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ABSTRACT
Assessing uncertainties in measurements must become a standard practice in the field of urban drainage and
stormwater management. This chapter presents three standard methods to estimate uncertainties: the Type A
method (repeated measurements), the Type B method (law of propagation of uncertainties) and the MC
method (Monte Carlo method). Each method is described with its fundamental principles and equations,
various examples are presented in detail and Matlab® codes are given to facilitate the calculations for
routine applications. An advanced method to account for partial autocorrelation in time series is
presented. Lastly, typical orders of magnitude of standard uncertainties for usual sensors used in urban
drainage and stormwater management are given.

Keywords: Coverage interval, error, guide for uncertainty in measurements, law of propagation of
uncertainties, Monte Carlo method, standard uncertainty.

© 2021 The Editors. This is an Open Access book chapter distributed under the terms of the Creative Commons Attribution Licence (CC BY-
NC-ND 4.0), which permits copying and redistribution for noncommercial purposes with no derivatives, provided the original work is properly
cited (https://creativecommons.org/licenses/by-nc-nd/4.0/). This does not affect the rights licensed or assigned from any third party in this
book. The chapter is from the bookMetrology in UrbanDrainage and Stormwater Management: Plug and Pray, Jean-Luc Bertrand-Krajewski,
Francois Clemens-Meyer, Mathieu Lepot (Eds.).
doi: 10.2166/9781789060119_0263

Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/919174/9781789060119_0263.pdf
by TECHNISCHE UNIVERSITEIT DELFT user
on 01 September 2021

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


SYMBOLS

a low boundary of an interval or index of the iterative calculation of � or numerical coefficient
A matrix containing data related to constant quantities
b high boundary of an interval or vector of coefficients bi or numerical coefficient
bi regression coefficients
B channel width (m)
Bc notch width (m)
Be effective width (m)
c integer value used to calculate �
ci sensitivity coefficient related to the quantity xi in the measurement function f
Cd discharge coefficient (-)
COV covariance matrix
dlow distance between low boundaries of Type B and MCM coverage intervals
dhigh distance between high boundaries of Type B and MCM coverage intervals
D pipe diameter (m)
efs numerical factor to calculate V from Vfs (-)
emax numerical factor to calculate V from Vmax (-)
f function of quantities xi representing the measurement process
fc as index: full autocorrelation
Fy numerical coefficient for velocity-area methods
Fz numerical coefficient for velocity-area methods
g gravity (m/s2)
h water level (m)
he effective head (m)
hp crest height (m)
i index
I slope of a channel or a pipe (m/m)
Iest estimated rainfall intensity (mm/h)
Im measured rainfall intensity (mm/h)
Ir reference rainfall intensity (mm/h)
IC95min shortest 95% coverage interval calculated with the Monte Carlo method
j index
J smallest integer greater than or equal to 100/�
k coverage factor
K Manning-Strickler coefficient (m1/3/s)
Kb correction factor in the calculation of QRW (-)
Kh correction factor in the calculation of QRW (-)
l integer value used to calculate �
L distance upstream a weir where the water level is measured (m)
m mean value of a normal distribution or number of quantities in the matrix Z
M number of Monte Carlo simulations
MC as index: refers to the Monte Carlo method
n number of repeated measurements in the Type A method
nc as index: no autocorrelation
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ndig number of significant digits used to calculate �
N number of quantities xi used in the function f
N(m,s) normal (Gaussian) probability distribution with mean value m and standard deviation s
p number of quantities in the matrix A
pc as index: partial autocorrelation
q integer used for estimating the narrowest coverage interval in Monte Carlo simulations
Q discharge (m3/s)
Qc discharge in a circular pipe (m3/s)
QMS discharge calculated with the Manning-Strickler formula (m3/s)
Qp perimeter flow for velocity-area methods (m)
QRW discharge over a rectangular weir (m3/s)
r coefficient of correlation
r as index: index of Monte Carlo simulations
r(xi, xj) coefficient of correlation of xi and xj
rij coefficient of correlation of xi and xj
Rc circular pipe radius (m)
Rh hydraulic radius (m)
s(y) standard deviation of y
S wet cross section (m2)
t Student t value
TB as index: refers to the Type B method
Trap(a,b,�) trapezoidal probability distribution in the interval [a,b] with the coefficient �
Tri(a,b) triangular probability distribution in the interval [a,b]
u(xi, xj) covariance of xi and xj
u(Y ) standard uncertainty of Y
u*(Y ) relative standard uncertainty of Y
U(a,b) uniform probability distribution in the interval [a,b]
U(Y ) enlarged uncertainty of Y
v flow velocity at a given position within a wet cross section (m/s)
V cross section mean flow velocity (m/s)
Vd daily volume (m3)
Vfs free surface flow velocity (m/s)
Vmax maximum flow velocity (m/s)
xi quantities used in the measurement function f to calculate y
Xi random variable corresponding to the quantity xi
�y mean value of y
Y measured or calculated quantity
Y�,low low boundary of a coverage interval for Y calculated by the Monte Carlo method for a level of

confidence �
Y�,high high boundary of a coverage interval for Y calculated by the Monte Carlo method for a level of

confidence �
Z matrix containing data related to time varying quantities (time series)
� level of confidence
� numerical coefficient of a trapezoidal probability distribution
� tolerance
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�t time step (s)
�i finite difference used in the 2nd order approximation of ci
� degree of freedom
�eff effective degree of freedom

8.1 INTRODUCTION
Why is uncertainty assessment important and should be systematically done? In urban drainage and
stormwater management (UDSM), like in numerous other professional fields and disciplines,
information, knowledge, performance analysis, modelling, scenario analysis, planning and decision
making are based on or use measurement results. However, measurements are never perfect and cannot
be carried out without uncertainties. Consequently, ‘when reporting the result of a measurement of a
physical quantity, it is obligatory that some quantitative indication of the quality of the result be given so
that those who use it can assess its reliability. Without such an indication, measurement results cannot be
compared, either among themselves or with reference values given in a specification or standard. […]
When all of the known or suspected components of error have been evaluated and the appropriate
corrections have been applied, there still remains an uncertainty about the correctness of the stated result,
that is, a doubt about how well the result of the measurement represents the value of the quantity being
measured’ (ISO, 2008b, p. vii).

Uncertainty assessment (UA) should thus become a standard professional practice in UDSM, aiming to
comply with laws and regulations, quality control requirements, expected professional skills, basic and
applied research needs, etc. This chapter aims to provide information, concepts, methods, tools, and
detailed examples facilitating knowledge transfer and implementation of uncertainty assessment.
However, as UA is not always obvious and requires some training, ‘critical thinking, intellectual honesty
and professional skills’ (ISO, 2008b, p. 8) remain fundamental.

This chapter is organized in three main sections:

• Section 8.2 presents the methods and international standards for UA, with their principles, conditions
of application, step by step explanations and basic examples of application.

• Section 8.3 provides some additional examples for various aspects of UDSM.
• Section 8.4 gives complements including in situ uncertainties and some reference values for typical

sensors and measurement methods used in UDSM.

BOX 0: EXAMPLES WITH MATLAB®

Detailed examples of calculations with Matlab® are shown in dedicated boxes throughout this chapter:
the instructions and codes are written with the Matlab® syntax and courier new font to distinguish
them from the rest of the text. The instructions and code lines can be copied-pasted directly by the
reader who would like to replicate them for training or to adapt them to his/her own needs.

Numerical results in boxes are usually given with 4 digits (format short). In the main text,
numerical values are rounded to the number of significant digits. It is also important to note, for
readers who would like to reproduce them, that all calculations have been run without rounding in
the successive steps.

Matlab® codes and associated data csv files are available for download at https://doi.org/10.
2166/9781789060102.
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8.2 INTERNATIONAL STANDARDS AND METHODS FOR
UNCERTAINTYASSESSMENT
8.2.1 Introduction and common rules of application
The first internationally unified frame for UA in measurements was published in 1993 as an ISO
(International Organization for Standardization) guide entitled GUM – Guide for Uncertainty in
Measurements (ISO, 1993), re-published with revisions in 1995 and also as a European standard in
1999 (CEN, 1999). It was later on revised, adapted and completed as parts of a new Guide for
Uncertainty in Measurement, abbreviated hereafter as the ISO Guide 98, elaborated at international
level by the JCGM – Joint Committee for Guides in Metrology – convened by the Bureau
International des Poids et Mesures (BIPM), the International Electrotechnical Commission (IEC), the
International Organization for Standardization (ISO), and the International Organization of Legal
Metrology (OIML). The Supplement 1 published in 2008 introduces the Monte Carlo method for
uncertainty assessment.

The ISO Guide 98 is based on a statistical approach to estimate uncertainties in measurements, in
agreement with definitions given in Chapter 12.

In this chapter, we refer to the following parts of the ISO Guide 98:

• As general introduction for all concepts and methods:
ISO (2009a). ISO/IEC Guide 98-1:2009(E) Uncertainty of measurement – Part 1: Introduction to the

expression of the uncertainty in measurement. Geneva (Switzerland): ISO, September 2009,
32 p.

• As Guide for uncertainty in measurements method (abbreviated as GUM):
ISO (2008a). ISO/IEC Guide 98-3:2008(E) Uncertainty of measurement – Part 3: Guide to the

expression of uncertainty in measurement (GUM: 1995). Geneva (Switzerland): ISO,
December 2008, 130 p.

• As Monte Carlo method (abbreviated as MCM):
ISO (2008b). ISO/IEC Guide 98-3/Suppl.1:2008(E) Uncertainty of measurement – Part 3:

Guide to the expression of uncertainty in measurement (GUM: 1995) Supplement 1:
Propagation of distributions using a Monte Carlo method. Geneva (Switzerland): ISO,
December 2008, 98 p. and

ISO (2009b). ISO/IEC Guide 98-3/S1/AC1:2009(E) Uncertainty of measurement – Part 3: Guide to
the expression of uncertainty in measurement (GUM: 1995), Supplement 1: Propagation of
distributions using a Monte Carlo method, Technical corrigendum 1. Geneva (Switzerland):
ISO, May 2009, 2 p.

GUM andMCMmay also be referred to as the ‘propagation of uncertainties’method and the ‘propagation of
distributions’ method, respectively.

This chapter does not reproduce the full content of the above detailed standards. A brief introduction is
presented below in Section 8.2, and additional examples are given in Section 8.3.

For any measured or calculated quantity Y, there are three steps in UA:

(1) Estimation of the true value* of Y. (Note: the symbol * indicates that the definition of the word
or the expression is given in Chapter 12).

(2) Estimation of the standard uncertainty* of Y noted u(Y ).

Uncertainty assessment 267

Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/919174/9781789060119_0263.pdf
by TECHNISCHE UNIVERSITEIT DELFT user
on 01 September 2021



(3) Estimation of the coverage interval* of Y for a given level of probability � (typically 95%):

[Y � ku(Y ), Y + ku(Y )] in the case of methods A and B (described respectively in Sections 8.2.2 and
8.2.3), where k is the coverage factor*, or

[Y�,low, Y�,high] in the case of MCM (described in Section 8.2.4).

The third step is optional but is almost systematically applied in practice.
Reporting UA should be done systematically, and the following information should be provided (ISO,

2008b, p. 25):

• A detailed and clear description of (i) the measurement process, and (ii) the methods used.
• A list of all uncertainty components that are accounted for and how they are evaluated.
• All values, constants, corrections used in the UA analysis process, so that it could independently

repeated if necessary.

A test of the foregoing list is to ask oneself ‘Have I provided enough information in a sufficiently clear
manner that my result can be updated in the future if new information or data become available?’ (ISO,
2008b, p. 25).

An important precondition for UA is the absence of coarse errors and systematic deviations in
measurements. This is ensured by the rigorous application of metrological best practices, including
sensor calibration, and periodic maintenance and checking (see Chapter 7, especially Section 7.6).

8.2.2 Type A method for uncertainty assessment of repeated
measurements
8.2.2.1 Principle
The Type A method assumes that the quantity of interest Y can be measured directly and repeatedly,
according to repeatability conditions*. It is applicable to stationary quantities that do not change with
time (at least at the timescale of measurements), and to dynamic processes provided they are repeatable.
Examples are the diameter of a pipe, the width of a channel, the angle of a weir, the hydraulic
conductivity of a soil, etc.

One assumes that the measurement of the quantity Y is a random process, due to all possible sources of
variabilities attached to the instruments used, the measurement conditions, the operator and to the quantity
itself. Each measurement yi is assumed to be an independent observation of Y. The best estimate of the true
value of Y is given by the mean �y of the i = 1:n repeated measurements yi:

�y =
1
n

�n

i=1

yi (8.1)

The unbiased standard deviation s(y) of the measured values yi is calculated as follows:

s(y) =

��������������������
1

n � 1

�n

i=1

(yi � �y)2
�

(8.2)

The unbiased standard deviation s(�y) of the mean value �y is given by:

s(�y) =

�����������������������
1

n(n � 1)

�n

i=1

(yi � �y)2
�

=
s(y)

��
n

� (8.3)

The standard uncertainty* u(�y) is then assumed to be equal to the standard deviation s(�y).
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The expanded uncertainty* U(�y) with a given level of probability � (typically 95%) is calculated with the
coverage factor* k. The value of k depends on �. If n is lower than 30, the level of information about Y and
the distribution of its measurements yi is limited. One assumes that the distribution of the yi values is a
Student t distribution. In this case, which is frequent in practice as making more than 30 repeated
measurements may be too long or too expensive, the value of k is given by:

k = t1+a
2

(n) (8.4)

where t1+a
2

(n) is the Student t value with � = 0.95 for a symmetric probability level of 95% and � = n � 1

degrees of freedom. The Student t value is found in statistics tables and can be obtained from software tools
like Excel®, Matlab® or Octave® (see Table 8.2).

The expanded uncertainty is:

U(�y) = ku(�y) (8.5)

and the coverage interval with the probability level � is then calculated as follows:

[�y � U(�y),�y + U(�y)] = [�y � ku(�y), �y + ku(�y)] (8.6)

If n is above 30, the distribution of the measurements yi is usually assumed to be normal (i.e. Gaussian)
and, in this case, k = 1.96 for � = 0.95 (Table 8.3).

In practice, due to (i) the unavoidable approximations in the measurement process, (ii) the fact that the
measured values are not necessarily exactly normally distributed and (iii) ‘the impracticality of trying to
distinguish between intervals having levels of confidence that differ by one or two percent’, the ISO
Guide 98 (ISO, 2008a, appendix G) indicates that it is also acceptable to approximate k = 1.96 by k = 2
(which corresponds to the exact value � = 0.9545 in case of the normal distribution). The 95% coverage
interval of �y is then approximated by:

[�y � 2u(�y), �y + 2u(�y)] (8.7)

In this chapter, we use k = 1.96 to approximate 95% coverage intervals with the hypothesis of the normal
distribution. It is recommended to systematically apply Equations (8.4) and (8.6) for any number of
measurements n.

The coverage interval (Equation (8.6)) is usually interpreted, in a simplified way, as ‘the true value of the
mean �y of the quantity Y has an approximately 95% probability to lie between �y � ku(�y) and �y + ku(�y)’. This
can be acceptable only if (i) there is no bias (systematic error) in the measurements, which is ensured only by
proper calibration of the sensor used for measurements and careful checking of the complete measurement
process, and (ii) the number of measurements is high enough to ensure that the mean of the measured values
is reasonably close to the true value of Y.

As indicated by Equation (8.3), increasing n allows decreasing the uncertainty in �y proportionally to the
square root of n. Multiplying n by 4 and 10 leads to dividing the uncertainty respectively by 2 (i.e.

��
4

�
) and

3.16 (i.e.
���
10

�
).

8.2.2.2 Basic example with Matlab®

The diameter D of a 1 m circular sewer pipe has been measured four times with a 2 m long class II meter
(i.e. true length of this meter is between 1.9993 and 2.0007 m, according to the class definition given in
OJEU, 2014). The four measured values Di with i = 1:4 are given in Table 8.1.

Uncertainty assessment 269

Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/919174/9781789060119_0263.pdf
by TECHNISCHE UNIVERSITEIT DELFT user
on 01 September 2021



Note: Examples and codes written for Matlab® (https://fr.mathworks.com) can also be used without any
modification with the free software tool Octave® (https://www.gnu.org/software/octave/). The
compatibility has been checked by the authors with Matlab® 2017b and Octave 5.1.0.

As shown in Box 1 below, the best estimate of the pipe diameter is �D = 1000.2 mm and its 95% coverage
interval is [996.5, 1004.0] mm, with only one meaningful digit. Box 2 shows how to apply the Type A
method with the Matlab® code uTypeA.

BOX 1: STEP BY STEPAPPLICATION OF THE TYPE A METHOD
WITH MATLAB®

For the data given in Table 8.1, the Matlab® instructions are as follows.

Create the vertical vector Di with the four measured values:
Di=[1002 1000 997 1002]’
Calculate the mean value �D:
Dbar=mean(Di)
One gets �D = 1000.2500 mm.
Calculate the standard uncertainty u(�D):
uDbar=std(Di)/sqrt(length(Di))
One gets u(�D) = 1.1814 mm.
Calculate k with � = 95% and � = n-1 degrees of freedom:
alpha=0.95
k=tinv((1+alpha)/2, length(Di)-1)
One gets k = 3.1824. The expanded uncertainty k × u(�D) = 3.7599 mm.
Calculate the coverage interval with the probability level �:
Dbar-k*uDbar
Dbar+k*uDbar
One gets respectively 996.4900 mm and 1004.0099 mm.

Table 8.1 Four measurements
of the pipe diameter D.

Di (mm)

1002

1000

997

1002
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8.2.3 Type B method for uncertainty assessment by the law of
propagation of uncertainties
8.2.3.1 Principle
The Type B method is applied in cases where the quantity of interest Y can be measured neither directly nor
repeatedly, i.e. when the Type A method cannot be applied. Some examples: rainfall intensities calculated
from measured tips of a rain gauge bucket, discharge calculated from the water level measured over a weir,
discharge calculated from both measured water level and mean flow velocity, infiltration flow in a
stormwater infiltration tank calculated from water level and mass balance, pollutant load calculated from
measured water quality and discharge, etc. In many cases in urban hydrology, the quantities of interest
vary with time: repeated measurements are not possible. Measured process data are usually recorded as
time series.

It is assumed that Y is determined from N other quantities Xi by means of a function f representing the
measurement process. All quantities are assumed to be random quantities. All measured, estimated or
known values xi of the quantities Xi and their standard uncertainties u(xi) shall be known from Type A
repeated measurements, previous applications of the Type B method, sensor calibration, experiments,
expertise, standards, scientific literature, textbooks, etc. Previous knowledge on uncertainties u(xi) and
their distribution is a pre-requisite for the Type B method and is discussed in Section 8.2.3.3.

The estimate y of the quantity Y is given by:

y = f (x1, x2, . . . xi, . . . xN) (8.8)

The combined standard uncertainty u(y) is obtained using the following equation, also referred to as the
Law of Propagation of Uncertainties (LPU):

u(y)2 =
�N

i=1

u(xi)2
∂f
∂xi

� �2

+ 2
�N�1

i=1

�N

j=i+1

u(xi, xj)
∂f
∂xi

� �
∂f
∂xj

� �
(8.9)

where u(xi, xj) is the covariance of xi and xj:

BOX 2: APPLICATION OF THE TYPE A METHOD WITH THE
MATLAB® CODE uTypeA

(Matlab® codes and csv files available for download at https://doi.org/10.2166/9781789060102).
All calculations presented in Box 1 are automated in the Matlab® code uTypeA.
With the previous notations defined in Box 1, enter uTypeA(yi,alpha) with yi the vertical vector of n
measured values yi and alpha the level of probability. The uTypeA function provides respectively the
mean value �y, the standard uncertainty u(�y), and the boundaries of the coverage interval
[�y � ku(�y), �y + ku(�y)] with the level of probability � and the coverage factor k calculated with the
Student t value.
For the Box 1 example, type
Dbar=uTypeA(Di,alpha)
One gets �D = 1000.2500 mm, u(�D) = 1.1814 mm, a = 996.4900 mm and b = 1004.0099 mm.
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u(xi, xj) = r(xi, xj)u(xi)u(xj) (8.10)

where r(xi, xj) is the correlation coefficient of xi and xj.
The partial derivatives, also called sensitivity coefficients ci, are evaluated at Xi = xi using:

ci =
∂f
∂Xi

� �
(8.11)

In the case where f has a complicated expression, its derivatives may be difficult to establish
analytically. They can be replaced by numerical second order approximations:

ci =
∂f
∂Xi

� �
�

f (xi + 1i) � f (xi � 1i)
21i

(8.12)

where �i is very small compared to xi. Typically, one can use �i = u(xi)/1000.
The expanded uncertainty U(�y) with a given level of probability � (typically 95%) is calculated with the

coverage factor k:

U(y) = ku(y) (8.13)

The value of k depends on �. Ideally, uncertainty estimates u(xi) are based upon reliable Type A and
Type B evaluations with a sufficient number n of observations such that using the coverage factor of
k = 1.96 will ensure a confidence level close to 95%.

If the above assumption is not valid, the effective degree of freedom �eff needs to be estimated using the
Welch-Satterthwaite formula:

neff = u(y)4
�N

i=1

[ciu(xi)]4

ni

� ��1

(8.14)

If u(xi) is determined from a Type A estimation based on n repeated measurements, then �i = n�1. If u(xi)
is determined from a previous Type B estimation, and if the distribution of xi is exactly known (i.e. the type
and the boundaries of the distribution are known), which is frequent in practice, then �i� �. Otherwise, �i is
estimated from the following equation:

ni =
1
2

u(xi)2

s[u(xi)]2
�

1
2

Du(xi)
u(xi)

	 
�2

(8.15)

where �[u(xi)] is the standard deviation of the standard uncertainty u(xi).
The quantity between large brackets in the last part of Equation (8.15) corresponds to the relative

uncertainty of the standard uncertainty u(xi), i.e. how exactly the standard uncertainty u(xi) itself is
known. This is usually based on scientific judgement and expertise.

In the case where the value of �eff obtained from Equation (8.14) is not an integer, then round �eff to the
nearest lower integer.

The value of k is then calculated from the Student t distribution:

k = t1+a
2

(neff ) (8.16)
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and the coverage interval with the probability level � is calculated as follows:

[y � U(y), y + U(y)] = [y � ku(y), y + ku(y)] (8.17)

Note that the coverage interval is, by definition, symmetric around the estimate y of the measurand Y.

8.2.3.2 Covariances in the type B method
The main equation of the LPU is Equation (8.9). The right-hand part contains two sums. The first one is
always applied and corresponds to cases where all measured values xi and their uncertainties u(xi) are
fully independent of each other and are not correlated: all covariances u(xi, xj) = 0 or all coefficients of
correlation r(xi, xj) = 0. This is the case when all xi values are estimated with separate sensors or
independent measurement processes and sources of information.

The second double sum has to be taken into account when measured values xi or their uncertainties u(xi)
are not independent of each other and are correlated: covariances u(xi, xj) � 0 or coefficients of correlation
r(xi, xj) � 0 shall be (i) detected by means of a detailed analysis of the measurement process and
(ii) quantified to be included in the calculation. Detection and quantification of covariances are not
always obvious and should receive special attention. As covariances and coefficients of correlation may
be positive or negative, they may contribute, sometimes in a very high proportion, to respectively
increasing or decreasing the standard uncertainty u(y). More details are given in Section 8.2.6.

It is frequent in practice that estimating the value y of the measurand Y includes intermediate quantities Xi
in the function f which are themselves based on common measured quantities Xj. This shall be avoided as
it generates covariance and complicates the estimation of the standard uncertainty u(y). It is thus very
important to avoid intermediate quantities as much as possible, and to write the function f in a way
which may be less usual but reflects closely the measurement process with independent quantities.

Example 1: Calculation of flow by the Manning-Strickler equation
The discharge Q (m3/s) in a rectangular channel is commonly calculated using the Manning-Strickler

equation as:

Q = f (K, I, S,Rh) = KI
1
2SR

2
3
h (8.18)

where K (m1/3/s) is the Manning-Strickler coefficient, I (m/m) is the pipe invert slope, S (m2) is the flow
cross section and Rh (m) is the hydraulic radius.

The coefficientK is estimated either from field experiments or, more frequently, from tables or textbooks.
The slope I is estimated from field measurements, maps or GIS data. Both the cross section S and the
hydraulic radius Rh are calculated from the channel width B (m) and the measured water level h (m):

S = Bh (8.19)

Rh =
Bh

B + 2 h
(8.20)

K, I, B and h are the truly independent quantities estimated by means of different and independent
instruments and information. But S and Rh are obviously not independent quantities and are highly
correlated as both depend on B and h. Clearly Equation (8.18) is not appropriate to be used in
Equation (8.9) as covariance between S and Rh has been introduced. It is thus recommended to rewrite
Equation (8.18) without correlated intermediate quantities and only with the truly independent quantities
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in a way which reflects closely the real measurement process, as:

Q = f (K, I,B, h) = KI
1
2(Bh)

Bh
B + 2 h

� �2
3
= KI

1
2(Bh)

5
3(B + 2 h)�2

3 (8.21)

8.2.3.3 Estimation of standard uncertainties u(xi) from prior information on distributions
As the Type B method requires all values u(xi) as inputs in Equation (8.9), and as these values are not
necessarily obtained from Type A estimations (i.e. series of repeated observations), it is necessary to
provide additional information on the probability distributions of the quantities Xi.

If the value xi of the quantity Xi is known from repeated measurements and if the Type A method is
applied to estimate u(xi), the degrees of freedom �(xi) are known and u(xi) can be used directly in
Equation (8.9). In the case where xi is not given with its standard uncertainty u(xi) but with (i) a
coverage interval [a, b] and (ii) a coverage factor k or a level of probability �, then u(xi) is calculated
from Equation (8.6), by assuming the values of the quantity Xi are distributed according to a normal (i.e.
Gaussian) distribution:

u(xi) =
(b � a)
2k

(8.22)

or

u(xi) =
(b � a)
2k(a)

(8.23)

where k(�) is calculated either from the normal distribution or from the Student t distribution for an infinite
number of degrees of freedom � = +�. The value k(�) is found in statistics tables and can be obtained from
software tools like Excel®, Matlab® or Octave® (Table 8.2). Most typical values are given in Table 8.3.

Example 2: If xi = 100 and [a, b] = [99, 101] with k = 2 (i.e. � � 0.95), then Equation (8.22) gives u(xi) =
0.5. If xi = 100 and [a, b] = [99, 101] with � = 0.99, then k(�) = 2.58 and Equation (8.23) gives u(xi) =
0.39.

Table 8.2 Excel
®

and Matlab
®

/Octave
®

functions to calculate the coverage factor k from the probability level �
and reciprocally.

Normal distribution Student distribution

From � to k

Excel
®

* k(a) = NORMINV((1 + a)/2, 0, 1) (8.24) k(a) = TINV((1 � a),1e6) (8.25)
Matlab

®

k(a) = norminv((1 + a)/2) (8.26) k(a) = tinv((1 + a)/2, inf) (8.27)

From k to �

Excel
®

* a(k) = (NORM.DIST(k,0,1,1) � 2) � 1 (8.28) a(k) = (T.DIST(k, 1e6) � 2) � 1 (8.29)
Matlab

®

a(k) = (normcdf(k) � 2) � 1 (8.30) a(k) = (tcdf(k, inf) � 2) � 1 (8.31)

* With Excel
®

, the infinite value is replaced by one million (1e6).
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The probability distribution of the quantities Xi can take a variety of other forms. In addition to the normal
distribution, three typical examples are the uniform (or rectangular), the triangular and the trapezoidal
distributions (Figure 8.1).

The symmetric uniform distribution corresponds to cases with limited information about the value xi
of the quantity Xi. One knows for example that the value xi lies in the interval [a, b] with a probability
close to 1 but without any additional information about the shape of the distribution. It is thus
assumed that (i) any value within the interval [a, b] has the same probability to be the most likely
value of xi, and (ii) any value outside this interval is almost unlikely. In this case, xi and u(xi) are
given respectively by:

xi =
a + b
2

(8.32)

and

u(xi) =
b � a
2

��
3

� (8.33)

Example 3: If [a, b] = [99, 101], then Equations (8.32) and (8.33) give respectively xi = 100 and u(xi) =
0.58.

The symmetric triangular distribution corresponds to cases with more information. One knows for
example that the most likely value xi is the central value of the interval [a, b] and that the probability
declines regularly towards the lower and upper bounds a and b, with the assumption that any value
outside the interval is unlikely. In this case, xi is given by Equation (8.32) and u(xi) is given by:

u(xi) =
b � a
2

��
6

� (8.34)

Example 4: If [a, b] = [99, 101], then Equations (8.32) and (8.34) give respectively xi = 100 and u
(xi) = 0.41.

The symmetric trapezoidal distribution is used to account for the fact that in the uniform distribution,
the abrupt probability step below a and above b is likely unphysical. Slopes on each side of the
distribution are thus included to get a more realistic distribution (Figure 8.1). The trapezoidal distribution
is characterized by both the bottom interval [a, b] and the coefficient � which represents the width of the

Table 8.3 Most typical values of probability level �
and corresponding coverage factor k for the normal
distribution. Note: as indicated in ISO (2008a)
appendix G, it is acceptable to replace k = 1.96 by
k = 2 to approximate 95% coverage intervals.

Probability level � Coverage factor k

0.68 1.00

0.90 1.64

0.95 1.96

0.99 2.58
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Figure 8.1 Uniform, triangular and trapezoidal distributions for the Type B method. Source: adapted from
ISO (2008a) by Jean-Luc Bertrand-Krajewski (INSA Lyon).
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top of the distribution as a fraction of the interval [a, b]. In this case, xi is given by Equation (8.32) and u(xi) is
given by:

u(xi) =
b � a
2

��
6

�
���������
1 + b2

�
(8.35)

Example 5: If [a, b] = [99, 101] and � = 0.5, then Equations (8.32) and (8.35) give respectively xi = 100 and
u(xi) = 0.46.

It is worth noting that Equation (8.35) is similar to Equation (8.33) when � = 1 (uniform distribution) and
to Equation (8.34) when � = 0 (triangular distribution).

Other distributions, including non-symmetrical ones, are described in ISO (2008a) and also in textbooks
(e.g. Gentle, 2003; Thomopoulos, 2018). The choice of an appropriate distribution for each quantity Xi in
running the Type B method is based on knowledge and experience. Some examples are given in Table 8.4.
In practice, normal and uniform distributions are among the most frequently used ones.

8.2.3.4 Basic example with Matlab®

The discharge Q (m3/s) in an open rectangular channel is calculated by means of the Manning-Strickler
formula, written as discussed in Section 8.2.3.2:

Q = f (K, I,B, h) = KI
1
2(Bh)

Bh
B + 2 h

� �2
3
= KI

1
2(Bh)

5
3(B + 2 h)� 2

3 (8.36)

where K (m1/3/s) is the Manning-Strickler coefficient, I (m/m) is the channel invert slope, B (m) is the
channel width and h (m) is the water level in the channel.

The channel is made of smooth concrete, with no deposits, no biofilm, and no surface degradation.
Textbooks (e.g. Lencastre, 1999) indicate that the value of K is usually between 70 and 80 m1/3/s.
Consequently, in the absence of in situ measurements, it is reasonable to assume that the value of K

Table 8.4 Choice of typical distributions for the Type B method.

Distribution Examples/////available information

Normal • Calibration certificates, handbooks, material or sensor specifications, knowledge
quoting either (i) a probability level � or a coverage factor k with the expanded
uncertainty, (ii) a number of standard deviations, or (iii) a given probability level interval �.

• Information from Type A estimations based on repeated measurements.

Uniform • Maximum bounds within which all values of the quantity are assumed to lie with
equal probability.

• Maximum instrument drift between calibrations.
• Error due to limited resolution of an instrument’s display or digitizer.
• Manufacturers’ tolerance limits.

Triangular • Maximum bounds within which all values of the quantity are assumed to lie with higher
probability for the central value and decreasing probabilities towards the interval bounds.

Trapezoidal • Maximum bounds within which all values of the quantity are assumed to lie with equal
probability in the central part of the interval.
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lies with a symmetric uniform probability in the interval [a, b] = [70, 80] m1/3/s (uniform distribution
U(70, 80)).

The mean slope I of the open channel has been measured by a land surveyor along a reach of 50 m with
the direct levelling method. The result is I = 0.0032 m/m, with a standard uncertainty u(I ) = 6 × 10�6 m/m
(normal distribution N(0.0032, 6×10�6)).

The channel width B has been measured four times with a class II meter, similarly as the pipe diameter in
Section 8.2.2.2. The results are B = 0.805 m, u(B) = 0.002 m and �B = 3 degrees of freedom.

The water level h = 0.32 m is measured by means of a calibrated ultrasound sensor. In situ sensor
calibration accounting for uncertainties related to both the sensor itself and local measurement conditions
results in a whole standard uncertainty u(h)= 1.5 mm (normal distribution N(0.32, 0.0015)).

With the above values, the discharge is Q = 0.346 m3/s (detailed calculations are given in Box 3).
The next step consists of calculating the standard uncertainty u(Q) by applying Equation (8.9). As the

quantities K, I, B and h are measured with independent sensors, there is no covariance between them and
only the first part of Equation (8.9) is applied. This leads to:

u(Q)2 =
�4

i=1

(u(xi)2
∂Q
∂xi

� �2

= u(K)2
∂Q
∂K

� �2

+u(I)2
∂Q
∂I

� �2

+u(B)2
∂Q
∂B

� �2

+u(h)2
∂Q
∂h

� �2

(8.37)

The partial derivatives of Q need to be estimated first. There are two possibilities: algebra derivation or
second order numerical approximation. In this example, both approaches are used and compared.

The algebra derivation gives (with 6 digits for illustrative purpose):

∂Q
∂K

= I
1
2(Bh)

5
3(B + 2 h)� 2

3 =
Q
K

= 0.004615 (8.38)

∂Q
∂I

=
1
2

KI� 1
2(Bh)

5
3(B + 2 h)� 2

3 =
Q
2I

= 54.090477 (8.39)

∂Q
∂B

=
5
3

hKI
1
2(Bh)

2
3(B + 2 h)� 2

3 �
2
3

KI
1
2(Bh)

5
3(B + 2 h)� 5

3 =
Q
3

5
B

�
2

B + 2 h

� �
= 0.557013 (8.40)

∂Q
∂h

=
5
3

BKI
1
2(Bh)

2
3(B + 2 h)� 2

3 �
4
3

KI
1
2(Bh)

5
3(B + 2 h)� 5

3 =
Q
3

5
h

�
4

B + 2 h

� �
= 1.483588 (8.41)

The second order numerical approximation, calculated according to Equation (8.12), gives:

∂Q
∂K

=
Q(K + 1K, I,B, h) � Q(K � 1K, I,B, h)

21K
= 0.004615 (8.42)

∂Q
∂I

�
Q(K, I + 1I,B, h) � Q(K, I � 1I,B, h)

21I
= 54.090477 (8.43)

∂Q
∂B

�
Q(K, I,B + 1B, h) � Q(K, I,B � 1B, h)

21B
= 0.557013 (8.44)

∂Q
∂h

�
Q(K, I,B, h + 1h) � Q(K, I,B, h � 1h)

21h
= 1.483588 (8.45)

Both approaches provide results which, in this example, are identical to the 6th digit at least. The
advantage of the numerical approximation is the possibility to run calculations automatically without
algebra.

The resulting standard uncertainty is u(Q) = 0.013 m3/s and the relative standard uncertainty is u*(Q) =
u(Q)/Q = 0.039, i.e. 3.9%. All calculations with Matlab® are given in Box 3.
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BOX 3: STEP BY STEP CALCULATIONS OF Q AND u(Q) IN A
RECTANGULAR CHANNELWITH MATLAB®

Let us first set the values and the standard uncertainties for K, I, B, and h.
Define the interval for K:
intK=[70 80]
Calculate K and its standard uncertainty u(K):
K=mean(intK)
uK=diff(intK)/2/sqrt(3)
One gets K = 75 m1/3/s and u(K) = 2.8867 m1/3/s.
Then type
I=3.2e-3
uI=6e-6
B=0.805
uB=2e-3
h=0.32
uh=1.5e-3
Calculate the discharge Q(K,I,B,h) by Equation (8.36):
Q=K.*power(I,1/2).*power(B.*h,5/3).*power(B+2.*h,-2/3)
One gets Q = 0.3462 m3/s.
Calculate the standard uncertainty u(Q) by Equation (8.37).
Let us first define the quantities cK, cI, cB and ch respectively equal to the numerical values of the
partial derivatives of Q (Equations 8.42 to 8.45):
epsK=uK/1000
epsI=uI/1000
epsB=uB/1000
epsh=uh/1000
cK=((K+epsK).*power(I,1/2).*power(B.*h,5/3).*power(B+2*h,-2/3)-
(K-epsK).*power(I,1/2).*power(B.*h,5/3).*power(B+2*h,-2/3))/epsK/2
cI=(K.*power(I+epsI,1/2).*power(B.*h,5/3).*power(B+2*h,-2/3)-
K.*power(I-epsI,1/2).*power(B.*h,5/3).*power(B+2*h,-2/3))/epsI/2
cB=(K.*power(I,1/2).*power((B+epsB).*h,5/3).*power(B+epsB+2*h,-2/3)-
K.*power(I,1/2).*power((B-epsB).*h,5/3).*power(B-epsB+2*h,-2/3))/epsB/2
ch=(K.*power(I,1/2).*power(B.*(h+epsh),5/3).*power(B+2*(h+epsh),-2/3)-
K.*power(I,1/2).*power(B.*(h-epsh),5/3).*power(B+2*(h-epsh),-2/3))/
epsh/2
Then create two intermediate vectors Vu and Vc and apply Equation (8.37):
Vu=[uK uI uB uh]’
Vc=[cK cI cB ch]’
uQ=sqrt(sum(power(Vu.*Vc, 2)))
One gets
u(Q) = 0.0136 m3/s
The relative standard uncertainty is calculated by
uQ/Q
One gets u*(Q) = 0.0392, i.e. 3.9%.
The 95% coverage interval is given by
[Q-1.96*uQ, Q+1.96*uQ]
One gets [0.3196, 0.3728] m3/s.
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Let us now calculate the 95% coverage interval. In the first andmost simple way, one may assume that the
coverage factor k = 1.96 for the probability level � = 0.95. In this case, the 95% coverage interval for Q is
determined from Equation (8.17):

[Q � 1.96 × u(Q), Q + 1.96 × u(Q)] = [0.320, 0.373] m3/s (8.46)

A more detailed approach is based on the estimation of the effective degree of freedom from the
Welch-Satterthwaite formula (Equations 8.14 to 8.16). Detailed Matlab® calculations are given in Box 4.
The effective degrees of freedom �i are estimated as follows.

As u(K ) can be considered to be known itself with a relative uncertainty of 20% according e.g. to
hydraulic textbooks, then, according to Equation (8.15):

n(K) =
1
2

[0.20]�2 = 12.49 (8.47)

to be approximated to the nearest lower integer, i.e. �(K ) = 12.
u(I ) is given by the land surveyor, based on repeated calibrations of the sensors. One assumes here that

�(I ) = �.
u(B) is calculated from a Type A estimation based on n = 4 repeated measurements: �(B)= n � 1 = 3.
u(h) is estimated from a sensor calibration based on n = 60 measurements (12 repeated measurements for

5 values along the sensor measurement range). Thus �(h) = 60 � 1 = 59. For comparison purposes, onemay
also assume that �(h) = �.

Applying Equation (8.14) gives �eff = 12, with both �(h) = 59 or �(h) = �.

BOX 4: STEP BY STEP CALCULATIONS OF THE COVERAGE
INTERVAL OF Q WITH THE EFFECTIVE DEGREE OF FREEDOM

Set the respective values of the degrees of freedom for K, I, B, and h:
nuK=floor(0.5*power(0.20, �2))
One gets �(K) = 12.
Type
nuI=Inf
nuB=3
nuh=59 (or nuh = Inf)
Define Vnu an intermediate vertical vector:
Vnu=[nuK nuI nuB nuh]’
The effective degree of freedom �eff is calculated by Equation (8.14), with Vu and Vc defined in Box 3:
nueff=floor(power(uQ,4)/sum(power(Vu.*Vc,4)./Vnu))
One gets �eff = 12, with both �(h) = 59 or �(h) = �.
Then type
alpha=0.95
k=tinv((1+alpha)/2, nueff)
One gets k = 2.1788.
The coverage interval is then calculated by:
[Q-k*uQ,Q+k*uQ]
One gets [0.3166, 0.3757] m3/s.
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The coverage factor k corresponding to �eff = 12 is equal to 2.18 (Equation (8.16)), which is a little bit
higher than the default value k = 1.96 used previously.

Lastly, applying Equation (8.17), the coverage interval for the discharge Q is:

[Q � k × u(Q),Q + k × u(Q)] = [0.317, 0.376] m3/s.

Looking at the details of the calculations reveals that the strongest contribution to the combined
uncertainty is due to the uncertainty in the Manning-Strickler coefficient K. If one assumes that the
relative uncertainty of u(K ) is 10% instead of 20%, then �(K ) increases from 12 to 49. Consequently, �eff
increases from 12 to 52, and k = 2.006, which is now equivalent to the default value. This emphasizes
the importance of a reliable assessment of all components contributing to the estimation of the coverage
interval, including the degrees of freedom.

All calculations presented in this example can be run automatically with the Matlab® code uTypeB
presented in Box 5.

BOX 5: APPLICATION OF THE TYPE B METHOD WITH THE
MATLAB® CODE uTypeB

(Matlab® codes and csv files available for download at https://doi.org/10.2166/9781789060102).
The calculations of the discharge Q and its standard uncertainty u(Q) shown in Box 3 and Box 4 are
automated in the Matlab® code Y = uTypeB(Z,A,chaine,alpha,MatCor,NuZ,NuA), where the
quantities Xi of the measurement process are divided into two groups Z and A, where:
Z is the matrix containing data related to time varying quantities (time series). Its structure is as follows:
Z has as many lines as time steps in the time series. Each line contains, in successive columns from left
to right, m pairs of data for each time varying quantity Z: Z1, u(Z1), Z2, u(Z2),…Zi, u(Zi), …Zm, u(Zm).
A is the matrix containing data related to constant quantities. The single line of A contains, in the
successive columns from left to right, p pairs of data for each constant quantity A: A1, u(A1), A2, u
(A2),…Aj, u(Aj),…Ap, u(Ap).
The sum m + p is equal to N, the number of quantities Xi in Equation (8.9).
chaine is the equation string describing the measurement process of Y using Zi and Aj quantities.
alpha is the level of probability.
MatCor is the matrix of correlation between Zi and Aj quantities.
NuZ is the vector of the degrees of freedom �(Zi) of each quantity Zi, in the same order as in the matrix Z.
NuA is the vector of the degrees of freedom �(Ai) of each quantityAj, in the same order as in thematrixA.
NuZ and NuA are optional inputs in the function uTypeB: if they are not used, the coverage interval
is estimated solely with the default values of k given in Tables 8.2 and 8.3 for an infinite degree
of freedom.
The uTypeB function provides respectively the following results in successive columns of the output
matrix Y, with one line per time step: the value y of Y, its standard uncertainty u(Y ), the boundaries of
the coverage interval calculated with an infinite degree of freedom and the boundaries with the
effective degree of freedom �eff.
For the above example, there is one time-varying quantity: the water level h, and three
constant quantities: respectively the Manning-Strickler coefficient K, the channel slope I and the
channel width B. Consequently, type
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8.2.4 Monte Carlo method for uncertainty assessment
8.2.4.1 Principle
The Monte Carlo method (MCM) is a generic simulation method, which can be applied to
estimate uncertainties under various conditions and in particular when the conditions of the Type B
method are not satisfied (non-linearity, non-symmetric distributions, significance of second order
terms in the derivation of the LPU) or are very difficult to apply. It is considered as the reference
method.

BOX 5: (Continued)

Z=[h uh]
with only one line as there is only one single value of h.
A=[K uK I uI B uB]
The previous measurement process equation (see Box 3):
Q=K.*power(I,1/2).*power(B.*h,5/3).*power(B+2.*h,-2/3)
is then re-written with notations indicating the quantities with their rank in matrices Z and A.
h is the first quantity in thematrix Z: h is replaced by Z(:,1) in the above expression ofQ. Similarly, K, I
and B are replaced, respectively, by A(:,1), A(:,2) and A(:,3) as they are, respectively, the first,
second and third quantities in the matrix A. It is important to note that the indices refer to the rank of the
quantities in matrices Z and A, and not to the rank of the columns.
Consequently, type
chaine=’A(:,1).*power(A(:,2),0.5).*power(A(:,3).*Z(:,1),5/3).*power

(A(:,3)+2.*Z(:,1),-2/3)’
alpha=0.95
In this example, all four quantities in Z and A are independent as there is no correlation or covariance
between them. Consequently, type
MatCor=eye(4)
which gives

MatCor =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�



�

�

���

where the columns from left to right and the lines from top to bottom refer successively to the Zi and
Aj quantities.
In addition, type
NuZ=[59]
NuA=[12 inf 3]
Lastly type
Q=uTypeB(Z,A,chaine,alpha,MatCor,NuZ,NuA)
One gets Q = 0.3462 m3/s, u(Q) = 0.0136 m3/s, and
coverage interval with an infinite degree of freedom: [0.3196, 0.3728]
coverage interval with the effective degree of freedom: [0.3166, 0.3757].

Metrology in Urban Drainage and Stormwater Management: Plug and Pray282

Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/919174/9781789060119_0263.pdf
by TECHNISCHE UNIVERSITEIT DELFT user
on 01 September 2021



The MCM consists basically of repeatedly simulating the measurement process f calculating the
measurand Y from the quantities Xi as described by Equation (8.8) in Section 8.2.3.1:

y = f (x1, x2, . . . xi, . . . xN) (8.48)

Samples of size M are built for all quantities Xi involved in the measurement process, according to their
distributions and with appropriate correlation coefficients. Then the samples are used to calculate M times
the value y of the measurand Y and theM values of y allows calculation of the mean value �y of the measurand
Y, the standard uncertainty u(y) and the coverage interval corresponding to the defined probability level �.

As for the Type B method, it is of particular importance:

• To write the measurement process Y = f (X1, X2, …XN) in a way which closely reflects the
measurement process with independent quantities Xi.

• To define the probability distributions for all quantities Xi.
• To carefully analyse the possible correlations between quantities and to quantify them when

they exist.

The principle of the MCM is illustrated in Figure 8.2. The sample of each quantity Xi for i = 1:N in the
measurement process f is represented by a vector of M values with r = 1:M: xi,1, xi,2, … xi,r,… xi,M. Within
each sample, the successive values xi,r are sorted neither in ascending nor in descending order but are
randomly listed.

The samples are built according to two requirements: (i) each sample distribution should represent the
information and knowledge about each quantity Xi, as in the Type B method (see Section 8.2.4.2), and
(ii) the correlation between samples should represent the correlation as described in Equation (8.10)
between the quantities Xi in the measurement process f (see Section 8.2.4.3). Creating large samples
cannot be done manually and software tools are required.

Once all samples of the quantities Xi are built appropriately, M values of y are calculated as follows:

yr = f (x1,r, x2,r, . . . xi,r, . . . xN,r) (8.49)

with r = 1:M.

Sample for X1

x1,1
x1,2
x1,3
.
.
.
x1,r
.
.
.
x1,M

Sample for XN

xN,1
xN,2
xN,3
.
.
.
xN,r
.
.
.
xN,M

Sample for X2

x2,1
x2,2
x2,3
.
.
.
x2,r
.
.
.
x2,M

Sample for Xi

xi,1
xi,2
xi,3
.
.
.
xi,r
.
.
.
xi,M

Sample for Y

y1
y2
y3
.
.
.
yr
.
.
.
yM

… … f (X1,X2,…Xi,…XN)

Figure 8.2 Principle of the Monte Carlo method. Source: Jean-Luc Bertrand-Krajewski (INSA Lyon).
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The estimate of the measurand Y is given by the mean �y of the yr values:

�y =
1
M

�M

r=1

yr (8.50)

The estimate of the standard uncertainty u(y) is given by the standard deviation s(y) of the values yr:

u(y) =

���������������������
1

M � 1

�M

r=1

(yr � �y)2

���� (8.51)

One of the advantages of the MCM, contrarily to the Type B method, is its ability to deal with
non-symmetric distributions. As a consequence, the distribution of the yr values may be also
non-symmetric, and thus the coverage interval is not necessarily symmetric around the mean value �y, as
this is the case in Equation (8.17) with the Type B method.

With the MCM, the coverage interval [y�,low, y�,high] for the given level of probability � corresponds to
the narrowest interval containing the fraction � of the values yr. Its estimation requires some preliminary
steps for processing of the values yr:

(1) Sort all values yr in ascending and non-decreasing order (in case of possible equalities among values
yr). The sorted values are then noted y(r) with r = 1:M.

(2) Define an integer q = �M if �M is an integer. Otherwise, define q as the integer part of (�M + 1/2).
(3) Determine the confidence interval [y�,low r, y�,high r] for Y where, for any r = 1:M-q, y�,low r = y(r)

and y�,high r = y(r+q).
(4) The shortest coverage interval with probability level � is obtained with r* such that, for r = 1:M-q,

y(r�+q) � y(r�) � y(r+q) � y(r) (8.52)

8.2.4.2 Creating non-correlated samples
Creating samples of the quantities Xi according to a given probability density function (pdf) requires a
random number generator. Basic Matlab® functions to create uniform, normal, triangular and trapezoidal
samples are given in Box 6. Similar functions exist with other software tools. They are parameterized
and used to create samples following predefined pdfs.

Other pdfs can be used with the MCM: Student t pdf, exponential pdf for values which cannot be higher
or lower than a threshold (typically non-negative values), gamma pdf, empirical pdfs based on experiments,
truncated normal pdf, lognormal pdf, etc.

Additional information to generate samples according to these pdfs can be found in ISO (2008b) and in
textbooks (e.g. Gentle 2003; Press et al., 2007; Robert & Casella, 2005).

Non-correlated samples can be created individually one after another or simultaneously by using
appropriate software functions. It is however important to ensure that they are really not correlated,
usually by controlling the parameters of the random number generator.

8.2.4.3 Creating correlated samples
In the case where two quantities Xi and Xj with i � j are correlated in the measurement process f with a
correlation coefficient r(xi, xj) as given in Equation (8.10), their corresponding samples shall be built in
such a way that (i) each quantity is distributed according to its own pdf and (ii) the correlation of the two
samples is equal to r(xi, xj). Generating correlated samples may be complex and presenting the details of
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BOX 6: MATLAB® FUNCTIONS AND CODES TO
CREATE NON-CORRELATED SAMPLES WITH

PRE-DEFINED PDFS

Two basic Matlab® functions are available: rand and randn.
rand(M,1)
generates a vector of random numbers x uniformly distributed between 0 and 1, noted U(0, 1) with M
lines and 1 column. An example of results is given in Figure 8.3 with M = 10,000.
randn(M,1)
generates a vector of random numbers x normally distributed with mean value m = 0 and standard
deviation s = 1, noted N(0,1). An example of results is given in Figure 8.4 with M = 10,000.
These basic functions can be parameterized and used to create samples following predefined pdfs.

Uniform (rectangular) pdf
To create a sample ofM values x uniformly distributed in the interval [a, b] (see Figure 8.1), notedU(a, b):
x=a+(b-a).*rand(M,1)
or
x=unifrnd(a,b,M,1)

Normal (Gaussian) pdf
To create M values x normally distributed with mean value m and standard deviation s, noted N(m, s):
x=m+s.*randn(M,1)

Triangular pdf
To create a sample of M values x distributed according to a triangular pdf in the interval [a, b] (see
Figure 8.1), noted Tri(a, b):

0.223770404697041
0.373563807642645
0.087500349576586
0.640116548246715
0.180616887753108
0.045051107473574
0.723173479183095
0.347437645581790
0.660616824502904
0.383868601071971
0.627346502443467
0.021649814630306
0.910569988523029
0.800558656278811
0.745847484342721
0.813112813610761
0.383306318625529
0.617279232316449
0.575494859702814
0.530051704765016
0.275069755821935
0.248628959661970
0.451638770451973
0.227712826026548
0.804449583613070

Figure 8.3 First 25 values (left) and histogram (right) of the 10,000 values x created by rand
(10000,1). Source: Jean-Luc Bertrand-Krajewski (INSA Lyon).
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available methods (e.g. copulas) is beyond the scope of this chapter (Gentle, 2003; Nelsen, 2010). Creating
samples with various pdfs and predefined correlation coefficients requires specific methods. Among them,
the copula functions are very convenient (Nelsen, 2010) and can generate bi- and multivariate samples with
correlated marginal distributions. Generation of correlated uniform and normal samples with Matlab® is
described in Box 7. Other examples are given below in Section 8.3.

BOX 6: (Continued)

generate two independent samples
s1=rand(M,1)
s2=rand(M,1)
and then
x=a+(b-a)/2.*(s1+s2)

Trapezoidal pdf
To create a sample ofM values x distributed according to a trapezoidal pdf in the interval [a, b] with the
top coefficient � (see Figure 8.1), noted Trap(a, b, �):
generate two independent samples
s1=rand(M,1)
s2=rand(M,1)
and then
x=a+(b-a)/2.*((1+�)*s1+(1-�)*s2)
The function rng allows controlling of the independence (no correlation) of samples.
Parametric functions makedist and random allow creation of samples with other pre-defined pdfs.

-0.110223485241791
0.414258701179269
0.230095272512933
0.857030996309090
0.048208732255379
1.023348450918008
-0.181992873626858
-0.290128384322202
0.815203911371096
0.322332331608368
0.138374675429518
-0.451012495444746
-0.153040599206172
-0.879002127680258
-0.192706939633842
0.194885569504571
1.594878084883789
-0.441943288721280
-0.421970829486422
0.225809147824111
0.146405492458328
0.009690168833214
0.107598715326320
-2.049531488596142
1.314029894987952

Figure 8.4 First 25 values (left) and histogram (right) of the 10,000 values x created by randn
(10000,1). Source: Jean-Luc Bertrand-Krajewski (INSA Lyon).
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BOX 7: MATLAB® FUNCTIONS ANDCODES TOCREATE UNIFORM
AND NORMAL CORRELATED SAMPLES

Bivariate normal (Gaussian) pdf
To create two correlated samples of size M for two quantities Xi and Xj normally distributed, with their
own respective means mi and mj, and standard deviations si and sj, noted N(mi, si) and N(mj, sj),
with a defined coefficient of correlation rij = r(xi, xj) = rji = r(xj, xi) (knowing that rii = rjj = 1):
create the vector of means m = [mi, mj]
create the covariance matrix:

COV = cov(xi, xi) cov(xi, xj)
cov(xj, xi) cov(xj, xj)

	 

=

riisisi rijsisj
r jisjsi r jjsjsj

	 

= s2i rijsisj

r jisjsi s2j

	 


and then type
X=mvnrnd(m,COV,M)
The output matrix X contains 2 columns, respectively with the values of Xi and Xj.

Example 1: two samples X1 and X2 normally distributed withM = 10,000 values, withm1 =10, s1 = 25,
m2 = 25, s2 = 1.2 and r12 = 0.45.
First define
m=[10 25]
s1=0.5
s2=1.2
r12=0.45
COV=[s1^2 r12*s1*s2; r12*s2*s1 s2 ^2]
M=10000
and then
X=mvnrnd(m,COV,M)
The results are illustrated in Figure 8.5.

Figure 8.5 Scatter plot and marginal histograms of two correlated normally distributed samples with
10,000 values x1 (m1 =10, s1 = 0.5) and x2 (m2 = 25, s2 = 1.2) and r12 = 0.45 created by mvnrnd.
Source: Jean-Luc Bertrand-Krajewski (INSA Lyon).
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