ
k ,N ,1].

Extend the matrix ¯́ I I Æ[ ¯́ I I , ´ (¹ I I , ĵ
k )].

Compute ² I I
m the norm of the projection of ´ (¹ I

k ) on the null space of ¯́ I I .

if ² I I
m È " , increment ĵ and repeat Step 2.

else, compute
zI

t ,I I ÆM cc(¹ I
k )M̄ cc(¹ I I

k )T (M̄ cc(¹ I I
k )M̄ cc(¹ I I

k )T )¡ 1Y I I
k ,n I I N ,1.

end if

Set ĵ Æ1. Set ¯́ I I I Æ ; , M̄ cc(¹ I I I
k ) Æ ; , Y I I I

k ,n I I I N ,1 Æ ; .

Step 3: Perform reference experiment I I I ĵ with Q I I I
k ,N ,1 Æ0.

Obtain Y I I I , ĵ
k ,N ,1 and ¹ I I I , ĵ

k .

Calculate M cc(¹ I I I , ĵ
k ) and ´ (¹ I I I , ĵ

k ).

Extend the block diagonal matrix M̄ cc(¹ I I I
k ) with diagonal element M cc(¹ I I I , ĵ

k ).

Extend the matrix Y I I I
k ,n I I I N ,1 Æ[Y I I I

k ,n I I I N ,1;Y I I I , ĵ
k ,N ,1].

Extend the matrix ¯́ I I I Æ[ ¯́ I I I , ´ (¹ I I I , ĵ
k )].

Compute ² I I I
m the norm of the projection of ´ (¹ I

k ) on the null space of ¯́ I I I .

if ² I I I
m È " , increment ĵ and repeat Step 2.

else, compute
zI

t ,I I I ÆM cc(¹ I
k )M̄ cc(¹ I I I

k )T (M̄ cc(¹ I I I
k )M̄ cc(¹ I I I

k )T )¡ 1Y I I I
k ,n I I I N ,1.

end if

Calculate the gradient @yI
@½j½

ÆzI
t ,I I I ¡ zI

t ,I I .

Calculate the performance gradient as @J
@½j½

Æ @yI
@½j½

T
yI .

Using the performance gradient, apply a gradient descent method and update ½j ½.

end for
end for
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Figure 5.6: Iterative optimisation of controller parameters with IFT-LPV.

able to converge to the theoretically optimal values of the controller parameters under
arbitrarily varying scheduling trajectories.

The total number of IFT experiments required for each iteration are given in Fig. 5.7.
It can be seen that, since the threshold on the residual metric is relatively high, the num-
ber of experiments required per iteration are very low, with most iterations requiring
a single gradient and a single reference experiment. There are no iterations in which
the number of IFTexperiments demanded is greater than 5. It should be noted that, for
ideal least-squares gradient estimation, the total number of experiments per iteration
required would be 16.

While it appears that the convergence of the parameters takes around 200 iterations
to complete, it should be noted that performance cost functions often have a broad min-
imum, and exact optimisation using gradient descent methods can become inef�cient.
However, if the descent along the cost function is visualised as in Fig. 5.8, it becomes
apparent that excellent performance is already achieved after 35 iterations, where the
tuned parameters are slightly different from their analytically optimal values. As such,
for practical applications, it may be possible and even advisable to terminate the IFT
tuning process once the desired level of performance has been achieved.

Comparing the method developed in this chapter with the direct data-driven method
developed by Formentin et al. (2013) (VRFT-LPV), it can be seen that the current ap-
proach is applicable to a large range of LPV systems with full LPV controllers, and a refer-
ence model describing the desired behaviour of the plant is not required in this method.
Further, while Formentin et al. (2013) describe controller tuning only for the case of pe-
riodic scheduling, this is not the case for IFT-LPV, where the scheduling trajectory can
be arbitrarily complex. While VRFT-LPV only requires one single iteration for controller
tuning, the tuned parameters are only approximately optimal, while it can be seen that
IFT-LPV will, given an adequate number of iterations, arrive at the true (locally) optimal
solution to the controller tuning problem.
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Figure 5.7: Histogram of the number of IFT experiments per iteration.

Figure 5.8: Iterative minimisation of the performance cost function.
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IFT-LPV: THE MORPHING AEROFOIL REVISITED

While the previous section used a toy example for the purpose of comparison with a
state-of-the-art data-driven LPV controller, this section revisits the morphing aerofoil
LPV plant of Lee and Singh (2007), in this section considered to be an LPV system, as in
the previous section, once again considering a lifting window of N Æ5. The scheduling
sequence is taken such that it is a superposition of a random signal with a sine of a ran-
dom magnitude on an average wind speed of 6.5 m/s. In other words, the scheduling
¹ k ÆVk is given as:

Vk Æ6.5Å 3vk Å 0.5sin(
2¼k

N
Å ª 1), (5.110)

where, as before, ª 1 is a random phase, and vk is a zero-mean white noise with unit
covariance. As before, the system is connected in closed loop with an LPV PI controller,
with controller parameters K [0]

p , K [1]
p , K [0]

i and K [1]
i , as described in equation (5.99). The

procedure laid out in Algorithm 2 is followed once more to tune these parameters us-
ing IFT-LPV. The reference signal is considered to be a step of magnitude 0.1, that stays
constant over time, irrespective of the scheduling trajectory. The objective of the LPV
controller is thus to reject the changes in the scheduling trajectory and command the
same step response from the underlying LPV plant.

This optimisation problem does not admit a closed-form analytical solution. As
such, in order to verify the optimality of the controller parameters, �rst, a four-
dimensional grid search is performed to obtain the true optimal parameter bounds.
It is seen that the cost function shows a clear local optimum, depicted using four two-
dimensional graphs in Fig. 5.9. This �gure shows the value of the logarithm of the cost
function for each combination of PI-LPV parameters. In each graph, two of the parame-
ters are held constant and the other two parameters are varied. The objective of IFT-LPV
is to iterate, in a data-driven manner, to the local optimum found by the grid search in
the four-dimensional space.

It can be seen in Fig. 5.10, that IFT-LPV is capable of iterating to the same optimal
controller parameters as those obtained by the grid search. For ensuring a lower gradient
approximation error, in this case, the threshold for the residual metric is taken to be
² ¤

m Æ0.1. As a result of this, and because the scheduling sequence has a random white
noise signal superposed on it, the number of iterations per experiment is higher than in
the previous case. A histogram of the number of iterations per experiment is shown in
Fig. 5.11. It can be seen that the most likely number of IFT experiments per iteration is 8,
thus, the early termination reduces iteration time approximately by half.

Thus, this section shows by means of two case studies that IFT-LPV can approach
the locally optimising �xed-structure LPV controller parameters to minimise the per-
formance cost for a controlled LPV plant, in a direct data-driven manner. The concept
of early termination serves to reduce the number of IFT experiments required at each
iteration, and thereby reduces computational time.

5.5. CONCLUSIONS
Several industrial applications demand global LPV control for plants that show dynamic
behaviour that can be approximated as LPV. IFT is an interesting candidate for optimis-
ing the gains of a low-order �xed-structure controller that is initiated from arbitrarily
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Figure 5.9: Grid search for the optimal PI-LPV parameters. The graphs show the logarithm of the
cost function for the corresponding value of PI parameters.

Figure 5.10: Comparison of IFT and Grid search for the optimal PI-LPV parameters.



5.5. CONCLUSIONS

5

97

Figure 5.11: Histogram of the number of IFT experiments per iteration.

poor but stabilising initial values. This optimisation takes as argument a user-de�ned
cost function, which is constrained to be such that its optimisation yields a stable closed
loop. IFT uses input-output data to construct the gradient of the performance cost with
respect to the controller parameters, which can be used in a gradient-based optimisa-
tion method to iterate to a locally optimising solution. For an adequately small step size
in the gradient-descent method, IFT always reaches the local optimum of the cost func-
tion.

It is assumed here that the scheduling is exogenous, perfectly measurable and un-
controllable.

Conventional IFT is not applicable for the tuning of a global LPV controller for LPV
plants, since the gradient estimates are then contaminated by the time-varying effect
of the scheduling sequence. This effect can be compensated for by the iteratively opti-
mising a gain schedule using IFT for the LPV plant, instead of the absolute value of the
controller gains. However, this demands that the scheduling be approximated as con-
stant during each iteration, this requirement may be too strict for practical applications.

For the case where the scheduling varies arbitrarily, the lifted system matrices can be
decomposed into a known, time-varying factor that depends purely on the scheduling
sequence, and an unknown, time-invariant factor characteristic of the system. With this
factorisation, given an adequate number of experiments, the effect of the scheduling
sequence can be compensated for, and the performance gradient can be estimated in an
unbiased manner. For the case of tuning a feedforward controller for a plant LPV in the
output matrices, the inner size of such a factorisation is linear in the lifting window size.
Thus, although an increased number of experiments are needed for gradient estimation,
this number increases linearly with the complexity of the problem. On the other hand,
for the more general case of feedback tuning for a fully LPV plant, the inner size of the
factorisation grow exponentially with the size of the lifting window, and the number of
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IFT experiments demanded may quickly grow infeasible for practical implementation.
This phenomenon is the curse of dimensionality, well-known in the �eld of global LPV
identi�cation.

Two solutions have been proposed to overcome this curse of dimensionality. Firstly,
for an LPV system (or scheduling sequence) that shows additional structure, such struc-
ture can be exploited to reduce the inner size of the factorisation. An example is taken for
the case of a switched system, where the switching occurs once in every iteration. The
approximate factorisation for this special case has a small inner size, and it is possible to
tune the gains of a PI-LPV controller ef�ciently using IFT-LPV.

Secondly, it is possible to de�ne a residual metric that can be thresholded to limit the
number of IFT experiments in order to determine an approximation of the performance
gradient estimate. This heuristic is a function of the closeness of the scheduling trajec-
tories during the reference and gradient experiments. For the degenerate LTI or periodic
scheduling case, this metric is identically 0 after the �rst gradient experiment, and only
one more experiment is required for unbiased gradient estimation. Thus, this case is
identical to IFT-LTI. As the complexity of the scheduling variation increases, the value
of the metric becomes non-zero and multiple IFT experiments are required to obtain an
acceptable approximation of the performance gradient.

IFT-LPV with early termination is described with the help of two case studies. In the
�rst one, the performance of IFT-LPV is compared with the state-of-the-art VRFT-LPV
algorithm, on the same numerical example. It is seen that while IFT-LPV demands more
iterations, it is able to arrive at the exact values of the theoretically calculated optimal
controller gains. Further, IFT-LPV is able to handle a greater scheduling complexity. Fur-
ther, a more realistic LPV plant is considered, which concerns a fourth-order morphing
aerofoil the dynamics of which vary strongly with wind speed, the scheduling variable.
No theoretical solution exists for the optimal values of PI-LPV parameters for this model.
It is found that IFT-LPV iterates to the same optimal controller values, as those found by
using an exhaustive four-dimensional brute-force grid search. For this case, the imple-
mentation of early termination reduces the time of each iteration approximately by 50%.

Thus, this chapter develops and demonstrates a direct data-driven approach for op-
timally tuning the controller parameters for a global LPV controller, for minimising the
performance cost of an LPV plant in closed loop. The developed strategy demands no
more than a minimal amount of prior knowledge regarding the true system dynamics
and the scheduling sequence. The second part of the thesis will validate the ef�cacy of
the limited-complexity IFT-LPV algorithms in an experimental manner.
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6
STATE OF THE ART

As yet, the wind is an untamed and unharnessed force;
and quite possibly one of the greatest discoveries hereafter made,

will be the taming and harnessing of it.

Abraham Lincoln, the USA (1809-1865),
describing the wind turbine control objectives of load alleviation and power capture.

This chapter re�ects on the current state of the art of load control for modern wind tur-
bines. First, the chapter explains the main components of the wind turbine and the con-
trol degrees of freedom, explaining the feedback control used in commercial wind turbines
for nominal operation. Next, the concept of Individual Pitch Control (IPC) is discussed in
terms of the advantages qua load reduction, and the increased actuator duty costs of its
implementation. Finally, the efforts of the research community in the development of the
concept of the `smart' rotor is investigated, and the gaps in our current knowledge of the
behaviour of such an advanced �exible rotor are identi�ed.

6.1. INTRODUCTION
Modern wind turbines are massive, multi-megawatt machines; with rotor diameters
exceeding 150 m, they form the largest rotating structures designed in the engineering
world. This size is necessitated by the requirement to reduce the cost of energy to make
wind power competitive with respect to conventional power sources: the larger the
wind turbine, the lower the capital costs, as well as the reliability-driven operational
costs. This progressive increase in rotor diameter has received further impetus from the
move of wind energy offshore, in order to exploit the higher wind power potential and
smoother wind �elds. However, it has been estimated that this increase cannot be in-
de�nitely sustained using the current level of technology: at a certain point, the increase
in material costs as a result of rotor upscaling will not be offset by the corresponding
increase in power capture.
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Several advanced approaches are under research for delaying this point of peak ro-
tor size, one of the most interesting of which is the development of �exible rotors with
reduced material requirements. Such a rotor would require active and passive load con-
trol to limit the loading and ensure longevity of the turbine: wind turbine rotors are ex-
posed to severe dynamic loads, with upto 10 8 to 109 loading cycles in their 20 year de-
sign lifetime, Nijssen (2006). Especially in the offshore environment, turbines also need
to be designed to require a minimal amount of maintenance downtime. Load control of
lightweight, �exible rotors would be bene�cial for the turbine as a whole, as the load alle-
viation derived from such rotors would cascade downstream through the entire turbine
supporting structure.

Loads on the wind turbine consist of deterministic components, like the effect of
tower shadow and wind shear, and random components like atmospheric turbulence.
As a result of the rotational nature of the system, the load spectra tend to show dominant
peaks at the rotor speed (1P) and its harmonics (2P, 3P,...). Modern rotors tend to have
rotational speeds of the order of 10 rpm, thus the most important exogenous load peak
occurs at a frequency of the order of 0.1 Hz. Atmospheric turbulence acts to broaden
these peaks; it also adds energy to the high-frequency region of the load spectrum.

Structural resonance modes show little in�uence on rotor loads 1 for conventional
onshore turbines, since the �rst �exible rotor mode (�apwise) is usually of the order
of 3.5P, and its modal energy is typically damped through the effect of aerodynamics.
Such rotors are relatively stiff in torsion, and the �apwise and torsional degrees of free-
dom do not couple aeroelastically in the operational regime of traditional wind turbines.
However, as rotors become more �exible, this assumption of modal independence is no
longer valid, and the turbine rotor modes may couple in an unstable manner resulting in
the highly destructive phenomenon of �utter. Such a phenomenon may also be caused
by the introduction of advanced �ow control devices along the blade; these same devices
can also, in the closed loop, mitigate this phenomenon and stabilise the wind turbine in
adverse wind conditions.

It is to be expected that control of these loads will be achieved, in the wind turbine
of the future, by a combination of passive and active load control strategies. Passive
load control corresponds to the use of elements that show �xed dynamic characteris-
tics and typically do not require external power or control signals; these elements have
seen widespread use in infrastructure, for instance, in the earthquake stabilisation of
skyscrapers. An equivalent application in wind turbine rotors would however require
relatively massive components, located within a rotating body, as described by Zhang
et al. (2016) – these components are also typically designed to be responsive to one sin-
gle modal frequency, and can often not react to frequency changes arising out of changes
in the wind speed, or system structural properties. A different passive approach is to add
sprung masses in the form of a blade trailing edge �ap, Bottasso et al. (2016), which alle-
viates dynamic loads in response to wind speed variations. Such a component need not
be physically massive, but it may still lack robustness to uncertainty or to variations in
ambient environmental parameters. Passive approaches do not form part of the scope

1The �rst rotor lead-lag mode is relatively undamped, and it is found to be excited by periodic gravitational
loading. However, this mode is relatively uncontrollable based on the current control degrees of freedom,
and will not be explored in this thesis



6.2. CONTROL OF COMMERCIAL WIND TURBINES

6

105

of this thesis, however the author believes that such approaches are in many ways com-
plementary to the active control methods studied herein.

An alternative, or extension, to passive control is the inclusion of active elements in
the �exible rotor. One of the most direct methods of active control is full-span pitch,
which can relieve loads on each blade independently, using the so-called `Individual
Pitch Control' (IPC) strategy. Other methods under research include the use of trailing
edge �aps or tabs, or �ow-modifying devices along the blade span, tailored for localised
rotor load alleviation. Such methods typically require �ow or load sensors along the ro-
tor in order to operate in the closed loop. Active control methods can often provide more
accurate load control than passive methods, however they require external power. As the
combined aeroelastic effect of these devices is dif�cult to model, ensuring robust stabil-
ity and performance for active wind turbine control can prove to be a challenging control
problem.

This chapter �rst describes the main components and the baseline feedback con-
trollers of a modern commercial wind turbine. Next, the use of IPC for controlling wind
turbine loads will be discussed. Finally, attention is devoted to the `smart' �exible rotor,
i. e. a wind turbine rotor incorporating active load control. Special emphasis is laid on
the concept of trailing edge �aps and morphing aerofoils, which show the highest degree
of maturity qua practical concept realisation.

6.2. CONTROL OF COMMERCIAL WIND TURBINES

6.2.1. COMPONENTS OF A WIND TURBINE
A modern commercial wind turbine is a complex mechatronic system that involves the
interplay of the energy capture, power conversion and control subsystems. The main
components of the wind turbine, from the perspective of load alleviation, are described
below, Manwell et al. (2002):

• Rotor: The rotor consists of a hub on which upto three blades are mounted; the
rotor is free to rotate on a horizontal axis. The �ow of the wind through the plane
of the rotor is reponsible for the generation of aerodynamic torque, which is con-
verted to electrical power by the downstream components of the turbine. The �ow
of the wind also generated aerodynamic loads that the load controller seeks to
minimise.

• Transmission: The rotor is rigidly connected to the main shaft, that is supported
on one or more main bearings. The transmission is connected to the wind tur-
bine generator on the other side. A gearbox may be used to increase the speed of
rotation.

• Electrical subsystem: The generator converts mechanical rotation into electrical
power. Both the transmission and the generator are typically housed in the na-
celle, located on top of the tower of the wind turbine. The generated power is
conditioned by an electronic converter and a transformer such that it can be fed
directly into the grid.

• Support structure: This term refers to the tower and the other structural elements
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of the turbine, which are designed to withstand the operational loads of the tur-
bine.

The control degrees of freedom of a conventional wind turbine are as follows:

• Yaw control: The nacelle is connected to the top of the tower through a yaw mech-
anism, which uses electrical or hydraulic motors for aligning the nacelle with the
in�owing wind.

• Torque control: The generator speed can be controlled by using the electronic
power converter to manipulate the electrical braking torque imposed on the trans-
mission, and hence, the load driven by the wind turbine rotor.

• Pitch control: Each blade is equipped with electrical motors or hydraulic actua-
tors such that it can be rotated about its longitudinal axis. While each blade can
be pitched independently, baseline control only demands that the turbine blades
be collectively pitchable.

• ‘Smart’ control: Research is underway regarding the use of local �ow control de-
vices along wind turbine blades that could alleviate wind turbine loads.

A typical direct-drive commercial wind turbine is shown in Fig. 6.1. The various com-
ponents of the turbine have been illustrated in the full and cross-sectional views. As a
direct-drive turbine, the transmission of this machine does not include a gearbox, and
is hence not susceptible to the concomitant reliability and maintenance issues. As a
�ipside, the generator is signi�cantly larger, and usually requires large quantities of rare
earth metals in its construction.

Depending on the wind speed, the operational regime of the wind turbine is divided
into two main regions: the below-rated region, during which the wind speed is below
the rated wind speed of the turbine, and the above-rated region, de�ned in the same
way. In the below-rated region, the objective of wind turbine control is to maximise the
energy capture, while the objective in the above-rated region is to regulate the turbine
to rated power capture while avoiding rotor overspeed for safe operation. These control
objectives relate mainly to the generation of power, however an increasingly important
task of the wind turbine controller is the minimisation of loads, such that the turbine
can survive its lifetime dynamic loading while minimising the costs of construction and
maintenance.

6.2.2. BASELINE CONTROL OF A WIND TURBINE
Baseline wind turbine control has been depicted in Fig. 6.2. Additional advanced con-
trollers can be connected in closed loop with this baseline controlled wind system. This
section describes the main components of the baseline controller that are required to
achieve speed regulation for optimal wind energy capture.

As stated before, the baseline control objective in the below-rated region is maxi-
mum energy capture, and in the above-rated region is speed regulation to the nominal
operating speed of the turbine. Both objectives can be achieved by rotor speed trajectory
tracking. In the below-rated region, torque control is used to maximise energy capture.
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Figure 6.1: XEMC-Darwind XD115 wind turbine: full and cross-sectional views, XEMC-Darwind
(2013).

The torque controller typically sets the generator torque to be proportional to the square
of the generator speed, as per Manwell et al. (2002). In this region, the pitch of the blades
is set to �ne, which ensures that energy capture is possible in the most aerodynamically
ef�cient manner. The torque control schedule is generally set up in such a manner that
it minimises dwell time at the speeds close to the tower structural frequencies, in order
to avoid undue excitation of tower modes.

In the above-rated region, the commanded generator torque is set to its nominally
rated value. In the incoming aerodynamic torque is regulated by means of collectively
pitching the wind turbine blades in such a manner that the generator speed remains
constant at its rated value. This approach is called Collective Pitch Control (CPC), and
is widely adopted by modern commercial wind turbines to regulate power extraction to
nominal in the above-rated region.

Structural loads, typically fore-aft and side-side tower loads, and drive train torsional
loads, are damped by the use of classically loop-shaped torque or CPC controllers that
are connected in closed-loop with the baseline controller described in Fig. 6.2. Fur-
ther, since a large proportion of turbine fatigue occurs from loading around the rated
wind speed, peak-shaving is often implemented around this wind speed. Peak-shaving
refers to a preponed implementation of collective pitch control, thus CPC is initiated
even when the turbine is operating in the below-rated region (but close to the rated wind
speed). This concept sacri�ces some amount of power capture while ensuring that the
turbine avoids the high peaks loads that can arise at these wind speeds. It should be
noted that structural load control and peak-shaving is turbine- and model-speci�c, and
has not been formalised or generalised for all wind turbines.

A full treatment of baseline closed-loop feedback control for wind turbines has been
done by Bossanyi (2000). This reference describes the torque and pitch control required
for following the desired turbine wind speed-power characteristics de�ned above. Fur-
ther, the concept of structural modal damping has also been discussed, and guidelines
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Figure 6.2: Wind turbine baseline control block diagram. [Turbine modal damping controllers not
depicted]

have been set down for designing such controllers. Commercial wind turbines typically
employ this approach to feedback control, and this reference is hence considered to rep-
resent `baseline' control throughout the thesis, as recommended by Laks et al. (2009).

As mentioned by Bossanyi (2000), however, torque control and collective pitch con-
trol are not capable of addressing the load reduction issue at the dominant loading peaks
of 1P, 2P and so on. This limitation arises out of the fact that the loads are asymmetric on
the turbine blades, and hence cannot be attenuated by these symmetric control degrees
of freedom. Further, localised loads that occur due to the interaction of structures in the
wind with the increasingly large and �exible blades, can neither be sensed nor dissipated
at the level of the global turbine torque and pitch controllers. This motivates the recent
research into Individual Pitch Control (IPC) and the development of the concept of the
`smart' rotor.

6.3. INDIVIDUAL PITCH CONTROL (IPC)
For the purpose of baseline generator speed control, wind turbines today are equipped
with pitch actuators that allow the independent pitching of each turbine blade, termed
as Individual Pitch Control (IPC). The concept of IPC has been borrowed from the heli-
copter industry, Kessler (2011), wherein the rotating blades are pitched along their lon-
gitudinal axis for the purpose of load reduction. This control technique, applied to wind
turbines, was found speci�cally useful for reducing periodic asymmetric loads, such as
1P and its harmonics, Bossanyi (2003). It is to be noted that due to reduced control au-
thority, individual pitch cannot be used to best effect for fatigue load reduction in the
below-rated region in most cases, Fischer et al. (2011). Since most of the fatigue-relevant
loading occurs at the rated wind speed and higher, this is not necessarily a drawback.
IPC can also be used to control tower and drive train structural loads. However, collec-
tive pitch or torque control may offer a more viable alternative to individual pitch for
these loads, Fischer et al. (2012).

Thus, IPC is designed to attenuate individual periodic loads that act asymmetrically



6.3. INDIVIDUAL PITCH CONTROL (IPC)

6

109

on each blade, using feedback control. As such, it is necessary to obtain blade load mea-
surements for each blade independently. Modern wind turbines are increasingly instru-
mented with blade root strain gauges to provide the feedback necessary for IPC. It may
also be possible to reconstruct the blade loads using state estimation from rotor speed
and pitch, however it has been shown in Stol and Balas (2003) that this severely restricts
load reduction potential.

For a conventional wind turbine, IPC is hence required to be designed for synthe-
sising three individual blade pitch control inputs based on the feedback from the three
blade root load sensors, and the plant is thus inherently multivariable. Further, this sys-
tem is non-linear in that it shows periodically varying dynamics, with base period 1P. As
such, classical control design, while perfectly feasible for designing IPC controllers for
wind turbines, stands to be simpli�ed and optimised for enhanced load alleviation.

6.3.1. CONTROL APPROACHES: LTI AND PERIODIC CONTROL

In one of the earlier works on IPC for load reduction, the use of pitch control for reducing
blade loads on a wing section model has been explored by Kallesøe (2006). Here, an LQ
controller is designed to demonstrate load reductions. However, since the model is non-
rotating, the azimuthal variations do not need to be accounted for, and linearising the
model is straightforward. In some of the earlier works with full turbine models, exploring
the concept of IPC, the system from individual pitch to blade and turbine loads has also
been considered to be linear, for example Moriarty et al. (2001), Wright (2004). Similarly,
in Stol (2003), the wind speed is modelled as an additive �ltered disturbance, and the
variations in the system due to change in azimuth are neglected. The controller is then
designed as a multivariable controller using LQG techniques for torque and individual
pitch control. However, although fatigue reduction is reported, it is concluded that the
system is not linear even at constant wind speed, and the periodicity arising out of the
azimuthal variation should be included to maximise load reduction. This has also been
shown through �eld test results by Stol et al. (2006).

An optimal periodic control law is devised by Liebst (1985), while another implemen-
tation of periodic control is by linearising the periodic plant model at different azimuths
and using LQG design, which shows better fatigue reduction capabilities, Stol and Balas
(2003). Such a periodic law has been applied successfully to a �oating offshore wind
turbine in a simulation environment by Namik and Stol (2010), both for blade load re-
duction as well as for limiting the pitch motion of the turbine as a whole.

Many recent investigations of the technique of individual pitch control are exten-
sions or variants of IPC with the Coleman or Multi-Blade Coördinate (MBC) transforma-
tion. This method is fundamentally based on the principle that when the MBC trans-
formation is applied to the individual pitch system to bring it from a rotating frame
of reference to a stationary frame of reference, we arrive at a linear decoupled system
which is amenable for controller design via classical frequency domain techniques. In
fact, it has been shown that a detailed design of an optimal periodic feedback law, al-
though fundamentally more complex and accurate, will perform no better than the MBC
transformation-based IPC, Stol et al. (2009).
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Figure 6.3: IPC with MBC transform for 1P load attenuation, Bossanyi (2003)

6.3.2. CONTROL APPROACHES: MULTI-BLADE COÖRDINATE TRANSFORM
The baseline controller for the implementation of IPC with the Multi-Blade Coördinate
(MBC) transform remains similar to the classical turbine controller described in the pre-
vious section, in that there exists closed loop torque and collective pitch control for
speed regulation. Further, individual pitch control is superposed on top of the collec-
tive pitch control in order to limit cyclic loading at 1P and its harmonics.

Commercial wind turbines typically have access to azimuth measurement, which is
essential in this variation of IPC. Indeed, IPC can also be done purely via tracking the
azimuthal position of the rotor blades; this is termed as 'cyclic pitch control' in the liter-
ature Bossanyi (2000), and derives from the helicopter industry.

Structurally, the controller is divided into three distinct parts, as can be seen in
Fig. 6.3. Essentially, the load measurements are converted by the MBC transform from
the rotating reference frame into a stationary frame of reference. This results in two or-
thogonal load signals, which have been named the d-(direct) and q-(quadrature) signal
in this reference, in analogy with electrical machine theory.

In principle, in order to obtain the optimum control signals from these two load sig-
nals, a multivariable control problem needs to be set up, and an LQG controller could
be designed. In Geyler and Caselitz (2008), a multivariable control problem has been set
up, and an H1 controller is derived for IPC; it is shown that the performance is very sim-
ilar to that of a simple PI controller. Using a simple analytic model of the wind turbine
wtih limited degrees of freedom, it has been shown in Bossanyi (2003) that the perfor-
mance of two decoupled PI controllers is similar to that of multivariable controllers, and
PI controllers are easier in implementation. It is to be noted, however, for reliable safety
margins, it may still become relevant to consider multivariable design methods for IPC
controllers, Bossanyi et al. (2012b), Lu et al. (2015). Black-box controllers such as fuzzy
logic and neural networks have also been proposed as alternatives by Bossanyi (2000),
but no further work has been done in this �eld.

In most cases of prototype implementation in the literature, the two d-q axes load
signals are considered decoupled from each other, and independent PI-controllers are
tuned for them. An inverse MBC transform is then applied to the resulting control action
from the d- and q-controllers, which gives the individual pitch action required for each
blade.

If La , Lb , ... are the load signals in the rotating frames of reference, for B number of
rotating blades, then the d- and q-loads, Ld and Lq are given by the equation as below:
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Figure 6.4: IPC with MBC transform for higher harmonics, Bossanyi (2003)

The output of the controllers will be pitch signals Pd and Pq along the d- and q-axes.
This can be resolved into the blade pitch motions Pa , Pb , ... by performing an inverse
MBC transform. In principle, the inverse transform can use the same value of azimuth
ª as used for the forward transformation. In order to enhance load reduction, Buhl
et al. (2007), the phase lag between pitch action and blade load, ±1P , can be taken into
account. Thus, the angle used for the inverse MBC transform is:

ª 0Æª Å ±1P , (6.2)

and the transformation itself is given by
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It can be seen that such a controller will reduce the periodic loads of frequency 1P for
rotating components. When transformed to a �xed frame of reference for three-bladed
turbines, the control action has a reducing effect on the low-frequency loading of the
stationary components, most signi�cantly the yaw bearing and yaw system, as also the
tower base loads. In general, the loading of these components is dominated by a peak
at frequency 3P, which is not addressed by the con�guration above. Workarounds have
been described for this – for instance, in Bossanyi (2005), a feedforward term has been
included in parallel with the PI controller for the d- and q-axes, which targets 3P loads
in the �xed reference frame. This is achieved by additional 1P and high frequency pitch
actions.

A more effective and reliable alternative for this is to develop a similar additional
controller with MBC transformation, but the transformation in this case is done for twice
the azimuth angle. By superposing the additional pitch actions obtained from this con-
troller to the one described above, 3P loads in the �xed frame, and, additionally, 2P loads
for rotating components can also be reduced, in addition to the load reduction achieved
by the previous controller. This is shown in Fig. 6.4. This paradigm can be extended for
higher harmonic load reduction as well, Van Engelen (2006). It is shown that effect of
higher harmonic control is more pronounced mainly in low turbulence conditions, Bot-
tasso et al. (2013). Individual pitch control (IPC), implemented as described above, has
been validated both in the simulation environment, as well as in the �eld.
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6.3.3. IPC VALIDATION: AEROELASTIC TOOLS
Since IPC does not require additional control degrees of freedom, it can be directly vali-
dated using state-of-the-art wind turbine aeroelastic analysis tools. Further, IPC is gen-
erally designed to address low-frequency load components, and as such, a quasi-steady
aerodynamic model may be considered adequate for investigating the load alleviation
potential. For the sake of completeness, this section details the validation of IPC using
different simulation environments.

• GH Bladed: This tool, developed by Garrad Hassan (now part of DNV-GL), has
been used for the load analysis and certi�cation of new wind turbine models.
Bladed models the turbine structure using the multi-body approach, typically con-
sidering the blades and the tower to be �exible bodies. A fully turbulent 3D wind
�eld can be simulated, and its interaction with the rotor disc is described using the
Blade Element-Momentum (BEM) theory. This approach uses the quasi-steady
aerodynamics approximation; corrections are made for dynamic stall, yawed in-
�ow and 3D effects. Bossanyi (2003), Bossanyi (2005), Fischer et al. (2011), Fischer
et al. (2012) performed fully turbulent simulations of a reference turbine using this
software, and reported signi�cant load reductions at the dominant load peaks us-
ing IPC.

• FAST: The software FAST, developed by NREL, couples a structural dynamics
model that uses Kane's method of assumed modes, with a BEM model for aero-
dynamics, corrected for wake effects and dynamic stall. The tool is capable of
handling fully turbulent wind �elds. FAST has been used to compare MBC-based
IPC with periodic control laws, Stol et al. (2009), Ozdemir et al. (2011),. This envi-
ronment is adequately versatile to admit several extensions, for instance, IPC for
�oating turbines was explored by Namik and Stol (2010), Namik and Stol (2011).

• Cp-Lambda: This tool has been developed in Politecnico di Milano to provide a
wind turbine simulation environment, it uses a �nite-element multi-body formu-
lation to describe structural dynamics. The aerodynamics utilises the lifting line
concept; the BEM theory is used for describing aeroelastic interaction with root
and tip losses, dynamic in�ow and dynamic stall corrected for. An operational ap-
proach to the integration of IPC in the overall turbine load control strategy was
explored by Bottasso et al. (2013), using Cp-Lambda for aeroelastic simulations.

• HAWC: HAWC is the aeroelastic analysis tool from the Danish Technical Univer-
sity used for the dynamic analysis of wind turbines. HAWC uses a prismatic �nite-
element formulation of the wind turbine structure. The quasi-steady BEM theory
is used with a dynamic stall model in order to describe the aerodynamic loading of
the structural elements. This code is used for evaluating IPC based on �ow mea-
surements by Larsen et al. (2005).

• TURBU and PHATAS: TURBU is a linearised aeroelastic analysis tool developed
by ECN, meant for developing linearised models for controller development. This
tool is programmed using a modular structure in the Matlab-Simulink environ-
ment. Along with a linear structural model, it uses BEM theory, extended with
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Prandtl's correction for wake effects to describe the behaviour of the wind turbine.
PHATAS is a non-linear simulation environment developed by ECN that uses a
number of rigid and �exible structural degrees of freedom that interact with the
wind �ow in a manner described by the BEM theory with corrections for the tip
effects, 3D effects and the dynamic wake. TURBU is used in Van Engelen (2007),
Selvam et al. (2009) for generating linearised models for IPC controller synthesis.

In general, the IPC controllers implemented using aeroelastic tools assume simple
models of the pitch system that issue a pitch angle command for each turbine blade.
This may be further cascaded with the pitch controller to generate the appropriate pitch
rate. It has be shown by Moriarty et al. (2001) that pitch actuator lag can obviate the
load reductions obtained by pitch control, however it has been since observed in recent
prototype implementations that this lag is not signi�cant in practice. The �eld imple-
mentation of the concept of IPC is discussed next.

6.3.4. IPC VALIDATION: FIELD RESULTS
As a �rst step to its implementation on �eld turbines, IPC was further investigated ex-
perimentally at the NREL, located in the state of Colorado, USA. The prototype turbines
on which this experiment was carried out, are called the CART-2, a two-bladed turbine
with a lockable teeter hub, and the CART-3, a three-bladed turbine similar to modern
commercial wind turbines. The CART turbines are both of 42 m diameter, and have a
rated power of 660 kW.

Prior to the actual �eld testing, the CART-2 turbine was modelled in the software
GH Bladed and the control algorithm was tested to estimate load reduction potential,
Bossanyi and Wright (2009). The two-bladed turbine was run with a teeter hub lock on,
to validate the necessity for a teeter hub.

It is seen that for the rotating components such as blade and hub, the stress peak at
1P is virtually eliminated. Similarly, on the non-rotating components such as the yaw
bearing, the steady-state and 2P peaks are eliminated, keeping in mind that this is a two-
bladed turbine. As can be expected, this requires individual pitch control action, mainly
at a frequency of 1P. It is proved via simulations that the stress reduction attained by
implementing IPC is so high as to eliminate the need for a teetered hub. It is seen that
the power output in the above-rated region is not affected by IPC, and in fact the power
output improves around the region of the knee, Bossanyi et al. (2012b). On the other
hand, if IPC is used in the below-rated region, then reduction in power output is seen.
However, since the loads in the below-rated region of the power curve are comparatively
lower, it is recommended to bypass pitch control entirely in this region.

Field testing with the CART-2 turbine validates the simulation results, and stress fre-
quency peaks at 1P on rotating components are indeed seen to be eliminated, Bossanyi
(2005), Bossanyi et al. (2010). An analogous controller was designed for a three-bladed
turbine; a model of the CART-3 turbine in GH Bladed, and similar simulation results were
observed. That is to say, with 1P and 2P IPC, it was possible to eliminate cyclic loads with
frequencies 1P and 2P on rotating components. At the same time, the steady-state and
3P loads on non-rotating components of the 3-bladed turbine could be reduced with
individual pitch control, Bossanyi et al. (2010).

The simulation �ndings for three-bladed turbines are validated in general terms by
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Figure 6.5: Load spectra at wind speed 12 m/s, Bossanyi et al. (2012a)

�eld testing of the CART-3 turbine, as described in Bossanyi et al. (2012a). It is seen that
the individual pitch PI controller is robust to parameter changes and gives very positive
results for load reductions at 1P and 3P frequencies. The reduction in the load peaks can
be seen in Fig. 6.5. Converting the spectra into the dynamic equivalent loads for fatigue
life calculation for each wind bin, the reduction in equivalent blade loads as a result of
the implementation of IPC can be seen in Fig. 6.6. There remain a few modi�cations
that need to be made to compensate the physical limitations of the sensors and actua-
tors. For instance, blade root strain gauges are used for measuring �apwise and edgewise
bending loads which form the input to the individual pitch controller. The DC-level drift
observed with strain gauges cannot be directly corrected via �ltering, and hence it has
to be calculated from �rst principles, starting from a good estimate of the wind speed.
Further, it was found that the 1P loading is reduced only partially by individual pitch
control. It is suggested that the reason for this is that the 1P loading is caused partially by
mass imbalance, and partially by aerodynamic effects: it is further suggested that cyclic
loading due to mass imbalance has not been reduced by using individual pitch control.

From the �eld testing of a 3-bladed turbine, it is concluded that individual pitch con-
trol can achieve fatigue load reductions in the above-rated region of 20-25% at the blade
root, 30-35% for shaft bending and 16-22% for stationary components, Bossanyi et al.
(2012a). At the same time, the pitch activity above-rated increases by a factor of around
4-5 times with IPC. Some further extensions to this basic concept of IPC are found in the
literature, that make use of additional measurements to increase the capabilities of this
load control strategy.
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Figure 6.6: Reduction in blade loads by IPC, Bossanyi et al. (2012a)

6.3.5. IPC: EXTENSIONS

There are a few other approaches that have been explored with respect to IPC implemen-
tation. In Larsen et al. (2005), local blade �ow measurements obtained from pitot tubes
or other �ow measuring devices, mounted on the blades, are used for reducing periodic
loads. The pressure or �ow measurements are used to calculate the instantaneous angle
of attack and relative velocity at the blades. Individual pitch actions are calculated such
that the instantaneous values of these �ow properties deviate as minimally as possible
from the average values over all the blades, with a correction for yaw error. A simple
controller can be designed here since it is not necessary to use coördinate transforms to
bring the signals to a stationary frame of reference. Flow measurements lead to a faster
response as compared to load measurements, however high-frequency pitch actions are
generally not deemed desirable. Also, �ow measurements are usually done at discrete
points, and they may be sensitive to very localised wind speed variations, the effect of
which gets averaged out by load measurements. It is shown in the reference, and by
Markou et al. (2011), via simulations, that this IPC technique shows results comparable
to those of 1P IPC, and performs even better in case of a turbine in the wake of another
turbine, as in a wind farm. However, the load reductions have not been compared to
those achievable using higher-harmonic IPC.

An analogous approach to blade root moment measurement for IPC is blade tip de-
�ection measurement, using an accelerometer. This has been investigated by Wright
and Balas (2004), and found to be effective. However, the use of blade tip accelerometers
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Figure 6.7: Multi-layer control of turbine loads, Bottasso et al. (2013)

is not considered optimal from a reliability and maintenance perspective.
In Bottasso et al. (2013), blade loads are demodulated and the corresponding control

actions are remodulated independently of each other. It is shown that this approach,
as opposed to the MBC transform approach, focusses more on reducing blade loads at
the expense of reduced load alleviation on stationary components. Also, the reduction
of other stochastic loads over and above the periodic loads is achieved here by the con-
trol methodology shown in Fig. 6.7. Here, the innermost loop corresponds to baseline
power control with torque control in the below-rated and collective pitch control in the
above-rated regions. The middle layer corresponds to reduction of periodic loads, us-
ing individual pitch. The outer layer attenuates the remaining load �uctuations that are
stochastic in nature.

The possibility of controlling the pitch angle of the inboard part of the blade inde-
pendently of the outboard part of the blade has also been investigated by Bossanyi et al.
(2012b). It is seen that the added degree of freedom leads to at least 15% blade load
reduction. However, this needs to be weighed against additional costs and reliability is-
sues with a dual pitch mechanism. Similarly, in this reference, mention has been made
of distributed load control concepts which use additional spanwise actuators to modify
�ow patterns around the blade with a view towards load reduction; this is currently an
important topic under research.

It has been shown by Laks et al. (2011) that, if the wind speed signal were available,
then it could be fed forward in parallel with the blade load feedback controller in or-
der to increase load reduction capabilities. It has also been shown that blade local wind
speed signals give superior performance than a rotor-averaged wind speed signal. How-
ever, inaccuracies in measurement can also degrade performance as compared to direct
feedback IPC. It has also been shown that using a stable model-inverse feedforward con-
troller with IPC in feedback shows increased load reduction Dunne et al. (2011). Feed-
forward also has the advantage of tighter power and speed control.

The wind speed signals for feedforward may either be estimated or directly mea-
sured. In Namik and Stol (2011), an estimated wind speed disturbance has been shown



6.4. THE SMART ROTOR

6

117

to achieve better speed and power regulation for wind-dominated loading cases. Wind
speed estimation and feed-forward in tandem with IPC with the MBC transform has
been investigated in Selvam et al. (2009), in order to enhance load reduction potential.
Direct measurements of wind speed using turbine-mounted sonic or cup anemometers
are not useable by the controller due to poor dynamic resolution and the perturbing ef-
fect of the wind turbine rotor on the wind �eld.

It is interesting to note that the use of LIDAR for load mitigation in wind turbines also
forms a related and important issue in current research. LIDAR instrumentation is ca-
pable of measuring the incoming wind velocity �eld simultaneously at different spatial
points in terms of both magnitude and direction, leading to a vast improvement in wind
speed estimation over the current industry anemometry standard. These estimates can
be used as integrated feedforward signals to the current IPC controller, leading to en-
hanced load reduction capabilities.

The major shortcomings of the conventional IPC methodology described above are
that the decoupling errors increase as turbines become larger and more �exible, and
tricks like azimuth offset are required to enable SISO control, Bossanyi (2005). Also, there
is little control over the frequency content of the commanded input signal. Further, con-
siderable tuning efforts are required to ensure that the closed-loop system performs op-
timal rejection of disturbances with an adequate stability margin. These shortcomings
will be addressed in the sequel using the SPRC and IFT-LPV methodologies developed in
the �rst part of the thesis.

Individual pitch control, while effective in reducing blade root loads, cannot address
the issue of localised variations in blade aerodynamic loads. Further, due to the mas-
sive pitch inertia of the blades, pitch control is typically used only for attenuation of
the low-frequency components of the blade load spectrum. In order to achieve high-
frequency localised aerodynamic control, additional actuators and instrumentation is
required, motivating the development of the `smart' rotor, delineated in the next sec-
tion.

6.4. THE SMART ROTOR
Per de�nition, the smart rotor is a modern wind turbine rotor instrumented with ac-
tuators and sensors along the blade length, operating in closed loop with an advanced
controller, such that the performance of the wind turbine is optimised, and the turbine
lifetime loads are minimised. While generic sensors and control approaches can be tai-
lored with relative ease for the development of the smart rotor, the actuators needed for
local �ow control require a greater amount of attention, in terms of both ensuring high
control authority, as well as modularity and reliability. The actuators designed for the
smart rotor have been reviewed in the literature by Barlas and Van Kuik (2010) and Bern-
hammer et al. (2012). These references describe in detail the various approaches taken
towards the implemenation of such a rotor and their respective stages of maturity. A few
of these approaches are described below:

• Trailing edge �aps/Morphing aerofoils: Trailing edge �aps refer to a deformable
blade trailing edge that can be actuated to manipulate the pressure distribution
over the aerofoil. Morphing aerofoil, on the other hand, is the terminology used
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for the case where the chordwise shape or camberline of the aerofoil can be ac-
tively modi�ed to achieve the same effect. The line of distinction between the two
concepts is unclear, typically �̀aps' are used to refer to a design where the aerofoil
deforms in a discrete manner, such that a clear distinction is observed between
the static and the moving part of the aerofoil. Morphing aerofoils, on the other
hand, change shape in a more continuous manner. Both approaches have their
advantages and disadvantages, and show similar control authority. In this thesis,
the two terms will be used interchangeably, and they will be discussed in detail in
the following sections.

• Microtabs: Microtabs are small tabs that deploy perpendicular to the chord of the
blade cross-section, Van Dam et al. (2007). These devices, on account of their low
inertia and the use of smart materials, show high bandwidth capable of addressing
high frequency loads in the spectrum. However, they typically only have on-off
behaviour, and hence the control authority is limited. Further, microtabs show
non-minimum phase behaviour, which limits their closed-loop performance, at
the frequency 2P and higher.

• Synthetic jets and plasma actuators: These devices modify the boundary layer air-
�ow in active manner. Synthetic jets use vibrating surfaces to extract and add mo-
mentum to the air �ow around the blade, thereby manipulating the pressure dis-
tribution, Glezer and Amitay (2002). Plasma actuators, on the other hand, use high
voltage discharge to ionise the air and thereby exert force on it, Corke et al. (2007).
These methods are speci�cally useful for delaying boundary layer separation, and
hence postponing the effect of stall. However, the overall effect in normal turbine
operation is limited. Further, the highly nonlinear effect of these actuators makes
overall actuator control design challenging.

• Active twist: The objective of an active twist actuator is to produce torsion along
(a part of) the span of the blade such that aerodynamic loading forces are coun-
teracted. Such an actuator typically comprises of smart material �bres embedded
in the blade composite matrix such that they deform in response to an actuating
signal, producing blade twist. Of the smart rotor concepts seen thus far, this con-
cept demands the largest amount of power per unit deformation produced, and
shows relatively low control authority. Rather than forming an add-on to exist-
ing blades, the active twist actuator demands a revision of the entire blade design
paradigm. Such actively twisting blades have been considered in the helicopter
industry, Chopra (2002), and developed for wind turbine blades, Lachenal et al.
(2013).

The various smart rotor concepts described above have been compared in terms of
their control authority in Fig. 6.8. It can be seen that trailing edge �aps and morphing
aerofoils show the highest average ability to modify the blade cross-sectional lift proper-
ties, thus showing the highest control authority. Microtabs show a reasonable capacity
of lift modi�cation, while the boundary layer concepts and active twist control have the
smallest effect on average lift manipulation. Further, the effect of the �aps on blade
loads is approximately linear at low frequencies, easing controller development. These
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Figure 6.8: Comparison of smart rotor concepts in terms of control authority, Barlas and Van Kuik
(2010)

attractive characteristics imply that a signi�cant amount of research effort has been in-
vested in exploring the characteristics of trailing edge �aps, and this concept possesses
the highest level of technological maturity. The next sections will be devoted to explor-
ing the most signi�cant results of the studies in the use of �aps for smart rotors. First, a
survey is made of the different designs of morphing aerofoils. Then, the load reductions
achievable by using trailing edge �aps on wind turbines reported from simulation stud-
ies are discussed. Finally, the implementation on scaled wind turbines in wind tunnel
tests and in the �eld is examined.

6.4.1. MORPHING AEROFOIL DESIGNS
A number of designs for morphing aerofoils stem from the aircraft industry, Barbarino
et al. (2011), which has a much longer history of investigating variable shape deformable
wings. However, the objective for morphing aircraft is different; research is focussed on
increasing the ef�ciency under varying �ight conditions, and on increased controllabil-
ity and manœuvrability. Aircraft aerofoils differ markedly in that they operate under far
higher speeds than wind turbine aerofoils, upto and exceeding transonic speeds, and
they are per design much thinner than wind turbine aerofoils. However, it is expected as
a �rst approximation that the lessons learnt from morphing aircraft can be transferred
to smart wind turbine rotors.

A comparison has been made between a discrete trailing-edge �ap and a smooth,
continuous morphing aerofoil (the `FishBone Active Camber' concept) by Woods et al.
(2014). The two different approaches to a morphing blade cross-section can be visu-
alised in Fig. 6.9. From wind tunnel tests, it is shown that the continuously morphing
concept and the discrete trailing-edge �aps show a similar increase in the lift coef�cient,
reaching a maximum of 0.72. On the other hand, the discrete �ap increases the drag to a
much larger extent than the continuous FishBAC concept.

While morphing aerofoils, like the one above, have been designed using conven-
tional actuators, such as servomotors, it is often found in practice that smart materials
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Figure 6.9: On the left, the continuous morphing aerofoil, the `FishBAC'. On the right, a conven-
tional discrete trailing-edge �ap, Woods et al. (2014)

may prove a better option. One of the main advantages of an actuator made of smart
materials is the increased power-to-weight ratio that simpli�es its integration into the
existing wind turbine blade. Another advantage is the high bandwidth typically associ-
ated with such actuators, that can help address the high frequency components of the
blade load spectrum arising out of atmospheric turbulence. One such implementation
of a smart material-based actuator is the use of Shape Memory Alloy (SMA) actuators
for the application of the morphing aerofoil has been explored in Bil et al. (2013). These
smart actuators are easy to manufacture and show suitable stroke length and load han-
dling capability. However, the response of SMA actuators is non-linear due to asym-
metric expansion and contraction properties, and they show relatively low bandwidth,
Lara Quintanilla et al. (2013). Further, it is considered that SMA actuators have a limited
fatigue life and may not be directly suitable for wind turbine load reduction, an applica-
tion that demands several million fatigue cycles over the turbine lifetime.

Bilgen et al. (2010) make use of piezoelectrics in the form of Macro-Fibre Composite
(MFC) actuators, that form a morphing trailing edge �ap as seen in Fig. 6.10. With a
large chordwise size, wind tunnel testing showed a maximal peak-peak change in the
lift coef�cient of 1.54. Modi�cations of this design such that the MFC's are integrated
with a �exible aerofoil skin demonstrate in the wind tunnel that this control authority
is retained at Reynold's numbers around 250,000, Bilgen and Friswell (2013). A similar
approach by Debiasi et al. (2013) yields a lift coef�cient change of upto 1; both camber
and thickness control is possible with their morphing aerofoil design, Fig. 6.11.

A direct implementation of a piezoelectric �ap, embedded in a soft foam matrix, was
evaluated by Van Wingerden et al. (2008) for the purpose of load alleviation in a non-
rotating wind turbine blade using wind tunnel experiments. A photograph of the blade
and a cross-section at the �ap location can be seen in Fig. 6.12. With arti�cial distur-
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Figure 6.10: Morphing trailing edge of aerofoil, based on Macro-Fibre Composites, Bilgen et al.
(2010)

Figure 6.11: Thickness and camber control of aerofoil, based on Macro-Fibre Composites, Debiasi
et al. (2013)
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Figure 6.12: Load reduction with trailing edge �aps, non-rotating experiment, Van Wingerden et al.
(2008)

bances induced on the blade by using one of the �aps as a disturbance generator, it was
found that upto 90% of the loads at the �rst structural eigenfrequency could be reduced
using this concept. Perfect load rejection was not possible due to the limited control
authority of the trailing edge �aps.

In general, using direct trailing-edge �aps, it is seen that piezoelectric actuators can
deliver high bandwidth but low stroke, adversely affecting the control authority of the
�aps. In an effort to counter this limitation, the concept of the free-�oating �ap was de-
veloped by Heinze and Karpel (2006). Such a �ap, as shown in Fig. 6.13 is free to rotate
about its hinge axis, and is actuated by a small (piezoelectric) tab located at its trailing
edge. The objective of such a design is that the low stroke of the tab can be aerodynam-
ically ampli�ed such that a large angular rotation of the �ap is obtained. The concept
of the free-�oating �ap has been investigated in a wind tunnel environment on a non-
rotating experiment by Bernhammer et al. (2013), but it has not yet been demonstrated
on a (scaled) wind turbine experimentally. The non-rotating study shows that such a
�ap can be completely autonomous in terms of the requirements of energy consump-
tion, and can be �tted to a wind turbine blade as a plug-and-play device. This modular-
ity simpli�es operational maintenance requirements of the actuator, and thus enhances
practical viability. However, it should be noted that the additional degree of freedom in
the free-�oating �ap can couple aeroelastically with the �exible blade modes, leading to
the manifestation of the unstable phenomenon of �utter are relatively low wind speeds.
As such, this morphing aerofoil design demands extra attention from the control engi-
neer, to ensure operational stability.

The concept of the trailing edge �aps, of different designs, have been validated in the
simulation environment as well as in the �eld.
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Figure 6.13: The concept of the free �oating �ap, Heinze and Karpel (2006)

6.4.2. FLAP CONTROL IN THE SIMULATION ENVIRONMENT
The earliest investigations into �ap control for wind turbines were conducted in the sim-
ulation environment, in order to evaluate the load reduction potential of the trailing
edge �aps. In numerical simulations, it is often not necessary to design the �ap actu-
ation mechanisms accurately, it often suf�ces to de�ne the change in the quasi-steady
aerodynamic characteristics of the blade as a function of �ap de�ection. As such, the
results in the literature obtained in the simulation environment are often generic, and
can apply to a number of different practical implementations of trailing edge �aps.

This section discusses the numerical investigations of wind turbine �ap control, not-
ing and comparing the different simulation environments and control approaches cho-
sen.

• GH Bladed: The implementation of trailing edge �aps has been compared with IPC
by Lackner and Van Kuik (2009), using GH Bladed. The �aps have a spanwise size
of 20%, and a chordwise size of 10%; their aerodynamic in�uence is approximated
by updating the quasi-steady aerofoil polars for the corresponding de�ection an-
gles. Simulations show that IPC achieves stronger reduction of 1P loads, especially
at high wind speeds, as compared to �ap control. However, �aps are highly ef-
fective at higher frequencies and low wind speeds, especially in the below-rated
region. Further, �ap control in tandem with pitch control has the capability to re-
duce power �uctuations and demands on pitch activity. This study uses the MBC
transform also for controlling the �aps.

• FAST: Berg et al. (2009) investigate the use of trailing edge �aps using NREL FAST,
which is extended by using modi�ed lift and drag polars for different aerofoil con-
�gurations. This study compared discrete trailing edge �aps with morphing �aps
that do not show discontinuities under de�ection. With similar angles of de�ec-
tion, it was seen that the load reduction potential of both varieties of trailing edge
�aps was comparable. A simple PD controller was used to investigate �ap-based
load control.
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• HAWC2: The multi-body wind turbine simulator HAWC2 from DTU, Henriksen
et al. (2015), extended by including an unsteady potential-�ow model for describ-
ing trailing edge �ap dynamics, was used by Andersen et al. (2010) for optimising
the location of a generic trailing edge �ap, and for studying load reduction poten-
tial. The optimisation suggests that a �ap sized 10% of the blade length should
be located outboard along the blade span, near the belly of the spanwise lift curve.
When a �exible rotor is modelled in place of a stiff one, the optimal location moves
slightly inboard. Fatigue load reductions of 25% are obtained at rated wind speed
operation for moderate �ap activity with around 5 ± standard deviation. This work
uses a simple proportional controller that acts on the measured blade strain. Fi-
nally, it is seen that increasing the number of �aps along the blade span yields di-
minishing returns in terms of the amount of load alleviated. Going further, Markou
et al. (2011) show that, when the turbine is operating in partial wake conditions,
load reductions upto 73% are achievable using trailing edge �aps.

• DU-SWAT: This aeroelastic code was developed in the Delft University of Tech-
nology, speci�cally for evaluating the behaviour of `smart' �exible wind turbine
rotors. It uses a multi-body formulation for structural dynamics, coupled with
an unsteady aerodynamic model, including an unsteady trailing-edge �ap model.
This code was used to evaluate the fatigue and extreme behaviour of smart rotors
by Bernhammer et al. (2016). Blade �apwise fatigue load reductions of upto 23.8%
were reported, however it was also seen that blade torsional loads increased by
14%. Extreme blade loads were in general reduced by 6-8% in this analysis.

Flap control has also been investigated on scaled wind turbine prototypes.

6.4.3. FLAP CONTROL: EXPERIMENTAL INVESTIGATIONS
As from the previous sections, the numerical analysis of trailing edge �aps for wind tur-
bine load alleviation has been given considerable attention in the literature. On the other
hand, experimental investigations for wind turbine load control are somewhat limited in
number. It should, however, be noted that the analogous concept of trailing-edge �aps
for load control of rotorcraft blades has been demonstrated successfully using full-scale
helicopter �ight testing, King et al. (2014). For wind turbines, it is dif�cult to evaluate the
effect of the trailing edge �aps on a small scale in the wind tunnel, since the Reynold's
numbers encountered on utility-scale turbines are usually a few orders of magnitude
higher than those achievable at small scale. Especially for local �ow control at high fre-
quencies, this discrepancy can fundamentally alter the �ow phenomena that the trailing
edge �ap is expected to manipulate. However, in order to attain some degree of famil-
iarity with the use of these advanced actuators before full-scale implementation, it is
deemed necessary to perform scaled testing in the wind tunnel under controlled condi-
tions.

The concept of the trailing edge �ap for wind turbine load reduction has been
demonstrated on a rotating scaled wind turbine of rotor diameter 2 m in the Open Jet
Facility wind tunnel at the Delft University of Technology. The design of the trailing
edge �ap has been shown in Fig. 6.12, thus it is actuated by the means of piezoelectric
actuators. Two trailing edge �aps of this design were integrated with the design of a
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Figure 6.14: Rotating experiments with trailing-edge �aps, Van Wingerden et al. (2010b)

scaled wind turbine blade; the design of the scaled wind turbine has been described by
Hulskamp et al. (2011), and the setup can be visualised in Fig. 6.14. Van Wingerden et al.
(2010b) discuss the identi�cation and control of this experimental turbine. Feedback
control is achieved using an H1 design, while a model-based repetitive control strategy
is used to further augment the performance of the controller. It is shown that despite the
low stroke of the actuators, deterministic loads (tower shadow and yaw misalignment)
can be reduced by nearly 90%. Comparison of the identi�ed model with aeroelastic
analysis shows that several aspects of �ap aerodynamics are not yet modelled with
adequate �delity for robust prediction of �ap performance, Barlas et al. (2013).

The �rst in-�eld implementation of the `smart' rotor equipped with trailing-edge
�aps was demonstrated by Berg et al. (2013) at the Sandia National Laboratories in the
USA. Conventional actuators were used to control the �ap degree of freedom, and this
rotor was used to validate numerical models and demonstrate the control authority of
these actuators. The �rst �eld demonstration of the load reduction potential of trailing
edge �aps was carried out by Castaignet et al. (2014). Here, a Vestas V27 turbine, of 27 m
rotor diameter, was retro�tted with active trailing edge �aps, of 5% of the blade span. A
Model Predictive Control (MPC) strategy was used for the purpose of load control; fre-
quency weighting was done of the MPC performance signal to target load alleviation at
the 1P frequency. Conventional actuators were also used here; higher frequencies in the
load spectrum were not targetted. A average load reduction of 14% was observed, pri-
marily at the 1P peak. Comparing the modelling results from Flex5 with the experimental
system identi�cation results indicated a �ap ef�ciency of 20%, however the authors do
not comment on the source of this inef�ciency.

Thus, it can be concluded that, while the load reduction potential of trailing edge
�aps is clear, a signi�cant gap still exists between our theoretical understanding of the
dynamic effect of the �aps on wind turbine load performance, and the experimentally
measured data.
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6.5. CONCLUSIONS
For the purpose of converting wind energy into electrical power that can be fed directly
into the grid, wind turbines today use sophisticated actuation and sensing mechanisms.
The control objective of maximum power generation, capped at rated power, is achieved
by a combination of electronic torque control, and blade pitch control, which together
regulates the wind turbine speed along the appropriate reference trajectory. Such an ap-
proach, common to all commercial variable-speed variable-pitch, is de�ned as baseline
control for the wind turbine. All advanced control approaches discussed in this thesis
use the nominal baseline-controlled wind turbine as the plant, and are connected in an
outer closed (or open) loop around this baseline plant.

Torque and collective pitch control have also been used, with a certain measure of
success, to reduce structural loads occurring at modal frequencies, examples being the
tower fore-aft motion damping, and drive train modal damping. However, these sym-
metric control degrees of freedom cannot affect the asymmetric exogenous periodic
loading occurring at the rotor speed 1P and its harmonics, which dominate the dynamic
lifetime loading of a turbine, and hence its fatigue life.

Individual Pitch Control (IPC), the asymmetric pitching of turbine blades, has been
proposed in the literature to reduce these loads. The approach using the MBC transform
is the most widely used IPC approach, and shows considerable load reduction; it has
been validated both in the simulation environment as well as in the �eld. However, it
often demands manual tuning of PI controller gains, which could lead to suboptimality
or instability. Further, IPC requires high pitch actuator duty which could adversely af-
fect the longevity of the pitch mechanism, especially if high frequency pitch motion is
demanded by the simple PI controller.

Another limitation of IPC is that it is unable to address local blade loads occurring at
high frequencies. To address such loads, the concept of the smart rotor has been inves-
tigated, which consists of rotor blades instrumented with local �ow modifying actuators
and load or �ow measurement sensors. Different actuators have been investigated in
the literature; it is found that trailing edge �aps have the highest technological maturity
for the application. Several alternative designs of such �aps have been synthesised, with
piezoelectrics providing low stroke but high bandwidth, and vice-versa for conventional
actuators. The load alleviation potential of this approach has been proven numerically
as well as experimentally. It is also found that further research is required into the un-
steady aerodynamic behaviour of the �aps in order to bring numerical predictions closer
to reality. As the state of the art stands today, considerable uncertainty remains in the
aeroelastic prediction of the dynamic behaviour of the smart rotor.
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How harmful overspecialization is. It cuts knowledge at a million points;
and leaves it bleeding.

Hari Seldon in `Prelude to Foundation', authored by Isaac Asimov, the USA (1988),
before travelling the world to synthesise a �rst-principles model of societal behaviour.

This chapter uses the aeroelastic simulation tool GH Bladed to explore the application
of the theoretical concepts developed in the �rst part of the thesis on a high-�delity non-
linear numerical model of a modern wind turbine. First, the methodology of Subspace
Predictive Repetitive Control (SPRC) will be used for the data-driven implementation of
Individual Pitch Control (IPC) for load control. The simulation model will be extended
with trailing-edge �aps, and the use of SPRC will be demonstrated for the case of these
new actuators. Then, Iterative Feedback Tuning (IFT) will be explored for the purpose of
turbine load control, in order to synthesise a global LPV controller for time-varying wind
conditions. Finally, the concept of IPC for yaw control will be validated in the simula-
tion environment, in order to introduce a new design variable for the trade-off of design
loads in wind turbines. The chapter ends with conclusions drawn from the results of the
aeroelastic simulations.

7.1. INTRODUCTION
As seen in the previous chapter, the load control of wind turbines is a periodic load atten-
uation problem, where the asymmetric blade loads show an exogenous forcing peak in
the frequency spectrum at the rotor speed, 1P and its harmonics. Both Individual Pitch
Control (IPC) and trailing-edge �ap control can be used to reduce these loads. The con-
trol strategy conventionally used for load control involves a linearising transformation,

Parts of this chapter have been published in Mechatronics 24, Navalkar et al. (2014), the Proceedings of the
American Control Conference, Portland, USA, Navalkar et al. (2014c), the Proceedings of the IFAC World
Congress, Cape Town, South Africa, Navalkar et al. (2014a), the Journal of Physics 524, Navalkar et al. (2014b)
and the Proceedings of the IFAC Workshop on Linear Parameter Varying Systems, Grenoble, France, Navalkar
and Van Wingerden (2015).
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called the MBC transform, that is required to be used for each frequency peak target.
This transformation decouples the multivariable system into Single-Input Single-Output
(SISO) systems, that can be controlled individually by using a hand-tuned PI controller.

For higher frequencies, distributed actuators, and increased system �exibility, the
MBC transform is no longer capable of perfect decoupling, and hence it becomes once
more necessary to treat the control problem in a fully multivariable manner. Further,
it should be noted that the aerodynamic control authority of the actuators is dif�cult
to model; it is also time-varying and changes with the ambient wind speed. In such a
situation, where large system uncertainty and time-varying behaviour is observed, the
concept of iterative data-driven control, explored in the �rst part of the thesis, may be
considered interesting.

Another point of note is that the application of load control for wind turbines is
highly sensitive to the actuator duty demanded by the controller. Both for IPC as well
as trailing-edge �aps, it is desirable to constrain the smoothness of the actuator signal
to a suf�cient extent so as to extend the life of these actuators, and accordingly, limit
the operational maintenance costs. As such, the use of basis functions for precise con-
trol over the shape and smoothness of the control signals may be considered to be an
attractive component of the postulated control approaches.

Subspace Predictive Repetitive Control (SPRC), the theory of which is developed in
Chapter 4, is considered a viable alternative to conventional IPC and �ap control for
these reasons: it is able to adjust the control law based on the estimated dynamics of
the underlying plant, and hence does not require extensive system modelling. Further,
since SPRC is formulated in the basis function subspace, it can provide a high degree of
control over the smoothness of the actuator duty cycle. As the turbine dynamics change,
as a result of a change in environmental parameters or due to aging, SPRC is able to
adjust the control law optimally to these changes.

SPRC requires continuous reïdenti�cation over the lifetime of its operation for a
time-varying plant. On the other hand, for the special case of an Linear Parameter-
Varying (LPV) plant, IFT-LPV, described in Chapter 5, can be used directly to tune the
gains of a �xed-structure LPV controller such that they are (locally) optimal over the
entire range of the scheduling sequence. Thus, for a wind turbine, the dynamics of
which can be considered to be LPV such that the wind speed forms the scheduling
variable, IFT-LPV can be used to tune a controller that is valid for all realisations of the
wind speed signal. With this approach, IFT tuning can be done for a �xed period of time
until the load reduction performance is adequate, and the controller parameters can
then be frozen. This approach can also be extended to include basis functions, as done
for SPRC.

In general, IPC and �ap control are optimised to minimise blade loads, however
these optima do not necessarily correspond to a case where the support structure loads
are also minimised, Bottasso et al. (2013). The yaw degree of freedom forms the link, Stol
(2003), between blade loads and support structure loads, however the yaw controller is
typically designed independently of the IPC and �ap controllers. Yaw control can be in-
tegrated with the conventional approach to IPC such that the joint minimisation of blade
and support structure can be performed.

These concepts are validated using a numerical model of a utility-scale wind turbine
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Table 7.1: XEMC-Darwind XD115 Wind Turbine speci�cations, XEMC-Darwind (2013)

Description Symbol Value

Rated power Prated 5000kW
Rotor diameter dro 115m

Cut-in wind speed vcutin 4m/s
Rated wind speed vrated 12m/s

Cut-out wind speed vcutout 25m/s
Rated rotational rotor speed  ro 18rpm

Gearbox ratio º 1.0 [Direct-Drive]
Pitch-rate limit �µlimit 6±/s

in the simulation environment GH Bladed. First, SPRC will be demonstrated using IPC
and �ap control. Next, the concept of IFT is investigated in this environment. Finally,
the extension of IPC to yaw control is explored, and conclusions are drawn from the
simulation results.

7.2. SPRC FOR WIND TURBINE PITCH CONTROL
In this section, the two-step data-driven control approach Subspace Predictive Repeti-
tive Control (SPRC) will be used for IPC of a commercial wind turbine, modelled using
the software GH Bladed, version 4.0. As described in the previous chapter, this software
is used for load analysis and controller certi�cation in the wind industry. It uses multi-
body dynamics for structural modelling, and simulations are performed in this section
considering the blades and the tower to be �exible bodies. Bladed uses a corrected
Blade-Element-Momentum (BEM) theory for describing the interaction with a fully tur-
bulent realisation of a wind �eld. Standard PI controllers can be de�ned for controlling
the turbine; however it is also possible to use an externally compiled dll for de�ning the
behaviour of the controller. This latter option is made use of, and the wind turbine con-
troller, both baseline as well as IPC, are designed in a Matlab-Simulink environment and
then compiled to a dll form that can be used with GH Bladed.

7.2.1. SIMULATION SETUP
The wind turbine modelled in this section is the commercial XEMC Darwind 5 MW ma-
chine, the characteristics of which are given in Table 7.1. The non-linear Bladed model
has 69 states. Nominal operation, i. e., power production is achieved by using a base-
line controller for torque and collective pitch control, following the guidelines set in the
previous chapter. An SPRC controller is then designed to operate in an outer closed loop
around this baseline-controlled plant such that it is able to minimise the asymmetric
periodic loading of the rotor blades.

Typically, the certi�cation of a wind turbine demands that the fatigue lifetime of the
turbine, calculated as per the standards, IEC61400-1 (2005), exceed a value of 20 years.
For the purpose of the calculations, an aeroelastic tool like GH Bladed is used to simulate
the loading response of the wind turbine to turbulent in�ow wind �elds, for a number of
different mean wind speeds. The typical duration of simulation is 600 seconds, and the
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loading response is then extrapolated to obtain the total fatigue damage over 20 years.
In this section, simulations are carried out for a wind speed of 18 m/s. At this wind

speed, the turbine operated in the above-rate mode, such that the commanded genera-
tor torque is at its rated value, and collective pitch control is active to ensure speed regu-
lation. At this wind speed, it is expected that the IPC controller will be active. This wind
speed corresponds to relatively high loading, and is expected to occur with a relatively
high probability during the turbine lifetime.

Four wind �eld realisations, each with a different value of turbulence intensity, are
simulated; turbulence intensity being de�ned as the ratio of the 10-minute wind speed
standard deviation to the 10-minute mean wind speed. The four values simulated are
0%, 3.75%, 6% and 14%. While it is unlikely that turbulence levels of 0% will be observed
in practice, this case enables the understanding of the behaviour of SPRC under ideal
conditions. The higher levels of turbulence are more likely to occur in the �eld, and
these simulations give more practically useful results for the implementation of SPRC.

From the load spectrum, it is apparent that a large part of the dynamic turbine load-
ing occurs around the 1P and 2P peaks. As such, the basis functions used in the imple-
mentation of the SPRC control law are given by:
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Here, N is the length of the prediction horizon, taken to be equal to the inverse of the 1P
frequency. The implementation of SPRC can be visualised in the block diagram, Fig. 7.1.
Here, the loads measured by the strain gauges are stacked over the horizon N and cast
into the basis function subspace by the projection matrix Áy . Based on the control law
adaptively synthesised at each time instant using the SPRC methodology from Chapter
4, the required pitch control signals are synthesised. It should be noted at this point
that the basis functions are time-varying, and are locked to the phase or azimuth of the
rotor. Thus, as opposed to conventional RC methodologies, this approach is entirely
insensitive to variations in the rotor speed over time. This con�guration is used to obtain
SPRC implementation results in the next section.

7.2.2. SIMULATION RESULTS
In order to analyse the behaviour of SPRC, the model was simulated for different wind
cases for a duration of 900 seconds each. For every simulation, the system Markov pa-
rameters were initialised to zero, that is to say, no prior knowledge was assumed regard-
ing the true system dynamics. The implementation of SPRC proceeded as follows:

• For the �rst 40 periods, no IPC was active. The objective was to allow the baseline
pitch and torque controllers to reach steady state operation without interference.

• For the next 60 periods, a �ltered pseudo-random binary sequence, capped to
within 3 ± of pitch activity, was superposed on top of the collective pitch demand.
The purpose of this signal was to provide persistency of excitation, and ensure that
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Figure 7.1: SPRC Implementation.

the identi�cation step of the SPRC approach converges to a reasonably good esti-
mate of the true system Markov parameters.

• At the end of this period, the SPRC feedback matrix K f ,k̄ is synthesised from the
identi�ed Markov parameters, and the repetitive control law is implemented to
achieve load reduction, in closed loop with the baseline-controlled plant.

In terms of time, this procedure implies that the turbine is considered to reach a
steady state after 100 seconds of simulation time have passed, at which point identi�ca-
tion is initiated. It is seen from the results that the identi�ed parameter estimates require
approximately 100 seconds to converge to relatively steady-state values. The identi�ca-
tion is performed in this case in the time domain, using recursive PBSID without nuclear
norm regularisation. The window size s is taken to be 20 samples, where the sampling
frequency is 100 Hz. The distance between the true system Markov parameters, as ob-
tained from of�ine batch identi�cation, and the estimated Markov parameters, reduces
over time, as can be visualised in Fig. 7.2. Identi�cation starts after to 100 second-mark,
and it is relatively smooth and rapid. At the end of 200 seconds, the variance accounted
for (vaf) by the identi�cation step of the two-step approach, exceeds 92%, at which point
the Markov parameter estimates are considered adequately reliable for control law syn-
thesis.

On the basis of these Markov parameter estimates, therefore, a repetitive control
law is synthesised and implemented online. This control law iterates to a pseudo-
feedforward sequence for minimising the deterministic periodic loads; the convergence
to this sequence is also stable and rapid, as can be seen in Fig. 7.3. This �gure plots the
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Figure 7.2: The error in online identi�cation of Markov parameters, for a wind speed of 18 m/s and
3.75% turbulence intensity.

variation of the standard deviation of blade loads over time. Before repetitive control is
activated, the blade loading is high, and shows variation due to the effect of the random
signal used for identi�cation, indicated by the square markers. After the SPRC control
law is initiated, the error drops monotonically and rapidly to a low value, within 50
iterations. Since no turbulence intensity has been modelled in this case, the blade load
variation drops by a factor of 17 after convergence; this value reduces as the level of
turbulence rises.

The full table of results appears at the end of this section. First, a few selected results
are presented graphically, to show the time- and frequency-domain behaviour of the
designed controller. The following controllers are compared:

• Load simulations for the case where only the baseline torque and pitch controllers
are in feedback with the wind turbine, and no IPC is implemented.

• Load simulations for the case where, alongwith the baseline controllers, IPC is im-
plemented using the MBC approach for 1P and 2P load reduction, described in the
previous chapter.

• Load simulations for the case where, alongwith the baseline controllers, IPC is im-
plemented using SPRC with 1P and 2P phase-locked basis functions, described in
Chapter 4.

Load reductions can be observed in Fig. 7.4 and Fig. 7.5. Fig. 7.4 shows the reduction
in blade loads as a result of the use of IPC. It can be seen that the 1P and 2P loads are
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Figure 7.3: Repetitive Control convergence, for a wind speed of 18 m/s and 0% turbulence inten-
sity.

eliminated by both IPC approaches. While the MBC approach applies to a broad band
of frequencies, SPRC selectively targets the dominant peaks. Further, Fig. 7.5 shows the
reduction in yaw bearing loads, where load reduction is observed at the 0P (DC-offset)
and the 3P load peaks. The 1P peak observed arises out of mass/aerodynamic imbalance,
and cannot be compensated for using the approaches described.

The control effort required by the two forms of IPC can be seen in Fig. 7.6 and Fig. 7.7,
where the pitch angle time series and the pitch rate activity for Blade 1 have been de-
picted respectively. The low-frequency variation in the pitch activity is commanded by
the collective pitch controller, which seeks to regulate generator speed to its rated value.
Superposed on this are the IPC pitch demands, that appear as high-frequency, nearly si-
nusoidal variations. It can be seen that IPC-MBC demands greater pitch activity than
SPRC. Further, the SPRC control signal shows a slight phase lead over the manually-
tuned MBC control signal. From the frequency spectral comparison of Fig. 7.7, the ad-
vantage of using basis functions for SPRC becomes clear: the SPRC pitch activity is con-
centrated at the two frequencies 1P and 2P, corresponding to the basis function sinu-
soids. On the other hand, the MBC control signals show a much larger spread over the
frequency spectrum, which could adversely affect actuator life.

All results are tabulated in Table 7.2, and they appear to follows the same trend. Simi-
lar levels of load attenuation are observed for both MBC and SPRC controllers, for differ-
ent wind conditions. However, while pitch activity is nearly the same for 0% turbulence
conditions, it increases much more modestly, as turbulence intensity rises, for the case
of SPRC control than for MBC control.
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Figure 7.4: Blade out-of-plane bending moment, for a wind speed of 18 m/s and 3.75% turbulence
intensity.

Figure 7.5: Yaw bearing moment, for a wind speed of 18 m/s and 3.75% turbulence intensity.
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Figure 7.6: Pitch angle for Blade 1, for a wind speed of 18 m/s and 3.75% turbulence intensity.

Figure 7.7: Pitch rate for Blade 1, for a wind speed of 18 m/s and 3.75% turbulence intensity.
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v0 = 18 m/s
IT [%] 0 3.75 6 14

% Reduction over baseline in Standard deviation of Rotor Hub Out-of-plane loads

IPC-MBC 88.59% 51.05% 43.36% 20.99%
IPC-SPRC 93.02% 44.35% 30.52% 23.01%

% Reduction over baseline in Standard deviation of Blade Flap loads

IPC-MBC 17.26% 15.94% 16.57% 11.96%
IPC-SPRC 17.72% 15.64% 11.08% 16.14%

% Reduction over baseline in Mean of Yawing moment

IPC-MBC 0.60% 10.57% 24.34% 23.26%
IPC-SPRC 5.83 % 4.29% 28.77 % 14.74%

% Reduction over baseline in Mean of Tower side-side moment

IPC-MBC 19.57% 19.67% 19.59% 19.19%
IPC-SPRC 19.06% 19.44% 19.91% 22.37%

Standard deviation of Pitch Angle Rates [deg/s]

IPC-MBC 1.354 1.51 1.76 2.334
IPC-SPRC 1.331 1.378 1.432 1.467

Table 7.2: Load Reduction Results
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While the above simulations used time-domain identi�cation, the next section de-
scribes results obtained using iteration-domain identi�cation.

7.2.3. SIMULATION RESULTS: ITERATION-DOMAIN IDENTIFICATION
In order to reduce computation time, and to relax the requirement on the persistency of
excitation, it is possible to perform system identi�cation in the same lifted iteration do-
main as the one in which the repetitive control law is formulated, as described in Chapter
4. The reduction in computational complexity arises out of the projection of the stacked
input-output data into the basis function space which is used to constrain the direction
along which the control input energy lies.

It is seen in the previous section that the identi�cation process demands a persis-
tently exciting signal to be superposed on the pitch command, which can interfere with
the collective pitch action and therewith impair speed regulation and power production
of the wind turbine. In this section, we add the constraint that, at any instant of time, the
summation of the IPC identi�cation and control pitch actuation signals must equal to
zero. With this constraint, the SPRC-IPC load reduction controller is entirely decoupled
from the power production controllers and does not degrade their performance. This
constraint can be enforced by mandating the basis functions, used for the identi�cation
and control signals, to satisfy the condition:
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3

7
7
7
7
5

. (7.4)

As it is known that the three blade pitch signals are approximately 120 ± out of phase, and
the objective of IPC is to reduce the load peaks associated with the 1P and 2P frequencies,
the basis functions for the three blade pitch inputs can be taken to be sinusoidal with
frequencies 1P and 2P, 120± out of phase with each other. Thus, Áu is taken to be:
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Figure 7.8: Persistently exciting signal in the basis function space, superposed on the pitch signal
18 m/s and 0% turbulence intensity.

It can be seen that the basis functions de�ned in this manner satisfy the equality
constraint (7.2), and hence the identi�cation and control steps of SPRC are entirely de-
coupled from the baseline power production controllers. Assuming the system to be rel-
atively linear over a short period of time, sinusoidal inputs at speci�c frequencies should
produce sinusoidal outputs at the same frequencies, hence the output basis functions
are taken to be the same as the input basis functions, Áu ÆÁy .

Once again, the above-rated wind speed of 18 m/s is chosen for performing simula-
tions; the duration of each simulation is taken to be 800 seconds. Two different turbu-
lence cases are simulated:

• Zero turbulence: As before, in order to understand the behaviour of the algorithm
in the ideal case with no turbulence and perfect periodicity of loads.

• Turbulence intensity 14%: This case with a moderately high value of turbulence
makes for a more realistic simulation of SPRC with identi�cation in the iteration
domain.

As before, the identi�cation phase of SPRC requires persistency of excitation. How-
ever, since in this section, identi�cation is performed in the iteration domain projected
into a basis function space, the algorithm only requires persistency of excitation in this
reduced dimensional space. For this, a random signal is generated such that its energy
lies purely along the directions de�ned by the basis vectors. Such a signal can be ob-
served in Fig. 7.8. There are two advantages to using such a signal: for one, it is far
smoother than the pseudo-random binary signal used in the previous section to ensure
adequate persistency of excitation. Secondly, this additional signal for the three blades
always sums instantaneously to zero, thereby avoiding interference with the collective
pitch speed controller.

In the zero turbulence case, the identi�cation algorithm is once again able to con-
verge to the steady-state value of the iteration domain system Markov parameters within
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Figure 7.9: Blade load reductions at 18 m/s and 14% turbulence intensity.

100 seconds. At the end of this period, persistency of excitation is reduced to zero, and
the identi�ed parameters are frozen. A repetitive control law based on these identi�ed
parameters is able to reduce the deterministic loading by 95%, in this ideal, turbulence-
free case.

Next, for the 14% turbulence case, a comparison of the load reductions and pitch
activity is made once more for the case of IPC-MBC and IPC-SPRC. It can be seen from
Fig. 7.9 that the periodic loads at 1P and 2P frequencies are reduced by the IPC con-
trollers. Once again, the MBC controller addresses a broader spectrum of frequencies
than the SPRC controller, yielding a blade load reduction of 27% as compared to the
blade load reduction of 20% achieved by SPRC. On the other hand, as before, from
Fig. 7.10, it is clear that the pitch activity of the SPRC controller is directed speci�cally
at the 1P and 2P frequencies, while the MBC controller has a larger spread over the
frequency spectrum. As compared to IPC-MBC, SPRC reduces pitch activity by more
than 38%.

It may be concluded from this section that SPRC control, with both time-domain
and iteration-domain identi�cation, is able to achieve similar load reductions as those
obtained with conventional IPC using the MBC transform. The advantage of using SPRC
is that the algorithm does not require manual tuning, rather, it tunes itself autonomously
to an optimal value in a data-driven manner. A further advantage is that this algorithm
provides precise control over the shape and smoothness of the control signal. Finally, the
advantage of the iteration-domain identi�cation is that it decouples the IPC algorithm
from nominal turbine power production, and increases the smoothness of the actuator
duty cycle while reducing computational complexity.
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Figure 7.10: Pitch rate activity at 18 m/s and 14% turbulence intensity.

7.3. SPRC FOR TRAILING-EDGE FLAP CONTROL
The previous section discusses SPRC for pitch-based load control, while this section ex-
tends this application to trailing-edge �ap control for a wind turbine equipped with a
`smart' rotor. The dynamics of the load response to trailing-edge �ap control is far more
dif�cult to model than the corresponding pitch actuation response. This modelling un-
certainty is exacerbated by the requirement on �ap control to be able to respond to high-
frequency variations in the wind loading, which directly entails the coupling of unsteady
aerodynamics with structural dynamics. As such, in order to tune the load controller
appropriately to optimally utilise the control authority of the trailing-edge �aps, a data-
driven approach, like SPRC, is considered suitable.

The simulation setup for the smart rotor is �rst described, then the simulations re-
sults are discussed.

7.3.1. SIMULATION SETUP
Once again, the simulation environment GH Bladed, version 4.0, was used to simulate
the non-linear time domain behaviour of the wind turbine, and its response to smart
rotor control. The wind turbine modelled in this case is the INNWIND 10 MW reference
turbine, developed under the INNWIND.EU program, Bak et al. (2013). The major char-
acteristics of this turbine are described in Table 7.3. The �aps are modelled such that
they extend between 71 m and 81 m along the blade span, for all three blades. Further,
the control authority of the �aps is modelled such that a lift increase of 10% occurs for
every 3± increase in �ap angle. This value of change in lift may be considered realistic,
based on the literature survey performed in the previous chapter. The change in drag
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Table 7.3: INNWIND D121 Reference Wind Turbine, Bak et al. (2013)

Description Symbol Value

Rated power Prated 10MW
Rotor diameter dro 178.3m

Cut-in wind speed vcutin 4m/s
Rated wind speed vrated 11.4m/s

Cut-out wind speed vcutout 25m/s
Rated rotational rotor speed  ro 9.6rpm

Gearbox ratio º 50.0
Pitch-rate limit �µlimit 10±/s

is not modelled, at above-rated wind speeds, drag mainly has an effect on the in-plane
loading of the turbine; it is expected that collective pitch control will compensate for
this effect. Unsteady effects are not included in the simulation, primarily because their
coupling with structural dynamics cannot be modelled in this version of GH Bladed.

As per the previous chapter, a baseline controller is designed, which includes a
torque controller and a collective pitch controller, to ensure that the wind turbine gen-
erator speed is regulated according to the desired reference trajectory. An individual
pitch controller, and other forms of load controllers, are not operational in the current
simulations. The major dynamic loading of the rotor occurs at rotor speed (1P) and its
harmonics, 2P, 3P and so on. In order to limit the complexity of the �ap controller, the
objective of SPRC is restricted to the attenuation of the rotor loads occurring at 1P and
2P.

An SPRC controller is used to investigate the load reduction potential of the trailing
edge �aps. The block diagram of the implementation of this controller is the same as
in previous section, shown in Fig. 7.1, the key difference being that the control input
in this section is the trailing-edge �ap actuation command. Since the objective of the
�ap controller is to reduce the dynamic loading at the 1P and 2P frequencies, the basis
functions used are the same as those in Section 7.2.1, i.e.:
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The simulations, set up as discussed, are then carried out for different wind �eld
realisations.

7.3.2. SIMULATION RESULTS
For the case of evaluating SPRC for �ap control, a mean wind speed of 18 m/s is chosen,
as an adequately high above-rated wind speed. A zero turbulence wind �eld case is stud-
ied �rst, followed by a stochastic wind �eld realisation with 3.75% turbulence intensity.
All cases are run for a simulation time of 800 seconds.
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Figure 7.11: Identi�ed Markov parameter estimate norm and performance cost convergence at 18
m/s and 0% turbulence intensity.

For the zero turbulence case, �ltered white noise is superposed on the �ap actuation
signal to attain persistency of excitation. It is seen that the identi�cation phase of the
algorithm is able to converge to a reasonably high value of VAF within 120 seconds, or 19
iterations, starting from an initialisation of the system Markov parameter estimates to 0.
The evolution of the Markov parameter estimates over time can be observed in Fig. 7.11.
Once the value of VAF exceeds 90%, the identi�ed Markov parameters are frozen, hence,
the norm of the Markov parameters stays constant after a simulation time of 300 sec-
onds. The repetitive control law synthesised based on the Markov parameter estimates
is able to converge to a periodic control sequence that strongly reduces the blade loads,
within 180 seconds or 28 iterations. After convergence, for this ideal case, the blade load
standard deviation is reduced to 20% of its baseline value.

Next, simulations are carried out for the same wind speed, for a turbulence intensity
of 3.75%. It is observed in this case that the action of the �ap controller, as opposed to
the IPC controller, also contains symmetric components, which shows a small degra-
dation of the speed regulation performance of the collective pitch controller. The sim-
ulations demonstrate that blade load reduction is indeed possible, as can be observed
in Fig. 7.12. While the load reductions are more modest as compared to IPC, a load re-
duction of 12.4% in the blade loads is still observed, primarily at the 1P and 2P frequency
peaks, as per the constraints of the basis functions. Further, �ap control, like IPC, also re-
duces loading in the support structure, as seen in Fig. 7.13, which shows side-side tower
loading. Flap control reduces the mean of the side-side tower loads by 6.3%.

The �ap actuator duty cycle can be observed in Fig. 7.14. As apparent, the �ap actu-
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Figure 7.12: Blade load reductions using SPRC, 18 m/s and 3.75% turbulence intensity.

Figure 7.13: Tower side-side load reductions using SPRC, 18 m/s and 3.75% turbulence intensity.
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Figure 7.14: Flap actuation signal using SPRC, 18 m/s and 3.75% turbulence intensity.

ation signal only contains energy at the 1P and the 2P frequency, as per the constraints
imposed by the basis functions. It can be seen that the �ap activity is much higher than
the corresponding IPC pitch activity required for achieving the same load reductions.
It may be possible that achieving such high �ap de�ections may not be feasible, either
structurally or in terms of ensuring that aerodynamic separation does not occur. Such
constraints could in principle be incorporated when optimising the SPRC cost function
over a �nite hoirzon.

The collective pitch activity is slightly higher than baseline; this is because the sym-
metric forcing of the �ap activity is required to be compensated by collective pitch ac-
tion. However, it should be noted that the total pitch actuator duty is still an order of
magnitude lower than that demanded by individual pitch control. Thus, although the
use of trailing-edge �aps shows lower load reduction capabilities than IPC, pitch actua-
tor duty is reduced signi�cantly by using �aps to address asymmetric blade loading.

SPRC proves to be useful in addressing the unknown dynamic characteristics of the
�ap actuators; it also yields smooth control signals suitable for increased reliability of the
actuators. The utility of SPRC may perhaps be greater for a simulation tool with greater
�delity, which is able to model the unsteady aeroelastic effects of the trailing edge �aps.
Alternatively, it would be interesting to investigate this approach experimentally.

It should be noted that SPRC treats the system as instantaneously linear, and requires
reïdenti�cation for the case where the system dynamics vary with time. For instance, a
wind turbine shows dynamics that are LPV (linear parameter-varying), and change with
wind speed. In such a case, the optimal SPRC law will need to be recalibrated for different
wind speeds, repeatedly over time. An alternative to this approach would be a fully LPV
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data-driven controller, the gains of which converge to constant values over time. Such a
fully LPV approach to wind turbine load control is considered in the next section.

7.4. IFT-LPV FOR WIND TURBINE PITCH CONTROL
In this section, the concept of IFT-LPV, developed in Chapter 5, is explored for the pur-
pose of wind turbine IPC. The primary motivation behind the use of this LPV technique
is that the underlying wind turbine pitch control system is LPV by nature, with the pitch
control authority increasing in an approximately quadratic manner with an increase in
in�ow wind speed. As such, a wind turbine can be modelled as LPV with the wind speed
forming the scheduling variable. For global wind turbine load rejection, irrespective of
wind speed, it is hence desirable to synthesise an LPV IPC controller, which is also sched-
uled on wind speed. The direct data-driven approach of IFT affords the possibility to
tune the gains of a low-order LPV controller to (locally) optimise the IPC performance,
for all wind speeds, and is hence considered suitable for the application.

First, the simulation setup is described, and the speci�c form of the low-order LPV
controller, to be tuned using IFT, is justi�ed. Next, simulation results are discussed.

7.4.1. SIMULATION SETUP

As in the previous section, the simulation environment used is GH Bladed, version 4.0,
and the turbine modelled in this environment is the INNWIND 10 MW reference tur-
bine, with major characteristics given in Table 7.3. Bladed is a non-linear time-domain
turbine simulator, and it uses multi-body dynamics, with a �exible tower and blades.
The non-linear model herewith has 69 states, and the dynamics shows a variation with
wind speed. Thus, the wind speed ¹ k is the LPV scheduling variable; it satis�es the con-
ditions of being exogenous, persistently exciting and uncontrollable. At this stage, it is
assumed that the wind speed is also perfectly measurable, although this assumption has
limited practical realisability. The transfer from pitch actuation to blade loads, linearised
for three different wind speeds, can be observed in Fig. 7.15. It can be clearly observed
that the control authority of pitch actuation increases with the wind speed, while the
location of the poles remains relatively unaltered. As turbine rotors become more �exi-
ble, the coupling of aeroelastic modes will imply that the poles may also change location,
however, the reference turbine shows a relative invariance of poles with a change in wind
speed, that is true of most commercial wind turbines.

As before, nominal operation of the wind turbine is ensured through the use of base-
line torque and collective pitch controllers, designed as in the previous chapter, that reg-
ulate generator speed to its reference value. The IFT-LPV controller that will be designed
for the purpose of IPC for blade load alleviation, is connected in an outer loop around
the baseline controlled plant, and is entirely independent of the baseline controller.

For the design of the controller, as blade loads occur in the frequency spectrum pri-
marily at the 1P peak, the IFT-LPV controller is designed such that it also generates con-
trol action at this frequency. Further, the optimal IFT-LPV control action will be required
to generate sinusoidal control action that changes magnitude and phase with changing
wind speed, since the response of the underlying LPV system to control actions at dif-
ferent wind speeds will be different. Also, since it has been shown that the ideal control
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Figure 7.15: Linearised turbine dynamics from pitch actuation to blade loads, different wind
speeds.

action for the three blades over each rotation is 120 ± out of phase with each other, this
special structure can also be incorporated in the IFT-LPV control action in order to speed
up the convergence of the algorithm by reducing the controller degrees of freedom.

It is seen from the linearised models made available from GH Bladed that the wind
turbine system may be approximated as LPV in its input matrices ( B taken LPV). It is
then expected of the controller tuned using IFT-LPV to generate a control action that
commands the three blade pitch angles, equally in magnitude, and 120 ± out of phase
with each other, in response to the three blade loads that are also roughly equal in mag-
nitude and 120 ± out of phase with each other. As such, the system can be considered
to be pseudo-SISO, in that one single control action is to be synthesised in order to re-
duce the effect of three blade loads, rotated and averaged together. For this pseudo-SISO
system, the LPV scheduling dependency can be moved from the input matrix B to the
output matrices C and D, to yield a system LPV in its output matrices.

In the previous sections, it was seen that signi�cant load control could be achieved
by using SPRC to converge to a constant feedforward sequence scheduled on sinusoidal
basis functions of the rotor azimuthal position. This same concept is used to de�ne an
LPV feedforward controller that is to be tuned using IFT; the feedforward signal forms
linear combinations of sinusoidal basis functions scheduled on the measured rotor az-
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Figure 7.16: IFT implementation: wind turbine load control.
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j being the number of the blade. Further, the terms ½j ½, j ½ 2 {1,2,3,4} are the four con-
troller parameters that are sought to be optimised by using IFT. For each blade j , this
implementation can be visualised in Fig. 7.16, where the synthetic feedforward refer-
ence signals are generated as 1P sinusoids scheduled on the measured blade azimuth.
The azimuthal position ' k , j of each blade j is given by:

' k , j Æ' k Å
2(j ¡ 1)¼

3
. (7.10)

Since the reference signal is phase-locked with the rotor azimuth, the control action
produced will always be in the correct phase for load attenuation using IPC. It is seen
that a speci�c �xed structure has been assumed for the controller; the gains of the basis
functions are considered to increase (or decrease) in a linear manner with an increase
in wind speed. This formulation may not be the most optimal usage of pitch control
authority over the operational range of the wind turbine. For instance, a quadratic or
exponential gain schedule may possibly provide better load control. The concept of IFT-
LPV can, however, only �nd the most optimal controller within the set of controllers that
admit the user-de�ned parameterisation.

It should be noted that the `feedforward' reference signal in this case is a set of basis
functions scheduled on the rotor azimuth. As such, the approach of IFT-LPV for feed-
forward controller tuning for systems LPV in the output matrices can be employed in
this case, as described in Chapter 5, Section 3. It is notable that this formulation is not
hampered by the curse of dimensionality typically found in data-driven LPV approaches.
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Output load measurements are required in this case, they are however not used for
performing feedback control. Instead, the output measurements form the performance
criterion that is to be optimised by IFT by tuning the controller parameters. As such, at
steady state, such a load controller will be a purely feedforward controller, and cannot
render the system unstable even for a poorly chosen class of controllers.

The simulations in this section are carried out below rated wind speed, at which
point the torque controller is active and the collective pitch controller is not active. Here,
the largest variation in system dynamics is experienced, primarily since the generator
speed is not regulated to a constant value, but it is allowed to vary in order to maximise
power capture. As such, the wind speed is allowed to vary between 6 m/s and 10 m/s,
which is below the rated wind speed value of 11.4 m/s for the reference turbine. It should
be noted that the conventional MBC transform cannot be directly used for an IPC con-
troller in this case, since it cannot account for the variations in system dynamics, and
requires the design of LPV �lters for shaping the input and output signals.

The results of IFT feedforward tuning for the LPV controller are described in the next
section.

7.4.2. SIMULATION RESULTS
The wind turbine is simulated in GH Bladed such that it is subject to a wind �eld that
varies between 6 and 10 m/s. Two speci�c controllers are tuned using the IFT-LPV
methodology of Chapter 5:

• A controller that is Linear Time-Invariant (LTI), with ½3 and ½4 set identically to
zero.

• A fully LPV controller where all four controller parameters are optimised using IFT.

The reduction in the performance cost with every iteration of IFT can be seen in
Fig. 7.17. As the controller parameters are initialised to zero and updated using the cost
gradients estimated from data using the IFT experiments, the performance cost reduces
over successive iterations. While the LTI controller is also able to achieve reductions
in performance cost, the LPV controller tuned using IFT outperforms the LTI controller
tuned using the same technique. The convergence of the controller parameters ½j ½ to
their optimal values can be seen in Fig. 7.18. This rate of convergence depends upon the
turbulence levels in the wind �eld, as the turbulence intensity doubles from 5% to 10%,
the rate of convergence reduces by 35%.

Next, the tuned feedforward controllers are tested as regards to their load reduction
capabilities by simulating a gust from 6 m/s to 10 m/s, occurring over a period of 50
seconds. As seen in Fig. 7.19, both LTI and LPV controllers designed using IFT are ca-
pable of achieving load reductions. While similar load reductions are achieved at low
wind speeds, at higher wind speeds, the load reduction capability of the LPV controller is
higher by 20%. The load reduction results are tabulated in Table 7.4. The pitch inputs de-
manded by the controllers can be observed in Fig. 7.20. In both cases, the control action
has the correct phase for load reduction. With LPV control, the magnitude of the control
action becomes optimally gain-scheduled. At higher wind speeds, since the pitch actua-
tor has higher control authority, the magnitude of the pitch action demanded is lowered
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Figure 7.17: IFT-LPV cost after iterative tuning, wind speed between 6 m/s and 10 m/s.

Figure 7.18: IFT-LPV and IFT-LTI parameter values after iterative tuning, wind speed between 6
m/s and 10 m/s.
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Figure 7.19: Blade load reductions using IFT-LPV and IFT-LTI controllers, wind speed between 6
m/s and 10 m/s.

Table 7.4: IFT Load Reduction Results

Load reduction [% below Baseline] Wind Speed Wind Speed
6 m/s 10 m/s

IFT-LTI 58.5% 58.2%
IFT-LPV 61.4% 69.5%

accordingly and greater load alleviation is achieved by the LPV controller with reduced
control effort. For comparison, the results obtained using an IPC-MBC controller de-
signed for above-rated operation have been depicted in the plots as the `classical' con-
troller. This controller is unable to compensate for changes in the rotor speed that occur
in the below-rated region; it is also not able to recalibrate itself for the reduced control
authority in this operational regime. As such, minimal load alleviation is observed when
this controller is used in the below-rated region of operation.

Thus, it can be observed in this section that IFT-LPV can directly synthesise a feed-
forward IPC controller that achieves signi�cant load reductions irrespective of the oper-
ating wind speed, without requiring the intermediate step of system identi�cation. This
controller is �xed-structure and hence low-order, it is locally optimal among the set of
similarly parameterised controllers. As compared to an LTI controller designed in the
same way, it achieves 20% more load reduction under off-design conditions.

Until this point, IPC controllers have been designed primarily for blade load reduc-
tion; support structure load alleviation is considered as a collateral bene�t of IPC. How-
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Figure 7.20: Pitch control action demanded by IFT-LPV and IFT-LTI controllers, wind speed be-
tween 6 m/s and 10 m/s.

ever, by combining IPC with yaw control, it is possible to consider the trade-off with
loads in the non-rotating components of the wind turbine. This aspect of IPC for yaw
control will be explored next using numerical simulations.

7.5. IPC FOR YAW CONTROL
The objective of yaw control is to keep the wind turbine rotor plane aligned perpendicu-
lar to the wind �ow direction, in order to maximise power production. For a downwind
turbine, such a con�guration is stable, and yaw control can be achieved with minimal
effort, Verelst et al. (2012). A modern commercial wind turbine, however, has an up-
wind con�guration that is unstable in the yaw degree of freedom, and requires closed-
loop feedback control for stabilisation. Such control actions are provided by a series of
yaw motors that connect the nacelle with the (stationary) tower in such a manner that
the yaw error between the attitude of the nacelle and the direction of wind �ow is min-
imised. This yaw system, consisting of yaw motors, a gearing arrangement and a yaw
bearing, includes some of the most highly stressed components in wind turbines, Pes-
majoglous and Graham (1992), and directly in�uences the rotor and transmission loads
transferred to the support structure, Ekelund (2000).

The dynamic behaviour of the yaw system has been studied, Maalawi (2007), and
the effect of tuning structural parameters, like yaw stiffness, has been explored in the
literature, for instance by Stubkier and Pedersen (2011). Further, the concept of using
IPC to alter the yaw behaviour of wind turbines has been introduced in Burton et al.
(2011). However, a detailed analysis of the effect of IPC for yaw control on the dynamic
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Figure 7.21: Conventional implementation of IPC-MBC.

loads experienced by upwind wind turbines has not yet been conducted.

In this section, the extension of IPC for wind turbine yaw control is investigated in
the aeroelastic simulation environment GH Bladed. The effect on the support struc-
ture loads is discussed, and the collateral effect of reduced blade load alleviation and
increased pitch activity is discussed. This section also shows that IPC can form a re-
dundant yaw actuator that could serve as a backup in case of errors in the primary yaw
control mechanism, or in case the yaw system duty cycle is to be limited from the point
of view of reliability and operational maintenance.

7.5.1. IPC-Y: EXTENDING THE MBC TRANSFORM

This section explores how the conventional approach to IPC, using the Multi-Blade
Coördinate (MBC) transform, can be extended to include yaw control as one of the
objectives. The approach towards load control using IPC-MBC has been described in
the previous chapter, and can be illustrated by using Fig. 7.21.

Thus, for a three-bladed turbine, based on the blade root measurements L1, L2 and
L3 in the rotating frame of reference, the MBC transform is used to synthesise the sta-
tionary frame-of-reference signals Ld and Lq ,

·
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with ª being the measured rotor azimuth. The decoupled signals Ld and Lq are fed into
SISO PI controllers to obtain the control action in the stationary frame of reference, Pd

and Pq , on the basis of which the blade pitch commands P1, P2 and P3 are synthesised
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using the inverse MBC transform:
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with ª 0 being the rotor azimuth rotated through a small angle, for maximising load re-
duction. It has been shown by Van Engelen (2006) that the d- and q-axes in the stationary
frame of reference can be physically interpreted as the tilt and yaw axes of the wind tur-
bine. Thus, for instance, the load Lq obtained from the MBC transform provides a mea-
sure of the yaw load acting on the wind turbine rotor. When IPC with the MBC transform
is used for a turbine �xed in yaw, the PI controllers act to minimise the yaw moment at
the nacelle base. Conversely, if the turbine nacelle is free to yaw about the tower, IPC
can be used to minimise the yaw error between the nacelle and the wind �ow direction.
As such, for a turbine free to yaw about the tower axis, IPC can be used to stabilise the
turbine in yaw, and reject yaw error. For instance, for the case where the yaw error is Â, a
simple PI controller can be used to generate an IPC control action Pq,Â (in the stationary
frame of reference), as follows:

Pq,Â ÆKp ÂÅ Ki

Z
dÂ, (7.13)

with Kp and Ki the tunable parameters of the PI controller. This extra pitch action can
now be summed with the IPC load control pitch action in the stationary frame of refer-
ence, in order to synthesise the desired pitch control actions as:
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This extension of the IPC-MBC controller can be visualised in Fig. 7.22. It can be
observed that the load control pitch signal, along the yaw axis in the stationary frame
of reference, is augmented with the yaw error control pitch signal, synthesised based on
the feedback from the yaw sensor. This implementation of IPC replaces the red box in
the conventional implementation of IPC, seen in Fig. 7.21.

Due to the non-linear effect of Coulombic friction in the yaw subsystem, low-
magnitude yaw actuation signals will not have an effect on the yaw error. To avoid
commanding such signals, a non-linear saturation block is used to shape the yaw error
before it enters the PI yaw control block, so that the controller is insensitive to small yaw
misalignments. The saturated yaw error Â0 is shaped from the actual yaw error Â in such
a manner that:

Â0Æ

(
Â tanh( ÂÅ®)¡ 1

2 , if Â · 0

Â tanh( Â¡ ®)Å1
2 , if Â È 0.

(7.15)

Here, the quantity ® is the amount of yaw misalignment that can be tolerated before
it becomes necessary for yaw control actuation to be implemented. The effect of the
saturation block can be visualised in Fig. 7.23. The PI yaw controller then acts on the
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Figure 7.22: Implementation of yaw control using IPC-MBC.

saturated yaw input, as follows:

Pq,Â ÆKp Â0Å Ki

Z
dÂ0, (7.16)

This IPC yaw controller is demonstrated in the next section using the GH Bladed
simulation environment for the commercial Darwind XD115 wind turbine, the setup of
which is described in Section 7.2.

7.5.2. SIMULATION RESULTS
The XEMC-Darwind commercial 5 MW turbine model, described in Section 7.2, is here
modi�ed such that the turbine nacelle is able to yaw freely about the tower. The potential
of yaw control using IPC is demonstrated, and the effect on turbine loading is studied.

The yaw controller block from Fig. 7.22 is in this case implemented using a simple
PI controller with �xed gains. While proportional action represents the effect of arti�cial
yaw stiffness, integral action is necessary in this case to ensure zero steady-state error.
Three different control con�gurations are investigated in terms of their effect on yaw
stabilisation and turbine loads:

• A turbine operating in free yaw, where IPC is used for yaw control and load reduc-
tion, with collective pitch and torque control for baseline speed regulation.

• A turbine simulated with a constant structural yaw stiffness of 10 8 N-m, with IPC
used only for load reduction, and collective pitch and torque control for baseline
speed regulation.

• A turbine simulated with a constant structural yaw stiffness of 10 8 N-m, without
IPC, but still with collective pitch and torque control for baseline speed regulation.

For the case of free yaw, it is considered that the yawing motion is opposed by a fric-
tional force, that is taken to be 10% of the yaw moment experienced in the �xed-yaw
case. While this is a conservative estimate, it allows us to explore the potential of IPC for
yaw control.
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Figure 7.23: Saturation block to avoid correction for small yaw misalignments.

Under all operating conditions, simulation results show that it is possible to reject
yaw error purely through the use of IPC. The trade-off between structural load allevi-
ation and yaw error rejection can be tuned by adjusting the aggressiveness of the yaw
controller, thus by increasing or reducing the gains of the PI controller in equation (7.16).
Since this determines the bandwidth of the PI controller, this trade-off is essentially a
function of the controller bandwidth.

Selected results are presented in this section to demonstrate the loading behaviour of
this control approach. Speci�cally, in order to make these results comparable to the ones
in the previous sections, the case with mean wind speed of 18 m/s, and a low turbulence
intensity of 3.75% is chosen as a demonstration case.

With IPC for load control, the mean load on the yaw bearing reduces, as a collateral
effect of reduced blade loads. However, this reduction is limited since the gains used in
IPC for blade loads are not optimised for yaw load reduction. On the other hand, for free
yaw, the only loads arising on the yaw bearing originate from yaw friction, and as such,
the yaw loads effectively reduce by a factor of 15, as observed in Fig. 7.24. As expected,
however, IPC is less effective in yaw error rejection, and the yaw error of the turbine
increases by a factor of 14, Fig. 7.25. It should, however, be noted that in practical terms
the magnitude of yaw error remains bounded to within a few degrees.

Free yaw effectively implies that the transfer of loads from the rotor to the support
structure is strongly reduced, this effect can be seen in Fig. 7.26. With IPC for load
control, the mean tower loads are reduced to some extent. The major component in
tower load reduction, using IPC for yaw control, arises from the result that the 1P rotor
mass/aerodynamic imbalance loads are attenuated strongly due to the decoupling ef-
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Figure 7.24: Yaw moment at yaw bearing for wind speed 18 m/s, turbulence intensity 3.75%.

Figure 7.25: Turbine yaw error for wind speed 18 m/s, turbulence intensity 3.75%.
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Figure 7.26: Tower side-side loads for wind speed 18 m/s, turbulence intensity 3.75%.

fect of free yaw. There is a small increase in the low-frequency part of tower loads due to
the effect of yaw friction and increased yaw error. Overall, tower side-side loads reduce
by more than 50% in this low-turbulence case.

The ability of IPC to reduce blade loads is impaired slightly due to its extension to
include yaw control, as seen in Fig. 7.27. While conventional IPC can achieve upto 45%
load reductions for this speci�c case, when IPC is used for yaw control, this number
drops to 43%.

Finally, it can be observed from Fig. 7.28 that the pitch activity demanded by IPC
does not increase signi�cantly when yaw control is added as a control objective. How-
ever, the demanded pitch activity of the IPC controller is still markedly higher than that
demanded by the collective pitch control, by a factor of nearly 5. Since only the 1P MBC
transform has been used in this case, the pitch activity is concentrated to some extent
around the 1P peak, however there is still a considerable spread of energy across the fre-
quency spectrum. It is also interesting to see that there is a phase difference between
the pitch control signals commanded by conventional IPC, and by IPC for yaw control,
which is responsible for the yaw error rejection capability of the latter control approach.

If the controller bandwidth is increased, yaw error rejection is improved, however
this causes a degradation in the blade load alleviation potential, as tabulated in Table 7.5.
Further, the effect of turbulence on the yaw error rejection capabilities of IPC are tabu-
lated in Table 7.6. It can be seen that the yaw error rejection performance is virtually
unaffected by turbulence, while the load reduction potential for the support structure
and for the blade reduces with increasing turbulence.

Thus, it can be concluded from the simulations in this section that it is indeed pos-
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Figure 7.27: Blade root load reductions for wind speed 18 m/s, turbulence intensity 3.75%.

Figure 7.28: Blade pitch rate for wind speed 18 m/s, turbulence intensity 3.75%.
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Table 7.5: Effect of changing yaw controller bandwidth, turbulence intensity 3.75%

Normalised quantity No IPC IPC IPC IPC IPC

Yaw mode stiff stiff free free free
Yaw controller bandwidth 0.0048P 0.0063P 0.0077P
Yaw bearing moment std dev 1 1.076 0.065 0.065 0.065
Yaw error std dev 1 1.076 14.30 13.37 12.20
Tower side-side std dev 1 0.990 0.474 0.470 0.463
Blade out-of-plane std dev 1 0.553 0.564 0.567 0.574

Pitch rate std dev 1 5.122 5.566 5.613 5.675

Table 7.6: Effect of changing turbulence intensity, yaw controller bandwidth 0.0077P

Normalised quantity No IPC IPC IPC IPC IPC IPC IPC

Yaw mode stiff stiff free stiff free stiff free
Turbulence intensity [%] All 3.75 3.75 6 6 14 14
Yaw bearing moment std dev 1 1.076 0.065 1.019 0.047 0.972 0.029
Yaw error std dev 1 1.076 12.20 1.020 12.41 0.972 13.97
Tower side-side std dev 1 0.990 0.463 1.007 0.637 1.012 0.936
Blade out-of-plane std dev 1 0.553 0.574 0.657 0.697 0.884 0.904

Pitch rate std dev 1 5.122 5.675 4.613 5.319 3.402 4.477

sible to perform yaw control using IPC for a standard upwind turbine. Further, a simple
parameterisable controller has been set up to achieve this control action. With the use
of IPC for yaw control, of an appropriate bandwidth, it is shown possible to achieve the
desired trade-off between blade loads and support structure loads; it thus shows synergy
with the data-driven approaches to load control discussed in the previous sections. The
collated conclusions of all the aeroelastic simulations carried out in this chapter will be
discussed in the next section.

7.6. CONCLUSIONS
The iterative data-driven control theory developed in the �rst part of the thesis has been
applied to a high-�delity non-linear numerical model of a modern commercial turbine,
using the loads and controller certi�cation test bench software, GH Bladed. In general,
the potential of achieving near-optimal load control starting from limited knowledge of
the true system dynamics, has been demonstrated in a fully data-driven manner.

The two-step data-driven technique of Subspace Predictive Repetitive Control
(SPRC) was found to achieve load reductions comparable to an optimally hand-tuned
IPC controller, iterating to the best possible periodic signal that optimally minimised the
deterministic component of the periodic rotor loads. Further, since SPRC is especially
amenable to implementation via basis functions, it was shown that perfect control over
the shape and smoothness of the SPRC control signal is possible. This feature, alongside
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the reduction in pitch actuator duty, implies that SPRC is speci�cally interesting for the
problem of achieving turbine load control while ensuring longevity for the pitch actua-
tion system. If the identi�cation step of SPRC is also performed in the iteration domain,
in the basis function space, then, in addition to extremely smooth control actions, it is
also possible to decouple IPC entirely from the nominal power production of the wind
turbine.

Similar results were achieved using SPRC for trailing-edge �ap control, where the
data-driven approach of SPRC is attractive on account of the dif�culty in modelling the
unsteadiness in aerodynamic forces, and their interaction with structural dynamics. Sig-
ni�cantly �ap actuator duty was seen to be demanded in order to achieve load reduc-
tions, as compared to pitch activity: this is to be expected since �ap actuators show lower
control authority than full-span pitch. The implementation of �aps in Bladed is simplis-
tic, it is expected that data-driven control would prove more valuable using aeroelastic
simulation tools better able to capture �uid-structure interaction at the scale of the �ap;
it is also expected that data-driven control would be useful in the �eld.

SPRC considers the system as instantaneously linear, and when applied to time-
varying systems, it requires continuous recalibration for optimal control behaviour. For
an LPV system like a wind turbine, the dynamics of which can be considered to be a
function of the operating wind speed, it could be more desirable to synthesis an LPV con-
troller, the optimally tuned gains of which converge to constant values over time. Such
a controller is synthesised by using the IFT-LPV approach, which tunes an LPV PI con-
troller using input-output data generated using IFT experiments. This controller is set up
as a feedforward controller, thus with frozen gains, the controller cannot destabilise the
system. Further, by recasting the system as pseudo-SISO, and LPV in its output matrices,
it is possible to circumvent the curse of dimensionality associated with data-driven LPV
approaches, and limit the number of IFT experiments required per iteration. This con-
troller is able to achieve load reductions superseding those achieved by using an optimal
LTI controller across the operating wind speed range. The PI-nature of this controller is
an advantage in that the order of the controller is far lower than that of the underlying
system; however, the IFT approach can only iterate to the optimal controller within this
restricted set of parameterised controllers. As such, the performance achieved may not
be the maximal load attenuation performance possible for this speci�c system.

While these approaches consider a wind turbine with an independent yaw mecha-
nism, it has been shown in this chapter that it is possible to achieve yaw control using
IPC, and herewith stabilise an upwind turbine that is free to yaw about the tower. The
conventional IPC approach from the previous chapter, which uses the MBC transform,
is extended with a simple PI controller that commands IPC such that yaw error is sup-
pressed. Simulations show that support structure loads are reduced at the expense of
increased blade loads, and a trade-off can be achieved by tuning the bandwidth of the
PI-IPC yaw controller. It is postulated that this degree of freedom could also be extended
in a data-driven manner.

Thus, data-driven control approaches to wind turbine load alleviation have been in-
vestigated using aeroelastic simulations in this chapter, and shown to possess several
attractive characteristics. The next two chapters will focus on studying this approach
experimentally in the wind tunnel.
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WIND TUNNEL EXPERIMENTS: PITCH

CONTROL

Für das können gibt es nur einen Beweis:
das Tun.

Marie von Ebner-Eschenbach, Austria (1830-1916),
on experimental work.

This chapter validates the data-driven control approach described in the �rst part of the
thesis on an experimental setup of a pitch-controlled wind turbine, in a controlled wind
tunnel environment. First, the experimental setup and the testing environment is de-
scribed. Then, the implementation results of the two-step data-driven approach Subspace
Predictive Repetitive Control (SPRC) are described, both for constant as well as changing
wind conditions. The concept of IPC for yaw control is then demonstrated for the �rst
time on an upwind turbine using the same setup. This approach uses the PI controllers,
the gains of which can be tuned using Iterative Feedback Tuning (IFT). The use of IFT
demonstrates the need for gain scheduling for this control approach. The chapter ends
with lessons learnt from the wind tunnel experiments.

8.1. INTRODUCTION
It has been discussed in Chapter 6 that wind tunnel testing affords an interesting oppor-
tunity for evaluating load control strategies under controlled experimental conditions
to understand the possibilities and limitations of their real-time implementation. Wind
tunnel testing of smart rotors with trailing-edge �aps has been conducted in Van Winger-
den et al. (2010b). A linear approach to Individual Pitch Control (IPC) for two-bladed
wind turbines was also tested recently in the wind tunnel environment in Van Solingen
et al. (2014).

Parts of this chapter have been published in the IEEE Transactions on Control Systems Technology 23,
Navalkar et al. (2015).

161
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It is considered that the control paradigm of Subspace Predictive Repetitive Control
(SPRC) would be suitable for the real-time implementation of load control for wind tur-
bines because of the following reasons:

• As a repetitive control methodology, SPRC exploits the periodic nature of wind tur-
bine loads to maximise load reduction potential. Further, as a fully multivariable
approach, it is easily extendable to new actuators, like trailing-edge �aps, and new
sensors, such as LIDAR.

• As shown using aeroelastic simulations, the use of basis functions for identi�ca-
tion and/or control ensures that the control input signals are precisely controlled
in terms of their shape and smoothness. Herewith, it is possible to constrain the
pitch actuator duty cycle and increase actuator life.

• Since online system identi�cation is an integral part of SPRC, this control method-
ology is able to adapt to changes, either in wind conditions or in turbine proper-
ties, and thereby maintain optimal performance.

• As a predictive control methodology, the control input optimisation step can be
performed over a �nite horizon, enabling the inclusion of constraint handling ca-
pabilities in the algorithm.

Conventional IPC-MBC, as described in Chapter 6, is fundamentally limited by the
assumption that the rotor is perfectly balanced, both in terms of mass distribution as
well as aerodynamic performance. For practical rotors, this assumption may not al-
ways be true, due to manufacturing limitations or asymmetric aging. This asymmetric
load can strongly in�uence the periodic turbine loads, adversely affecting its fatigue life.
Since SPRC makes no assumption regarding symmetry, it is suitable for correcting for
imbalances in non-ideal rotors.

This chapter �rst describes the scaled wind turbine and the wind tunnel environ-
ment used for performing the experiments. Then, the experimental results obtained
from the implementation of SPRC are discussed, for both constant and varying wind
conditions.

The previous chapter described the potential for achieving yaw control using IPC.
Such a controller would be interesting from the point of view of redistributing turbine
loads, i.e. achieving the desired trade-off between rotor and support structure loads.
This concept, demonstrated in the simulation environment in the previous chapter, is
explored experimentally here using the same setup and wind tunnel conditions. For this
new control approach, a simple PI controller is used in the MBC domain, as described in
the previous chapter. Iterative Feedback Tuning (IFT) is used to explore the behaviour of
the ideal controller gains, with respect to the operating wind speed.

The next section focusses on the design and layout of the experimental setup used
for pitch control in this chapter, and extended to include �ap control in the next chapter.

8.2. EXPERIMENTAL SETUP
The experimental setup has been designed in such a manner that it can be used for in-
vestigating the proposed control strategy in a realistic setting. The prototype turbine can
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Figure 8.1: Photograph of wind turbine (rotor diameter 1.6 m) at the mouth of the open jet of the
wind tunnel.

Table 8.1: Parameter comparison of the scaled turbine

Reference turbine, Bak et al. (2013) Scaled rotor

Rated wind speed (m/s) 11.4 6.5
Tip speed ratio (-) 7.86 3

Rated rotational speed (rpm) 9.6 230
Fore-aft tower mode (Hz) 0.25 20.73

Side-side tower mode (Hz) 0.25 20.73
First �apwise mode (Hz) 0.56 15

Ratio 1st blade freq. to 1P (-) 3.5 3.913

be visualised in Fig. 8.1, it is two-bladed machine of rotor diameter 1.6 m. The main char-
acteristics of the turbine are compared against those of the INNWIND 10 MW reference
turbine, Bak et al. (2013), in Table 8.1. The primary ratio sought to be retained constant
in the scaling process is the ratio of the �rst blade eigenfrequency to the 1P frequency (=
the turbine rotor speed).

The main objective of tower design is the avoidance of structural resonance; since
the experimental turbine is two-bladed, rather than the conventional three-bladed con-
�guration of the reference turbine, it is essential to avoid the exogenous tower excitation
frequencies which occur at the even multiples of the rotor speed, thus the 2P frequency
and its harmonics. For the reference turbine, the forcing frequencies occur instead at
3P and its harmonics. As such, since the forcing frequencies of the experimental tur-
bine are lower than those of the reference turbine, the tower is designed such that its
modes fall in the stiff-stiff zone, with the �rst mode being fore-aft, lying well beyond the
frequency 4P. The second tower mode, which is the side-side mode, is at a similar fre-



8

164 8. WIND TUNNEL EXPERIMENTS: PITCH CONTROL

quency. Although it shows lower damping, it is also excited to a lower extent. Practically,
this stiff-stiff approach is conservative, and leads to greater material requirements. How-
ever, in this manner, it is ensured that the blade and tower modes do not couple and it is
more straightforward to interpret rotor load attenuation results.

The turbine hub is equipped with two blades that are able to pitch longitudinally
along their axes, with the use of servomotors. These actuators form the primary actu-
ators that will be used for load control in this chapter. The main components of the
experimental setup are herewith the wind tunnel itself, the hub with the instrumented
pitchable blades, the instrumented nacelle, the support structure, and the real-time con-
trol system. Each component is described in detail in the next sections.

8.2.1. WIND TUNNEL
The experiments are conducted in the Open Jet Facility (OJF) at the Delft University of
Technology. Scaled wind turbine testing for the study of wind turbine load alleviation
has been conducted in this wind tunnel previously, see Van Wingerden et al. (2010b),
Van Solingen et al. (2014), and Verelst et al. (2012). This wind tunnel has a closed-circuit,
recirculating design. The open jet of the nozzle has an effective diameter of 3 m, while
the test cross-section has a size of 6 m £ 6.5 m. As such, the largest rotor diameter of
scaled turbines that can be tested in this wind tunnel is approximately 2 m. The fan of
the wind tunnel is rated at 500 kW, and it is able to furnish wind speeds of upto 3 5 m/s.
The wind �ow shows negligible values of turbulence, although work is underway to be
able to manipulate the turbulence characteristics of the wind tunnel air �ow. The air
�ow past the test cross-section is collected through turbulence screens and fed back to
the fan. The heat generated is extracted from the air �ow with the use of heat exchangers.
The experimental turbine is �xed rigidly to the wind tunnel table in the test cross-section
such that it points directly upwind into the open jet of the wind tunnel.

8.2.2. BLADES AND HUB
The blades of the scaled wind turbine were designed for a previous experiment by Verelst
et al. (2012) in order to evaluate the behaviour of a downwind turbine in free yaw. The
blades consist of a wooden spar that provides structural support to a foam matrix with
a smooth aerodynamic outer surface. The blade is 555 mm in length, with a chord that
tapers from 100 mm at the blade root to 60 mm at the blade tip. For ensuring the ideal
angle of attack along the blade span, the blade is twisted along its length, with a maxi-
mum twist of -9.562 ± twist at the root. The blade cross-section forms two distinct aero-
foils, with the NREL S822, of thickness 16% used at the blade tip, while the NREL S823,
of thickness 21% is used elsewhere. A detailed analysis of the aerodynamic design of the
blade can be found in Verelst et al. (2012).

Each of the spars is instrumented with two strain gauges, one located at the root of
the blade, and another located 30% outboard along the blade. Although both of these
sensors can be used for feedback, in practice, since full-span pitch control is tested, only
the sensors at the blade root are used for feedback.

Each of the blades is able to pitch longitudinally about its axis. The actuation neces-
sary herefor is achieved through a Dynamixel MX-106 motor each, the shaft of which is
connected rigidly to the respective blade roots. The housing of the motors is connected
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Figure 8.2: Photograph of wind turbine hub-nacelle assembly with the nacelle cover and hub cap
removed.

rigidly to the hub; thus the blades are able to pitch about their axis relative to the hub.
The servomotor has a relatively high bandwidth of 15 Hz, which is considered suf�ciently
for rejecting the 1P blade loads. The bandwidth degrades minimally under wind load-
ing. While the blades and the pitching mechanisms were designed and manufactured to
be as symmetric as possible, it can be seen from the results section that there exists still
some degree of imbalance in the blade-hub assembly and pitch control authority. The
connection between the blades and the hub, and the connection between the hub and
the nacelle can be visualised in Fig. 8.2.

8.2.3. NACELLE AND TOWER
The stationary part of the turbine, located on top of the tower, to which the rotating hub-
blade assembly is attached, is termed as the nacelle, an exploded view of the nacelle of
the experimental turbine can be seen in Fig. 8.2. Principally, the nacelle consists of an
alumnium bedplate that provides structural support to the turbine rotor and the gener-
ator, as well as the transmission system. The generator used is the Delco 12SI dynamo,
able to operate in a speed range corresponding to that of the rotor. As such, a gearbox
is not required, and the rotor is connected directly through the instrumented main shaft
to the generator. The mainshaft is supported on the bedplate by means of two main
bearings.

The main shaft is instrumented with a torque transducer and a speed encoder, such
that the operational condition of the wind turbine can be tracked. These sensors can be
seen in Fig. 8.2. Also seen in the �gure is a set of slip rings, which are meant to transfer
the strain sensor signals and the pitch actuation signals between the rotating part of the
wind turbine, i. e. the hub and blades to the stationary part of the turbine, which is the
nacelle.

The nacelle is connected rigidly to the top of the tubular steel tower. Unlike modern
wind turbines, the nacelle cannot yaw relative to the tower. However, the tower as a
whole is supported on its base by means of two bearings, and thus the entire turbine is
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able to yaw about its tower base. The turbine can be locked in yaw such that the rotor
plane makes an angle with the wind in�ow; herewith, it is possible to simulate the loads
associated with yawed in�ow with this experimental setup. For the purpose of these
experiments, the turbine is locked in a yaw position such that the rotor plane is almost
perfectly normal to the direction of wind �ow.

8.2.4. CONTROL AND THE REAL-TIME ENVIRONMENT

As discussed in Chapter 6, a conventional turbine requires the use of generator torque
control and pitch control in order to ensure nominal operation. For the current set of
experiments, these two control degrees of freedom are commanded independently.

It is required to control the torque imposed upon the turbine generator in order to
limit turbine speed-up. For this scaled turbine, the torque is controlled indirectly by
means of connecting the generator in series with a dump load of variable resistance. By
manipulating the value of this resistance in real time, it is possible to command genera-
tor current and hence the electrical torque imposed upon the generator. For the current
set of experiments, the value of the resistance is kept constant for the duration of each
experiment, and hence, the turbine is under constant load operation. As such, torque
control is kept decoupled from pitch control. However, the setup offers in principle the
potential to perform torque and pitch control simultaneously. It should be noted that
the dump load also serves the purpose of dissipating the energy extracted from the air
stream during the experiment.

Pitch control is performed with the objective of reducing turbine rotor loads, as mea-
sured by the strain gauges 1. The pitch control loop, that acts on the feedback received
from the strain gauges, is hence decoupled from the torque control loop that provides
constant load speed regulation. Control is implemented physically by the use of the xPC
Target environment provided by Simulink, Mathworks (2014b). The controller is �rst de-
signed in the Matlab, Mathworks (2014a), and Simulink environment and then compiled
to a real-time target PC. The target PC reads sensors signals from the wind turbine and is-
sues commands to the pitch and torque actuators. The input-output communication is
achieved through the use of the National Instruments data acquistion system PCI-6259.

Fig. 8.3 shows the block diagram of the experiemental setup. As can be seen, the
generator speed is controlled by setting a constant value for the resistance of the dump
load. The strain gauges measure rotor loads; these signals is used as feedback by the IPC
controller that commands the blade pitch signals individually in such a manner that the
blade loads are minimised. The controller used for synthesising individual pitch actions
is encapsulated within the light grey box. As motivated in the introduction, the SPRC
methodology developed in Chapter 4 will be used for generating IPC control actions.

The results of using SPRC for performing IPC, on this realistic scaled wind turbine
setup, are described in the next section.

1Although pitch control can also be used for speed regualtion, this application is not explored in the current
set of experiments and this chapter studies the exclusive use of pitch control for rotor load reduction.
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Figure 8.3: Block diagram of the experimental setup.

8.3. EXPERIMENTS: IPC WITH SPRC
The objective of IPC is to reduce rotor loads by pitching the wind turbine blade indepen-
dently of each other. The primary dynamic loads on the scaled wind turbine originate
from tower shadow; they are periodic with fundamental period 1P, equal to rotor speed.
The dominant load peaks in the baseline-controlled case for the scaled wind turbine can
be seen in Fig. 8.4.

For a �eld turbine, as seen in the aeroelastic simulations from the previous chapters,
the dynamic loading at 1P and its harmonics is also contributed to by the effects of wind
shear, yawed in�ow and the rotational sampling of turbulence, none of these effects are
present to any signi�cant extent in the current wind tunnel experiments. Further, the ef-
fect of turbulence is to broaden the loading peaks in the frequency spectrum, increasing
energy across a wider range of frequencies. However, even for �eld turbines, the primary
dynamic loading components in the blade root load spectrum occur at the 1P and the 2P
frequencies. Hence, the SPRC control law used in this section for rotor load control will
use the same 1P and 2P basis functions as before. Not only will this achieve more tar-
getted load control, it will also ensure that the computationally expensive data-driven
algorithm is still tractable in the real-time environment qua computational complexity.
As such, the basis functions used in this section are the same as those used in Chapter 7,
Section 2:

Áu ÆÁy Æ

2

6
6
4

sin(2¼/ N ) sin(4¼/ N ) ¢¢¢ sin(2¼)
cos(2¼/ N ) cos(4¼/ N ) ¢¢¢ cos(2¼)
sin(4¼/ N ) sin(8¼/ N ) ¢¢¢ sin(4¼)
cos(4¼/ N ) cos(8¼/ N ) ¢¢¢ cos(4¼)

3

7
7
5  I2. (8.1)

It should be noted that since the scaled turbine is under constant load operation, its ro-
tor speed is not constant, and hence the period N varies over time. It should however be
noted that due to the incorporation of the speed encode on the main shaft of the test tur-
bine, the rotor azimuth and the rotational speed are both quantities directly measurable
by the controller. As such, the basis functions are scheduled on the value of the azimuth
instead of on time. Such time-varying phase-locked basis functions achieve load con-
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Figure 8.4: Blade root load spectrum at nominal operation, baseline control.

trol with smooth actuator signals while ensuring robustness to changes in the rotational
period of the turbine. This rotor-locked implementation circumvents one of the largest
practical issues in the implementation of repetitive control strategies, i.e. small changes
in the period of the disturbance often drastically deteriorate conventional repetitive con-
trol performance if time-invariant basis functions are used.

The implementation of SPRC for rotor load alleviation using these basis functions
is studied using the experimental setup described in the previous section. The mean
operational wind speed during the current set of experiments is varied between 5.8 m/s
and 10.5 m/s. Since the turbine is under constant load operation, its rotor speed varies
linearly with the wind speed. As such, the mentioned wind speed range corresponds to
a rotor speed range of 166 rpm to 400 rpm.

The behaviour of SPRC was tested for different wind conditions, and representative
results are presented in this section. First, the effect of SPRC under constant wind condi-
tions is studied. The tuning of the convergence of the SPRC algorithm is then presented.
After this, the response of the controller to changing wind conditions is described. Fi-
nally, the advantage of a controller, that is able to adapt to the variation in system dy-
namics, is demonstrated experimentally.

8.3.1. CONSTANT OPERATING CONDITIONS
The SPRC load controller is tested under different constant operating wind speeds,
within the range given in the previous section, and it is found to behave satisfactorily
and deliver load reductions at all oeprating speeds. This section presents represen-
tative results for a constant operating wind speed of 6.5 m/s, which corresponds to a
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Figure 8.5: Blade root load reduction through the action of SPRC.

rotor speed of 230 rpm. For the purpose of comparison, the performance of the SPRC
controller is presented along with the load control performance of an H1 controller
used in conjunction with a linear coördinate transform, Van Solingen et al. (2014). This
controller is de�ned as the reference controller (Ref), and it should be noted that it is
designed to only target the load peaks at the 1P frequency.

When the SPRC controller is implemented, both the identi�cation and controller
synthesis steps converge within a matter of seconds, and substantial load reductions are
observed, with the 1P and 2P frequency peaks almost entirely eliminated. This can be
seen in Fig. 8.5. The reduction in blade loads is to an extent of 65% for Blade 1 and 74.5%
for Blade 2. Since the tunnel wind speed is controlled manually, it is not exactly identical
across all time series, and as such, the 1P peaks and its harmonics move slightly around
their nominal position in the frequency spectra. This variation is considered to be small
such that the conclusions derived from the results in this section should still hold in the
case where the wind speed is exactly repeatable across all time series.

It can be seen that even under these constant operating conditions, the SPRC con-
troller outperforms the linear controller. This is a consequence of performing load con-
trol purely at the 1P and 2P frequencies, independently for the two blades. The other
frequencies in the load spectrum either get attenuated, such as the 3P peak for Blade
2, or remain unaffected. By extending the basis functions to include sinusoidal basis
functions at 3P, 4P and higher frequencies, it could be possible to achieve even greater
load reductions. However, since these load peaks are relatively unimportant in the load
spectrum of �eld turbine blades, such an extension is not attempted. Load reduction is
hence limited to that at the 1P and 2P frequencies in this section.

The pitch actuation signals can be seen in Fig. 8.6, It can be seen that the pitch actu-
ation spectrum contains energy only at the 1P and 2P frequencies; SPRC thereby ensures
precise control over the smoothness of actuator signal, as compared to a PI controller,
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Figure 8.6: Blade pitch actuation signals commanded by SPRC.

the actuation commanded by which contains energy across a large range of the spec-
trum.

Further, it is noteworthy that, since the manufactured turbine blades and pitch
mechanisms are not perfectly symmetric, SPRC accounts for this asymmetry by gener-
ating asymmetric control actions. In conventional IPC with the MBC transform, the IPC
actions are constrained to be perfectly antisymmetric for the two blades, however, this is
not a constraint with SPRC, and it is able to achieve greater load reductions even in the
case where there exists a small but �nite amount of mass or aerodynamic imbalance.

The convergence of the SPRC algorithm is a function of the signal-to-noise ratio, and
it can be tuned by the user as shown in the next section in a manner best suited for the
level of external noise in the data.

8.3.2. CONVERGENCE TUNING
In order to ensure that SPRC convergence is adequately fast and stable, it is possible to
add a tuning parameter 0 Ç ¯ Ç 1 to the SPRC control update law in the manner shown
below:

µ j Æµ j ¡ 1 ¡ ¯ K f , j

2

4
Ȳj ¡ 1

±µ j ¡ 1

±Ȳj ¡ 1

3

5 . (8.2)

Here, the stacked control input Ū , projected in the basis function space, has been re-
placed by the angle µ, which essentially corresponds to the amplitude of pitch activity
at the 1P and 2P frequencies. Further, the period index j replaces the iteration index k̄ ,
since one iteration is considered to correspond to one period. Finally, the term ¯ can
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Figure 8.7: Convergence of pitch activity by adjusting tuning factor ¯ .

be manipulated by the user to achieve the desired SPRC convergence. A low value re-
duces convergence speed, and responsiveness to changes in the system dynamics. On
the other hand, it also reduces the sensitivity of the algorithm to noise. Conversely, a
high value speeds up convergence but increases sensitivity to noise. The effect of chang-
ing the value of ¯ are depicted in this section. Experiments are carried out at a constant
wind speed of 7.5 m/s. Three different values of ¯ are tested, and in each experiment, the
initial estimate of the system Markov parameters is set to 0, to evaluate the convergence
behaviour of SPRC. Load reduction results can be seen in Fig. 8.7 and Fig. 8.8. For the
low value of ¯ Æ0.002, convergence is slow but smooth, while for the value of ¯ Æ1, it is
rapid but vacillatory. In all cases, the system stably converges to the optimal load control
law. Further, the steady-state value of load alleviation is independent of the value of ¯ .

While these results have been obtained for constant operating conditions, the re-
sponse to variable wind conditions are studied next.

8.3.3. VARYING WIND CONDITIONS: NONADAPTIVE SPRC
For a wind turbine under normal operation, there may occur a sudden and large
change in the mean wind speed or wind distribution across the rotor plane. Since
�ow-modifying actuators, like the pitch control actuators, possess control authority that
strongly depends on the operating wind speed, it may be necessary to adjust the control
strategy according to the changed operating conditions. As such, the response of both
adaptive and non-adaptive SPRC to changed operating conditions is explored in this
section.

For the experimental wind turbine, a change in the wind speed leads to a change
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Figure 8.8: Convergence of load reduction by adjusting tuning factor ¯ .

in the rotor speed, due to the constant load nature of operation. This behaviour is not
seen in commercial wind turbines in above-rated operation. However, the objective of
this section is to explore the effect of changed control authority on the load control algo-
rithm. Further, a change in turbine rotor speed mainly impacts the mean turbine loads,
while the load variation is relatively insensitive to the rotor speed. Hence, in this case, the
changes in the structural loading arising out of variations in rotor speed, are considered
negligible.

In this section, an of�ine, nonadaptive version of the SPRC law was generated.
Speci�cally, system identi�cation was done based on data collected at 6.5 m/s, and a
repetitive control law was synthesised. The objective of the current experiments was to
evaluate whether such an LTI controller is able to handle changes in operating condi-
tions. In the �rst experiment, the system was allowed to stabilise at a wind speed of 6.5
m/s, with the non-adaptive SPRC law active. As it was designed for this wind conditions,
it is able to achieve good load reductions. Then, the wind speed was reduced to 5.8 m/s,
within a time period of 40 seconds. In the pitch activity signal, Fig. 8.9 and the blade
load signal, Fig. 8.10, the wind speed change causes a transient between 200 and 240
seconds. The initial transient in these signals is the start-up transient.

It should be noted that the wind speed signal is not exactly identical for the two
datasets shown in these �gures, since the wind speed is manually controlled. However,
the difference in wind speed is not expected to alter the conclusions drawn from these
results.

The non-adaptive SPRC control strategy is still able to achieve load reductions in
the changed operating conditions. At reduced wind speeds, the control authority of the
actuators reduces, and hence more control effort is required, as seen in Fig. 8.9. However,



8.3. EXPERIMENTS: IPC WITH SPRC

8

173

Figure 8.9: Change in pitch activity, non-adaptive SPRC, 6.5 m/s to 5.8 m/s between 200-240 sec-
onds.

Figure 8.10: Change in blade loads, non-adaptive SPRC, 6.5 m/s to 5.8 m/s between 200-240 sec-
onds.
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Figure 8.11: Change in wind turbine rotor speed, non-adaptive SPRC, 6.5 m/s to 10.5 m/s.

due to a mismatch in the plant and the controller, the percentage reduction in loads is
clearer lower at the off-design wind speeds, as in Fig. 8.10.

In the next experiment, the scaled turbine, operating at a steady wind speed value
of 6.5 m/s, is subject to a sudden 60% increase in wind speed from 6.5 m/s to 10.5 m/s.
Such a rapid increase in wind speed may be caused by extreme wind gusts in the �eld.
For the scaled wind turbine, this corresponds to an increase in rotational speed from 230
rpm to 400 rpm. The same non-adaptive SPRC controller is used for load control; at the
end of the wind speed transition, the system is no longer stable, and the pitch control
input and load signals grow unboundedly.

Further, even when the experiment is conducted with two smaller steps in the wind
speed signal (230 rpm to 280 rpm, 280 rpm to 400 rpm), the system still becomes un-
stable at the higher wind speed. To ensure that the setup does not undergo permanent
damage, the experiments are aborted through emergency wind tunnel shutdown and
pitching the turbine blades rapidly to feather. The aborted experiment can be visualised
in Fig. 8.11 and Fig. 8.12.

Thus, the non-adaptive version of the algorithm cannot stabilise the system when
there occurs a sudden and large change in system dynamics.

8.3.4. VARYING WIND CONDITIONS: ADAPTIVE SPRC
In this section, a fully adaptive version of the SPRC algorithm will be explored, which in-
volves continuous system identi�cation. Simultaneously, a repetitive control law is syn-
thesised and implemented at every time step, based on the system Markov parameters
obtained from the recursive identi�cation step.
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Figure 8.12: Change in blade loads, non-adaptive SPRC, 6.5 m/s to 10.5 m/s.

Three experiments are conducted, in order to test the response to the same wind
speed transition, i. e. from 6.5 m/s to 10.5 m/s. Three different control cases are tested:
�rst, no load controller is incorporated in the loop, and only baseline control is active. In
the second experiment, two non-adaptive SPRC controllers, tuned respectively for the
two different wind speeds of 6.5 m/s and 10.5 m/s, are switched on manually, before and
after the wind speed transitions. Finally, a fully adaptive SPRC controller is used for load
control throughout the experiment, and it is implemented without manual intervention.

The effect of the change in wind speed on the regulated generator speed can be vi-
sualised in Fig. 8.13. For all three experiments, the effect of the change in wind speed on
the change in rotor speed is virtually identical, because the baseline speed controller is
the same. As the wind speed increases by 60% from 6.5 m/s to 10.5 m/s within 30 sec-
onds, the rotor speed also almost doubles from 230 rpm to 400 rpm, in a manner similar
to the experiments of the previous section. As the wind speed in the tunnel is manually
controlled, the time series are close but not identical.

From Fig. 8.14, it can be seen that the two non-adaptive SPRC controllers, designed
for the two different operating wind speeds of 6.5 m/s and 10.5 m/s, are able to achieve
signi�cant load reduction when switched on after the wind turbine has stabilised to its
new operating points. This result is not particularly unexpected, since the non-adaptive
SPRC controllers are essentially LTI, tuned for those speci�c operating points. It is more
interesting to note that the fully adaptive SPRC controller is able to recalibrate itself au-
tonomously after the wind speed transition, and achieve load reductions both before
and after the change in operating conditions, without manual intervention. This can
be compared with the previous section, where an LTI non-adaptive SPRC controller was
unable to retain closed-loop stability under the off-design conditions.



8

176 8. WIND TUNNEL EXPERIMENTS: PITCH CONTROL

Figure 8.13: Change in wind turbine rotor speed, 6.5 m/s to 10.5 m/s.

Figure 8.14: Change in blade loads, 6.5 m/s to 10.5 m/s.
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Further, it is interesting to note that the level of load reduction achieved by the fully
adaptive SPRC controller is identical to the load reductions achieved by the two LTI non-
adaptive controllers that were optimised for their respective operating conditions. Thus,
although adaptive SPRC also requires additional persistency of excitation superposed
on the control signal, it is still able to adjust to changes in system dynamics without
suffering a degradation in performance. Overall, load reductions of more than 60% are
achieved with the fully adaptive SPRC controller.

Thus, this section shows that SPRC is able to reject the 1P and 2P blade loads en-
tirely, starting with very limited system knowledge, both under constant and varying
wind conditions. Further, load reductions are achieved with near-perfect control over
the frequency content of the actuator signal, and asymmetry in control authority can
be compensated for, as opposed to traditional IPC-MBC methods. Finally, unlike an LTI
controller that shows instability under off-design conditions, SPRC is able to adjust to
changed system dynamics and recalibrate itself within a matter of a few iterations, to
achieve stable load alleviation.

8.4. EXPERIMENTS: IPC FOR YAW CONTROL
While the previous section explores the use of IPC for load control, the concept of IPC
for yaw control, demonstrated using aeroelastic simulations in the previous chapter, will
be explored experimentally here for the �rst time on a physical wind turbine. The setup
described in Section 8.2 is also used for performing this set of experiments, with a few
adjustments. The tower, and along with it, the nacelle and the blades, are allowed to yaw
freely about the tower base; stops are installed to limit the yaw error to within § 20±. A
photograph of this system can be seen in Fig. 8.15.

Below the lower tower yaw bearing, a small metal extension is attached rigidly to the
yawing tower. A �xed laser sensor points directly at this extension, which approachs
towards and recedes from laser sensor as the tower yaws. As such, the output of the
laser sensor provides a measure of the yaw error of the turbine. For small yaw angles, the
relationship between the yaw angle and the laser output may be assumed linear. Further,
the output of the laser sensor is calibrated such that the zero coincides with the turbine
position with rotor plane exactly perpendicular to the wind �ow direction.

The output of this sensor is used as feedback for the IPC yaw controller. As described
in the previous chapter, the yaw error Â is �rst fed to a PI controller, with manually tuned
gains, Kp and Ki , to obtain the pitch action in the stationary frame of reference, Pq,Â.
Then, this pitch action in the stationary frame of reference is converted into blade pitch
action using the inverse MBC transform from the previous chapter. The deadband sat-
urator described in the previous chapter was found to be unnecessary, and hence it was
not used during the experiments. It should be noted that the turbine used in the previous
chapter was a three-bladed commercial turbine, while the scaled turbine is a two-bladed
machine. Accordingly, the inverse MBC transform is required to be adjusted:

·
P1

P2

¸
Æ

·
cosª sin ª

cos(ª Å ¼) sin(ª Å ¼)

¸ ·
0

Pd ,Â

¸
. (8.3)

The pitch commands P1 and P2 are then issued to blade 1 and 2, based on the mea-
sured blade 1 azimuth ª . These control signals then act to produce a yawing moment
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Figure 8.15: Photograph of the yawable tower and its connection to the �xed tower base.

about the tower base that rejects yaw error and keeps the turbine aligned with the wind
�ow.

First, the results obtained from using a manually-tuned PI controller are discussed.
Then, IFT-LTI described in Chapter 2 will be applied to this system at a constant wind
speed, to optimally tune the Kp gain of a proportional controller for IPC-yaw control.
Then, IFT will be used to determine if it is necessary to gain-schedule this system for
different wind speeds, and differential pitch control authority.

8.4.1. IPC FOR YAW CONTROL: MANUALLY TUNED PI CONTROL
First, in order to validate the concept of IPC for yaw control, the PI controller, de�ned in
Equation (7.16), is tuned manually. The wind turbine is operated in free yaw under wind
conditions of 7.5 m/s, and it is seen that when the IPC controller is not active, the turbine
is not stable upwind in the yaw degree of freedom. The turbine tends to move downwind,
and it is held in its extreme position of § 20± by the yaw angle limiters. However, when the
IPC controller is active and connected in closed loop with the feedback measurements of
the yaw error sensor, the system is stable and rejects yaw error such that the rotor plane
faces upwind and is perpendicular to the direction of in�ow. Herewith, for the �rst time,
IPC for yaw control has been demonstrated experimentally.

Next, it is shown that the IPC for yaw control is able to follow a wind direction change.
Since the direction of wind �ow in the wind tunnel cannot be altered, this capability of
IPC is demonstrated by commanding a reference yaw trajectory that the IPC controller
is required to follow. Such a reference trajectory is arti�cially created, and consists of
a square wave between the extreme yaw angles of § 8±, with a time period of 10 sec-
onds. This reference trajectory is well within the maximum yaw limits of § 20±. Further,
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Figure 8.16: Yaw reference trajectory tracking using IPC with PI controller.

it should be noted that the yaw inertia of the turbine is large relative to the other degrees
of freedom, and the frequency of 0.1 Hz is seen to be close to the bandwidth of the IPC-
yaw actuator. The response of the turbine to this yaw command can be seen in Fig. 8.16,
and it can be seen that although controller performance is not optimal, reference yaw
trajectory tracking is possible with IPC for yaw control.

The pitch activity required to produce this yaw response can be seen in Fig. 8.17.
There are several issues of note here: �rstly, for the two blades, the pitch activity is exactly
180± out of phase. This is by design; since the MBC transform for two-bladed turbines is
used, it is constrained to produce exactly antisymmetric control actions. Further, it can
be seen that for positive yaw errors, there occurs a large positive transient in Blade 1, and
a large negative transient in Blade 2; the signs of these transients are �ipped when the
sign of the yaw error changes abruptly. Finally, it can be observed that even when the
turbine is to be held in one constant yaw position, fairly substantial IPC activity is still
required to reject yaw error. This is a direct result of the fact that the turbine is not stable
in any upwind position in the yaw degree of freedom.

In this section, the PI controller used is manually-tuned. The gains of the �xed-
structure PI controller can also be tuned using Iterative Feedback Tuning (IFT), de-
scribed in Chapter 2.

8.4.2. IPC FOR YAW CONTROL: IFT AT CONSTANT WIND SPEEDS
The modelling of the system from individual pitch control to the yaw degree of free-
dom is still an open question. System identi�cation experiments showed that, for very
small deviations in yaw, the system at constant wind speeds can be approximated as a
�rst-order or overdamped second-order system. However, for most datasets, the VAF ob-
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Figure 8.17: IPC pitch activity for yaw reference trajectory tracking with PI controller.

tained from system identi�cation was poor, and it is postulated that the system is highly
non-linear. Further, it is expected that the control authority of the pitch actuators will
change with wind speed.

To understand, in a data-driven manner, the effect of wind speed and the need for
gain scheduling, the direct approach of IFT is used to tune the gains of the PI controller,
speci�cally, the proportional gain Kp . IFT experiments for an LTI system were conducted
as per the established theory described in Chapter 2. The same reference trajectory was
used as in the previous section, with one square wave cycle reperesenting one iteration.
It can be seen in Fig. 8.18 that the Kp gains converge to value 60% higher within 600
seconds, and the integrated yaw error decays over these iterations to stabilise at a lower
value.

The square wave response tuned by IFT is seen in Fig. 8.19. It can be seen that the
rise time decreases after 18 iterations, and the step response is closer to the reference
square wave. For further optimising the performance, it would be necessary to also tune
the Ki gain in a similar manner.

This section assumes that the same controller gains can be used for different wind
speeds. Further, it is assumed that the control action for both blades is required to be
exactly antisymmetric. Both of these assumptions can be validated using IFT.

8.4.3. IPC FOR YAW CONTROL: CONTROLLER GAIN SENSITIVITY
The �rst-principles modelling of the IPC-yaw system is considered out of scope at
present. Hence, the manner in which the system dynamics change as a function of
wind speed is unknown. IFT can be used to determine the need for a gain scheduled
controller by tuning LTI controller parameters for different constant wind speeds. This
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Figure 8.18: IFT tuning of Kp for IPC-yaw PI controller.

Figure 8.19: Square wave response after IFT tuning of Kp for IPC-yaw PI controller.
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Figure 8.20: IFT tuning of Kp for two different wind speeds for the IPC-yaw PI controller.

procedure is followed for two different wind speeds in Fig. 8.20. It can be directly seen
that for the two wind speeds, the ideal value of Kp to which IFT converges is different.
For the higher wind speed, a lower value of Kp is required. Since the control authority
of the IPC pitch actuators is higher at higher wind speeds, this trend is to be expected.
It is also interesting to note that the ratio between the converged gains is approximately
equal to the inverse of the square of the ratio between the wind speeds:

Kp,IFT jV1

Kp,IFT jV2

¼
V 2

2

V 2
1

. (8.4)

With this equation, it is possible to determine a gain schedule for the IPC-yaw con-
troller.

Next, the assumption that both blades require the equal but opposite Kp gains is
challenged by using IFT to tune the gains of the two blades independently. Once again,
a constant operating wind speed of 7.5 m/s is used, and the same reference trajectory as
before is used. It can be seen from the Fig. 8.21 that the two blades do not have identical
control authority, and a larger controller gain is required by Blade 2 than by Blade 1. The
asymmetry in the pitch mechanism of commercial blades is likely to be lower, but IFT
can still be used to tune the gains individually in order to achieve better control.

Thus, it has been shown experimentally in this section that IPC can stabilise an up-
wind turbine in yaw using a PI controller, the gains of which can be optimised using IFT.
It is also shown that the PI controller gains should be gain scheduled for optimal per-
formance at different wind speeds, and that using different gains for the two blades can
increase performance.
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Figure 8.21: IFT tuning of two different Kp values for the two blades, for the IPC-yaw PI controller.

8.5. CONCLUSIONS
Overall, the experimental setup of the scaled, two-bladed turbine, described in this
chapter, was shown capable of evaluating individual pitch control strategies, both for
blade load reduction, as well as for turbine yaw control. This setup is the �rst to facilitate
blade pitch control for wind turbines in the controlled, low-turbulence wind tunnel
environment. It also provides the same control degrees of freedom, and demonstrates
loading characteristics similar to a modern commercial wind turbine.

Subspace Predictive Repetitive Control (SPRC), a two-step data-driven approach to
control, was demonstrated in real-time on this setup. SPRC, aimed speci�cally at min-
imising periodic loads, was shown to be suitable for the application of wind turbine load
reduction: it was capable of nearly eliminating the 1P and 2P peaks from the blade load
spectrum. This load alleviation was achieved in spite of the asymmetric control au-
thority of the two blades, which was compensated for by the data-driven approach; a
comparable LTI controller was unable to achieve the same degree of load control. Such
asymmetric individual pitch has not been demonstrated in the wind industry before.

The algorithm incorporates an easy-to-tune convergence parameter, which can be
increased to increase responsiveness to changes in sysem dynamics, or decreased to ro-
bustify the algorithm against noise, depending upon the application-speci�c noise lev-
els. This tuning parameter is far simpler to manipulate than PI controller gains or MPC
controller parameters.

It is most interesting to note that SPRC is able to adjust to sudden and rapid changes
in system dynamics. Starting from arbitrarily poor system Markov parameter estimates,
the system can converge to a repetitive control law that optimally rejects loads under
constant wind conditions. When wind conditions change abruptly, the SPRC controller
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is able to recalibrate itself and resume load alleviation operation rapidly, in a completely
stable manner.

The performance of fully adaptive SPRC, which incorporates continuous reïdenti�-
cation and control law synthesis, is identical to the performance achieved by optimal LTI
controllers designed for speci�c operating points. Thus, the set of experimental results
in this chapter validate the proof of concept of a fully adaptive control law on a real-time
setup of a scaled wind turbine.

The other set of experiments described using this setup demonstrate, for the �rst
time on an upwind turbine, the potential for using IPC for the yaw control of such a tur-
bine in free yaw. This principle behind this concept has been discussed in the literature,
and demonstrated on downwind turbines, which are stable in free yaw. However, for an
upwind turbine, the aeroelastic simulations from the previous chapter show that the yaw
degree of freedom is unstable, but stabilisable, if the turbine is in free yaw. This principle
has been validated experimentally, and it has been shown that a simple, manually tuned
PID controller is able to follow a speci�c yaw trajectory with relatively fair performance,
with a bandwidth of about 0.1 Hz.

Iterative feedback tuning was performed to understand the sensitivity of the IPC-
yaw controller to changes in operating conditions. It is seen that the pitch actuators gain
more control authority at higher wind speeds, and IPC-yaw needs to be gain scheduled
in order to compensate for this effect. The optimal controller gains appear to decrease
with an increase in the operating wind speed. Finally, it is also shown via IFT that the two
blades of the turbine have asymmetric load control authority, and different controller
gains should be used for the two blades to maximise yaw control performance.

This chapter speci�cally explores wind turbine pitch control, which, for modern
wind turbines, is typically restricted to low-frequency control. To extend the load
alleviation capabilities to the higher end of the frequency spectrum, the concept of
trailing-edge �aps is explored experimentally in the next chapter.
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...te weeg te brengen, dat de Roeden, bij eene onvoorziene verhef�ng van Wind;
haare snelheid uit zichzelven maatigen zullen, wil hij, dat men de hek scheeden aan den

voorkant, dat is, die in plaats der borden ge steld zullen zijn, merkelijk dunner en
buigzaamer maake dan de anderen, ten einde zij zouden kunnen doorbuigen, als de

wind onvoorziens zich verheft; waar door zij, in dat geval, een kleiner hoek zullen
verkrijgen, en dus zal 'er dan de wind met minder voordrijvende kracht op werken; ...

Reinier Arrenberg, the Netherlands (1779)
explaining bend-twist coupled rotor blades that produced passive load control.

As per the chapter on state of the art for �exible rotor design, trailing-edge �aps have been
shown, numerically and experimentally, to possess considerable load reduction potential
complementary to full-span pitch control. The current chapter speci�cally describes the
aeroelastic analysis and LPV modelling of trailing-edge, free-�oating �ap for blades re-
designed for integration with the experimental setup of the previous chapter. The manu-
facturing of these blades is discussed, and then the blades are assembled on to the scaled
wind turbine. Recursive identi�cation using the nuclear norm is carried out under vary-
ing wind conditions in the wind tunnel, using a nominally stabilising collocated con-
troller in closed-loop, in order to detect the onset of �utter, and the stable operating range.
Finally, IFT is used to optimally tune a feedforward controller that deploys 1P pitch action
and 2P �ap action to minimise rotor loads.

9.1. INTRODUCTION
Conventional trailing-edge �aps show good localised load control potential, as demon-
strated using aeroelastic simulations in Chapter 7. Their practical implementation, how-

Parts of this chapter have been published in the Proceedings of the Science of Making Torque from Wind,
Navalkar et al. (2016), and are under review in the IEEE Transactions on Control Systems Technology, Navalkar
and Van Wingerden (2016) and in Wind Energy Science, Navalkar et al. (2016).

185



9

186 9. WIND TUNNEL EXPERIMENTS: FLAP CONTROL

ever, poses a challenge. On the one hand, using conventional actuators, like electric mo-
tors, can be straightforward, given their high level of maturity. These actuators show
large stroke, and suffer minimal degradation of performance under aerodynamic load-
ing. However, they have low power-to-weight ratios, and their bandwidth is typically
limited. On the other hand, `smart' actuators like piezoelectrics have high power-to-
weight ratios and high bandwidth, but show limited stroke under external loading. As
a solution, the concept of the free-�oating �ap was discussed in Chapter 6, wherein the
motion of a piezoelectric tab is ampli�ed aerodynamically to achieve large trailing-edge
de�ections.

This concept of the free-�oating �ap, which is free to rotate about a hinge axis, can
thus aerodynamically increase the camber control authority provided by a piezoelectric
bender. However, this additional degree of freedom also couples with the �exible blade
modes, to yield a low wind speed form of �utter, Bernhammer et al. (2013). This unsta-
ble phenomenon is required to be mitigated; however operating close to the �utter limit
of the blades maximises �ap control authority. As such, this form of trailing-edge �aps
are both interesting and challenging in that closed-loop operation is required for stabil-
ity. Further, since the system is highly non-linear (and possibly uncertain), designing a
controller that guarantees both stability and performance can be a non-trivial task.

From numerical investigations in the literature, and from experimental evidence on
non-rotating blades, Bernhammer et al. (2013), it has been concluded that the system
dynamic response varies strongly with wind speed. Beyond the �utter speed, the poles
of the system cross into the right half-plane. As such, it is postulated that the system
can be described as a Linear, Parameter-Varying (LPV) system, where the wind speed
forms the scheduling variable. However, no attempts have been made yet to formulate
a �rst-principles model of this system. Such an LPV model, preferably low-order, could
facilitate the development of robustly stabilising controllers for this system.

While non-rotating blades with free-�oating trailing edge �aps have been investi-
gated experimentally in the reference, a full implementation on a scaled wind turbine
in a wind tunnel environment is still missing. With the help of numerical and analyti-
cal LPV modelling, this chapter explores the redesign and manufacture of the wind tur-
bine blades of the previous chapter, instrumented with these �aps. It is the objective
of the chapter to perform identi�cation and control experiments on these augmented
blades to investigate their load reduction potential under realistic loading conditions.
This chapter thus reports, for the �rst time, on the implementation of free-�oating �aps
on a scaled wind turbine, and on the �rst experimental implementation of �ap control
combined with individual pitch control.

Although an attempt will be made to model the system, it is expected that both para-
metric uncertainty as well as unmodelled dynamics will cause discrepancies between
predicted and observed behaviour of the turbine. In order to adjust control actions ac-
cording to the changes in system dynamics, and to keep track of the operating regime
of the blades, it would be desirable to perform recursive identi�cation of the transfer
between �ap activity and the in�uence on blade loads. For this, the identi�cation ap-
proach from Chapter 3, which augments closed-loop recursive identi�cation with the
nuclear norm, appears to be suitable on account of its reduced sensitivity to measure-
ment noise. It should, however, be noted that the measurements are corrupted by ex-
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ogenous forcing signals with fundamental frequency 1P (rotor speed), these frequencies
are speci�cally accounted for in the identi�cation procedure.

Finally, it would be desirable to use a data-driven controller for load control, that
optimally tunes itself to maximise load reductions, combined with a baseline stabilising
controller. Due to the highly non-linear nature of the control problem, the data-driven
controller would be more suitable as a feedforward controller, so that it does not affect
the stability of the closed loop. Iterative Feedback Tuning (IFT) could be used to update
the gains of the feedforward controller, since, as discussed in Chapter 2, it possesses the
ability to iterate to the (locally) optimal gains of a low-order �xed structure controller
like the one in the current application. However, IFT has typically been implemented to
tune LTI controllers, usually for the case where the plant dynamics is also approximated
as LTI. For the pitch- and �ap-control of �exible rotor loads, as the system is LPV with
wind speed-dependent dynamics, such an LTI controller would be suboptimal over the
entire wind speed range. Hence, it would be more interesting to use IFT to synthesise a
gain schedule for the feedforward load controller, as described in Chapter 5. Such an IFT
implementation has not yet been explored in practice.

As such, this chapter reports on a number of novelties:

• The �rst experimental demonstration of combined pitch and �ap control is de-
scribed.

• This chapter also reports on the �rst demonstration of the load alleviation poten-
tial of free-�oating �aps on a physical wind turbine. It is also shown for the �rst
time that free-�oating �aps cause a low wind speed form of �utter in �exible wind
turbine rotors.

• IFT is used for the �rst time to tune a gain schedule iteratively for a plant, the
dynamics of which vary strongly with the scheduling variable wind speed.

Accordingly, this chapter �rst describes the design of wind turbine blades instru-
mented with free-�oating �aps. Next, the blade dynamics are modelled using numerical
tools as well as an analytical approach to synthesise an LPV state-space realisation of the
system. Results of the identi�cation and control experiments are then reported on. First,
the concept of recursive closed-loop identi�cation with the nuclear norm is compared
with batchwise identi�cation. Then, feedforward controller gain schedule tuning using
IFT is investigated, and the chapter ends with conclusions drawn from these results.

The next section focusses on the design of blades equipped with free-�oating �aps
that can be retro�tted on the experimental setup of the previous chapter.

9.2. BLADE DESIGN AND MANUFACTURE
To recapitulate, the scaled experimental turbine from the previous chapter is a two-
bladed machine, with rotor diameter less than 2m, designed to run at a tip speed ratio
of 3.7, and wind tunnel testing is done in the Open Jet Facility of the Delft University of
Technology, described in the previous chapter. In this section, the blades are redesigned
using the same aerodynamic and structural design principles, following the blade de-
sign described by Van Wingerden et al. (2010b). The aerodynamic and structural details
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of these blades can be found in Hulskamp et al. (2011). One key difference is that, as dis-
tinct from the experiments of Van Wingerden et al. (2010b), this set of experiments com-
bines pitch with �ap control. For reducing the torsional inertia imposed on the pitch
actuation system, the blade design is hence modi�ed such that the root chord is scaled
down by 30%. Overall, the chord at the root has a length of 200 mm, and it tapers to a tip
size of 120 mm. The total blade length is 750 mm, and the total blade twist is 12 ±.

In order to ensure light weight and structural integrity, the blade was stereolitho-
graphically 3D printed and then bonded with carbon �bre. Such an approach has been
followed before by Bauer et al. (2014) to manufacture small wind turbine blades, and dif-
ferent 3D printing techniques have been compared for this application by Karutz (2015).
In these references, the blades have been 3D printed in mutliple sections, that are then
welded together. In order to avoid solid plastic-plastic joints, the blades for the current
set of experiments were 3D printed in one piece, and then bonded with carbon �bre.

Three different plastics that can be 3D printed – ABS M30, PC-ABS and nylon – were
evaluated in terms of their ability to bond with carbon �bre. Three rectangular coupons
of size 200 mm £ 30 mm, of thickness 3 mm, were 3D printed using each of the three
plastic materials. These coupons were bonded on the top and bottom with carbon �-
bre, in a single unidirectional layer of thickness 0.14 mm, impregnated with epoxy resin.
The three coupons were then tested to failure in a four-point bending machine to study
the fracture mechanism, with intersupport distance 140 mm, and distance between the
points of force application equal to 40 mm. The results can be seen in Fig. 9.1 and Fig. 9.2.
For low loads, the response of the material is nearly linear, while at higher loads, small
kinks appear in the force-deformation diagram. Each kink corresponds to the snapping
of one or more carbon �bre strands in compression. Finally, a large decrease in strength
is observed when the carbon �bre delaminates from the substrate, for the materials ABS
M30 and nylon. For the material PC-ABS, brittle fracture occurs before delamination,
which implies that the bond between this materials and the carbon �bre is strongest of
the materials tested. Further, since PC-ABS retains its strength over a larger range of
deformations, and shows good mechanical workability, the decision is made to use this
material for blade manufacture.

The blade is 3D printed using the material PC-ABS as a shell of thickness 3 mm, such
that its outer surface has the desired aerodynamic shape. The shell is supported by an
inner rectangular box printed using the same material; this box is not designed to with-
stand aerodynamic loads, but it is present to prevent warping. The blade shell was de-
signed with a rectangular slot of chordwise thickness 10 mm along the blade length; one
each on the top and bottom sides. A 0.14 mm layer of carbon �bre was bonded to the
plastic substrate within these slots, in order to achieve the desired structural stiffness.
Crushed glass �bre in an epoxy matrix was then used to fair the slots with the rest of the
aerodynamic surface.

The stiffening effect of the carbon �bre, predicted by the Solidworks model, is com-
pared against the measured effect of carbon �bre stiffening, shown in Fig. 9.3. The pre-
dicted increase in stiffness is 17.2%, while the measured increase in blade stiffness is
16.6%.

With the new blades, the control-relevant characteristics of the scaled turbine are
compared against the INNWIND 10 MW reference turbine as according to Table 9.1. A
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Figure 9.1: Structural behaviour of the bond between 3D printed plastic substrate and carbon �bre
spar.

Figure 9.2: 3D printed samples post fracture. Top: ABS M30, Middle: PC-ABS, Bottom: Nylon.
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Figure 9.3: Calculated stiffness characteristics compared with measured stiffness characteristics.

Table 9.1: Parameter comparison of the scaled turbine

Reference turbine Scaled rotor Scaled rotor
Bak et al. (2013) Chapter 8 Chapter 9

Rotor diameter (m) 178.3 2 2
Rated wind speed (m/s) 11.4 6.5 4.5

Tip speed ratio (-) 7.86 3 5.35
Rated rotational speed (rpm) 9.6 230 230

Fore-aft tower mode (Hz) 0.25 20.73 20.73
First �apwise mode (Hz) 0.56 15 14.4

Ratio 1st blade freq. to 1P (-) 3.5 3.913 3.75

photograph of the scaled turbine in the Open Jet Facility is given in Fig. 9.4, it can be
observed that, apart from the redesigned blades, the setup is identical to the one used in
the previous chapter.

The operational speed of the turbine is designed to be 230 rpm, yielding an average
Reynold's number of roughly 200,000. Since this speed is lower than that of the refer-
ence turbine of Van Wingerden et al. (2010b), the blade �apwise eigenfrequency was also
scaled down. The structural stiffness of the blade was tuned by adjusting the thickness
of the carbon �bre spars such that the �rst eigenmode of the blade has a frequency of
approximately 20 Hz. The Solidworks design of the blade can be seen in Fig. 9.5, while a
photograph of the manufactured blade is shown in Fig. 9.6.
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Figure 9.4: Photograph of the wind turbine located close to the open jet of the wind tunnel. The
rotor diameter is 2 m.

Figure 9.5: Blade CAD model.
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Figure 9.6: Photograph of blade.

The free-�oating �ap �ts into a slot located near the tip of the blade, and a cross-
section of the �ap can be seen in Fig. 9.7. The �ap can rotate freely about a hinge axis,
the rotation of the �ap is measured by a collocated contactless angular position encoder.
The rotation of the �ap is limited by making use of limit stops. The �ap itself consists of
a 0.15 mm thick plate of spring steel, with piezo Macro-Fibre Composite actuators (MFC
M8557-P1) bonded to the top and the bottom surfaces. Imposing voltage within the
range of +500 V to -500 V on the piezobenders produces a change in the curvature of the
�aps. In order to avoid aerodynamic discontinuities, the �ap is encapsulated by a fairing
shroud, held in place by using low-rigidity foam. This con�guration causes a sudden
change of curvature just downstream of the spar, but for the current application, the
loss of aerodynamic ef�ciency is considered to be made up for by the increased control
authority of the free-�oating �ap.

Since it is known from Bernhammer et al. (2013) that the addition of such free-
�oating �aps alters the aeroelastic behaviour of the wind turbine blades, the blades are
modelled numerically and analytically and their behaviour for a range of operating wind
speeds is explored in the next section.

9.3. AEROELASTIC BLADE ANALYSIS
First, the blade is analysed using the �nite-element software MSC Nastran, Rodden and
Johnson (1994), coupled with an aerodynamic panel code. Then, in order to obtain an
analytical LPV model suitable for controller design, a potential-�ow method will be com-
bined with a modal representation of the blade structure.

9.3.1. NUMERICAL ANALYSIS
In the software MSC Nastran, the experimental blade is modelled as a cantilever beam,
composed of 1D CBar �nite elements, each connected rigidly with a �at aerodynamic
panel. The �ap is modelled in a similar manner, and it is connected to the main blade
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Figure 9.7: Flap cross-section, chordwise size 120 mm, shell thickness 3 mm. The �ap forms 40%
of the chord.

at a far outboard location, in such a manner that it able to rotate freely about its axis.
The wind speed is considered to be constant along the blade, however, this assumption
is not valid in practice; the total relative incident wind speed increases linearly from the
root towards the tip. However, the error introduced by this assumption is somewhat
mitigated by the fact that the aeroelastic, contribution of the inboard parts of the blade
is lower due to limited structural motion. As such, the constant wind speed imposed on
the blade in the numerical environment is taken to be approximately equal to the total
relative air speed incident at the blade tip location.

There are two limitations of this approach of aeroelastic blade modelling. Firstly, the
experimental blade needs to be analysed in a rotating frame of reference, with a spanwise
variation of wind speed and centrifugal stiffening. This implementation is, however, not
straightforward in MSC Nastran and hence analysis is done in a stationary frame of refer-
ence. Wake effects and the effects of inertia forces are not accounted for in this analysis.
As such, this analysis forms a �rst-order approximation of the true system dynamics of
the experimental blade, and it stands to be improved by including corrections to account
for the effects mentioned.

First, a modal analysis is carried out in Nastran at zero wind speed to identify the
purely structural blade modes and their associated frequencies; these are tabulated in
Table 9.2. As expected, the rigid-body �ap de�ection mode occurs at 0 Hz. Some of the
modes have been depicted in Fig. 9.8 to Fig. 9.11. Similar modal frequencies are obtained
from the 3D Solidworks model:

• 1st �apwise frequency: 18.97 Hz (Solidworks), 19.44 Hz (Nastran)

• 1st edgewise frequency: 78.37 Hz (Solidworks), 76.67 Hz (Nastran)

• 2nd �apwise frequency: 84.8 Hz (Solidworks), 87.88 Hz (Nastran).

These frequencies are higher than the modal frequencies measured experimentally.
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Figure 9.8: Second mode: First blade out-of-plane, frequency 19.44 Hz.

This is because the experimental frequencies correspond to the rotor, and hence also
include the effect of blade connection stiffness, motor stiffness and hub �exibility and
are per de�nition lower than the blade frequencies obtained numerically. This difference
between modelled and measured modal frequencies can be considered to be a form of
parametric uncertainty, and provides motivation for a data-driven control approach.

It can be seen that the �rst blade out-of-plane mode is the �exible mode with the
lowest frequency, at 19.44 Hz. This mode is likely to couple aeroelastically with the rigid-
body �ap motion, and undergoes excitation through the axial thrust force exerted by the
wind on the rotor. The lead-lag and torsional degrees of freedom have much higher fre-
quencies; this is also observed in commercial blades, which are stiffer in these directions.
As there is limited excitation along these degrees of freedom, they may be considered to
contribute little to the dominant aeroelastic behaviour of the experimental blade. Mod-
elling and analysis of the blade in the aeroelastic sense will hence concentrate purely
on the out-of-plane �exible degree of freedom and its interplay with the rigid-body �ap
motion.

Table 9.2: Structural modes of the blade at zero total air speed

Mode description Modal frequency Mode description Modal frequency

Rigid-body �ap mode 0 Hz 1 st Out-of-plane mode 19.44 Hz
1st In-plane mode 76.67 Hz 2 nd Out-of-plane mode 87.88 Hz
3rd Out-of-plane mode 223.9 Hz 2 nd In-plane mode 291.3 Hz
1st Torsional mode 361.6 Hz 4 th Out-of-plane mode 449.6 Hz

Next, a �utter analysis is carried out in MSC Nastran to understand the change in the
dynamics of the system over the operational wind speed range of the experimental wind
turbine. The results of this �utter analysis are presented in Section 9.3.3, and compared
with the results of analytical modelling described in the next section.
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Figure 9.9: Third mode: First blade in-plane, frequency 76.67 Hz.

Figure 9.10: Fourth mode: Second blade out-of-plane, frequency 87.88 Hz.

Figure 9.11: Seventh mode: First blade torsional, frequency 361.6 Hz.
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Figure 9.12: Blade front view: pure out-of-plane motion.

Figure 9.13: Blade cross-section at �ap location.

9.3.2. ANALYTICAL LPV MODELLING
The objective of this section is to synthesise a low-order LPV model of the system that
captures the dominant system dynamics, such that it can be used directly for controller
synthesis. Such a model can be formulated by coupling a low-order linear structural
model with a potential �ow-based unsteady aerodynamic model. It should be noted
that the mathematical symbols used in this section have been rede�ned for the sake of
legibility, and do not retain the connotation speci�ed in Part I of the thesis.

STRUCTURAL MODEL

For the scaled wind turbine, from the previous chapter, it can be concluded that the load
peaks of interest lie in the range of 0-16 Hz, or 0-4P, where 1P is the operational rotor
speed of 230 rpm. From the numerical analysis, it can be concluded that the most im-
portant structural degrees of freedom are the rigid-body �ap motion, and the �rst �ap-
wise �exible blade mode. Further, the bending produced in the camberline of the free-
�oating �ap forms a control degree of freedom. The structural model can be visualised
in Fig. 9.12 and Fig. 9.13.

As according to Fig. 9.12, the blade has been modelled as a cantilever beam con-
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strained to deform in its �rst �apwise mode. Thus, if Y (s, t ) is the �apwise deformation
at spanwise location s at time t , then it can be decomposed as:

Y (s, t ) ÆÃ(s)»(t ), (9.1)

such that Ã(s) describes the �rst �exural mode shape of a standard cantilever beam, as
described by Hodges and Pierce (2011):

Ã(s) Æcosh(1.8751s/ ` ) ¡ cos(1.8751s/ ` ) ¡ 0.7341(sinh(1.8751s/ ` ) ¡ sin(1.8751s/ ` )),
(9.2)

with ` the length of the blade. This de�nition assumes homogeneous blade structural
properties along the span; it is not strictly true since the blade tapers from root to tip. As
shown in Fig. 9.12, the aerodynamic forces f (s, t ) act along the length of the blade.

The �ap is located between spanwise coördinates ` f and ` . A chordwise cross-
section of the blade between these radial stations is shown in Fig. 9.13. It can be seen
that the angle of attack of the blade is ®, which can be taken to be the same as the full-
span pitch angle of the blade. While this can be considered a control degree of freedom,
since the turbine can use individual pitch control, for the purpose of this analysis, it has
been considered constant. Further, the turbine blade is twisted so as to form a constant
angle of attack with the incoming wind. Since the incoming wind has been assumed
constant in a spanwise direction, the angle of attack is also taken constant over the blade
span.

The out-of-plane motion of the blade, Y (s, t ) represents the heave motion of the
aerofoil in Fig. 9.13. Further, the �ap is able to rotate freely as a rigid body about its
point of connection to the blade, which is considered to be at a distance c Æ0 from the
centre of the aerofoil. This rigid-body angular motion is denoted by the �ap angle ¯ (t ).
Finally, the �ap camberline deformation, imposed by the piezobenders is considered to
be represented by U (x, t ), where x is the chordwise coördinate. It is assumed that the
piezobenders produce camberline deformation that has energy only along the �rst can-
tilever bending mode shape. As such, the control input U (x, t ) can also be decomposed
as:

U (x, t ) ÆÃ(x)u(t ). (9.3)

It should be noted that the connection of the free-�oating �ap to the main blade struc-
ture can be modelled with higher �delity as a pin connection instead of a clamped con-
nection. However, the difference in the �rst �exural mode shapes is not considered to
add error to any signi�cant extent to the modelling results. In the above equations, the
chordwise coördinate x is dimensionless, and normalised by the half-chord length b(s).
Overall, the structural deformation y(x,s, t ) of any arbitrary point on the blade de�ned
by spanwise location s and chordwise location x at time t can thus be represented as:

y(x,s, t ) Æ
3X

i Æ0
yi (x,s)Ái (t ), (9.4)

with the terms yi and Ái de�ned in Table 9.3.
At this point, it is possible to set up the equations of motion for each structural degree

of freedom. For the out-of-plane motion of the beam, the equation of motion becomes:

M »̈(t ) Å B �»(t ) Å K »(t ) Æ¥ (t ). (9.5)
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Table 9.3: Camberline deformation terms

Description Spatial term Temporal term

Angle of attack y0(x,s) Æ ¡®b(s)x Á0(t ) Æ1
Out-of-plane motion y1(x,s) ÆÃ(s) Á1(t ) Æ»(t )
Flap rigid-body motion y2(x,s) Æ ¡b(s)x for s ¸ ` f ,x ¸ c Á2(t ) Æ¯ (t )
Control camberline de�ection y3(x,s) ÆÃ(x)b(s) for s ¸ ` f ,x ¸ c Á3(t ) Æu(t )

The structural parameters M , B and K are the generalised mass, damping and stiffness
terms, respectively, associated with the �rst �exural mode of the blade. The term ¥ (t )
is the generalised aerodynamic force associated with this mode. Using the principle of
virtual work, de�ned in Hodges and Pierce (2011), these quantities can be calculated as
follows:

M Æ
Z `

0
m(s)Ã(s)2ds, K Æ

Z `

0
EI (s)Ã 00(s)2ds, B Æb»K , (9.6)

¥ (t ) Æ
Z `

0
f (s, t )Ã(s)ds. (9.7)

The term m(s) is the mass per unit length of the blade at spanwise location s, ob-
tained from Nastran. Further, the term EI (s) is the �exural stiffness of the blade, mea-
sured at location s, also obtained from the numerical model of the previous section.
Finally, b» is the blade structural damping. Next, the equation of motion for the free-
�oating �ap degree of freedom is given by:

I ¨̄(t ) Å K¯ ¯ (t ) Æ¥ m (t ). (9.8)

Here, the term I refers to the inertia of the �ap around its hinge. The term K¯ is the
stiffness to �ap rotation, identically zero for a free-�oating �ap, and 1 for a conventional
�ap. Finally, the term ¥ m (t ) refers to the aerodynamic moment on the �ap around its
hinge axis, and it can be determined in the same manner as ¥ (t ).

The next section discusses the aerodynamic model used for synthesising the gener-
alised aerodynamic forces and moments.

AERODYNAMIC MODEL

Aerodynamic modelling is performed in accordance with the principles laid out by Gau-
naa (2010). This approach is valid for thin two-dimensional aerofoils of arbitrary ge-
ometry, at low angles of attack. It is a potential-�ow method, and considers that the
circulation change is produced by a series of bound vortices distributed along the chord
of the aerofoil. As such, this approach does not consider the 3D in�uence of the bound
vortices on neighbouring blade elements, this simpli�cation introduces an error that re-
quires correction, as will be done in equation (9.20) below. It also does not include wake
effects or stall behaviour. However, it is here considered appropriate for arriving at a sim-
ple LPV model suitable for controller design, that still capture the dominant dynamics of
the blade with free-�oating �aps.
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For the blade with cross-section as shown in Fig. 9.13, immersed in an air�ow with
instantaneous wind speed V , the aerodynamic force per unit length at spanwise location
s and at time t is given by:

f (s, t ) Æ
½b(s)2

¼

3X

i Æ0
(Á̈(t )Gy,i (¡ 1)Å V �Á(t )Gdyd² ,i (¡ 1)) Å 2¼½b(s)V Qc(t ), (9.9)

with ½the density of air. The geometric terms G¤,i are de�ned in the following manner:

G¤,i (c) Æ
Z 1

c
g¤,i (x)dx, (9.10)

where:

gy,i (x) Æ
Z 1

¡ 1
yi (x1) ln

0

B
@

(x ¡ x1)2 Å (
p

1¡ x2 ¡
q

1¡ x2
1)2

(x ¡ x1)2 Å (
p

1¡ x2 Å
q

1¡ x2
1)2

1

C
Adx1, (9.11)

gdyd² ,i (x) Æ
Z 1

¡ 1
y0

i (x1) ln

0

B
@

(x ¡ x1)2 Å (
p

1¡ x2 ¡
q

1¡ x2
1)2

(x ¡ x1)2 Å (
p

1¡ x2 Å
q

1¡ x2
1)2

1

C
Adx1. (9.12)

The term y0
i (x) represents the slope of the camberline, given by y0

i (x) Æ 1
b(s)

dyi (x)
dx . In

equation (9.9), the term Qc(t ) is the circulatory force, de�ned in terms of the aerody-
namic states z1(t ) and z2(t ) as:

Qc(t ) Æ Q(t )(1 ¡ Ã1 ¡ Ã2) Å z1(t ) Å z2(t ) (9.13)

Q(t ) Æ ¡
V

2¼

3X

i Æ0
Ái (t )Hdyd² ,i ¡

1

2¼
�Ái (t )H y,i . (9.14)

Once again, the geometric terms H¤,i are de�ned as:

H y,i Æ ¡2
Z 1

¡ 1

yi (x)
p

1¡ x2

x ¡ 1
dx, Hdyd² ,i Æ ¡2

Z 1

¡ 1

y0
i (x)

p
1¡ x2

x ¡ 1
dx. (9.15)

The evolution of the aerodynamic states is described by empirically �tting the indicial
response of the aerofoil in the following manner:

�z¤ (t ) Å
b̃¤V z¤

b(s)
Æ

b̃¤ Ã¤V Q(t )

b(s)
. (9.16)

For a �at plate, the empirical coef�cients b̃¤ and Ã¤ can be obtained from Jones (1939).
In a similar manner, the aerodynamic moment over the �ap, ¥ m (t ) is given by:

¥ m (t ) Æ
Z `

` f

M p (s)ds, (9.17)
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M p (s) Æ
½b(s)2V 2

¼

3X

i Æ0
Ái (t )Gdyd² ,i (c) Å ½b(s)2V 2 K1(c)

2¼

3X

i Æ0
Ái (t )Hdyd² ,i

¡
½b(s)3V

¼

3X

i Æ0

�Ái (t )(Idyd² ,i (c) ¡ cGdyd² ,i (c)) Å
½b(s)2V

¼

3X

i Æ0

�Ái (t )Gy,i (c)

Å ½b(s)2V
K1(c)

2¼

3X

i Æ0

�Ái H y,i ¡
½b(s)3

¼

3X

i Æ0
Á̈i (t )(I y,i (c) ¡ cGy,i (c))

Å 2½b(s)2V ((c Å
1

2
)cos¡ 1 c ¡ (1Å

c

2
)
p

1¡ c2)Qc(t ).

with the term K1(c) Æcos¡ 1 c ¡ c
p

1¡ c2. The terms I¤,i are geometric and given as:

I y,i (c) Æ
Z 1

c
xgy,i (x)dx, Idyd² ,i (c) Æ

Z 1

c
xgdyd² ,i (x)dx. (9.18)

Thus, the aerodynamic forces can be described using a second-order differential equa-
tion.

AEROELASTIC MODEL

Coupling the structural models from equations (9.5) and (9.8) and aerodynamic mod-
els in the equations (9.9) and (9.17) described in the previous sections, it is possible to
describe the full aeroelastic model as follows:

M 11»̈(t ) Å B11V �»(t ) Å K �»(t ) Å M 12 ¨̄ (t ) Å B12V �̄ (t ) Å K12V 2¯ (t ) Å Q1V z1(t ) Å Q1V z2(t )
(9.19)

ÆM 13ü (t ) Å B13V �u(t ) Å K13V 2u(t ) Å N ,

M 21»̈(t ) Å B21V �»(t ) Å I ¨̄ (t ) Å B22V �̄ (t ) Å K22V 2¯ (t ) Å Q2V z1(t ) Å Q2V z2(t )

ÆM 23ü (t ) Å B23V �u(t ) Å K23V 2u(t ),

G�z1(t ) Å B41V �»(t ) Å B42V �̄ (t ) Å K42V ¯ (t ) Å Q3V z1(t ) ÆB43V �u(t ) Å K43V u(t ),

G�z2(t ) Å B51V �»(t ) Å B52V �̄ (t ) Å K52V ¯ (t ) Å Q4V z1(t ) ÆB53V �u(t ) Å K53V u(t ).

Here, N is the steady-state normal force that produces structural deformation but
does not contribute to its dynamic behaviour. In these equations, the de�ection of
the piezobenders, u(t ) is taken to be the control input. Since piezodynamics are typ-
ically orders of magnitude larger than aerostructural dynamics, the behaviour of the
piezobender is not modelled. Instead, it is assumed that, at any instant of time, the de-
sired camberline shape can be imposed on the free-�oating �aps by the piezobenders.

All coef�cients in the aeroelastic equations above are constant and depend only on
the geometry of the system. From the differential equations, the dependence of the dy-
namics on the ambient wind speed is evident. For the special case where the chordwise
size of the �ap is exactly 50% of chord length, we have that c Æ0, and the coef�cients
of the above equations are tabulated in Table 9.4. It should be noted that the term Ā is
de�ned such that Ā Æ1¡ Ã1 ¡ Ã2.

In the next section, the aeroelastic behaviour of this analytical model is compared
with that of the numerical model from the previous section.
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Table 9.4: Aeroelastic model coef�cients

M 11 ÆM Å ¼½
R`

0 b(s)2Ã(s)2ds M 12 Æ ¡ 2
3½

R`
` f

b(s)3Ã(s)ds

M 21 Æ ¡ 2
3½

R`
` f

b(s)3Ã(s)ds I ÆI Å 0.2573½
R`

` f
b(s)4ds

M 13 Æ ¡0.9629½
R`

` f
b(s)3Ã(s)ds M 23 Æ0.3988½

R`
` f

b(s)4ds

B11 Æ2¼½Ā
R`

0 b(s)Ã(s)2ds B12 Æ(1.571Å 3.571Ā)½
R`

` f
b(s)2Ã(s)ds

B21 Æ ¡0.4292½Ā
R`

` f
b(s)2Ã(s)ds B22 Æ(0.8929Å 0.2439Ā)½

R`
` f

b(s)3ds

B13 Æ ¡(2.878Å 6.346Ā)½Ā
R`

` f
b(s)2Ã(s)ds B23 Æ(1.896Å 0.4335Ā)½

R`
` f

b(s)3ds

B41 Æb̃1 Ã1
R`

0 Ã(s)ds B42 Æ ¡0.5683b̃1 Ã1
R`

` f
b(s)Ã(s)ds

B51 Æb̃2 Ã2
R`

0 Ã(s)ds B52 Æ ¡0.5683b̃2 Ã2
R`

` f
b(s)Ã(s)ds

B43 Æ ¡1.945b̃1 Ã1
R`

` f
b(s)Ã(s)ds B53 Æ ¡1.945b̃2 Ã2

R`
` f

b(s)Ã(s)ds

K12 Æ ¡5.142½Ā
R`

` f
b(s)Ã(s)ds K13 Æ ¡12.22½Ā

R`
` f

b(s)Ã(s)ds

K22 Æ(0.182Å 0.3513Ā)½
R`

` f
b(s)2ds K23 Æ ¡(0.931Å 0.8348Ā)½

R`
` f

b(s)2ds

K42 Æ ¡0.8183b̃1 Ã1(` f ¡ ` ) K43 Æ ¡1.01b̃1 Ã1(` f ¡ ` )
K52 Æ ¡0.8183b̃2 Ã2(` f ¡ ` ) K53 Æ ¡1.01b̃2 Ã2(` f ¡ ` )

Q1 Æ ¡2¼
R`

0 b(s)Ã(s)ds Q2 Æ ¡0.4292½
R`

` f
b(s)2ds

Q3 Æb̃1` Q4 Æb̃2`

GÆ
R`

0 b(s)ds

9.3.3. MODEL COMPARISON

An aeroelastic �utter analysis was performed using the analytical and numerical mod-
els described in the previous sections, and the resultant �utter diagram can be seen in
Fig. 9.14 and Fig. 9.15. It should be noted that in all �utter diagrams, the abscissæ corre-
spond to total air speed, de�ned as the resultant of the in�ow wind speed and the rotor
speed at the blade tip. Further, as discussed in the previous chapter, the speed regulation
trajectory of the wind turbine is linear, so that rotor speed increases with wind speed at
the rate of 51.1 rpm/(m/s). It can be seen that the variation of the frequency of the poles
with total air speed is predicted in a similar manner by both models. The frequency of
the rigid-body �ap mode rises from 0 Hz at 0 total air speed, to approximately 12 Hz at a
total air speed of 50 m/s, in a nearly linear fashion. On the other hand, the frequency of
the �exible out-of-plane blade mode remains nearly constant at around 19 Hz over the
air speed range investigated.

However, there is a noticeable difference between the damping variation predicted
by the numerical and analytical models. Speci�cally, the Nastran model predicts a larger
variation in damping over wind speed, with the system becoming unstable at a �utter
speed of 33 m/s. However, according to the analytical model, �utter does not occur
within the investigated wind speed range. Since subsequent experimental investiga-
tions, described in the next sections, found that the phenomenon of �utter occurs at
a total operating air speed of close to 30 m/s, it can be concluded that the numerical
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Figure 9.14: Flutter diagram of blade: Frequency.

Figure 9.15: Flutter diagram of blade: Damping.
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Figure 9.16: Transfer function from control input to blade out-of-plane motion.

Nastran model is more accurate than the potential �ow model.
When the Nastran and the potential-�ow models are compared, it is found that the

latter analytical model underpredicts the mass cross-coupling terms in the aeroelastic
equations. Since the objective of this section is to derive a low-order LPV model suitable
for controller design, these cross-mass terms M 12 and M 21 in the analytical model are
corrected by an empirical factor Kcc Æ8, tuned such that the �utter speed predicted by
the analytical model matches that of the numerical model:

M 12 ÆM 21 Æ ¡
2Kcc

3
½

Z `

` f

b(s)3Ã(s)ds. (9.20)

This correction term is necessary because the analytical model assumes the inde-
pendence of blade elements, and hence neglects the aerodynamic effect of the bound
vortices of each blade element on its neighbours. This reduces the predicted aerody-
namic cross-in�uence of the structural degrees of freedom on each other. While it has
here been chosen to use an aerodynamic correction to tune the mass terms in the aeroe-
lastic equations, a similar tuning factor could also be used to adjust the cross-stiffness
or cross-damping terms, to achieve the same model behaviour. To avoid the need for
a tuning factor, greater modelling �delity would be required to relax the assumption of
blade element independence, but it is not known whether the model would then admit
a simple LPV state-space realisation.

If this correction is used, the predicted analytical �utter diagram is very close to the
one obtained numerically using Nastran, and it has been shown in Fig. 9.15 using a dot-
ted line.

The set of differential equations (9.19) can be converted to a set of transfer functions
that describe the dynamics of the system from the control degree of freedom u(t ) to
the structural degrees of freedom »(t ) and ¯ (t ). The Bode diagrams of these transfer
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Figure 9.17: Transfer function from control input to �ap rigid-body motion.

functions, at different wind speeds, are depicted in Fig. 9.16 and Fig. 9.17. It can be
seen that the peak corresponding to the heavily damped �ap rigid body mode moves
towards higher frequencies with increasing wind speeds, while the lightly-damped peak
corresponding to the �exible blade out-of-plane mode remains at the same frequency. It
can also be seen that the damping corresponding to the �exible mode reduces with an
increase in wind speed, and at a wind speed of 35 m/s, the system is unstable.

In equation (9.8), it has been assumed that for the current case of a free-�oating �ap,
the �ap is connected to the main structure of the blade by a virtual rotary spring of stiff-
ness K¯ Æ0, which affords resistance to the rigid body �ap motion, denoted by ¯ (t ).
For an equivalent conventional trailing-edge �ap, the rotary stiffness would be K¯ Æ 1 .
However, it is also possible to use a physical spring to provide resistance to the rigid-body
motion of the trailing-edge �ap. Such a case can be modelled using the aeroelastic equa-
tions (9.19), for a �nite, non-zero value of K¯ . The presence of such a spring would alter
the dynamic behaviour of the blade; transfer functions are derived for different values of
K¯ , and the Bode diagrams of these transfer functions are plotted in Fig. 9.18. It can be
seen that there is an intermediate, �nite value of K¯ for which the sprung trailing-edge
�ap shows higher control authority than either the free-�oating �ap or the conventional
trailing-edge �ap. A similar effect can be seen in Fig. 9.19, which plots the variation of
the �utter speed with spring stiffness. However, as control authority increases, the �utter
speed also drops, reaching a minimum of 23 m/s for a spring stiffness of 11.9 N-m/rad.
It is interesting to note that as the spring stiffness increases beyond this value, the �utter
speed increases exponentially to a point where it no longer occurs within the operational
range of the turbine.

Herewith, it can be concluded that the simple analytical model cannot directly cap-
ture all dynamic effects predicted by the numerical model. However, with a simple em-
pirical correction, this LPV analytical model can describe the same blade aeroelastic be-



9.3. AEROELASTIC BLADE ANALYSIS

9

205

Figure 9.18: Transfer function from control input to blade out-of-plane motion, �ap with rota-
tional spring, wind speed 25 m/s.

Figure 9.19: Effect of rotational spring on �utter speed.
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Figure 9.20: Variation of �utter speed with �ap inertia.

haviour as the Nastran model. Based on this analytical model, it is shown possible to
determine the system transfer functions, suitable for controller design. It is also pos-
sible to use the model to explore parametric sensitivity of system dynamic behaviour,
especially to analyse the effect of structural parameters on the �utter limit of the blade.
For instance, by varying the �ap inertia I in the model, it can be seen that the �utter
speed can be tuned, as shown in Fig. 9.20. With increasing �ap inertia, the �utter speed
increases until �utter no longer occurs within the operational range of the turbine. How-
ever, since this is also accompanied by a reduction in control authority, it is desired to
tune the �utter speed to occur just beyond the turbine operational envelope. Hence, a
�ap inertia value of 270 g-cm 2 is chosen, which corresponds to a �utter speed of 36 m/s.

Since the modelling procedure above gives a qualitative estimate of system be-
haviour, which may in practice deviate from the true system behaviour on account
of parametric uncertainty and unmodelled dynamics, the next section explores recur-
sive identi�cation of the new �exible rotor integrated with the scaled turbine setup,
described in Section 9.2.

9.4. RECURSIVE SYSTEM IDENTIFICATION
The blades are assembled on the scaled turbine, and experiments are conducted to un-
derstand system behaviour in the wind tunnel environment, for different operating wind
conditions, in order to understand the effect of the free-�oating �aps on blade loads.
For this purpose, the recursive identi�cation algorithms delineated in Chapter 3 will be
utilised.

For operational control, the pitch actuators, for the current of experiments, com-
mand constant �ne pitch for maximal power capture, and maximal thrust loading. As
before, the turbine is operated in constant load mode, such that the rotor speed varies



9.4. RECURSIVE SYSTEM IDENTIFICATION

9

207

linearly with the wind speed. The nominal operating speed is taken to be 230 rpm; for
the current set up, this occurs at a wind speed of 4.5 m/s. This linear variation in rotor
speed does not occur in the above-rated operational region of a standard wind turbine,
instead, the speed is regulated to a constant value by using collective pitch control. How-
ever, the reason for implementing linear speed variation is threefold: it enables investi-
gations into overspeed behaviour that may induce �utter, it emulates below-rated tur-
bine behaviour, and it enables the validation of an adaptive controller that has to adjust
its behaviour to account for large changes in system dynamics and exogenous forcing
frequencies.

A cautious ramp up of wind speed in the wind tunnel shows that the rotor enters �ut-
ter at a wind speed of 6 m/s, corresponding to a rotor speed of 315 rpm. In order to en-
sure stable operation at and beyond this wind speed, a nominally stabilising classically-
designed PID controller, acting on feedback from the �ap angle sensor and issuing �ap
actuation commands, is connected in feedback with the wind turbine system.

The objective of �ap control, like the objective of pitch control in the previous chap-
ter, is the minimisation of blade loads as measured by strain sensors located at the root
of each blade. The blade root load spectrum can be visualised in Fig. 9.21. It cana be seen
that the dominant load peaks occur at the frequencies 1P, equal to rotor speed, and 2P, its
�rst harmonic. These loading peaks arise out of tower passage, and are hence exogenous
by nature. As such, these frequencies have to be compensated for in the algorithms of
Chapter 3 by considering an exogenous periodic disturbance signal dk , de�ned as:

dk Æ

2

6
6
4

sin ª k

cosª k

sin2ª k

cos2ª k

3

7
7
5 , (9.21)

where ª k is the measured azimuth of the rotor. As the azimuth is a direct measurement
from the speed encoder located in the turbine nacelle, the arti�cial signal dk is always
phase-locked with the true blade load peaks 1P and 2P, irrespective of the operating wind
speed. As such, this signal can be used for system identi�cation even when the wind
speed, and hence the rotor speed, varies over time.

Since the system dynamics vary with wind speed, an online recursive identi�cation
method would be useful to track the changes in the dynamics. The primary transfer
function of interest is the system from �ap action to blade loads. The �ap angle sen-
sors form an auxiliary degree of freedom, the transfer function between �ap actuation
and �ap angular motion is also of interest. Speci�cally, to ensure stability, a classically-
designed controller K is connected in feedback between this sensor and the �ap actua-
tors:

K Æ 0.0001| {z }
Static gain

s/0.001 Å 1

s/10 Å 1| {z }
High-pass

s2 Å 0.001s¤ 50/2¼Å (50/2¼)2

s2 Å 0.1s¤ 50/2¼Å (50/2¼)2
| {z }

notch for 50 Hz electrical back-coupling artefact

1

2¼s/100 Å 1| {z }
Low-pass

. (9.22)

As such, the recursive identi�cation has to be performed online, in closed loop.
Hence, a closed-loop identi�cation technique, like Recursive PBSID (RPBSID), de-
scribed in Chapter 3, is suitable for this application.
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Figure 9.21: Blade load spectrum at the pre-�utter rotor speed of 230 rpm.

In order to validate the results of RPBSID, �rst, batchwise system identi�cation is
performed using standard PBSID, for a number of different constant wind speed con-
ditions, with resulting variance accouted for (vaf) exceeding 60% in each system identi-
�cation experiment. The transfer functions from the �ap actuation to the �ap angular
position, and from the �ap actuation to the blade loads, are represented by the Bode dia-
grams in Fig. 9.22 and Fig. 9.23, respectively. It can be seen that the transfer involves two
primary low-frequency modes. The rigid-body �ap mode has relatively high damping,
and its frequency increases in an approximately linear fashion with wind speed, reach-
ing nearly 15 Hz close to the �utter speed. On the other hand, the �exible blade out-of-
plane mode has a constant frequency slightly higher than 15 Hz, that does not change
with wind speed. The damping of this mode reduces progressively with increasing wind
speed, and the mode becomes unstable at 290 rpm, corresponding to 5.8 m/s in�ow
wind speed, or 31.4 m/s total in�ow air speed at the rotor tip. These results corroborate
closely the numerical results of the previous section.

Recursive identi�cation will be explored next, �rst under constant operating condi-
tions and then under varying wind conditions.

9.4.1. CONSTANT OPERATING CONDITIONS
For the �rst set of experiments, the turbine is operated at a constant wind speed of 4.5
m/s, which corresponds to a constant rotor speed of 230 rpm, corresponding to the pre-
�utter regime of operation. The stabilising collocated controller is switched off, thus
the plant is operated nominally in an open-loop setting. A white noise signal low-pass
�ltered with cut-off frequency 50 Hz, is imposed on the �ap actuators, to provide persis-
tency of excitation. The recursive identi�cation algorithm parameters are all initialised
to zero, in other words, the recursive algorithm is cold started. A low value of 0.997 is
used for the forgetting factor in the resursive least squares estimation problems to be
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Figure 9.22: Transfer from �ap actuators to �ap angle, different wind speeds.

Figure 9.23: Transfer from �ap actuators to blade root loads, different wind speeds.
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Figure 9.24: Open-loop pole tracking at pre-�utter speed, comparison of recursive and batch al-
gorithm.

solved for recursive identi�cation. From numerical modelling, an approximate state or-
der 4 is chosen. Although the real-time system has sampling frequency 2000 Hz, the data
is resampled to 500 Hz, such that the identi�caiton algorithm focusses on low-frequency
dynamics. The objective of identi�cation is to estimate the transfer from �ap activity to
blade loads.

The estimation of the damping of the poles obtained by applying the recursive algo-
rithms of Chapter 3 is shown in Fig. 9.24. It can be seen that the conventional recursive
PBSID converges within 40 seconds to a pole estimate close to that obtained using the
batchwise algorithm. On the other hand, the nuclear-norm enhanced version is able to
converge faster and with lower variance than its standard counterpart.

Next, the turbine is operated at a wind speed of 6.5 m/s, which corresponds to a rotor
speed of 340 rpm. This wind condition corresponds to the post-�utter regime of opera-
tion. Since the system is then open-loop unstable, the stabilising controller from �ap an-
gle rotation to �ap actuator is switched on. The white noise signal is superposed on this
control signal to ensure persistency of excitation. Once again, the recursive algorithms
are initialised to zero, and identi�cation is carried out with a low value of forgetting fac-
tor. The identi�cation results can be seen in Fig. 9.25. Both recursive algorithms are able
to converge to a fairly accurate estimate of the (unstable) modal damping within 40 sec-
onds. Once again, the nuclear norm-enhanced algorithm shows faster convergence and
lower variance than the standard algorithm.

The effect of the nuclear norm can be observed by considering the Markov param-
eters estimated by the two algorithms in Fig. 9.26. It can be seen that estimates of the
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Figure 9.25: Closed-loop pole tracking at post-�utter speed, comparison of recursive and batch
algorithm.

low-order Markov parameters, for instance CK and CB, with and without the use of the
nuclear norm, are very close to each other. The effect of the nuclear norm is to sup-
press the magnitude of the higher-order Markov parameters. Since these higher-order
parameters are usually corrupted to a larger extent by measurement and process noise,
the effect of the nuclear norm is to make system parameter estimation less sensitive to
noise.

The variation of Markov parameter estimates over time, with and without the use
of the nuclear norm, can be seen in Fig. 9.27. The behaviour of the estimated Markov
parameter CB is representative for the lower-order Markov parameters, while that of the
parameter C A5B is representative for the higher-order Markov parameters. It can be
seen that, with the use of the nuclear norm, there is a clear bias between the estimates
of CB, although their variation over time is similar. On the other hand, the both the
variance and the mean of the Markov parameter C A5B are signi�cantly reduced by the
use of the nuclear norm. As the variance in parameter estimation is caused by noise,
for this case of constant operating conditions, the overall estimate of system dynamics
is less sensitive to the effect of noise when the nuclear norm is used.

The objective of a recursive identi�cation method is to track variations in system
dynamics over time, and hence the response of the algorithms under varying operating
conditions is explored in the next section.
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Figure 9.26: Effect of using the nuclear norm on estimated Markov parameters.

Figure 9.27: Effect of using the nuclear norm on estimated Markov parameters.
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Figure 9.28: Changes in the rotor speed as a consequence of varying the wind speed in a stepwise
manner in the wind tunnel.

9.4.2. TIME-VARYING OPERATING CONDITIONS

For this case, the wind speed in the tunnel is increased in a stepwise manner from a pre-
�utter wind speed of 4.5 m/s to a post-�utter wind speed of 7 m/s. Accordingly, the rotor
speed also increases in a stepwise manner from 230 rpm to 360 rpm, as seen in Fig. 9.28.
The turbine crosses the �utter limit at a rotor speed of 290 rpm. This is indicated in the
�gure by a vertical broken line at a time instant of 220 s.

Since the turbine is expected to operate both in the stable pre-�utter regime as well
as the unstable post-�utter regime in this set of experiments, the stabilising collocated
controller is connected in closed loop with the plant, as such, closed-loop identi�cation
is performed in this experiment set. A �ltered white noise signal is superposed on the
output of this controller in order to ensure persistency of excitation. At time t Æ0, the
parameters of the identi�cation algorithm are initialised to zero. However, they are not
reïnitialised for every change in wind speed that occurs within the experiment, and thus,
the algorithm is warm started using parameter values from the previous time instants in
order to speed up convergence.

The results obtained by using the identi�cation algorithms can be seen in Fig. 9.29.
It can be seen that the estimates of the modal damping stabilise temporarily at the same
values as those obtained from the corresponding identi�cation experiments conducted
at constant wind speed. Herewith, it can be concluded that the system is not just time-
varying, but also parameter-varying, with wind speed as the scheduling variable.

The �gure also shows that the use of the nuclear norm makes the algorithm more
responsive; it converges faster and with lower variance to a good approximation of the
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Figure 9.29: Closed-loop pole tracking for a stepwise increase in ambient wind speed.

value of modal damping. It can also be seen that the onset of �utter is detected by the
nuclear norm-enhanced algorithm within 32.4 seconds. On the other hand, the conven-
tional algorithm requires 60.8 seconds to detect the onset of �utter.

Thus, it can be concluded that both algorithms described in Chapter 3 are able to
estimate system parameters with a high degree of accuracy. The effect of the nuclear
norm is to suppress the value and the in�iuence of noise on the higher-order Markov
parameters, and thereby to render the algorithm faster in terms of convergence and to
reduce the variance of parameter estimates. With the system dynamics and �ap control
authority validated, the combined use of �ap and pitch control to reduce blade loads is
explored in the next section.

9.5. ITERATIVE FEEDFORWARD TUNING FOR COMBINED PITCH

AND FLAP CONTROL
In this section, the blade pitch and �ap actuators are used simultaneously in order to
reduce blade loads. As described in the previous section, the blade load spectrum is
dominated by the 1P and 2P peaks and their harmonics, caused by tower shadow rotor
loading. On a �eld turbine, the effect of turbulence would be to broaden the peaks, and
add energy to the high-frequency part of the spectrum. However, even for a wind turbine
in the �eld, the primary load peaks occur at 1P and 2P. As such, the load controller tested
in this section primarily target load alleviation at these frequencies.

In order to ensure safe operation at post-�utter wind speeds, the nominally stabilis-
ing collocated controller is kept operational in closed loop between the �ap angle feed-
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back and the �ap actuation mechanism. To decouple the load alleviation objective from
the system stabilisation objective, a feedforward load controller is tuned using IFT, in
such a manner that input-output data is used to improve the load control performance
iteratively over time.

The optimal load controller parameters depend upon the operating wind conditions,
and hence an LPV controller would be ideally suited for this application, where the wind
speed is considered to be the scheduling variable. However, as explored in Chapter 5,
the full LPV implementation of IFT demands signi�cant computational complexity, and
hence, the simplifying assumption is made that the wind speed remains approximately
constant over the duration of each IFT experiment. With this quasi-LPV approach, the
plant can be assumed to be LTI for the duration of each experiment, and IFT-LTI can be
used to tune optimal controller parameters for different operating wind speeds. How-
ever, these parameters will be optimal only for one speci�c wind speed, and they will be
sub-optimal over the operating range of the wind turbine. Hence, IFT-LTI has to be per-
fomed for a number of different operating wind speeds, or, alternatively, the approach
of IFT has to be used to optimally tune a gain-schedule for varying wind speeds for the
feedforward load controller.

The implementation of the feedforward load controller can be seen in Fig. 9.30. As
in the previous chapters, the reference signal for the feedforward controller is taken to
be a set of phase-locked sinusoidal basis functions, and thus this load control approach
is similar to an adaptive implementation of cyclic pitch and �ap control. For the pitch
actuators, the sinusoidal basis functions have frequency 1P, while for the �ap actuators,
the sinusoidal basis functions have frequency 2P. As such, pitch and �ap activity is de-
coupled in the frequency domain, and the actuators are expected to perform load con-
trol strictly at the corresponding frequencies, such that the cross-in�uence of actuation
efforts is minimised. The controller parameters ½are essentially the weights of these
basis functions that are to be optimally tuned to maximise load reduction; each of the
controller parameters is considered to be an af�ne function of the ambient wind speed.
For pitch control, hence, 4 controller parameters are to be optimised, denoted as ½s,IPC ,
½sV,IPC , ½c,IPC and ½cV,IPC , and similarly for �ap control.

The procedure of IFT for optimal gain schedule tuning, described in Section 5.2, is
carried out under different wind conditions in order to synthesise a locally optimal load
controller. First, IFT is used at constant wind speed, in both the pre- and post-�utter
speed regimes. Then, an optimal gain schedule is trained using IFT for varying wind
conditions.

9.5.1. CONSTANT WIND SPEED: PRE-FLUTTER

Selected results regarding the use of IFT in the pre-�utter regime are presented here;
the behaviour of the algorithm is similar for different wind speeds. First, IFT is used
for tuning the feedforward load controller at a constant wind speed of 4.5 m/s, which
corresponds to a rotor speed of 230 rpm. The evolution of the controller gains and the
cost criterion over iterations can be seen in Fig. 9.31 and Fig. 9.32. The gains converge to
their steady-state values over a period of ten minutes, and achieve load reduction. The
blades and actuator duty after convergence can be seen in Fig. 9.33 and Fig. 9.34. It can
be seen that the actuator signal commanded is sinusoidal for both the pitch and �ap
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Figure 9.30: IFT implementation: wind turbine load control. ¤ stands for IPC or IFC.

actuators, with frequency 1P and 2P respectively. Due to this control action, the 1P and
2P loads in the blade spectrum are almost entirely eliminated, and IFT is successful in
tuning the feedforward controller optimally.

It is interesting to note that the optimal control action commanded from the actua-
tors of the two blades is not exactly antisymmetric. This effect is especially pronounced
in the �ap actuator signal. The reason for this unequal duty cycle is the difference in the
manufacturing of the blades. Indeed, as per the numerical modelling, a change of a few
grammes in the weight of each �ap can strongly alter the aeroelastic behaviour of the
blade, and it can even prepone �utter.

These manufacturing discrepancies are expected to be lower for a commericial tur-
bine. A conventional controller, as described by Bossanyi (2003), would demand anti-
symmetric pitch activity and identical �ap activity for load alleviation. However, such a
controller would not be able to account for asymmetric actuator control authority aris-
ing out of aging issues or external wind conditions, and hence, it would not be able to
reach the same degree of load alleviation achievable by the load controller described
above. Similar results are observed at wind speeds in the post-�utter regime.

9.5.2. CONSTANT WIND SPEED: POST-FLUTTER
The wind turbine is run at a series of post-�utter wind speeds, and selected load allevi-
ation results, for a post-�utter rotor speed of 330 rpm, are described here. For this set of
experiments, the nominally stabilising controller K is connected in closed loop between
the �ap angle sensor and �ap actuation mechanism. This controller is not optimised for
load reduction, its only purpose is to stabilise the system. IFT then tunes the feedforward
controller that shapes the loads acting on this nominally stabilised baseline closed-loop
plant. It can be seen in Fig. 9.35 and Fig. 9.36 that, even under the challenging unstable
post-�utter conditions, the load controller tuned using IFT is still able to achieve load re-
ductions. From the actuation signals, it can be seen that pitch activity is no longer close
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Figure 9.31: Convergence of controller gains over iterations.

Figure 9.32: Minimisation of IFT cost criterion over iterations.
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Figure 9.33: Actuator duty cycles of optimised controller (Pre-�utter).

Figure 9.34: Blade root load reduction of optimised controller (Pre-�utter).
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Figure 9.35: Actuator duty cycles of optimised controller (Post-�utter).

to antisymmetric, and a conventional IPC controller would not be able to achieve load
reductions under these conditions. Further, it can also be seen that �ap activity is close
to its maximal limits of § 500 V, beyond which it is not possible to use the �aps to either
stabilise the system or to achieve load reduction.

Since the wind speed experienced by the turbine in the �eld cannot be considered to
be constant, the next section describes results obtained with varying wind speeds.

9.5.3. VARYING WIND SPEED
In the case of varying wind speed, IFT is used to determine a gain schedule for the con-
troller gains instead of constant controller gain values. The algorithm of Section 5.2 is
used to estimate an ideal linear gain schedule that is optimal over the entire operating
range of the wind turbine. As such, IFT is used to iteratively tune the slope ½[1] and
intercept ½[0] of the optimal controller gain schedules in this section. A varying wind
speed pro�le is generated in the wind tunnel; it can be visualised in Fig. 9.37. The op-
timal gain schedule parameters estimated can be seen in Fig. 9.38 and Fig. 9.39. Since
the wind speed is nearly constant for the �rst 100 seconds, a good gain schedule cannot
be obtained due to a lack of persistency of excitation in the scheduling variable (wind
speed). However, once the wind speed begins to change, the gain schedule rapidly con-
verges to its steady state value. The steady-state optimally tuned linear gain schedules
are compared against the optimal controller gains for constant operating wind speeds in
Fig. 9.40 and Fig. 9.41. It can be directly observed that the optimal gain schedule for the
pitch controller is a good �t of the optimal controller gains tuned for constant operating
wind speeds. On the other hand, it can also be observed that the variation of the optimal
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Figure 9.36: Blade root load reduction of optimised controller (Post-�utter).

�ap controller gains does not vary linearly with wind speed, and a linear gain schedule
is suboptimal for a large part of the operating range.

Thus, combined pitch and �ap control is experimentally shown capable of achieving
signi�cant rotor load reductions. Further, the extension of IFT, capable of tuning gain-
scheduled controllers, has also been demonstrated experimentally.

9.6. CONCLUSIONS
This chapter provides experimental proof of concept of the load alleviation potential
of free-�oating �aps for wind turbines. It also demonstrates combined pitch and �ap
control of rotor loads, for the �rst time on an experimental wind turbine.

The blades of the scaled turbine described in the previous chapter are redesigned
such that they can be instrumented with trailing-edge free-�oating �aps. A new manu-
facturing method is used for blade production: the aerodynamic shell is �rst 3D printed
using the plastic material PC-ABS, and then bonded with an external carbon �bre spar
for structural stiffness. This combination of materials was experimentally found to show
good bonding properties. The free-�oating �ap was �t into a slot at an outboard blade
section; it is free to rotate about its hinge axis, while its camberline can be modi�ed by
piezoelectric actuation. The free rotation of the �ap is measured by an angle encoder.

The dynamic behaviour of the blade was analysed numerically, and a low-order Lin-
ear Parameter-Varying (LPV) analytical model was set up to facilitate controller synthe-
sis. With a correction factor to compensate for the cross-in�uence of blade elements,
the analytical model could be tuned to match the dynamic behaviour of the numerical
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Figure 9.37: Varying operational speed for optimisation of gain schedule.

Figure 9.38: Optimisation of gain schedule intercepts for varying wind speed conditions.
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Figure 9.39: Optimisation of gain schedule slopes for varying wind speed conditions.

Figure 9.40: Gain schedule at varying wind speeds versus optimal gains at constant wind speeds:
Pitch control.



9.6. CONCLUSIONS

9

223

Figure 9.41: Gain schedule at varying wind speeds versus optimal gains at constant wind speeds:
Flap control.

model. Both models predict that the �ap rigid-body motion couples with the �exible
�apwise motion of the blade for increasing wind speeds, and the system becomes open-
loop unstable beyond the �utter speed. This �utter speed could be tuned by adjusting
the inertia properties of the �ap, and it is designed to occur just beyond the operational
regime of the wind turbine, in order to maximise control authority while retaining open-
loop stability. A theoretical exercise was conducted to explore the effect of a rotary spring
of �nite thickness, connecting the trailing edge �ap to the main blade structure. It was
found that control authority increases for a speci�c optimal value of the stiffness of the
spring, but it also causes a lowering of the �utter speed.

The setup was assembled and operated in the wind tunnel, and it was found that
the system goes into the unstable �utter mode at an in�ow wind speed of 6 m/s. To en-
sure structural integrity, a classical controller was connected in closed loop between the
collocated sensor and the �ap actuation mechanism. Identi�cation experiments were
carried out, both in the pre-�utter and the post-�utter regimes of operation. Batchwise
identi�cation using PBSID corroborated the results obtained from numerical analysis
in terms of the behaviour of modal frequency and damping over the wind speed range.
Recursive algorithms, discussed in Chapter 3, were also applied to the setup under con-
stant and varying wind conditions. The variation of modal damping could be tracked
with reasonable accuracy by these algorithms, and they could also detect the onset of
�utter in varying wind conditions. The advantage of using the nuclear norm was clear:
it suppressed the effect of noise and hence increased responsiveness and reduced vari-
ance estimates. With the nuclear norm, �utter could be detected within half the time
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that it would otherwise take the conventional algorithm.
The load reduction potential of combined pitch and �ap control was then investi-

gated. The nominally stabilising controller was allowed to run in closed loop; over and
above this controller, a feedforward load controller was designed, the gains of which
were tuned using IFT. The reference to this feedforward controller was an arti�cial si-
nusoidal signal with frequency 1P for pitch actuation and 2P for �ap actuation, thus
achieving frequency separation of the two actuation mechanisms. With the use of IFT,
the gains of these controllers were optimised at constant wind speeds such that maxi-
mal load reduction could be achieved. Under pre-�utter conditions, near-optimal load
control was shown to be possible, with the 1P and 2P peaks virtually eliminated from
the load spectrum. Load alleviation was also shown to be possible even at post-�utter
wind speeds, however the load attenuation was limited by the control authority of the
�aps. It was interesting to note that the commanded actuator duty cycles, especially in
the post-�utter regime, were not (anti-)symmetric, as commanded by conventional load
control strategies. It is postulated that this extra control degree of freedom, which does
not impose symmetry on the actuator control signals, is responsible for the increased
load attenuation achievable using IFT. Finally, IFT was shown capable of tuning an opti-
mal gain schedule in varying wind conditions. While a linear gain schedule was shown
to be near-optimal for pitch control, �ap control shows a non-linear variation of optimal
controller gains with wind speed, and further work is required to understand the best
manner to achieve optimal �ap control behaviour throughout the operating range.

Thus, the experiments reported in this chapter form a �rst step towards understand-
ing the advantages and challenges associated with implementing free-�oating �aps on
commercial wind turbines.



III
CONCLUSIONS AND

RECOMMENDATIONS

225





CONCLUSIONS AND RECOMMENDATIONS

asto mA s‹my.
tmso mA >yoEtgmy;

The Upanishad, attributed to multiple authors, India (circa 7 th -6th century BC),
describing the recommended direction of motion for society.

This �nal chapter puts together the conclusions drawn from the results obtained in Part
II of the thesis, based on the theoretical work of Part I of the thesis. The lessons learnt are
described, and recommendations are made for future theoretical work and experimental
validation in the �eld of improved load control for �exible wind turbine rotors.

CONCLUSIONS
The main research goal of this thesis was to investigate if load control for wind turbines
could be achieved in a data-driven manner such that the turbine-speci�c control law is
updated iteratively over time, optimising performance under different wind conditions.
From the theoretical and experimental investigations conducted, it can be concluded
that such a form of adaptive load control can be made practically tractable, if inherent
structure in the problem is exploited. The two-step convex data-driven approach of Sub-
space Predictive Repetitive Control, developed in Chapter 4, can provide a �rst approx-
imation for the structure of the ideal control law for load alleviation. A �xed-structure
control law can be iteratively updated for all operating conditions using Iterative Feed-
back Tuning for Linear Parameter-Varying Systems (IFT-LPV) developed in Chapter 5.

The theoretical and experimental research subquestions raised in the introduction
have been answered in the foregoing chapters of the thesis:

1. How can recent advances in low-variance system identi�cation be modi�ed to �t a
closed-loop, online environment?

Conventional closed-loop recursive identi�cation has been extended by using the
nuclear norm in the optimisation cost function. For recursive identi�cation, this
reduces estimate variance for low values of the forgetting factor. This is achieved
by the suppression of higher-order system Markov parameters, which are heavily
in�uenced by measurement noise, as such, the nuclear norm reduces the sensitiv-
ity of online identi�cation to noise in the data.

2. How can online system identi�cation be combined with controller synthesis to min-
imise periodic loads, with precise control over the shape and smoothness of the ac-
tuator commands?

System parameter estimates from online identi�cation has been used in Subspace
Predictive Repetitive Control (SPRC), designed speci�cally for attenuating periodic
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disturbances. For this purpose, the control law is synthesised in a lifted domain,
with the size of the lifting window equal to an integral multiple of the fundamen-
tal period of turbine rotation. Computational complexity is strongly reduced by
forcing the control input to remain within a subspace de�ned by basis vectors, for
increased control over actuator signal attributes.

3. How can the gains of low-order �xed-structure LPV controllers be optimally tuned
for LPV systems?

The direct, data-driven concept of Iterative Feedback Tuning (IFT) is extended in
Chapter 5 to apply to the LPV case. By decomposing the system matrices into
a time-varying, known, scheduling-dependent factor and a time-invariant, un-
known factor, it is possible to compensate for the perturbing effect of varying wind
conditions such that the performance gradient with respect to the controller pa-
rameters can be estimated in an unbiased manner. Structure can be exploited for
limiting the increase in the number of experiments required to estimate perfor-
mance gradients.

4. How do the control strategies discussed in Part I behave in a fully non-linear simu-
lation environment for commercial wind turbines?

The theoretical predictions of the behaviour of SPRC and IFT-LPV have been
validated for wind turbine pitch and �ap control using aeroelastic simulations.
Further, the concept of pitch control for yaw stabilisation is proposed, for an
expanded turbine load control design space.

5. How do the control strategies discussed in Part I affect the loading behaviour of a
scaled prototype of a pitch-controlled wind turbine, under controlled, wind tunnel
conditions?

An experimental setup has been designed for operation in the Open Jet Facility
wind tunnel at the Delft University of Technology. The two-step data-driven ap-
proach of SPRC has been validated, for challenging operating conditions, and for
asymmetric blade behaviour, and it is found suitable for real-time implementa-
tion. Also, on this setup, for the �rst time, individual pitch control for yaw stabili-
sation has been demonstrated experimentally.

6. How can a pitch-controlled turbine be extended to include trailing-edge �aps, and
how should the control strategies of Chapter 8 be modi�ed to achieve optimal load
control for the wind turbine?

The concept of free-�oating �aps was demonstrated on a wind turbine for the �rst
time experimentally, and, combined with pitch control, was shown to possess sig-
ni�cant load reduction potential. It was also shown that this form of a �exible rotor
is susceptible to a low wind speed form of �utter. However, stable operation and
load rejection was achieved even under varying post-�utter operating conditions.

Thus, overall, the thesis proves the potential and feasibility of the concept of iterative
data-driven control, both numerically and experimentally, via the two-step as well as the
direct approach, for the case of load control of �exible rotors with both conventional as
well as advanced actuation methods.
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RECOMMENDATIONS AND FUTURE WORK
Practical implementation of structure-exploiting data-driven rotor load controllers is
herewith feasible and yields good performance. These control approaches can be con-
sidered directly applicable, in a feedforward sense, for load control.

Of the two different data-driven approaches, it would be recommended that Sub-
space Predictive Repetitive Control (SPRC) be used in high-�delity turbine simulations,
in a variety of different representative wind conditions, including extreme wind gusts
and extreme direction changes. After extensive controller validation, the actual con-
troller implemented on the wind turbine should be a simple, low-order, parameterised
controller, the parameters of which can then be tuned in the �eld using Iterative Feed-
back Tuning for Linear Parameter-Varying systems, such that, for each turbine, the lo-
cally optimising controller within the restricted set of parameterised controllers can be
found. Since there is as yet no globally satisfactory proof of stability for these adaptive
approaches, caution has to be exercised during the iterative optimisation process.

For the new concepts of Individual Pitch Control for yaw stabilisation, and free-
�oating �aps for blade load mitigation, preliminary steps have been taken to demon-
strate the proof of concept. Both of these concepts require further investigation at a
theoretical level: experiments using data-driven control can help identify practical oper-
ating issues that require both aeroelastic and controller redesign to achieve good perfor-
mance. A few detailed recommendations for future work are explained in the following
subsections.

1. Identi�cation: System identi�cation using the nuclear norm improves the qual-
ity of the estimate of the system parameters, however, without regularisation, the
identi�cation cost function has a convex optimum for the trivial system with all
Markov parameters zero. As such, a good (data-driven) trade-off has to be made
in weighting the nuclear norm.

2. Subspace Predictive Repetitive Control (SPRC):SPRC in the evaluated case required
continuous reïdenti�cation because linear time-invariant identi�cation was no
longer adequate for the wind turbine system. With a better model structure, such
as LPV or Wiener/Hammerstein, the requirement for rapid high-accuracy identi-
�cation could be relaxed.

3. Iterative Feedback Tuning (IFT) for LPV systems: The curse of dimensionality en-
countered by full IFT-LPV is still required to be addressed by compactifying the
LPV factorisation, by using techniques like tensor regression, Gunes et al. (2015).
Another desirable extension of the approach is for the case where the scheduling
sequence is not exogenous.

4. Advanced Actuators: The dynamic modelling of free-�oating �aps has several as-
sumptions: independence of blade elements, non-rotating nature, no wake ef-
fects, and so on. These effects need to be studied and the analytical model needs
to be updated or corrected, while still maintaining its LPV nature.

Herewith, the thesis is concluded with a list of recommendations for facilitating the
translation of the theoretical and experimental work, reported herein, into a practical
implementation of an optimally-controlled `smart' �exible rotor.
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