
Practical Verification of a Free Monad Instance

Luka Janjić
Supervisor(s): Jesper Cockx, Lucas Escot

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

1

Abstract

Formal verification of software is a largely underrepresented discipline in practice. While it is not
the most accessible topic, efforts are made to bridge the gap between theory and practice. One
tool conceived for this exact purpose is agda2hs, a tool intended to allow developers to create
their programs correct-by-design. A program written a proof assistant language Agda, along with
the proof of its correctness, can be translated to the readable Haskell equivalent, retaining only
the functionally relevant aspects and leaving the proof related aspects of the code behind. This
paper describes research done into the current abilities of agda2hs on the use case of verifying
properties of free monads, a higher order type with potential for use in implementation of domain
specific languages and purely functional and modular handling of effects. In order to represent an
aspect of the type in a general way I used containers, a uniform way of representing types that
store data. This led me to a limitation of agda2hs: while the tool in its current state can only
handle direct translations from a common subset of the two languages, in order to translate my
definition of the data type I needed a more fine grained control of the translation process which
the tool could not provide.

1 Introduction
A naive approach to software verification usually comes down to verifying that a certain combination of
inputs to the program results in the expected outputs. A vast majority of modern programs, however,
have such a large amount of possible input-output combinations that the traditional software testing
methods are unable to provide any strong guarantees on their correctness. For this reason, when more
concrete guarantees are required, another approach might become more feasible: formally proving
properties of programs. Indeed this approach might require a greater extent of intellectual effort, yet
given the right tool set it could prove itself paramount in use cases such as compiler construction [1],
where software failure is not an option. While the formal methods show a lot of promise, there are
still some challenges on their way to widespread use.

A range of different tools providing formal verification exist [2] and this project is focused on the
Agda language along with a tool for translating Agda code into Haskell called agda2hs1. The main
goal of this research is investigating how and what properties can be stated and formally verified
for a small subset of the Haskell ecosystem relating to free monads [3], using Agda and agda2h.
The first step is identifying and selecting instances of free monads as starting point of the research.
These instances are then formalized in Agda in such a way that agda2hs translates them back to
an equivalent of Haskell code that we started with. Next, in order to provide formal verification,
invariants of these structures are identified and stated in Agda. Once the code under investigation and
its invariants are stated in Agda, the formal verification is completed by providing relevant proofs.

In the context of functional languages, monads are a versatile and powerful tool for handling impure
computations in a purely functional way. A canonical example in Haskell is its IO monad, which
allows programs to interact with the outside world and handle related effects without jeopardizing the
functional purity of the language, thereby retaining the benefits that this provides. Nevertheless, since
the IO monad wraps such a wide range of effects, it becomes impossible to determine what exactly a
specific instance is capturing. Free monads have a potential to allow for a more fine grained structuring
of such monolithic monads on the type level [3]. Furthermore, due to their tree-like structure, they
can be a natural way to embed domain specific languages into the underlying language which can
conveniently be written using Haskell’s do-notation. Since constructed expressions would in fact be
just data, this allows for separation of syntax and semantics definitions, as the interpretation would
be defined independently of the structure.

In practice, however, vast majority of programs depend on existing libraries. The code in these
libraries, assuming it is correct, adheres to a certain specification that may be expressed as a series
of claims involving the functions and the data types defined within it. If a developer using certain
features of these libraries wanted to prove correctness of their own code, they would preferably do so by

1https://github.com/agda/agda2hs

2

assuming the expected properties of the code used. However if these properties were merely conjectured
to hold without a proper proof, the resulting proof of correctness would provide little guarantee that
the desired properties hold. Hence, to facilitate formal verification of software in practice, it is useful
to have proofs of such known properties for existing library code at disposal. These proofs can then
be used as lemmas in proving correctness of programs using those libraries. Since I am working with
a monadic structure, a natural choice of properties to prove are the monad laws, which must hold for
any valid monad.

2 The Gap
The main obstacle in providing practical formal verification is the gap between the languages used
in practice for development and the tools used for verification. This research project is part of the
effort towards bridging this gap. On one hand we have Haskell, a general purpose, purely functional
programming language with a rich ecosystem of libraries ready to be used by developers in their
endeavor of solving whatever problem they might be facing. This language, in all of its expressive
power, is simply not suited for addressing the issue of formally verifying the code that is produced
within it. On the other hand we have Agda, a dependently typed language with a type system powerful
enough to facilitate formal proofs of arbitrary statements, yet still providing the functionalities of a
typical functional programming language. Now one might ask why don’t we simply develop our software
in a language such as Agda? While we in fact could do so, that would not be very practical since
Agda’s capabilites as a theorem prover introduce significant sytactic and performance overhead that is
not necessarily desired in a language intended for general purpose development. The proposed solution
to bridging this gap is using a tool, called agda2hs, that can take an Agda file and translate specified
parts of the Agda code into the equivalent Haskell. The idea is as follows: a code base is being developed
using Haskell. There are some critical segments of the program that require formal verification. Such
a segment can in turn be written in Agda, along with formal proofs of its functional correctness. Once
the critical part has been expressed and verified, agda2hs can be used to automatically convert only
the code relevant to the execution of the program to readable Haskell.

2.1 Free monad
In this project I explore such a work flow on an existing part of the Haskell library, specifically that
involving the free monad data type. Generally speaking, a monad [4] is a datatype that defines two
operations: return (also called unit) and >>= (called bind), such that they obey three invariants – the
monad laws.

Right Identity
return a >>= f === f a

Left Identity
m >>= return === m

Associativity
(m >>= f) >>= g === m >>= (\x -> f x >>= g)

Figure 1: The monad laws

A free monad is a higher order datatype parameterized by two type variables such that when applied,
the resulting type has a valid monadic structure. The first parameter is a single variable type con-
structor f endowed with a functor structure 2 and the second one some concrete type a. In Haskell

2https://wiki.haskell.org/Typeclassopedia#Functor

3

terms, these two parameters are said to have a kind f :: * -> * and a :: * respectively. The specific
Haskell data type that I have chosen to work with is Free f a, which is defined for some functor f
and type a as follows:

data Free f a = Pure a
| Free (f (Free f a))

Figure 2: Haskell definition of the Free datatype

Namely, a value of type Free f a can either be instantiated using a Pure constructor with a value of
the type a, or using the Free constructor with a value of the type f (Free f a). This can be seen as
defining a tree structure, where Pure constructors instantiate leaves, and Free constructors instantiate
the internal nodes. It should be noted, however, that the internal nodes do not necessarily represent
only the branching but can have additional structure determined by the functor with which they are
constructed.

2.2 Agda
Agda is the input language to agda2hs. While purely functional, Agda has certain further restrictions
and features that enable it to operate as a proof assistant: it is a total, purely functional and dependently
typed programming language.

The purely functional aspect is the most straight forward of the three. It means that in Agda
there is no distinction between values and functions and, moreover, all functions are pure: given the
same input a function will always yield the same output. These two statements capture the essence of
purely functional languages. A useful consequence of this is the fact that equational reasoning about
programs becomes natural and transparent; any function call can be replaced by its definition with
the arguments substituted in and the behavior of the program is guaranteed to remain unchanged.

While most programming languages allow for defining nonterminating computations fairly easily,
Agda restricts valid definitions exclusively to those that it can prove to be terminating, making it
a total language. It does so by checking that every recursive call is made on a syntactically smaller
value compared to the one passed as an argument to the function: given some arguments to a function,
it may only recurse on composite elements of the provided arguments, thereby guaranteeing that any
recursive program written in Agda will reach a base case and yield a value in finite time.

valid : Nat → Nat
valid zero = zero
valid (suc n-1) = valid n-1

Figure 3: A valid recursive call

invalid : Nat → Nat
invalid zero = zero
invalid n = invalid n

Figure 4: An invalid recursive call

The third important aspect lies in Agda’s type system, which is modelled after an intuitionistic
type theory developed by Per Martin-Löf [5]. In addition to defining regular algebraic data types
(ADT’s) encountered across many functional languages, Agda’s type system allows for dependent
types. These are parameterized types, similar to polymorphic ones, with the key difference being
the parametrization over values of some type instead of only types themselves. As a simple example,
consider the type Fin n of natural numbers up to some n. This type depends on a value of type
Nat, the natural numbers, and each instance of it is populated with n values, corresponding to all the
naturals up to the given n.

4

data Nat : Set where
zero : Nat
suc : Nat → Nat

Figure 5: Defintion of Nat

data Fin : Nat → Set where
fzero : {n : Nat} → Fin (suc n)
fsuc : {n : Nat} → Fin n → Fin (suc n)

Figure 6: Definition of a dependent type Fin

A consequence of these properties is the logical consistency of Agda’s type system. It encodes
a constructive logic system in which proofs of claims are given by construction from smaller terms
until trivial truth is reached. Under the Curry-Howard correspondence, we can relate each Agda type
to a logical proposition and each program of the given type to a proof of that proposition. Thus a
proposition represented by some type is true if and only if this type is populated and, equivalently, if
we can show a type to be empty then we have shown the corresponding claim to be false. This allows
us to use Agda not only as a programming language but also as a proof assistant. While Agda by
default guarantees that the aforementioned properties hold and hence that the typechecked proofs are
correct, it allows its user to loosen any of the restrictions for some segment of the code, trading off
its rigor for ease of implementation. Indeed in such a case we must be careful not to trick Agda into
violating its own rules, for this would allow us to prove contradictory statements and render Agda
inconsistent.

Note that in Agda types are themselves also values and, as such, must belong to a type. We call
this type Set. Hence, the newly defined data types and any type variables appearing within their
definitions must be annotated as elements of Set, corresponding to the Haskell kind *. Since Set is
also a value it must itself have a type. However, if we are to preserve the logical consistency of the
type system, no value can not be its own type. This issue is circumvented by the introduction of an
infinite hierarchy of type levels (e.g. Set n contains level n types), such that Set is a synonym for
Set 0 and Set n : Set (n + 1) for n ∈ N. Agda provides a module Level that exposes the type of
the same name used to represent the level values.

2.3 Strict Positivity and Containers
One of the ways in which Agda’s rules could be violated relates to defining inductive data types.
Namely, Agda places a restriction on valid definitions of data types: strict positivity. Types of argu-
ments to a constructor of some data type D must either be noninductive (they do not mention D at
all), or have D only in the last position (in the type of the return value). In other words, D must
not occur to the left of an arrow in the type of any of its constructors’ arguments. Without this
restriction we could seamlessly violate the totality of Agda and, consequently, the soundness of Agda’s
type system. Take as an example the following Agda definitions, for an arbitrary type T :

data NonPositive : Set where
bad : (NonPositive → T) → NonPositive

apply-self : NonPositive → NonPositive
apply-self (bad f) = f (bad f)

break-agda : T
break-agda = apply-self (bad apply-self)

Figure 7: Non Strictly Positive Definition

Notice that if we attempt to evaluate apply (bad apply), the expression expands into itself; it is a
non-terminating computation. Worse yet, if we take T to be the empty type then the above example
constructs an element of the empty type and thereby proves a contradiction.

Now recall the Haskell definition of Free. We can easily express the same in Agda:

5

data Free (F : Set → Set) (A : Set) : Set where
pure : A → Free F A
free : F (Free F A) → Free F A

Figure 8: Naive definition of Free data type in Agda

While it is not as immediate as in the previous example, this definition is not strictly positive. Namely,
the issue can arise if F evaluates to a function that takes as an argument a value of the type given as
an argument to F. This would cause the type of free to be of the form:

(T1 -> ... -> Free F A -> ... -> Tn) -> Free F A

violating the strict positvity condition. The verbatim translation of the Haskell definition of Free is
not valid in Agda. Since the goal is to verify the data type for the most general case I have turned to
containers [6]: a uniform way to represent data types that store values and, conveniently, all strictly
positive types [7]. Generally speaking, a container is a higher order type determined by a shape type
S : Set ℓs and a family of types P : Set ℓp indexed by S, denoted as S ▷ P : Container ℓs ℓp.
These two types determine what structure the container represents. Since I am using the containers for
purposes of modeling types in Haskell and in Haskell there are no higher, the two level arguments will
be set to zero so I define the corresponding type Container00. The extension of a container is a type
constructor [[S ▷ P]] X = Σ[s ∈ S] (P s → X), a dependent pair with a shape value s : S and
a function from possible positions P s (its domain depends on the shape s) to the contained values
of some type X. The intuition behind this is that the type S represents the collection of all possible
shapes that a given structure can take and that P yields all the possible positions P s in a given shape,
which we can use to index into the structure with the function in the second position of our dependent
pair.

2.4 Equational reasoning in Agda
The proofs in this paper are constructed using a simple equational reasoning framework in Agda.
The syntax is made to allude to typical mathematical proofs by algebraic rewriting so the proofs are
relatively easy to read. Each proof begins by the expression begin and ends with end. Trivial equality
is expressed by =⟨⟩ , representing that Agda can show the two statements to be equal by computing
their normal form. In other words both expressions reduce to the same value just by applying all the
constituent functions. This, in fact, needs not be stated for a valid proof to be accepted by Agda, but
is used for readability. On the other hand =⟨ some-argument ⟩ is used when an additional argument
needs to be used for Agda to accept the equality assertion. In this case the expression can be seen as a
transitivity statement, where the argument in the brackets is the bridging equality statement between
the two surrounding expressions. Finally, cong is an often used function in equational reasoning proofs
and it represents congruence.

3 Verification for Free?
The final translation of the Free data type restricts the first parameter to a container and requires
the argument to the free constructor to be an extension of the given container, preserving the strict
positivity condition and resulting in the following definition: This choice of representation had several

data Free (F : Container00) (A : Set) : Set where
pure : A → Free F A
free : [[F]] (Free F A) → Free F A

Figure 9: Final definition of Free data type

6

consequences on the outcome of my research. While it allowed me to circumvent the strict positivity
issue, it had an additional benefit of enabling me to subsequently write general proofs applying to any
kind of positive functor. On the other hand it has pushed me to the verge of capabilities of agda2hs,
as I have found that this kind of representation, while useful, is beyond what can be handled by the
tool. This formulation can not be translated back to equivalent Haskell code. Due to the requirement
that any monad must be an applicative and a functor, I had to translate those definitions first before
giving the instance of Monad for Free. This was a straight forward task that involved nothing more but
adapting the original Haskell definitions in accordance the syntactical differences of the two languages.

iMonadFree ._>>=_ (pure a) f = f a
iMonadFree ._>>=_ (free m) f = free (fmap (_>>= f) m)

Figure 10: Definition of bind for the monad instance of Free in Agda

Pure a >>= f = f a
Free m >>= f = Free ((>>= f) <$> m)

Figure 11: Definition of bind for the monad instance of Free in Haskell

Despite reaching the limits of agda2hs, I have provided proofs of the monad laws for Free F A
given any positive funtor F representable by the container and any contained type A. Left identity
required the least effort, as it can be shown directly from the definitions of return and >>= simply by
applying the functions.

monad-left-id : {F : Container00} {A B : Set}
→ (a : A) → (f : A → Free F B) → (return a >>= f) ≡ f a

monad-left-id a f = refl

Figure 12: Proof of the left identity law

For the remaining two proofs mere substitution was not enough. Since the container extension abstracts
over representable types using a function to yield the contained values and the monad laws are equality
statements, I had to use the axiom of function extensionality in order to complete them. This axiom
states that, given two functions of the same type, if they evaluate to the same value for any given
input then they are equal. While the axiom is not part of the underlying logic system, it is known to
be consistent with it, so postulating it does not affect the validity of the proofs.

extensionality : {A B : Set} {f g : A → B}
→ (∀ x → f x ≡ g x) → f ≡ g

Figure 13: Function extensionality

The remaining two proofs follow a similar inductive structure where the base case holds trivially from
the definitions, while the recursive case consists of reducing the binds to fmap by substituting the
definition, further rewriting the resulting expression within the free constructor, then using exten-
sionality to reason about the effect on the contained values, until finally reaching the very expression
under investigation involving those very contained values. At this point all that is left to do is tie the
recursive knot by referring to the theorem itself as the induction hypothesis.

7

-- the induction hypothesis
monad-right-id : {F : Container00} {A : Set} → (m : Free F A) → m >>= return ≡ m

bind-into-pure-is-id : {F : Container00} {A : Set}
((s , vs) : [[F]] (Free F A)) → (_>>= return) vs ≡ vs

bind-into-pure-is-id c@(_ , vs) =
begin

-- from definition of composition
(λ p → vs p >>= pure)

-- by the induction hypothesis applyied to the contained value (vs p)
=⟨ extensionality (λ p → monad-right-id (vs p)) ⟩

vs
end

fmap-bind-into-return-is-id : {F : Container00} {A : Set}
(fa : [[F]] (Free F A)) → fmap (_>>= return) fa ≡ fa

fmap-bind-into-return-is-id fa@(s , vs) =
begin

-- since return is defined as pure I write it direcly
fmap (_>>= pure) fa

=⟨⟩ -- applying the definition of fmap for containers
(s , (_>>= pure) vs)

-- by the above lemma applied to the second position of the pair
=⟨ cong (s ,_) (bind-into-pure-is-id fa) ⟩

fa
end

monad-right-id (pure x) = refl
monad-right-id (free fa) =

begin
-- from applying the bind and return
free (fmap (_>>= pure) fa)

-- now referring to the above lemma w.r.t. the expression within the constructor
=⟨ cong free $ fmap-bind-into-return-is-id fa ⟩

free fa
end

Figure 14: Proof of the right identity law

8

-- the induction hypothesis
monad-assoc : {F : Container00} {A B C : Set}

(m : Free F A) (g : A → Free F B) (h : B → Free F C)
→ (m >>= g) >>= h ≡ m >>= (λ x → g x >>= h)

ext-lemma : {F : Container00} {A B C : Set}
(g : A → Free F B) (h : B → Free F C) ((_ , vs) : [[F]] (Free F A))

→ ∀ x → (λ p → ((vs p) >>= g) >>= h) x ≡ (λ p → (vs p) >>= (λ x → (g x) >>= h)) x
ext-lemma g h fa@(_ , vs) p =

begin
((vs p) >>= g) >>= h

-- by induction hypothesis on the constituent terms
=⟨ monad-assoc (vs p) g h ⟩

(vs p) >>= (λ x → (g x) >>= h)
end

fmap-bind-lemma : {F : Container00} {A B C : Set}
(fa : [[F]] (Free F A)) (g : A → Free F B) (h : B → Free F C)

→ fmap (_>>= h) (fmap (_>>= g) fa) ≡ fmap (_>>= (λ x → (g x) >>= h)) fa
fmap-bind-lemma fa@(s , vs) g h =

begin
-- directly from the definition of fmap
(s , λ p → (vs p >>= g) >>= h)

-- by the extensionality argument applied to the value yielding function
=⟨ cong (s ,_) (extensionality (ext-lemma g h fa)) ⟩

(s , λ p → (vs p) >>= (λ x → g x >>= h))
=⟨⟩ --by unapplying the definition of fmap

fmap (_>>= (λ x → g x >>= h)) fa
end

monad-assoc (pure x) g h = refl
monad-assoc m@(free fa) g h =

begin
(free (fmap (_>>= g) fa)) >>= h

=⟨⟩ -- reducing the fmap
free (fmap (_>>= h) (fmap (_>>= g) fa))

-- applying the above lemma to the argument expression to free
=⟨ cong free (fmap-bind-lemma fa g h) ⟩

free (fmap (_>>= (λ x → g x >>= h)) fa)
=⟨⟩ -- unapplying the >>=

(free fa) >>= (λ x → g x >>= h)
end

Figure 15: Proof of the associativity law

4 Responsible Research
The work done in this research project was entirely based on Agda language which, as explained
in the second chapter, is in itself a consistent logical system providing strong guarantees for the
typechecked code. The results outlined by this paper can be easily reproduced by accessing the

9

public repository containing the final version of the code3. Most of the relevant code is presented
by the figures throughout the paper, which is given without any semantically relevant changes (some
comments and small rearrangements were added for readability) and it can be compared with the code
from the repository to assure that it was presented faithfully. The proofs that I have created were
typechecked, guaranteeing their correctness. This can be easily verified using an open source Agda
distribution accessible from the official GitHub repository. There are no other relevant ethical issues
directly relating to the topic of this research.

5 Related Work
A related effort towards writing proofs involving Free monads using containers was done by Dylus et.
al. [8]. In their research they used Coq proof assistant, which is based on a similar type theory as
Agda’s type system. They faced the same issue regarding strict positivity and had solved it using
containers. Their research, however, was of a more general nature, as they explored the possibilities
of establishing a framework for reasoning more generally about monadic structures using free monads
as a representation of a wide range of different monads.

An alternative approach to verification to the one used in this paper takes the opposite direction:
starting with an existing Haskell code, using a tool such as HsToCoq 4 to translate it into a proof
assistant language such as and then proving properties on the translated code. While this has an
advantage of allowing its user to verify existing code without need to port it to the host language
first, which is error prone and time consuming, it is less convenient when correct-by-design code is
to be produced. The code translated to the proof assistant language often has to be augmented in
order to facilitate proof writing so the process becomes cumbersome if the code has to be written in
one language, then augmented and verified in another. For such a workflow it is more appropriate
to develop and verify everything in the same environment and have automated translation to the
deployment language.

6 Conclusion and Future Work
While the verification process demonstrated in this project was successful, the main goal of this project
was exploring the possibilities of agda2hs. In this regard I have identified a limitation of the tool.
The final implementation of the Free data type, using containers to represent strictly positive functors,
can not be translated to the desired Haskell code. The tool in its current state is only able to perform
direct translations from the common subset of the two languages, while my situation required more
nuanced behavior. Namely, the container used to represent functors is supposed to be translated to
a regular type constructor variable, and the instantiation of its extension in one of the constructors
should be replaced by just the variable itself. This could be a useful feature to implement in the
future as it could be used in similar verification efforts where some argument could be replaced by a
different representation, more suitable for formal verification. For example, an additional annotation
could be included for marking such arguments to types or functions, thereby allowing users to provide
a segment of Agda code whose translation should replace the marked argument. Since some additional
functions might have to be applied to the argument in the definition of the data type or function under
verification, such as the container extension function in case of this research, there should also be a
way to state the "activation function" that should be ignored during translation, if there is any.

It is interesting to note that, while the proofs given here hold, their reliance on the postulated
extensionality axiom could be avoided. In general, postulates are avoided whenever possible because
they result in weaker computational properties [10]. Since the postulate is simply given as an axiomatic
statement, which corresponds to a term of some type without a reduction rule, any computation relying

3https://github.com/sourceCode4/verification-of-free-monads/releases/tag/v1.0.0
4https://github.com/antalsz/hs-to-coq

10

on it can not be fully evaluated. This could be avoided by reformulating the proofs in terms of Cubical
Agda [11], in which function extensionality can be proven without additional postulates.

References
[1] X. Leroy, (2009). Formal verification of a realistic compiler. Communications of the ACM, 52(7),

107-115. https://doi.org/10.1145/1538788.1538814

[2] R. C. Armstrong, et al. "Survey of Existing Tools for Formal Verification," Sandia National
Laboratories, Albuquerque, NM, and Livermore, CA, SAND2014-20533, Dec. 2014. Accessed
on 11.06.2022. [Online]. Available: https://web.archive.org/web/20180713134613id_/http:
//prod.sandia.gov:80/techlib/access-control.cgi/2014/1420533.pdf

[3] W. Swierstra, 2008. Data types à la carte. Journal of Functional Programming, 18(04).

[4] E. Moggi, 1991. Notions of computation and monads. Information and Computation, 93(1), pp.55-
92.

[5] P. Martin-Lof and G. Sambin, Intuitionistic type theory. Napoli: Bibliopolis, 1984.

[6] M. Abbott, T. Altenkirch, and N. Ghani, "Categories of containers," Lecture Notes in Computer
Science, pp. 23-38, Feb. 2003.

[7] M. Abbott, T. Altenkirch and N. Ghani, "Containers: Constructing strictly positive types", The-
oretical Computer Science, vol. 342, no. 1, pp. 3-27, 2005. Available: 10.1016/j.tcs.2005.06.002.

[8] S. Dylus, J. Christiansen and F. Teegen, "One Monad to Prove Them All", The Art, Sci-
ence, and Engineering of Programming, vol. 3, no. 3, 2019. Available: 10.22152/programming-
journal.org/2019/3/8 [Accessed 15 June 2022].

[9] J. Voigtländer, "Asymptotic Improvement of Computations over Free Monads", in MPC: Interna-
tional Conference on Mathematics of Program Construction, Marseille, France, 2008.

[10] L. Pujet and N. Tabareau, "Observational equality: now for good", Proceedings of the ACM on
Programming Languages, vol. 6, no., pp. 1-27, 2022. Available: 10.1145/3498693 [Accessed 19 June
2022].

[11] A. Vezzosi, A. Mortberg and A. Abel, "Cubical Agda: A dependently typed programming language
with univalence and higher inductive types", Journal of Functional Programming, vol. 31, 2021.
Available: 10.1017/s0956796821000034 [Accessed 19 June 2022].

11

