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ABSTRACT

Metamorphic testing is a well-established testing technique that
has been successfully applied in various domains, including testing
deep learning models to assess their robustness against data noise
or malicious input. Currently, metamorphic testing approaches for
machine learning (ML) models focused on image processing and
object recognition tasks. Hence, these approaches cannot be ap-
plied to ML targeting program analysis tasks. In this paper, we
extend metamorphic testing approaches for ML models targeting
software programs. We present Lampion, a novel testing frame-
work that applies (semantics preserving) metamorphic transforma-
tions on the test datasets. Lampion produces new code snippets
equivalent to the original test set but different in their identifiers
or syntactic structure. We evaluate Lampion against CodeBERT,
a state-of-the-art ML model for Code-To-Text tasks that creates
Javadoc summaries for given Java methods. Our results show that
simple transformations significantly impact the target model be-
havior, providing additional information on the models reasoning
apart from the classic performance metric.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; Documentation; • Computing methodologies → Natu-

ral language generation; Neural networks.
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1 INTRODUCTION

Artificial Intelligence (AI) has been applied to software engineering
(SE) to address many tasks, such as fault localization [13], test-case
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generation [2], fuzzing [12] or optimizing meta-parameters [20].
Recently, modern sequence-to-sequence deep learning models have
shown promising results sparking new types of applications. Among
them is the creation of code from verbatim description (tex-to-code)
[6], or generation of documentation for source-code of previously
unseen methods (code-to-text) [9, 11]. Yet, we argue that it is not
clear the extent to which these models truly behave as intended, apart
from their reported accuracy. Hence, applying testing strategies for
ML-based program analysis solutions is critical.

In recent years, there has been great interest in Testing ML,
where the goal is indeed to go beyond assessing accuracy (see the
survey by Zhang et al. [28]). Many of the approaches have been
taken from classic software testing and have been adapted for ML.
One example is metamorphic testing, which is a well-established
technique that is considered a powerful approach as it addresses
the Oracle Problem [3] in test generation. Metamorphic testing has
been successfully used in ML [15, 26] for image processing and
object recognition. For example, image rotation is an information-
preserving transformation as it alters the pixels in the image with-
out changing its label (oracle). In computer vision, a robust ML
model must not provide different predictions for the image altered
with metamorphic transformations. Hence, quantifying the number
of transformed images on which an ML model provides different
answers quantifies its robustness against different transformations.

While extensive research has been conducted on metamorphic
testing for vision computing tasks [15, 22, 26], the existing meta-
morphic transformations are domain-specific. Consequently, they
cannot be applied and do not hold for different domains and types
of data. In this paper, we extend the concept of metamorphic testing
to machine learning models trained on and targeting source code.

We define a set of transformations that alter features of code but
yield the effectively equal program, such as introducing if(true)-
conditions or +0 behind integer expressions. Using those, wemodify
the test-datapoints (programs) in order to detect differences in the
models’ predictions and metrics. We expect that the models are
robust towards some transformationswhile others affect themetrics
(negatively). The information gained could help to evaluate existing
models, compare them to each other and provide suggestions and
warnings for end-users and researchers alike. With our research
and tool, we contribute on the following points:

(1) Create a systematic approach, namely Lampion, to quantify
the robustness of a source-code-based model

(2) Enable researchers to compare the robustness of models sim-
ilarly to existing quality metrics

(3) Groundwork for data augmentation in the field of ML4SE.
(4) Empirically show the importance of robustness and testing

when referring to ML-based program analysis.
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To the best of our knowledge, we are the first to propose the use
of metamorphic transformations for assessing ML-based program
analysis tools. Our initial experiments on CodeBERT [6], a state-of-
the-art ML model widely used in the SE literature [10, 14, 17, 23],
demonstrate the feasibility of the approach, and the type of lessons
that can be learned from applying Lampion.

2 BACKGROUND AND RELATEDWORK

Metamorphic testing is a technique based upon the concept of
metamorphic relations, which is a property-based technique that
exploits known equality of certain output values. Prominent ex-
amples are programs that implement mathematical functions; The
sine function has a well-known metamorphic relation: ∀𝑥 ∈ R :
𝑠𝑖𝑛(𝑥) = 𝑠𝑖𝑛(𝑥 + 2𝜋). Testers can easily create new test cases based
on this relation and assess the program correctness. A broad view
of metamorphic testing studies and applications can be found in
the survey by Segura et al. [19]. While metamorphic testing has not
been applied to ML models for SE, metamorphic transformations
and relations are known in software engineering and are tightly
coupled to refactoring, program optimization, and linting. Metamor-
phic transformations are also used for compiler optimization to
create more efficient code, using techniques like loop unrolling or
function inlining [5].

Metamorphic Testing for ML. Metamorphic testing has been
applied recently to machine learning, especially to image-based
object-detection tasks [26][15]. A metamorphic transformation on
images performs information-preserving alternations on an image.
For example, the image of a cat might be mirrored, yet a classifier
should still be able to recognize it as such. Blurring or saturating
of images [24] change the data significantly; nevertheless, they are
still easily classifiable by humans. These transformed images can
be used to access robustness by generating more datapoints in the
test set [26]. It can also be applied to generate more training data,
which can result in a more robust or precise model [22].

The existing literature focuses on MTs that are specific to images
and pixels. In this paper, we transplant the testing methodology to
a new domain, namely ML models designed for program analysis.
This requires defining new metamorphic relations and transforma-
tions for our domain, which we describe in Section 3.

Adversarial attacks. Related work stems from Compton et al.
[4] that introduces randomization of variable-names in the training
dataset of a code2vec model for training data augmentation. Their
study shows that the model trained on the augmented training
dataset achieves slightly better accuracy than the model trained on
the original dataset which motivates to systematically investigate
for overfitting. Similarly, Yefet et al. [27] prove that they can gener-
ate adversarial attacks on Code2Vec-based classifiers by changing
variable names or introducing new variables. As this existing re-
search motivates to inspect identifier names, we include them into
our approach in addition to other transformations.

3 OUR FRAMEWORK: LAMPION

Overview. Figure 1 depicts the metamorphic testing approach, we
named Lampion, and designed for testing ML models trained on
source-code programs. Lampion relies on the MTs defined in the
subsections below. Our approach consists of three main steps. First,
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Figure 1: Lampion— Metamorphic Testing Framework for

ML-based Program Analysis

Lampion takes as inputs a pre-trained model and a program not
used during the training process (items 5 and 1 in Figure 1). It
generates program variants (item 4 ) by using the MTs (item 2 )
and based on a given configuration file (item 3 ). The configuration
specifies the type of transformation applied and the number of
repetitions (order). Then, the original program and its equivalent
variants are fed to the pre-trainedmodel. Finally, Lampion compares
the outcome produced by the pre-trained model for the original
program (item 6 ) and its metamorphic variants (item 7 ). If there
is no difference in the outcome, it means that the model is robust
to the MT. Otherwise, we found a weakness in the model.

Metamorphic Relation for Programs. The first step is to iden-
tify metamorphic relations for software programs, which are the
data points for ML-based program analysis. Metamorphic relations
(MRs) relate multiple programs that differ in their structures (e.g.,
AST) but that are effectively equivalent. As such, ML models should
provide the very same output (e.g., same label) for programs that
are related to one other according to an MR. Therefore, given a pro-
gram 𝑃 , we use MRs to generate equivalent yet different programs
𝑃 ′1, . . . , 𝑃

′
𝑘
to test a given ML model under analysis.

In ML applications, the oracle function corresponds to the labels
that humans provide for a given program 𝑃 . The type of label
for each program (data point) is task-dependent. For example, in
ML-based program documentation, the label (oracle) is the natural
language description developers write for the program 𝑃 .

We identify two types of metamorphic relations for programs
and that are useful to test ML models for program analysis:

MR-1: Addition of uninformative code elements. Such a code
element (e.g., comments, un-used variables, etc.) does not change
the behavior of the target program 𝑃 . As such, the label (oracle) for
𝑃 and its variants with MR-1 relation remains the same.

MR-2: Replace a code element with another equivalent element.
Equivalent program elements (e.g., different variable names) do not
change the AST of the programs but the labels of the nodes within
the AST. Using different yet equivalent elements does not change
the behaviors of a program 𝑃 either.

Metamorphic Transformations. Given the two MRs defined
above, we can define a set of metamorphic transformations that
satisfy our MRs. Ametamorphic transformation (MT) is a procedure
that generates new programs 𝑃 ′1, . . . , 𝑃

′
𝑘
(follow-up programs) start-

ing from an input program 𝑃 and using a metamorphic relation.
We have two constraints for MTs: First, the oracle function must
give the same output for the initial program 𝑃 and the transformed
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Table 1: Overview of metamorphic transformations for programs

Transformation Short Description Estimated Effect Variations

if-true MT-IF Wrapping a random expression in an "if(true)" statement Structural Changes, introduction of conditions,
introduction of keywords

if-false-else

add-unused-variable MT-UV Add a random unused variable Introduction of names, introduction of types Full random and pseudo random names (Postfix
R & P), names looked up from a dictionary or the
program under test

rename-entity MT-RE Rename a class, method or variable Introduction of names, removal of known names For variables, classes and member-types separate
lambda-identity MT-ID Wrap an expression in an identity-lambda function (in-

cluding function call)
Introduction of complex structure, introduction
of operators

-

delegation-method MT-DM extract an expression to a function, invoke the function
instead of the method

structural changes, change of scope for informa-
tion, introduction of names

same as MT-UV

comment-alternation MT-CO Add,remove or move comments Introduction or removal of natural language Full or pseudo random comments generated
parameter-
introduction

MT-PI Introduce an unused parameter Change of method signature, introduction of
names, introduction of types

same as MT-UV

whitespace-
alternation

MT-WS Add or remove whitespace Change of code-layout -

add-neutral-element MT-NE Add the neutral element to a primitively typed expression Change of structure, introduction of tokens Complex equivalent transformations (e.g. replac-
ing true with 01 == 1)

program 𝑓 (𝑃). Second, 𝑃 is a valid input for the ML model, then
𝑓 (𝑃) must be valid input for the model too.

A summary of MTs is presented in Table 1. They target various
features of the code, such as structure, tokens, and identifier names.
Different models are known to have constraints by their design.
For example, Code2Vec defines an AST-depth; hence, the model
is known to break when introducing many redundant structure
elements. Other models — especially deep learning models like
CodeBERT — do not specify the features they target and were not
previously inspected. Further constraints come from the dataset - if
the imports of a program are not known, explicit names cannot be
resolved. Similarly, most ML-experiments ignore whitespace com-
pletely as part of their preprocessing, ruling out any MTs targeting
layout. Hence, the scientist must carefully select fitting MTs per
experiment or adjust them accordingly.

The presented table can be considered a starting point for meta-
morphic transformations applied to ML-based program analysis
solutions.

4 EMPIRICAL STUDY

We first want to assess whether the proposed MTs impact the per-
formance of machine learning models. In an ideal case, ML models
should not be affected by the metamorphic transformations, i.e., the
model is not sensitive to changes that do not alter the code behavior.
Hence, RQ1 should cover the general impact of applying one single
transformation at the time, hereafter referred to as first-order MTs:

Research Question 1

To what extend do first-order metamorphic transformations
affect the performance of ML models?

We also want to compare the different types of transformations
w.r.t the benchmark. We may expect that different transformations
have different impacts on ML models. Furthermore, we aim to
understand which model features are more robust, e.g., whether
name-changes affect the model more than structural AST changes.

Research Question 2

To what extent different types of MTs have a different impact
on the performance of ML models?

Benchmark. For an initial study, we picked CodeBERT [6],
particularly its downstream task of code-summarization. Code-
summarization should clarify what the model understands, and the
output can give clearer insights than cold metrics. We trained a
CodeBERT-Java Model as described in the official repository by
Microsoft [1], using the standard parameters given in the readme.
CodeBERT has been trained on 6 programming languages with a to-
tal of 8.3M datapoints (code snippets) and achieves state-of-the-art
results of an average BLEU4-Score of 17.65 in the CodeSearchNet-
challenge [8].

Methodology / Experiment Design. We developed a meta-
morphic transformer for Java-Programs that works at the source-
code level. In addition, we need a (pretrained) model and an existing
benchmark that either consists of .java files or provides sufficient
pre- and post-processing to transform the datapoints.

To answer RQ1, we apply MTs to all datapoints in the test set,
resulting in a set of variant-code-snippets. We then re-calculate the
performance metrics for the variant-code snippets (metamorphic
test cases) as well as for the original ones. We use the BLEU4-Score
[18] as performance metric, which is the standard metric used in
code-to-text and text-to-code generation tasks [10, 18]. The BLEU4-
score is computed by tokenizing the gold standard and the generated
text into n-grams, and comparing the resulting sets of n-grams. The
metric value ranges from 1.0 (perfect translation) to 0 (not a single
matching word or n-gram). In addition, we use the Jaccard-distance
tomeasure the percentage of words that differ between the two Java-
doc-comments generated by CodeBERT before and after applying
an MT.

To assess the significance of the differences in BLEU4-score
achieved by the model with and without metamorphic transforma-
tions, we use the Wilcoxon rank-sum test [25]. We verified before-
hand that the achieved results follow a non-normal distribution
by applying the Shapiro-Wilkinson test [21]. We answer RQ2 by
grouping the existing results by type of MT. On the MT-groupings
we use the Friedman test [7] and the post-hoc Nemenyi test [16].
The Friedman test tests for significant differences among the differ-
ent MTs in terms of their impact on the BLEU4-score. Furthermore,
we use the post-hoc Nemenyi test to perform a pairwise compari-
son. The Nemenyi test measures the difference across the MTs by
computing the average rank of each treatment across all datapoints
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Figure 2: Overview of changes for first-order MTs

in the test set. A lower average rank means that an MT changes
the metric more significantly.

5 PRELIMINARY RESULTS

Results for RQ1. Figure 2 shows the histogram of deltas in the
BLEU4-Score produced by CodeBERT before and after applying
MTs. The Figure also shows the histogram of Jaccard distance be-
tween the reference and the post-MT generated JavaDoc. We ob-
serve that out of 72,989 produced JavaDoc summaries, for 16,566
datapoints CodeBERT generated summaries with a non-zero delta
in BLEU-Score (22.6%). For these 16,566 datapoints with changes,
the average difference in BLEU-Score is 0.06. Many summaries
change when we apply the MTs, but they perform comparably in
terms of BLEU-Scores to the unaltered; For example, both sum-
maries could miss the same number of keywords, just by different
tokens. More in detail, there are 52,838 Java methods in the test
set out of 72,989 with zero Jaccard distance. This results in 20,151
snippets that do not pass the metamorphic tests (27.6%). Finally,
the Wilcoxon rank-sum test revealed that there is a statistically
significant (𝑝-value<0.01) difference in the BLEU-Scores achieved
by CodeBERT for the code snippets with changes between pre- and
post-transformations.

Results for RQ2. We applied the Friedman test and the post-hoc
Nemenyi procedure to analyze the impact of the different MTs on
the BLEU-Score. With a 𝑝-value<0.01, the Friedman test indicates
a statistical difference across the different types of MTs. The results
of the post-hoc Nemenyi test are reported in Figure 3. From the
ranking, we can see that the most impactful transformations areMT-
UVR and MT-UVP, while MT-IF and MT-NE are the least impactful
on the BLEU-Score. In terms of significance, we can conclude that
MT-UVP is statistically more impactful than the other MTs.

6 DISCUSSION

We presented an effective approach for testing the robustness of a
model towards metamorphic transformations on source code. Ac-
cording to the empirical results, our approach is capable of produc-
ing significant changes in the summaries generated by CodeBERT,
highlighting potential weaknesses in the model as it does not satisfy
metamorphic relations. In other words, slightly different variants
of the same program can lead to significantly different results.

While in this paper we focus on the Code-To-Text tasks of Code-
BERT, we expect the found implications to hold true for other
down-stream tasks as well. This can be considered a call-to-arms

Friedman: 0.000 (Ha: Different) 
 Critical distance: 0.088

Mean ranks

MT−UVP − 3.93
MT−UVR − 3.97

MT−RER + MT−UVR − 3.98
MT−REP + MT−UVP − 3.99

MT−IF + MT−NE − 4.03
MT−NE − 4.04
MT−IF − 4.05

3.90 3.95 4.00 4.05 4.10

Figure 3: Results of the Friedman test andNemenyi post-hoc

procedure for different MTs.

for researchers and practitioners to test machine learning models
trained on source code using metamorphic testing in addition to
the traditional performance metric (e.g., accuracy).

We envision that a handful robustness-criteria are defined for
the next generation of ML-based program analysis solutions, docu-
mented and tested using metamorphic transformations. We hope
to motivate reviewers of future research to perform sanity checks
on newly published models and add robustness as a mandatory
attribute of being SOTA.

Lampion can also be used to increase the size of the test-set
by generating new program variants, without requiring human
labeling. This could be potentially beneficial for SE tasks where
labeling data is very expensive or few datapoints are available.

7 CONCLUSION

This paper introduces metamorphic relations to test ML-models
program analysis solutions. Using this technology, our objective is
to gain further information on the model’s behavior apart from the
performance metric (e.g., accuracy). To achieve this, we presented
a generic approach (Lampion) and applied it in a case study on
CodeBERT’s Code-To-Text tasks. To evaluate the case study, we
perform various statistical tests to prove or disprove changes in the
resulting performance metric.

Our approach and framework can empower experts and laymen
alike to assess the robustness of their models and provide additional
tests on quality. We tried to keep the approach 1 lightweight in
concept, 2 expendable in implementation (due to plug-in MTs),
3 independent of the task (any language and quality metric).
While our initial implementation is in Java, we expect that a re-

implementation for any language is an easy task and the statistical
analysis can be reused for most experiments.

8 ONLINE RESOURCES

The code for a sample metamorphic transformer, the grid experi-
ment and the evaluation can be found on Github under the Lampion
repository1. The evaluation also contains the results of the experi-
ment as seen in this paper. A reproduction package for the Codebert
Experiment and containerization thereof can be found separately
on Github2. The model, cleaned test-set and post-transformation
datasets can be found on SurfDrive3.

1https://github.com/ciselab/Lampion
2https://github.com/ciselab/CodeBert-CodeToText-Reproduction
3https://surfdrive.surf.nl/files/index.php/f/8713322177

https://github.com/ciselab/Lampion
https://github.com/ciselab/CodeBert-CodeToText-Reproduction
https://surfdrive.surf.nl/files/index.php/f/8713322177
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