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Cross-View Matching for Vehicle Localization
by Learning Geographically Local Representations

Zimin Xia1, Olaf Booij2, Marco Manfredi2, and Julian F. P. Kooij1

Abstract—Cross-view matching aims to learn a shared image
representation between ground-level images and satellite or aerial
images at the same locations. In robotic vehicles, matching a
camera image to a database of geo-referenced aerial imagery
can serve as a method for self-localization. However, existing
work on cross-view matching only aims at global localization,
and overlooks the easily accessible rough location estimates from
GNSS or temporal filtering. We argue that the availability of
coarse location estimates at test time should already be considered
during training. We adopt a simple but effective adaptation
to the common triplet loss, resulting in an image representa-
tion that is more discriminative within the geographically local
neighborhood, without any modifications to a baseline deep
neural network. Experiments on the CVACT dataset confirm that
the improvements generalize across spatial regions. On a new
benchmark constructed from the Oxford RobotCar dataset, we
also show generalization across recording days within the same
region. Finally, we validate that improvements on these image-
retrieval benchmarks also translate to a real-world localization
task. Using a particle filter to fuse the cross-view matching scores
of a vehicle’s camera stream with real GPS measurements, our
learned geographically local representation reduces the mean
localization error by 17% compared to the standard global
representation learned by the current state-of-the-art.

Index Terms—Localization, Representation Learning, Intelli-
gent Transportation Systems

I. INTRODUCTION

W ITH the rise of camera-equipped vehicles, visual local-
ization has become a key research topic in autonomous

driving. No matter how the map is presented, most visual local-
ization methods explicitly or implicitly match an input image
to a representation of the map. For instance, image retrieval-
based localization locates the query image by matching it to
the geo-referenced images in a shared representation space.
An increasingly popular variant is cross-view matching-based
localization [1], [2], [3], [4], [5], [6], where the query ground-
view image is compared to aerial/satellite imagery. This setting
enjoys the reliable representation and dense coverage of the
environment from the overhead view. Plus, large databases are
nowadays readily available [6], [3].
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Fig. 1: Vehicles can use cross-view matching between camera
images and satellite patches for self-localization, resulting in a
geo-global localization estimate (red dashed curve). However,
a coarse localization prior (blue curve) is often already avail-
able from other sensors or temporal integration. We exploit
this prior during training to obtain a more discriminative model
within the local area (red solid curve).

In the robotics domain, localization is traditionally addressed
using specialized sensors, e.g. Global Navigation Satellite
Systems (GNSS). Unfortunately, the horizontal positioning
error of stand-alone GNSS can reach tens of meters [7], [8]
near high rise buildings or under trees, due to the multipath
effect. In practice, the GNSS localization is often fused with
measurements from other sensors, e.g. wheel odometry or
camera, and combined with temporal filtering.

We observe, however, that there are substantial gaps in
how the localization task is addressed in mobile robotics and
autonomous driving, and the state-of-the-art image retrieval-
based localization techniques.

First, image retrieval-based localization is often treated as
a substitute for GNSS for global place recognition [9], [10],
though in practice GNSS and temporal filtering can provide a
complementary coarse location estimate [11].

Second, existing cross-view matching benchmarks [3], [12]
measure how the model generalizes to new areas, as they
split the data according to its geographic region. However,
in practice, we can have satellite images of the test region
available during training, especially for a navigation task with
geo-localized road information, which already presupposes that
the target region is known. Therefore, an equally relevant
question is how the learned representation generalizes to new
ground-level observations on different days in the same area.

Third, many cross-view image matching-based localization
methods [4], [3], [13], [14] are evaluated solely using image
retrieval metrics, such as recall@K. Such metrics do not
measure the actual localization capability, and do not reflect
that a ground image’s view does not necessarily correspond to
any satellite image’s center location, or could even coincide
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with multiple overlapping satellite images.
To address the observed gaps, we exploit the context of

cross-view matching within a localization system. Since other
components, e.g. GNSS and temporal filtering, will already
provide a coarse location estimate, we propose to train cross-
view matching to be especially discriminative within this local
region of uncertainty, rather than differentiating far-away areas
that the prior would already discard, see Figure 1.

The main contributions of our work include: (i) We demon-
strate that our previously proposed local triplet loss [15] can
improve two state-of-the-art cross-view matching methods,
and study the impact of its hyperparameters and weighting
function. (ii) We augment the well-known Oxford RobotCar
dataset with a map composed of satellite images to serve as
a new dense cross-view localization benchmark to test gener-
alization across recording days. We also test on data from the
existing CVACT benchmark, for which we propose new splits,
to test generalization across regions. On both benchmarks,
we show quantitative improvements over the state-of-the-art,
and provide qualitative results to show the difference between
encoded geo-local and geo-global features. (iii) We test our
approach in a real-world scenario where query images are
matched against satellite images distributed evenly in the target
area, and the cross-view matching-based localization is fused
in a particle filter with priors from actual GPS measurements.
We demonstrate superior localization accuracy and robustness
against the baseline cross-view matching fused with GPS.

II. RELATED WORK

Boosted by the remarkable representation power of deep
learning, learned image representations [16] are gradually
replacing the traditional hand-crafted feature descriptors [17],
[18] in image retrieval. In visual localization, a majority of
works target ground-level image matching [19], the scalability
of those methods is limited by the sparse coverage of geo-
tagged ground-level images.

The abundance of high-resolution aerial and satellite im-
agery motivates another variant, cross-view matching-based
localization, which has shown potential in city-scale or even
country-scale geo-localization in past years [6], [2], [5]. Com-
monly, this task is addressed using metric learning. CVM-Net
[1] tests different feature extractors together with NetVLAD
[16] to map input images into a shared representation space.
The final matching score for a satellite-ground image pair
is given by the distance measurement of two NetVLAD
descriptors. [3] proposes to encode the azimuth and altitude
of each pixel in the query image as extra feature channels to
include orientation information in the matching.

One of the main challenges in cross-view matching comes
from the large difference between the two views. The Spatial-
Aware Feature Aggregation (SAFA) network [4] introduces
a polar transformation pre-processing, that warps satellite
images w.r.t. ground images to reduce the domain gap. DSM
[13] adopts the same pre-processing and proposes a network
architecture to jointly estimate the orientation of the ground
image. Instead of explicitly warping the satellite image, the
CVFT framework [14] proposes a feature transport module
to convert the features from ground image towards satellite

domain inside an end-to-end network. In [20], the authors
seek another way to minimize the domain gap. They use
a conditional GAN to generate a synthetic satellite image
from the ground-level panorama and then match both to the
satellite images in the database. In contrast, [21] tackles the
ground-to-satellite discrepancy by learning to synthesize street
views from satellite inputs. VIGOR [22] addresses the situa-
tion where the ground and satellite images are not perfectly
geographically aligned, and proposes an end-to-end network to
retrieve a nearby satellite image and then regress the location
offsets.

Recently, cross-view matching methods have been employed
in vehicle localization as a replacement of GNSS [9], [10]
thanks to their decent global localization performance. In [9],
the authors first tessellate the satellite map into grids at 5m
intervals, and then localize the query ground image w.r.t. the
grids using CVM-Net [1]. A mean position error at around
20m is achieved by combining the cross-view matching with
visual odometry using a particle filter.

Still, all these approaches focus on the challenge of learning
globally discriminative localization features, without consider-
ing in the training that, in practice, a good localization prior
can be obtained from GNSS and temporal filtering.

III. METHODOLOGY

We start by reviewing the task of cross-view matching and
the triplet loss used in the baseline and related work. After
this, our geo-local loss is introduced. Finally, we discuss how
we combine cross-view matching and GNSS measurements in
a particle filter for online vehicle localization.

A. Cross-view matching task

Given a ground-level query image Gq, the objective of cross-
view matching is to select the closest satellite image from the
target dataset S = (S1;S2; � � �). Each satellite image Si here
covers a fixed-sized square area of the Earth’s surface, and
the 2D geographic location p(Si) 2 R2 of the center of the
square is known. The matching is done in a representation
space, where the satellite images and query are mapped into
normalized image descriptors using mapping function f (�) and
g(�) respectively. The descriptor of the best-matched satellite
image should have the smallest squared Euclidean distance to
the descriptor of the query.

B. Baseline architecture and geo-global triplet loss

While our approach is generic, we will use the state-
of-the-art SAFA method [4] as our baseline. As shown in
Figure 2, the mapping functions f (�) and g(�) in SAFA are
implemented as a 16-layer VGG feature extractor and 8 sepa-
rate spatial-aware feature aggregation modules [4]. They map
input images to 4096-dimensional descriptors. Two network
branches without weight-sharing are trained on image pairs
X = f(S1;G1);(S2;G2); � � �g using a soft-margin triplet loss
for two related matching objectives,

l1(i; j) = log(1 + eg(di;i�di; j)); (satellite-to-ground) (1)

l2(i; j) = log(1 + eg(di;i�d j;i)): (ground-to-satellite) (2)
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Fig. 2: The architecture of our baseline cross-view matching
method, SAFA [4].

Here di; j = jj f (Si)�g(G j)jj22 is the squared Euclidean distance
between the descriptors, and g is a hyperparameter to adjust the
gradient of the loss. The final loss is the average of l1(i; j) and
l2(i; j). For a minibatch B�X of N pairs, the loss terms can be
efficiently computed by performing the forward passes f (Si)
and g(Gi) only once for all N samples, and then just computing
N2 squared Euclidean distances di; j of all combinations i; j.

An important aspect of the baseline is that it selects
minibatches from the training data by randomly shuffling all
samples in each epoch, thus any two pairs are equally likely to
co-occur in the batches, independently from their geographic
proximity. This triplet loss thus learns a globally discriminative
representation.

C. Training with a geo-local triplet loss

Vehicle localization provides at every time step a coarse
localization estimate from fusing and filtering past sensor
measurements. We therefore seek to exploit knowledge of a
coarse prior already during training, and will consider two
adaptations to the baseline loss, namely geo-distance weighted
loss terms and local minibatches [15].

1) Geo-distance weighted loss terms: The triplet losses of
Eq. (1) and (2) are multiplied with a weight wgeo(i; j) that
scales their contribution based on the Euclidean distance di; j =
jjp(Si)-p(S j)jj2 (in meters) between their geographic positions
p(Si) and p(S j) [15],

wgeo(i; j) = pr(di; j) � (1� e�di; j
2=(2s2

geo)): (3)

The first term pr(di; j) models a prior on the coarse local-
ization error, which is assumed to be maximally r meters.
Importantly, it should force training to ignore triplets with
di; j > r in favor of nearby ones. We will consider two options
for pr. Option 1 uses a step function to weigh all triplets
1 if di; j � r and 0 otherwise [15], see the green dotted line
in Figure 3. Option 2 uses instead a Gaussian function with
std.dev. r=3 such that the weight smoothly drops to (nearly)
zero at r meters, see red dotted line in Figure 3. The second
term is added to down-weight the loss on geographically
nearby samples to prevent the model from treating two nearly
identical satellite images, e.g. with 1-meter distance, one as
positive and the other one as negative. The hyperparameter
sgeo controls the smoothness of this weight reduction.

The full weight function wgeo(i; j) is thus the product of
both terms, and scaled such that the weight at its maximum is
1, see the green/red solid lines in Figure 3 for the final weight
function with a step/Gaussian decay.

Fig. 3: The weight decay options (dashed) and resulting weight
functions wgeo(i; j) (solid), here shown as an example of r =
50m and sgeo = 10m.

2) Local minibatches: Using the geo-distance weighted
loss term, most randomly picked pairs from the training data
would have zero weight as they are likely to be at distant
geographic locations, especially when the mapped area is large.
We therefore construct local minibatches that only contain
pairs from nearby geographic locations, using the following
procedure:

1) pre-compute before training for each pair Pi = (Si;Gi) the
local neighborhood of pairs within a geographic radius
of r meters, i.e.

Nr(i) = f(S j;G j) j i 6= j^di; j � rg � X : (4)

2) At the start of an epoch, create a fresh set X̃ containing
all training samples, X̃  X , representing the still
unused samples in this epoch.

3) To create a new minibatch B of size N, first randomly
pick a pair Pi from pool X̃ , and then uniformly pick
without replacement the remaining N�1 samples from
the neighborhood set Nr(i). All picked samples are
removed from the epoch’s pool, X̃  X̃ =B. Once X̃
is empty, a new epoch is started.

Since all pairs j in the batch are by definition within distance
r from the first sampled pair i, two samples j and j0 in the
minibatch can be at most a distance of 2r meters apart. This
local minibatch formulation greatly increases the chance that
many pairs in the minibatch are also within each other’s r-
meter radius, and thus largely reduces the chance of near-
zero geo-distance weighted loss terms. Note that overall each
pair occurs in at most one minibatch per epoch. Pairs without
enough neighbors will not be used.

Note that r is a measure of the coarse prior’s maximum
uncertainty, thus it is not an optimizable hyperparameter but
given by the targeted localization use-case. To avoid mini-
batches with too few samples, the selected training data should
contain at least N� 1 neighbors within a radius of r of each
sample.

D. Particle filter-based localization
We here describe how online vehicle localization could

use cross-view matching at test time, and fuse it with real-
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world GNSS measurements in a temporal filter, as opposed
to replacing the GNSS (e.g. [9], [10]). Since the underlying
distribution of the localization results will be multi-modal,
we capture this distribution by constructing a particle filter-
based localization pipeline [23] that combines the cross-view
matching and GPS positioning. We assume the availability of
a satellite images Sgrid which cover the target area centered
around points on a dense regular grid.

Each particle m has a 4D state vector x[m] containing Easting,
Northing, forward velocity, and yaw in the map’s coordinate
frame. Let ct denote the set of M = 2000 particles at step t. At
t = 0, all particles are initialized at the GPS measured location
with random yaw between �180� and 180� and a random
velocity between 0 and 5m=s. For t > 0, a prediction is made
for each particle ct�1 using a fixed velocity motion model with
Gaussian acceleration and steering noise. The particles are then
weighted by the measurement model, and finally resampled
proportional to weight to obtain ct . As filter output, we take
the median of each element in the state vector over all particles
in ct .

The measurement model weighs each particle xt
[m] accord-

ing to the query image Gq;t and the raw GNSS positioning
p(Gq;t). Assume that the GPS uncertainty follows a Gaussian
distribution with known standard deviation sgps. We use 3sgps
as a confidence threshold of this distribution, and select from
the database the satellite image Slocal � Sgrid within the
threshold, i.e. a 2D circle centered at p(Gq;t) with a radius of
3sgps meters. Particles outside this circle are directly discarded,
and only satellite images S j 2 Slocal are compared to Gq;t to
compute their cross-view matching score e�d j;q . Given p(m),
the Easting and Northing location of xt

[m], let e�dm;q be the geo-
distance-based bi-linear interpolation of the matching scores
for the 4 satellite images at the grid points around p(m). The
particle’s weight is then,

wt
[m] =

e�dm;q

å j2Slocal
e�d j;q

� e�jjp(m)�p(Gq;t )jj22=(2sgps
2): (5)

Here the first term computes the probability of the query
being located at p(m) as given by cross-view matching. This
probability equals the matching score at p(m) over the sum of
scores between the query and all satellite images in Slocal . The
second term in the equation measures the likelihood of p(m)
being correct location according to the raw GPS measurement.
Eq. (5) thus presents a straightforward sensor fusion of the
visual cross-view matching and GNSS localization measure-
ments, and is applicable irrespective if the matching network
is trained geo-local or geo-global.

Unfortunately, GPS measurements inevitably carry huge
errors in extreme cases, for example when no satellites are
in sight. Motivated by the outlier rejection found in [24], [23],
we handle such situations by not using the GPS measured
location at step t when this is over routlier meters apart from
the GPS measured location at step t�1 or if there is no valid
GPS measurement at this step. Instead of the raw GPS, we
then use the estimated location at step t � 1 as p(Gq;t). We
set the routlier to 3 �sgps +vt�1 �Dt, where vt�1 is the estimated
velocity at previous step and Dt is the time interval.

IV. EXPERIMENTS

We compare our geo-local representation learning to the
standard geo-global representation learning [4] in two scenar-
ios, namely, generalization across regions and generalization
across time. Besides quantitative results on two retrieval bench-
marks, we also provide a qualitative view of the uncertainty
of the localization and extracted features. Lastly, we validate
that the benefits of our cross-view matching approach on the
retrieval benchmarks also translates to a realistic localization
task using the particle filter and real GPS measurement data.

A. Datasets

Here we discuss the two image retrieval benchmarks.
While ideally the training data is collected according to
the application-specific r (see Sec. III-C2), to reuse existing
datasets in our experiments we instead assume a suitable target
r value by considering each dataset’s sample density.

CVACT Dataset: CVACT [3] is a large cross-view dataset
with GPS footprint for image retrieval. It contains 35532
ground panorama and satellite image pairs, denoted as
CVACT train, and 92802 pairs as CVACT test. Notably,
the validation set CVACT val of 8884 pairs is a subset of
CVACT test, and [4] reported their quantitative results on the
CVACT val rather than CVACT test. We will not follow the
data split in [3],[4], because CVACT val is rather sparse, and
it trivializes our task formulation of localization using a prior
too much as it discarded all negative samples. Furthermore,
we follow the target use-case where all satellite images are
available during training and split only the ground images into
training, validation, and test set. In total, there are 128334
satellite images, and the number of ground images is 86469,
21249, and 20616 in training, validation, and test set respec-
tively. The data is relatively sparse: Using a localization prior
of r = 100m, most samples have between 25 and 100 other
pairs in their local neighborhood.

Oxford RobotCar Dataset: Oxford RobotCar [25],[26] is
a dataset targeted at autonomous driving and contains images,
raw GPS recordings, RTK measurements, etc., under different
lighting and weather conditions collected in different times of
the day and over a year in multiple traversals in the Oxford
region.

The dataset has not been used for cross-view matching-based
localization, as it does not contain satellite/aerial images. To
construct a novel benchmark, we collected satellite images
at zoom level 20 (� 0:0924m per pixel) with the Google
Maps Static API for each ground-level front-camera image.
The satellite images were cropped into 600�600 pixel, which
corresponds to a 55:44m � 55:44m ground area, and the
ground-level images are cropped to exclude visible parts of
the ego-vehicle.

For now, we do not target the most extreme lighting and
weather conditions and select the traversals recorded in dif-
ferent daytime and days with the label “sun”, “overcast” or
“clouds” and which contain both raw GPS and accurate RTK
localization measurements. In the dataset, the front-viewing
images are taken at 16Hz. To make sure the consecutive
ground images do not look too similar in appearance, we
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(a) (b) (c)

Fig. 4: Three sample pairs in the proposed Oxford RobotCar
cross-view localization benchmark to highlight some local and
global differences. (a) and (b) are 5m apart, (b) and (c) are
20m apart. Ground images are from different traversals and
recording days, resulting in variations in cars, vegetation and
lighting conditions.

subsample the images to make sure there is at least 5m
between two consecutive frames in each traversal. Finally,
we acquire the corresponding satellite images centered at the
ground truth locations to build the ground-to-satellite pairs. In
total, we obtain 23854 pairs from 15 traversals. We always
keep all the satellite images and use the ground image from
11 traversals as the training set (17067), 1 traversal as the
validation set (1698), 3 traversals as the test set (5089). Our
chosen test traversals are collected in Summer (T.1,2) and
Winter (T.3) with labels “overcast, roadworks” (T.1), “sun”
(T.2), and “overcast” (T.3) to include variations in season,
weather, and road conditions from the training set. For the
same season and weather conditions, the test traversals are
collected in later time-of-day than the training recordings. In
this dense dataset, almost all images have more than 200 pairs
in a r = 50m neighborhood. Some example ground and satellite
pairs are shown in Figure 4.

In addition we also collect satellite images to cover the
Oxford region at a grid with 5m interval, similar to [9]. This
data will be used as the database Sgrid for the particle filter of
Sec. III-D to simulate a real-world localization task with the
dataset’s raw GPS and front-camera video stream.

B. Network architecture and implementation details

To implement the baseline SAFA method [4] we use the
code released by its authors. For our method, we keep the
network architecture equal and only replace the loss with our
geo-distance weighted loss and train the model using local
minibatches.1 Both models are trained on our proposed data
splits following the same procedure as in [4]: The VGG part is
pre-trained on Imagenet [27], Adam [28] is used as optimizer
with a learning rate of 10�5 on the CVACT dataset and 5 �10�5

1Our data (with an overview of time, season, label of cho-
sen traversals) and code is available at https://github.com/tudelft-iv/
Visual-Localization-with-Spatial-Prior

on the Oxford RobotCar dataset. In the triplet losses, g = 10,
and the dropout keep rate is set to 0:8. On the traversal-based
split Oxford RobotCar dataset, an additional dropblock [29]
with a block size of 11 and keep probability of 0.8 is used to
reduce overfitting.

On the CVACT dataset where the ground images are 360�

panoramic views, we use the polar transformed satellite images
[4]. Due to its sparseness, the only correct match for a query
ground image is the satellite patch centered the exact same
location. On the dense Oxford RobotCar dataset, we observe
that defining the training objective as matching the query to
the satellite image at the exact location is too strict and the
validation loss struggles to decrease. Therefore for a query
ground image we select a random satellite image at a small
geospatial offset of a maximum of 5m, which is the same
distance used to subsample camera frames (see Sec. IV-A)
As additional data augmentation, the satellite patches are also
rotated by a random multiple of 90�.

C. Evaluation metrics

We will consider two aspects in our evaluation, namely im-
age retrieval performance on the benchmarks, and localization
performance for the particle filter.

For the retrieval, we assume at test time a known (worst-
case) prior localization error of radius r, and thus directly
discard for both methods any false negatives beyond r meters
of the true location. Still, for reference, we also review the
case when no such prior would be available (i.e. an infinite test
radius). The recall@1 and recall@x meters are our quantitative
metrics. They measure how often the top-1 retrieved satellite
image is located at the exact location of, or less than x meters
away from, the ground truth location. Although we introduced
a maximal 5m geospatial offset in selecting matched satellite
images for each query during training, we still report recall
with x < 5m to give an overview of how top-1 retrieved satellite
images distribute during testing.

As motivated in Sec I, recall does not reflect a model’s
localization performance. In the particle filter experiments,
we instead measure the Euclidean localization error in meters
between the true location and the median particle location
during each traversal, and report the mean, median, 90%-
quantile, 95%-quantile, and 99%-quantile error.

D. Effect of key hyperparameters

We test the impact of the three key hyperparameters: batch
size N, weight decay dr, and smoothness sgeo.

We experimented with batch sizes N = 4;16;64. The batch
size directly influences the training stability as it defines
how many negative pairs are used when one positive pair
is presented. On the Oxford RobotCar dataset, the training
“collapsed” (i.e. descriptors are filled with only zeros) with
small batches N = 4 / 16, around epoch 4 / 421 for our
model, and around epoch 20 / 712 for the baseline. We find
this behavior is due to values in the image descriptor (before
normalization) exceeding numerical limits. Adding extra regu-
larization does not prevent this. However, when N = 64, those
values are kept under a much smaller magnitude. We reckon

https://github.com/tudelft-iv/Visual-Localization-with-Spatial-Prior
https://github.com/tudelft-iv/Visual-Localization-with-Spatial-Prior
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that when the batch size is too small with limited diversity in
the satellite images, there is a risk that only maximizing the
similarity between positive pairs is enough to push negative
samples away in representation space, and the network will put
very large weights on such similarities. Indeed, on the sparse
but diverse CVACT dataset training does not collapse with
N = 4 or N = 16 for either model. Unfortunately for N = 64
many locations will not have sufficient neighbors to fill the
batch. We therefore keep N = 16 for CVACT, and N = 64
for Oxford RobotCar. In general, since r upper-bounds N, a
small r requires dense training data to avoid potential training
instability.

To choose between step decay and Gaussian decay for pr,
we kept other hyperparameters the same and trained our model
with different decay options on the Oxford RobotCar dataset.
The model trained with step decay surpasses the model trained
with Gaussian decay by a large margin of 16.9% in recall@5m.
We note that, for the same r, the Gaussian decay heavily down-
weights far away samples, however these contribute greatly to
the validation performance. We will therefore use wgeo(i; j)
with the step decay in the later experiments.

We also test sgeo = 0; 5; 10; 15 meters, and find validation
recall@5m is 75.5, 79.9, 82.5, 81.2 percent respectively on
the Oxford RobotCar dataset (sgeo = 0m indicates no down-
weighting of nearby negative samples). Clearly, in this dataset
where images are densely distributed, down-weighting the
nearby negatives samples is important to learn a good rep-
resentation. On the sparse CVACT dataset, we observe that
sgeo does not influence performance much. For the remainder,
we fix sgeo = 10m for both datasets.

E. Generalization across regions
The experiment on the CVACT dataset shows how well the

learned representation generalizes to unseen ground images in
new areas. Since locations are more sparsely distributed, we
here use r = 100m as a weak hypothetical localization prior to
train our model. To test the generality of geo-local training, we
directly apply it to DSM [13] in addition to our regular SAFA
baseline without further geo-local loss hyperparameter-tuning.
All models are trained for 100 epochs, and we keep the best
ones according to validation split performance.

We observe that geo-local models converge faster than
the baselines even though the geo-distance weighted loss
assigns zero weights to some triplets in the local minibatches.
Evaluation results are reported on the test split in Table I.
Providing the same localization prior to testing, our mod-
els improved the recall@1 by around 12.3% (74.0 vs 65.9
percent) for SAFA, and around 3.2% (70.4 vs 68.2 percent)
for DSM. Meanwhile, our models also beat both baselines
by a considerable margin in terms of the recall@5m and
recall@10m. Importantly, these results confirm that our geo-
local representation does not capture features that identify
the local training region, which would not generalize, but
captures features that discriminate nearby locations, which
does generalize. Furthermore, the improvements of geo-local
method generalize over different baselines, without the need
for any baseline-specific hyperparameter tuning. As expected,
globally (i.e. with ¥ test radius) our models perform worse

than the baselines, as it violates the prior assumption. Still,
in real-world applications, we do expect a coarse localization
estimate to be present to benefit from geo-local features.

Recall@ 1 1 5m 10m
Test Radius 100m ¥ 100m 100m
SAFA[4] (%) 65.9 59.9 68.8 78.2
SAFA-local (%) 74.0 55.8 77.5 85.4
DSM[13] (%) 68.2 64.0 71.5 80.4
DSM-local (%) 70.4 56.6 73.9 82.0

TABLE I: Evaluation on CVACT Test Set (best in bold). The
term “local” means the model trained with our geo-local loss.

F. Generalization across time

On the Oxford RobotCar dataset, we test how well the
learned representation generalizes to new ground images col-
lected on other dates and different times of the day in the same
region. Since the images are distributed much denser here, we
use a more realistic hypothetical localization prior, r = 50m.
The best model is kept according to the validation performance
in 1000 epochs of training.

Recall@ 1 1m 3m 5m 5m
Test Radius 50m 50m 50m 50m ¥
T.1 baseline[4] (%) 7.1 26.3 75.5 92.3 90.6
T.1 our model (%) 9.7 38.4 84.5 96.0 64.3
T.2 baseline[4] (%) 5.3 19.5 59.4 81.9 76.1
T.2 our model (%) 8.3 29.6 71.8 85.9 43.0
T.3 baseline[4] (%) 5.7 21.4 62.0 83.4 79.5
T.3 our model (%) 8.4 28.9 77.2 88.9 53.0
Mean baseline[4] (%) 6.0 22.4 65.6 85.9 82.1
Mean our model (%) 8.8 32.3 77.8 90.3 53.4

TABLE II: Evaluation on Oxford RobotCar Test Sets (best
results in bold). T.N stands for the Nth testing traversal, and
the mean recall over 3 traversals is in the bottom row.

The quantitative test results of the selected model are sum-
marized in Table II. When the localization prior is available,
our learned geo-local representation consistently outperforms
the baseline on all test traversals. For completeness, we note
again that the baseline outperforms our model for global
localization. Overall, our approach generalizes well across
time-of-day and different days, and it does not overfit on the
training ground images or specific time and weather conditions,
which is important as in practice localization in the target
region will be done on different days.

G. Qualitative results

In this section, we try to illustrate how our model performs
differently from the baseline. To provide a qualitative view
of the model behavior, we visualize the localization heat map
using the similarity measurement between a test query and
all nearby satellite images. On both CVACT, Figure 5a, and
Oxford RobotCar, Figure 5b, our model outputs a sharper
localization result inside the prior area, while the baseline
has more uncertainty about the exact location along the road.
Unlike the baseline, our method also produces other high-
probability peaks outside the circle. This is because it does
not distinguish distinct areas, and similar local spatial layouts
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(a) Zoomed out/in views of localization heat map on CVACT dataset
(left: ours, right: baseline)

(b) Zoomed out/in views of localization heat map on Oxford RobotCar
dataset (left: ours, right: baseline)

Fig. 5: Examples of localization heat maps on (a) CVACT and
(b) Oxford RobotCar dataset. Each dot represents a satellite
image with the darkness proportional to the similarity to the
query image. The ground truth location of the query is indi-
cated by the cross. The circle indicates the local neighborhood
with radius r = 100m in (a) and r = 50m in (b). The zoomed-
out image shows the surrounding 1km�1km area in (a) and
400m� 400m area in (b). On both datasets, our approach
results in a single peak within the local neighborhood, while
the baseline has more uncertainty.

(a) Input (b) Ours (c) Baseline

Fig. 6: Visualized back-propagated encoded feature attention
maps for a ground image in CVACT dataset (first row) and
Oxford RobotCar dataset (second row).

may reoccur elsewhere. This trade-off comes from the geo-
graphically local representation our model uses.

We can also verify this by comparing the encoded image
features of both approaches. Similar to [4], we back-propagate
the spatial embedding maps to the input image to show
where the model extracts features [30], see Figure 6. On the
CVACT dataset our model pays attention to vegetation and
streetlights. The baseline model, on the other hand, ignores
these objects and focuses on the road structure. On the Oxford
RobotCar dataset our model looks for traffic lights and building
facades, while the baseline mostly looks at the canopies and
building roofs. The objects our model pays attention to are
repeated at many different places, nevertheless they are useful
in disambiguating other images along this road. The baseline
focuses on fewer environmental details, which are sufficiently
discriminative globally but not locally.

H. Temporal filtering

Finally, we validate that the better performance of our model
in the discussed benchmarks also translates to actual gains in
a real-world localization task using actual GPS measurements
and temporal filtering priors, as opposed to hypothetical priors.
The localization pipeline is tested on the Oxford RobotCar
dataset with a update rate of 1.6Hz, where every 10th image
from the unsampled test traversals is used as our ground-
level query and being matched to regularly distributed satellite
images. We do not include additional sensors in the temporal
filter, such as wheel odometry and IMU, to keep the amount of
tuneable system configurations and parameters to a minimum.

The quality of the GPS measurements controls the hyper-
parameter sgps. Unfortunately, the GPS error is often unpre-
dictable and can vary significantly. For example, the mean error
of the raw GPS positioning on Oxford RobotCar test traversals
is around 3.7m, but reaches 13m on the validation traversal.
In our experiment, we set sgps to 10m.

Localization error(m) mean 50% 90% 95% 99%
T.1 GPS 4.66 3.93 8.24 10.73 20.89
T.1 baseline[4]+GPS 3.23 2.63 5.71 7.27 14.91
T.1 ours+GPS 2.65 2.12 4.70 5.91 11.00
T.2 GPS 4.50 4.00 7.48 9.28 19.19
T.2 baseline[4]+GPS 3.19 2.71 5.58 7.02 11.90
T.2 ours+GPS 2.73 2.46 4.71 5.73 8.12
T.3 GPS 4.64 3.92 8.76 10.64 20.51
T.3 baseline[4]+GPS 3.53 2.72 6.69 8.30 14.69
T.3 ours+GPS 2.94 2.49 5.46 6.92 10.80
Mean GPS 4.60 3.95 8.16 10.22 20.20
Mean baseline[4]+GPS 3.32 2.69 5.99 7.53 13.83
Mean ours+GPS 2.77 2.36 4.96 6.19 9.97

TABLE III: Particle filter localization error (mean and error at
x%-quantile) on Oxford RobotCar test traversals. Best results
in bold. “baseline+GPS” and “ours+GPS” use both the cross-
view matching module and GPS. “GPS” is without any cross-
view matching.

(a) Localization result (ours) (b) Localization result (baseline)

Fig. 7: Particle filter-based localization. Each purple dot (par-
ticle) has a darkness (re-sampling weight). The cyan cross
and black circle shows the raw GPS positioning and its 95%
confidence interval. The black triangle marks the ground truth
location on the full trajectory (blue line). The green (red) star
is the localization result by using our model (the baseline) in
the pipeline.
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The quantitative results2 over 3 test traversals are summa-
rized in Table III. Temporal filtering of raw GPS alone in the
particle filter achieves an average error of � 5m. Incorporating
the cross-view matching improves localization significantly,
especially when GPS produces spurious large outliers, as seen
from the 99%-quantile error. An example is shown in Figure 7.
Importantly, our model delivers overall the best accuracy and
robustness, and reduces mean (2.77 vs 3.32m) by 17% and
99%-quantile error (9.97 vs 13.83m) by 28% compared to the
baseline.

The superiority of our method together with GPS and
particle filter comes from the sharp cross-view matching result.
Most of the time, using GPS is enough for global coarse
localization, and adding another coarse estimate from global
cross-view matching does not gain much in localization ac-
curacy. In contrast, our method effectively refines the GPS
positioning within GPS-uncertain areas. Extreme erroneous
GPS measurements are filtered out by the outlier rejection
module in the temporal filter, ensuring a reasonable prior is
obtained from previous time instances.

Note that, in other regions where there are many high rising
buildings, a larger sgps could give better localization results.
However, we observed on our validation traversal that also
for different sgps values in the range from 5m to 30m our
model still outperforms the baseline, and does not influence
our conclusion here.

V. CONCLUSIONS

In this work, we embedded the cross-view matching into
a workable real-world localization system by considering the
prior from other localization components in the training.
We quantitatively and qualitatively showed the advantage of
geo-local training over geo-global training on state-of-the-art
methods. A 12.3% improvement of the recall@1 was achieved
on the CVACT dataset. On the Oxford RobotCar dataset, we
improved the recall@5m from 85.9% to 90.3%. Besides, we
also demonstrated that the increase in cross-view matching
capability translates to 17% lower mean and 28% lower 99%-
quantile localization error when real GPS measurements and
cross-view matching scores are fused in a particle filter-
based localization pipeline. More importantly, all noticeable
quantitative benefits come from a simple to implement and
generic adaptation. Future work can test how our model gen-
eralizes across day-and-night, weather, and season by strictly
control each factor in the training and test split with a more
comprehensive dataset.
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