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Modular structures come with the promise of efficient manufacturing and reduced mainte-
nance costs. The amount of modularization is usually limited by weight efficiency, meaning
that the minimum weight always lies on the most customized design, where all the structural
elements are allowed to be different across the structural domain. This work studies a new
design approach and structural and aeroelastic optimization of wings using truss-based modular
structures. Furthermore, the work proposes a new approach to structural topology, eliminating
traditional elements, such as spars and ribs, and replacing them with modular truss-based
structures, which are connected by spherical joints at their ends. The topological mesh of the
structures are created from the Delaunay triangulation and tessellation. The structural model
is based on two types of finite elements: beam and quadrilateral elements. The beam elements
are defined from consistent Timoshenko elements and the quadrilaterals are based on Mindlin-
Reissner kinematics using bi-linear interpolation and reduced integration to prevent shear
locking. The Doublet-Lattice Method is used to predict the unsteady subsonic aerodynamics,
and the P-K method is used to compute the aeroelastic system solution. For the examples and
case studies, a reference wing geometry from the FLEXOP project is used as a baseline. Two
optimizations are proposed, where in all the objective functions are to minimize the structural
weight of the wing and to maximize the flutter speed. The first optimization has as design
variables the number of control points, or nodes, in each airfoil and the number of sections
along the span. In the second optimization, the external diameters and thicknesses of each of the
modular structures are individually optimized, even eliminating unnecessary ones. The results
show that it is possible to obtain relatively light wings that meet the structural and aeroelastic
requirements; however, the definition of the optimization parameters directly influence the
mesh generation and computational cost of the optimization. Above all, modular structures
have proved to be a good strategy in the design of structures for new wing concepts.

I. Introduction

In the last years, the aerospace industry has faced many challenges in the development of new projects and technological
innovations [1]. With a global debate increasingly focused on environmental impacts and other climate changes,

aviation as a whole could not be absent from the discussions, since it is one of the biggest contributors to the emission
of greenhouse gases [2]. In this context, engineers and researchers have been dedicating efforts to develop increasingly
efficient aircraft, i.e., aircraft that are increasingly lighter and that consume less fossil fuels [3–6]; however, to achieve
very aggressive goals [7, 8], it is necessary to move forward and create new disruptive technologies [9–11].

Regarding fossil fuel consumption, in recent years many conceptual projects and experimental models have been
presented to the market [12–18]. Hybrid-electric and fully-electric aircraft designs seek to combine innovative propulsion
systems, including electric motors and batteries, in order to reduce energy consumption during a certain mission, which
can make somehow some operations more profitable, such as the thin-haul operations [19]. However, most operations
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are not yet benefited, since long-range missions require a lot of stored energy, which would imply tons of batteries [20].
Thus, the technological advancement of specific energy of batteries is still crucial [21]. In this context, other alternatives
have been recently presented, such as the new Airbus hydrogen-powered airplanes [22]. These new concepts rely on
hydrogen as a primary source, granting zero chemical emissions in all phases of flight [23], which enables advances
towards decarbonization of the entire aviation industry, likely being a solution for aerospace and many other industries
to meet their climate-neutral targets.

On the other hand, when it comes to more efficient aircraft, the idea of better aerodynamic efficiencies and lighter
structures easily comes to mind. For better aerodynamic efficiency of next-generation aircraft concepts, many studies
propose wings with higher aspect ratios and different design shapes, examples being the D8.x jet transport configuration
[24] or the Truss-Braced Wing concept [25]. Moreover, Martins et al. [26] evaluate the impact of new structural material
technologies on the aerostructural tradeoffs in the design of conventional and high aspect ratio wing design. Zhang
et al. [27] design and compare sandwich multi-spar structures and innovative mixed structures basing on the structural
characteristics of high aspect ratio wings. Furthermore, Afonso et al. [28] present a review on the state-of-the-art on
nonlinear aeroealasticity of high aspect-ratio wings. At the same time, when designing aircraft wings with larger spans
and with lighter structures, these wings tend to become less stiff and consequently more prone to aeroelastic instabilities
such as flutter, which can render much of the operation envelope unfeasible. In this sense, aeroelastic constraints become
important issues to take care of and account for during the design process, mainly in early design stages [29], preventing
costly design changes in later design phases or worse during flight testing.

Some works have been studying new models of structure for the wing, presenting novel manufacturing techniques
and enabling unconventional internal wing layouts. Saleem et al. [30] apply nonparametric topology optimization and
manufacturing simulation on a commercial aircraft vertical stabilizer component. Sleesongsom et al. [31] propose a
novel design approach for synthesizing the internal structural layout of a morphing wing. Nevertheless, when the topic
is manufacturing, assembling, and optimization with design constraints, it is important to ensure that the structures can
be easily handled and used on large scale. Thus, a good strategy is to divide the structure into a set of similar parts
so that the process becomes less costly and easier to be reused, which in turn represents the concept of modularity.
Therefore, modular structures have also been studied in aerospace applications because they present benefits analogous
to truss topology. Following that, Montemurro et al. [32] present a two-level procedure for the global optimum design of
composite modular structures, applying to the design of an aircraft wing. Moses et al. [33] suggest a numerical method
for the topological design of modular structures under general and arbitrary loading.

Along those lines, this paper proposes a study of modularity and topology optimization of a wingbox structure,
accounting for aeroelastic constraints. The modularity is addressed by using truss-based modular structures, looking for
a tradeoff between topological mesh vs. weight. The wingbox model used as a baseline is from the FLEXOP project
[34], which has an aspect ratio of 20 and a thin wingbox profile that poses even more challenges to the structural design.
Two optimizations are proposed, where in all the objective functions are to minimize the structural weight of the wing
and to maximize the flutter speed. The aeroelastic constraints are computed employing the P-K method coupled to
the Doublet-Lattice Method (DLM), which is used to predict the unsteady subsonic aerodynamics. The optimizations
are performed using genetic algorithms, where the design variables are the types of each modular structure and the
arrangements. The first optimization has as design variables the number of control points, or nodes, in each cross-section,
the number of cross-sections along the wingspan, and the diameter of all elements of modular structures. In the second
optimization, the external diameters and thicknesses of each of the modular structures are individually optimized, even
eliminating unnecessary ones. The optimizations are also performed using the well-known algorithm NSGA-II.

II. Formulation

A. Structural model
The structural model is based on two finite element types to correctly represent the different wing structural designs:

quadrilateral and beam elements. The quadrilateral elements provide the necessary field representation to calculate
the stresses at the skin region and are based on Mindlin-Reissner kinematics using bi-linear interpolation and reduced
integration to prevent shear locking. The bi-linear interpolation is calculated based on the nodal positions of the element
in local coordinates, where each 𝑖𝑡ℎ nodal position is given by 𝑥𝑖 and 𝑦𝑖 , such that:
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𝑁 (𝑥, 𝑦) = (𝑥1 +
1
2
(𝜂 + 1) (−𝑥1 + 𝑥4 +

1
2
(𝑥1 − 𝑥2) (𝜉 + 1) + 1

2
(𝑥3 − 𝑥4) (𝜉 + 1)) − 1

2
(𝑥1 − 𝑥2) (𝜉 + 1))𝑖𝑖𝑖+

(𝑦1 +
1
2
(𝜂 + 1) (−𝑦1 + 𝑦4 +

1
2
(𝜉 + 1) (𝑦1 − 𝑦2) +

1
2
(𝜉 + 1) (𝑦3 − 𝑦4)) −

1
2
(𝜉 + 1) (𝑦1 − 𝑦2)) 𝑗𝑗𝑗 (1)

such that the values of the interpolation function at the nodes 𝑁1, 𝑁2, 𝑁3, 𝑁4 can be calculated by respectively replacing
𝜉, 𝜂 by: (−1,−1), (+1,−1), (+1, +1) and (−1, +1). The hour-glass control is implemented according to Brockman [35],
where the second derivatives of the bi-linear interpolation functions are used to define generalized hourglass strain
components that apply to each translational degree-of-freedom: 𝜀𝑢

ℎ
, 𝜀𝑣

ℎ
, and 𝜀𝑤

ℎ
; and generalized hourglass strains that

apply to two rotational degrees-of-freedom: 𝜀𝑟𝑥
ℎ

, 𝜀𝑟𝑦
ℎ

; noting that no hourglass strain or stiffness is added to the drilling
degree-of-freedom 𝑟𝑧 . A generalized hourglass stiffness is defined for each generalized hourglass strain. Because
Brockman’s work is based on metallic structures, the originally proposed generalized hourglass stiffnesses need to be
modified to account for laminated composite plates as follows:

𝐸𝑢
ℎ =

0.1𝐸1𝑒𝑞ℎ

1.0 + 1.0/𝐴𝑒

(2)

𝐸𝑣
ℎ =

0.1𝐸2𝑒𝑞ℎ

1.0 + 1.0/𝐴𝑒

𝐸
𝑟𝑥
ℎ

=
0.1𝐸2𝑒𝑞ℎ

3

1.0 + 1.0/𝐴𝑒

𝐸
𝑟𝑦

ℎ
=

0.1𝐸1𝑒𝑞ℎ
3

1.0 + 1.0/𝐴𝑒

𝐸𝑤
ℎ =

1
2
(𝐸𝑟𝑥

ℎ
+ 𝐸𝑟𝑦

ℎ
)

where 𝐴𝑒 is the area of the quadrilateral element; ℎ is the total thickness of the element; 𝐸1𝑒𝑞 = 1/(ℎ𝑎11) and
𝐸2𝑒𝑞 = 1/(ℎ𝑎22) with 𝑎11 and 𝑎22 components of the flexibility matrix of the laminated composite plate. The variation
of the hourglass strain energy 𝛿𝑈ℎ is therefore given by the integral:

𝛿𝑈ℎ = 𝑢̄𝑒𝑢̄𝑒𝑢̄𝑒
⊤
∬

𝑥,𝑦

(
𝑁𝑁𝑁𝑢

ℎ
⊤
𝐸𝑢
ℎ𝑁𝑁𝑁

𝑢
ℎ + 𝑁𝑁𝑁

𝑣
ℎ
⊤
𝐸𝑣
ℎ𝑁𝑁𝑁

𝑣
ℎ + 𝑁𝑁𝑁

𝑤
ℎ
⊤
𝐸𝑤
ℎ 𝑁𝑁𝑁

𝑤
ℎ + 𝑁𝑁𝑁𝑟𝑥

ℎ

⊤
𝐸
𝑟𝑥
ℎ
𝑁𝑁𝑁

𝑟𝑥
ℎ
+ 𝑁𝑁𝑁𝑟𝑦

ℎ

⊤
𝐸
𝑟𝑦

ℎ
𝑁𝑁𝑁

𝑟𝑦

ℎ

)
𝑑𝑥𝑑𝑦 𝛿𝑢̄𝑒𝑢̄𝑒𝑢̄𝑒 (3)

which is then added to the strain energy ultimately contributing to the constitutive stiffness matrix of the system. The
drilling degree-of-freedom is calculated simply by penalizing the in-plane rotational shear, as for instance discussed in
Adam et al. [36]. Here, the drilling stiffness 𝐸𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 is calculated based on the laminated composite plate stiffness
component 𝐴66, such that:

𝐸𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 =
𝐴66
ℎ

(4)

The truss-based regions that replace the spars, ribs, and stiffeners of a conventional wing design are represented
using a consistent Timoshenko beam element, with the formulation proposed by Luo [37]. This formulation has been
implemented without modifications, and the reader is referred to Luo’s reference for further details. Furthermore, the
formulation presented is already implemented in Python and available as a library named pyfe3d, which has been
developed by Castro [38]. Therefore, the mass and stiffness matrix of the wing structure under analysis are obtained by
using that library package.

B. Aerodynamic model
For the aerostructural coupling, the Doublet Lattice Method (DLM) is used to predict the unsteady subsonic

aerodynamics. According to the mission of the reference This method was first developed by Albano and Rodden [39]
to calculate the lift distributions in the subsonic flow region. Subsequent work was done, for example, by Geising et al.
[40], to refine the calculation ability on nonplanar or noncoplanar surfaces and to improve the modeling of wing-fuselage
interference [41].
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The behavior of small perturbations of the velocity potential 𝜙 in an inviscid, rotational, and compressible flow,
linearised around a uniform, parallel flow with velocity𝑈∞ along 𝑥 is described by the governing Partial Differential
Equation (PDE):

(1 − 𝑀2
∞)𝜙𝑥𝑥 + 𝜙𝑦𝑦 + 𝜙𝑧𝑧 −

2𝑈∞

𝑎2
∞
𝜙𝑥𝑡 −

1
𝑎2
∞
𝜙𝑡𝑡 = 0 (5)

with 𝑎∞ the speed of sound in the far-field flow, and 𝑀∞ ≡ 𝑈∞/𝑎∞ the corresponding Mach number. The boundary
conditions needed to solve the PDE follow from the unperturbed flow condition at infinity and tangential flow over the
lifting surface 𝑆,

𝜙|far-field = 0 and
𝜕𝑆

𝜕𝑡
+ ∇𝜙 · ∇𝑆 = 0 (6)

where the latter condition holds only on 𝑆. The tilde denotes time-dependent perturbation to the steady far-field flow
𝜙 = 𝑈∞𝑥.

The pressure differential induced by an infinitesimal element of the acceleration potential doublets sheet is related to
its strength 𝐴Ψ as

Δ𝑝 = 4𝜋𝜌∞𝐴Ψd𝜉d𝜎 (7)

with 𝜉 and 𝜎 the tangential coordinates. Then, integrating Eq. (7) over a sheet 𝑆 of pressure doublets and dividing by
𝑈∞, the integral equation in non-dimensional form is obtained:

𝑤̄𝑁

𝑈∞
=

−1
4𝜋𝜌∞𝑈2

∞

∬
𝑆

Δ𝑝(𝜉, 𝜂, 𝜁)𝐾 (𝑥 − 𝜉, 𝑦 − 𝜂, 𝑧 − 𝜁)d𝜉d𝜎 (8)

where 𝐾 is the so-called Kernel Function, expressed by:

𝐾 (𝑥0, 𝑦0, 𝑧0) ≡ exp
[
𝑖𝜔𝑥0
𝑈∞

]
𝜕

𝜕𝑁𝑟

𝜕

𝜕𝑁𝑠

∫ 𝑥0

−∞

1
𝑅′ exp

[
𝑖𝜔
𝜆 − 𝑀∞𝑅′

𝑈∞𝛽2
∞

]
d𝜆 (9)

with the relative coordinate system (𝑥0, 𝑦0, 𝑧0) defined as 𝑥0 ≡ 𝑥 − 𝜉, 𝑦0 ≡ 𝑦 − 𝜂, and 𝑧0 ≡ 𝑧 − 𝜁 . The integral formula
(8) relates the unknown pressure differential Δ𝑝 generated by a thin lifting surface, modeled as a sheet of acceleration
potential doublets, to the velocity normal to the surface 𝑤̄𝑁 (normalwash) in a receiving point.

Regarding the geometry idealization, Albano and Rodden [39] originally proposed to divide the geometry into 𝑛tot
of trapezoidal elements (Fig. 1), referred to as boxes or panel, aligned chord-wise with the far-field flow and over which
the pressure is assumed constant.

z, ζ
y, η

x, ξ

s

r
e

ᴧs

Δξ

doublet segment (1/4-chord line)

collocation point (mid-span, 3/4-chord)

Fig. 1 Discretization of the lifting surface geometry and overview of the panel.

In view of this discretization, the integral equation (8) for the induced normalwash at a receiving panel 𝑟 becomes a
sum of the contributions from each emitting panel 𝑠, or
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𝑤̄𝑁,𝑟

𝑈∞
=
∑︁
𝑠

−Δ𝑝𝑠Δ𝑥𝑠
4𝜋𝜌∞𝑈2

∞

∬
𝑠

𝐾 (𝑥 − 𝜉, 𝑦 − 𝜂, 𝑧 − 𝜁)d𝜉d𝜎 (10)

=
∑︁
𝑠

−Δ𝑐𝑝,𝑠
Δ𝑥𝑠

8𝜋

∬
𝑠

𝐾 (𝑥 − 𝜉, 𝑦 − 𝜂, 𝑧 − 𝜁)d𝜉d𝜎 (11)

with Δ𝑥𝑠 the chord of the emitting panel and 𝛿𝑐𝑝,𝑠 the non-dimensional pressure coefficient, Δ𝑐𝑝,𝑠 = Δ𝑝𝑠/0.5𝜌∞𝑈2
∞. In

addition, the influence of the doublet sheet over each element 𝑠 is lumped onto a span-wise segment along the 1/4-chord
line. The flow properties are evaluated at collocation or control points placed at the midspan of the 3/4-chord line.

Thus, the previous expression may be cast into the linear system

{𝑤̄𝑁 } = [𝐷] {Δ𝑐𝑝} or 𝑤̄𝑁,𝑟 =

𝑛tot∑︁
𝑠=1

𝐷𝑟𝑠Δ𝑐𝑝,𝑠 (12)

where the 𝑛tot × 𝑛tot matrix [𝐷] relating the lifting pressure at a panel 𝑠 to the normalwash at some other panel 𝑟 , is the
so-called matrix of total downwash factors.

The basic idea in the Doublet-Lattice method is to adjust a polynomial, usually of the second or fourth degree, to the
numerator of the Kernel Function (9), allowing an analytical integration. The 𝐾 function, however, has an exact steady
contribution that can be integrated analytically without any adjustment. So one way to increase the accuracy of the
method is to separate the steady and unsteady contributions in the Kernel numerator. With these strategies, it can be
shown that each element of matrix [𝐷] is given by

𝐷𝑟𝑠 = 𝐷
(0)
𝑟𝑠 + 𝐷 (1)

𝑟𝑠 + 𝐷 (2)
𝑟𝑠 (13)

where the superscripts (0) , (1) and (2) denote, respectively, the steady, planar unsteady, and non-planar unsteady
contributions.

C. Aeroelastic Constraints
In order to solve the aeroelastic system equations for the flutter problem, it is interesting to transform the equation of

the dynamics of movement into a modal system. Since flutter approximates the natural frequencies of the structure, it is
convenient to evaluate the evolution of instability from mode to mode. Thus, the aerodynamic load calculated at the
points defined by an aerodynamic mesh is given by:

{𝐿𝑎} = 𝑞∞{𝑇𝑎𝑠}𝑇 [𝑆] {𝑤𝑁 } [𝐴𝐼𝐶] {𝑇𝑎𝑠}{ℎmodal} (14)

where [𝐴𝐼𝐶] = [𝐷𝑟𝑠]−1 is the matrix of aerodynamics influence coefficients. Similarly, the generalized aerodynamic
load, 𝑄 𝑗 , that is, the reduced load on the 𝑗-th modal base, is given by:[

𝑄 𝑗

]
= {Φ 𝑗 }𝑇 {𝑇𝑎𝑠}𝑇 [𝑆] {𝑤𝑁 } [𝐴𝐼𝐶] {𝑇𝑎𝑠}{Φ 𝑗 } (15)

where Φ 𝑗 is the 𝑗-th mode of vibration, obtained through the eigenvalue and eigenvector solution from the FEM. Eq.
(15) represents the calculation of the so-called generalized aerodynamic matrix (GAM), which is a complex matrix based
on the Mach number and the reduced frequency, derived from the matrix (AIC), and reduced on the modal basis. The
aeroelastic analysis assumes that complex loading can be separated in real and imaginary terms, denoting, respectively,
the aerodynamic influence on the damping and rigidity of the system. Thus, the generalized motion equation can be
written as follow: [

𝑀𝑞

]
{ ¥𝑞} +

[
𝐾𝑞

]
{𝑞} = 𝜌𝑉

2
[𝑄𝐼 ] { ¤𝑞} +

𝜌𝑉2

2
[𝑄𝑅] {𝑞} (16)

Equation (16) is the aeroelastic equation of the system described in modal coordinates. It can be represented in the
classic aeroelastic form described by Wright and Cooper [42] as

A ¥𝑞 + 𝜌𝑉B ¤𝑞 +
(
𝜌𝑉2C + E

)
𝑞 = 0 (17)
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where A is the modal mass matrix, B the aerodynamic damping matrix due to the flow, C the aerodynamic stiffness
matrix, and E the structural stiffness matrix, with the aerodynamic terms dependent on the reduced frequency.

Since the aerodynamic damping and stiffness matrices are dependent and vary with reduced frequency, the aeroelastic
system solution is obtained through well-established iterative methods in the literature, such as the PK method [43],
which is used here. So, having the aeroelastic equation (16) as a non-linear eigenvalue problem, assuming that 𝑝 ≡ d/d𝑡,
then ¥𝑞 = 𝑝2𝑞: (

𝑝2 [
𝑀𝑞

]
+
[
𝐾𝑞

]
− 𝜌𝑉2

2
[𝑄(𝑘)]

)
{𝑞} = 0 (18)

From the eigenvalue problem, described by Eq. (7), the complex root 𝑝 = 𝜔 (𝛾 ± 𝑖) is determined. The dynamic
characteristics of the aeroelastic system, such as frequency and damping, are computed as follows:

𝜔 = Im (𝑝) (19)

𝑔 = 2𝛾 = 2Re (𝑝) /Im (𝑝) (20)

Based on the values of 𝜔 and 𝑔, it is possible to verify the stability of the dynamic system (stable for negative values
of 𝑔). The critical flutter and divergence speeds are obtained in the vicinity of the unstable responses (𝑔 = 0). While
flutter is characterized by the coalescence between two vibration modes (fluid-structure problem), the divergence is
determined when the natural frequency tends to zero.

III. Wing Design Approach and Optimizations
The work of Opgenoord and Willcox [44] investigated what the authors called lattice structures in the design of

wing structures. The authors focused on additive-manufactured elements, therefore not constrained by modularity
requirements.

The wing designed in this work is based on the premise that modular structures will be used in its formation, that is,
instead of traditional and conventional structures such as spars and ribs, truss-based modular structures will be used here.
In other words, all internal wing-box components, except for the upper and lower skins, are replaced by truss-based
structural elements. Thus, to do so, the trusses forming the lattice structure are defined from a catalog of possible
cross-sections, and the number of possibilities in this catalog defines the level of modularity of the design.

In this sense, to make the necessary connections between the modular structures, this work discretizes the wing as
follows. First, as there are no ribs that form the airfoil, control points are used at each cross-section. These control
points are defined by means of a spline in order to guarantee the selected aerodynamic profile. In the implementation,
for example, the definition of the points starts from the choice of the airfoil profile and the number of points to form
the spline. Furthermore, it is possible to determine if the trailing edge will be formed by only one point and if the
spacing between the points will follow a half-cosine-based spacing. As an example, Fig. 2 depicts the spline and the
corresponding control points for a profile NACA 2412 with 8 and 20 points, respectively. It is worth mentioning that
those control points are going to be the nodes of the FEM model and the connection nodes of all elements.

0 0.2 0.4 0.6 0.8 1

x/c

-0.2

-0.1

0

0.1

0.2

y/
c

NACA 2412
8 points spline

(a) 8 points spline.

0 0.2 0.4 0.6 0.8 1

x/c

-0.2

-0.1

0

0.1

0.2

y/
c

NACA 2412
20 points spline

(b) 20 points spline.

Fig. 2 Cross-section discretizations for NACA 2412.
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Furthermore, instead of the conventional spars, the proposal here is to use truss-based modular structures. However,
defining the spatial arrangement of such structures is the big deal. Therefore, to create the structural mesh, this
works makes use of the Delaunay Tessellation, i.e., the Delaunay Triangulation and Tetrahedrization to connect the
cross-section nodes and so create the maximum truss elements without physically crossing them.

Delaunay’s algorithm is a finite element meshing process that has the ability to consistently subdivide the geometric
domain into simplexes. Simplexes are extensions of triangles in other dimensions, i.e., line segments in one dimension,
tetrahedrons in three-dimensional space, etc. Therefore, having the Delaunay Triangulation and Tetrahedrization stated,
the wing structural mesh is designed from the control points defined in each cross-section. Therefore, as an example,
the structural meshes for a wing of 10 cross-sections and considering 8 (as in Fig. 2a) and 20 (as in Fig. 2b) control
points in each cross-section are shown in Fig. 3a and 3b, respectively.

(a) 8 points spline. (b) 20 points spline.

Fig. 3 Truss-based structural meshes for 8 and 20 control points in each cross-section, respectively.

Regarding the joints, this work did not have the objective of designing them; however, in the aeroelastic system, it is
important to consider the weight of the joints at the nodes, since it affects the total weight of the structure and even the
dynamic behavior of the structure. Therefore, for this work, it was assumed a reasonable mass of 150 g for each joint in
the structure. It is worth mentioning that in the sequence of this work it is intended to consider the joint design together
with the wing design, as well as to take geometric connections as a constraint in the optimization of the truss elements,
i.e., the angles between the elements in the joints will be considered as a design constraint.

The reference wing geometry comes from the flying demonstrator of the FLEXOP project (Flutter Free FLight
Envelope eXpansion for ecOnomical Performance improvement) [34, 45]. The demonstrator is shown in Fig. 4 and the
structural layout of the wing and its main geometric parameters are given in Fig. 5 and Table 1. The high aspect ratio of
20 and thin airfoil profile makes the lightweight structural design especially challenging, given the low second area
moment of inertial of the wingbox and the large bending loads at the wing root.

Fig. 4 FLEXOP flight demonstrator, from [45].

At this point, it is worth summarizing the wing design approach of this work. First, it uses the dimensions and
geometry of the FLEXOP wing planform. Second, the number of cross-sections along the wingspan is chosen. Next,
the number of control points (nodes) in each of the cross-sections is defined. Finally, a spatial mesh/arrangement of
modular structures is created using the Delaunay tessellation method.
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Fig. 5 Wing structural layout, from [34].

Table 1 Geometric parameters for the
FLEXOP reference wing, from [34].

Parameter Value

Semi-span 3.536 m
Aspect ratio 20
Chord, root 0.471 m
Chord, tip 0.236 m

Thickness, root 10% chord
Thickness, tip 8% chord

Sweep, leading edge 20 deg

Thus, the structural model is then created, and, using the DLM, it is possible to obtain the unsteady aerodynamic
loads, extract the mass and stiffness matrices and vibration modes from the modal analysis, and perform the aerostructural
coupling, obtain the flutter solution and verify the aeroelastic stability condition.

The reader may have noticed that the definition of the number of cross-sections and the number of control points
(nodes) in each cross-section directly affects the number of modular structures created by Delaunay’s spatial tessellation.
Furthermore, the wing design proposal in this work is to generate the lightest possible wing using modular structures,
but accounting for structural and aeroelastic constrains. Therefore, it is necessary to think from an optimization point of
view, that is, what is the best combination of design variables that generate such results and, finally, to study the trade-off
of benefits through the Pareto curves obtained by the optimizations. The optimization method applied is presented in
the next chapter.

A. Optimization #1
The design will seek for minimizing the structural weight of the wing (𝑊𝑤𝑖𝑛𝑔) and maximizing the flutter speed

(𝑉 𝑓 𝑙𝑢𝑡𝑡𝑒𝑟 ), taking into consideration structural and aeroelastic constraints.
Along those lines, for the first optimization case, the following parameters are stated as design variables: the number

of control points (nodes) in each cross-section of the wing (𝑛control points), the number of cross-sections distributed along
the wingspan (𝑛cross-sections), and the diameter of all elements of modular structures (𝐷bar), which are considered here as
solid truss bars.

To get started, the search range of the design variables, i.e., the intervals of values for optimization for 𝑛control points,
𝑛cross-sections, and 𝐷bar go from 8 to 32, 6 to 14, and 3 to 10 mm, respectively. Thus, the multi-objective optimization
problem #1 is summarized as follows:

Multi-objective
optimization problem

#1
:



min
(
𝑊𝑤𝑖𝑛𝑔

)
and max

(
𝑉 𝑓 𝑙𝑢𝑡𝑡𝑒𝑟

)
x : [𝑛control points, 𝑛cross-sections, 𝐷bar]
8 ≤ 𝑛control points ≤ 32
6 ≤ 𝑛cross-sections ≤ 14
3 ≤ 𝐷bar ≤ 10 [mm]

Using the NSGA-II algorithm, the optimization was executed with a number of population of 100 and generations
equal to 1000. The crossover index (𝜂𝑐) and the mutation index (𝜂𝑚) are defined as 3.0 and 3.0, respectively.

Furthermore, the aeroelastic constraint is accounting for the flutter speed and divergence speed. The p-k method
is evaluated from 0 to 200 m/s with an increment in speed (Δ𝑉) of 0.1 m/s. The skin applied to the structure has a
thickness (𝑡𝑠𝑘𝑖𝑛) of 1 mm. Regarding the structural constraints, it is evaluated for the truss bars the Yield strength and
Euler’s critical load with a safety factor (𝐹𝑆) of 1.5. It is worth mentioning that the skin buckling is not evaluated in
this work. Moreover, both the element types, i.e., truss bars and skin are assumed as made of Aluminum 7075 Heat
Treated (T6), whose main properties include a modulus of elasticity (𝐸) of 71.7 GPa, Poisson ratio of 0.33, and density
of 2795.7 kg/m3.
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The optimization algorithm was run using Spyder, an IDE for Python, and on a computer with a processor 11th Gen
Intel Core i7-1165G7 @ 2.80GHz, 16 GB of RAM, 512 GB of SSD, and the solution took around 156 hours to complete.
Thus, the solution for the optimization problem #1 is given by the Pareto-optimal front depicted in blue circles in Fig. 6.
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Fig. 6 Pareto front for Optimization #1.

As one can see, the result in Fig. 6 shows that to maximize the flutter speed, targeting a better aeroelastic behavior,
there is an impact on the structural weight of the wing. Also, the feeling is mutual, i.e., it is possible to have a lighter
wing, but the flutter speed is compromised. This trade-off is important in aircraft design, after all, the choice of design
variables defines the structural behavior and affects the overall aircraft weight. Regarding the design variables, the
NSGA-II found different combinations that delivered that result. The 𝑛control points varied from 8 to 26, 𝑛cross-sections from
6 to 14, and 𝐷bar varied from 3 to 9 mm.

Also in Fig. 6, four points were selected: 𝑃1, 𝑃2, 𝑃3, and 𝑃4. These points represent four different options for the
wing design. 𝑃1 is the case where the wing has the lowest weight and worst flutter speed in that range. At the other end,
𝑃4 is the case where the aircraft has the highest weight and best flutter speed in that range. The other points between 𝑃1
and 𝑃4 have different combinations of the design variables. The details of the wing design optimization for the four
points selected are displayed in Table 2 and the corresponding structures are depicted in Fig. 7.

Table 2 Results of the design variables in optimization #1 for points 𝑃1, 𝑃2, 𝑃3 and 𝑃4 from Fig 6.

Parameter 𝑃1 𝑃2 𝑃3 𝑃4

𝑛control points 8 8 16 24
𝑛cross-sections 6 11 14 9
𝐷bar [mm] 3 5 4 7
𝑉 𝑓 𝑙𝑢𝑡𝑡𝑒𝑟 [m/s] 114.3 150.6 184.2 199.9
Wing mass [kg] 57.23 61.18 64.21 109.74

Moreover, the flutter solutions for all four points are shown in Fig. 8 in terms of v-g-f diagrams. As one may notice,
each structural mesh results in different modes, since there are different number of elements and also the diameter of the
elements change over the optimization. Also, the mode of flutter onset changes among the four points; for example, for
𝑃1, the v-f graphic shows a coupling of modes 1 and 2 (bending and torsion, respectively), while v-g graphic shows that
mode 2 becomes unstable at 114.3 m/s. On the other hand, for 𝑃2, the v-f graphic shows a coupling of modes 4 and 5,
resulting in a flutter speed of 150.6 m/s.

At this point, it is possible to imagine and intuitive to say that considering all the modular structures in the
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(a) Structural mesh for 𝑃1. (b) Structural mesh for 𝑃2.

(c) Structural mesh for 𝑃3. (d) Structural mesh for 𝑃4.

Fig. 7 Structural mesh of the truss-based wings obtained in 𝑃1, 𝑃2, 𝑃3 and 𝑃4.
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(a) V-g-f diagram for 𝑃1.
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(b) V-g-f diagram for 𝑃2.
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(c) V-g-f diagram for 𝑃3.
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(d) V-g-f diagram for 𝑃4.

Fig. 8 Flutter solutions for points 𝑃1, 𝑃2, 𝑃3 and 𝑃4.
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mesh/tessellation created by the Delaunay method does not represent the most efficient wing in terms of weight; after
all, the more control points and/or number of cross-sections, more structures are inserted into the model, but many
of these structures are unnecessary, that is, their removal would not affect the aeroelastic response, but would reduce
the weight of the structure. Furthermore, the truss-based elements do not have to be solid bars, but tubular structures,
which represents a considerable weight reduction. So, individually evaluating the inclusion or not of each element is a
condition for a new optimization, which is presented in the next section.

B. Optimization #2
In Optimization #1, the wing design was performed considering an optimization in terms of 𝑛control points, 𝑛cross-sections,

and 𝐷bar. However, it is not very efficient to consider all the modular structures as solid bars. Therefore, at this point,
the objective is to optimize all the modular elements individually; in other words, the optimization will try to eliminate
some elements and will check how the resultant weight and aeroelastic behavior are.

At first sight, it is important to consider another constraint. The optimizer can not eliminate any element randomly.
It is important to ensure at least the elements that form the airfoil shape and the wing planform; otherwise, the optimizer
would try to eliminate any structural element that does not encounter any load path, and it could result in an inconsistent
and unfeasible structural wing model. Therefore, the such constraint is required to establish the minimum wing profile
is ensured.

The optimizer will design the wing eliminating or not the lattice elements. In addition, the outer diameter and
tubular thickness of each individual element will be optimized. As one can imagine, to do so, it is necessary to know
the number of lattice elements in the structure in order to optimize them, and, to know this number, it is necessary to
previously define the number of control points (nodes) in each cross-section and the number of cross-sections along the
wingspan. Only then it is possible to obtain the number of optimization variables. For example, 𝑛control points = 8 and
𝑛cross-sections = 10, the lattice created by the Delaunay approach results in 690 truss elements. If only the 𝑛cross-sections
were increased to 11, the lattice results in 766 truss elements. Therefore, if the optimizer were also to optimize both
parameters, i.e., 𝑛control points and 𝑛cross-sections, it would result in an optimizer inside of another optimizer, which would
result in an unreasonable computing cost.

Having that said, it is important to first define the values of 𝑛control points and 𝑛cross-sections. Since both parameters can
vary in a range of possibilities, the approach here is to select some pairs of those values in order to investigate how the
optimization evolves with changing parameters. Thus, the multi-objective optimization problem #2 is summarized as
follows:

Multi-objective
optimization problem

#2
:



Define: 𝑛control points, 𝑛cross-sections

min
(
𝑊𝑤𝑖𝑛𝑔

)
and max

(
𝑉 𝑓 𝑙𝑢𝑡𝑡𝑒𝑟

)
x : [𝐷𝑖ext,tube , 𝑡𝑖tube ] for 𝑖 = 1, 2, . . . , 𝑁truss elements

𝐷𝑖ext,tube = 10, 15 or 20 [mm]
𝑡𝑖tube = 2, 4 or 6 [mm]

For this work, three pairs of values of 𝑛control points and 𝑛cross-sections were chosen. First, the optimization will run
assuming a 𝑛control points equals to 8 and 𝑛cross-sections equals to 10. These values were chosen to ensure at least the
minimum shape of the wing. Next, in the second optimization, the 𝑛control points is increased from 8 to 14, and 𝑛cross-sections
is kept as 10. Then, in the third optimization, the 𝑛control points is kept as 14, and 𝑛cross-sections is increased from 10 to 20.
All three pairs of configurations generate different numbers of elements and design variables, which are summarized in
Tab. 3.

Table 3 Values for 𝑛control points and 𝑛cross-sections and the corresponding number of elements.

𝑛control points = 8 𝑛control points = 14 𝑛control points = 14
𝑛cross-sections = 10 𝑛cross-sections = 10 𝑛cross-sections = 20

Number of truss elements 345 630 1309
Number of design variables 690 1260 2618
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Similarly to what was done in Optimization #1, the aeroelastic constraint is accounting for the flutter speed and
divergence speed. In contrast, the P-K method here is also evaluated from 0 to 200 m/s, but with an increment in
speed (Δ𝑉) of 1 m/s. The increment was increased from 0.1 to 1 m/s, when compared to Optimization #1, due to the
computational cost to get the optimization done. The skin applied to the structure has a thickness (𝑡𝑠𝑘𝑖𝑛) of 1 mm.
Regarding the structural constraints, it is evaluated for the truss bars the Yield strength and Euler’s critical load with a
safety factor (𝐹𝑆) of 1.5. It is worth mentioning that the skin buckling is not evaluated in this work. Moreover, both
the element types, i.e., truss bars and skin are assumed as made of Aluminum 7075 Heat Treated (T6), whose main
properties include a modulus of elasticity (𝐸) of 71.7 GPa, Poisson ratio of 0.33, and density of 2795.7 kg/m3.

The optimization algorithm was run using Spyder, an IDE for Python, and on a computer with a processor 11th
Gen Intel Core i7-1165G7 @ 2.80GHz, 16 GB of RAM, 512 GB of SSD, and each solution took around 84 hours to
complete. Thus, the solutions for the optimization problem #2 is given by three Pareto-optimal fronts depicted in Fig. 9.
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Fig. 9 Pareto fronts for Optimization #2.

From Fig. 9, the three Paretos show different wing designs for the problem previously defined. It is worth mentioning
that there are few points in the Paretos. This happens because the flutter solution (p-k method) used in the optimization
considered a speed increase of 1 m/s. So, the flutter speeds were always approximated by integer values, which made
the Pareto ranking criterion eliminate the individuals that had the highest wing mass for each speed. Therefore, if a
speed increment of 0.1 m/s were used, for example, there would probably be more points along each Pareto, but the
computational cost would increase exponentially. Anyway, such solutions are sufficient for the purpose of this work,
which is to verify the structural and aeroelastic design of the wing through optimization.

Furthermore, in Fig. 9 it is possible to see that the range of flutter velocities decreases as the discretization increases,
i.e., the number of elements on the wing. This happens because the greater number of elements stiffens the wing and
increases its weight, thus increasing the flutter speed. Speaking of weight, as the amount of elements increases, the
weight increases considerably. It is worth remembering that the optimizer tried in its 1000 generations to eliminate as
many unnecessary elements as possible, but even so, the increase in weight is quite considerable, since, for the same
flutter speeds, a lighter wing is achieved (Pareto in blue). What influences in this case is how the optimizer defined the
internal arrangement of each structure.

In this sense, selecting only the Pareto in blue from Fig. 9, since it brings the greatest cost-benefit in terms of
structural weight and aeroelastic behavior, the vertically expanded Pareto is obtained in Fig. 10.

From Fig. 10, it is possible to verify only a small change in weight along the y-axis, while there is a considerable
gain in flutter speed along the x-axis. Each point of that Pareto represents a different combination of design variables,
which in this case it means a different combination of outer diameter and tubular thickness. Also, even if the number
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Fig. 10 Pareto front for 𝑛control points = 8 and 𝑛cross-sections = 10 from Fig. 9.

of nodes in the wing structure is the same for all Pareto points, since the number of nodes is defined by the value of
𝑛control points = 8 and 𝑛cross-sections = 10, each resulting wing at each point will have different numbers of elements, as the
optimizer seeks to eliminate structural elements that it identifies as not necessary, that is, their absence does not violate
any structural or aeroelastic condition.

Moreover, in Fig. 10, two points are chosen to exemplify in this analysis: 𝑃5 and 𝑃6. Comparing the cost-benefit in
terms of structure mass and flutter velocity, one may notice that point 𝑃6 offers a more interesting trade-off; in other
words, it can be said that the most convenient design point, in this case, is the point 𝑃6. After all, compared to the
lower left point (𝑃5), the flutter speed has increased by almost 50 m/s (≈ +33%), while the weight has increased by only
almost 2 kg (≈ +6%).

Since for this case the number of design variables is too large, i.e., a number of 690 (see Tab. 3), a table with
the resulting optimized design variables at point 𝑃 will be dismissed. However, the structural mesh obtained and the
corresponding distribution of diameters and thicknesses are shown below.

First, the original meshes created by Delaunay tesselation for both points 𝑃5 and 𝑃6 are depicted in Fig. 11a and
Fig. 12a, respectively. Then, the optimizer defines for each individual element, values for the outer diameter and the
tubular thickness. The possible values (search range) for these parameters were defined in the optimization problem.
Furthermore, the optimizer tries to delete elements that are not needed, but ensures the wing profile and shape. The
elements excluded for this wing at point 𝑃5 and 𝑃6 are shown in red in Figs 11b and 12b, respectively. Consequently,
the remaining resulting structural meshes for both points are arranged in Figs. 11c and 12c.

As one may notice, the number of original mesh elements on both wings (points 𝑃5 and 𝑃6) were equal; however,
during the optimization, the algorithm defined different thicknesses and diameters for the elements, in addition to
eliminating different elements that were identified as unnecessary. Thus, Tab. 4 lists the number of elements in the
original and resulting mesh for the wing models at points 𝑃5 and 𝑃6.

Furthermore, it is possible to illustrate the distribution of outer diameter and thickness per element for both points
𝑃5 and 𝑃6. Fig. 13 shows the distribution of outside diameters, where the elements in blue, red, and orange correspond
to diameters of 10, 15, and 20 mm, respectively. Also, Fig. 14 shows the distribution of thicknesses, where the elements
in blue, red, and orange correspond to thicknesses of 2, 4, and 6 mm, respectively.

The choice of diameter and thickness for each element follows the heuristic optimization defined by the NSGA-II.
Therefore, the resultant distributions may not represent an intuitive configuration; however, at least it meets the structural
and aeroelastic requirements and constraints.

Comparing the diameter and thickness distributions in Figs. 13 and 14, respectively, it is possible to notice that the
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(a) Original mesh. (b) Elements to be deleted in red.

(c) Remaining mesh.

Fig. 11 Original and remaining meshes for point 𝑃5 from Fig. 10.

(a) Original mesh. (b) Elements to be deleted in red.

(c) Remaining mesh.

Fig. 12 Original and remaining meshes for point 𝑃6 from Fig. 10.
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Table 4 Number of elements remaining in the meshes for points 𝑃5 and 𝑃6.

Point 𝑃5 Point 𝑃6

Number of elements in original mesh 345 345
Number of elements deleted in optimization 97 102
Number of elements in remaining mesh 243 248

(a) Distribution for 𝑃5. (b) Distribution for 𝑃6.

Fig. 13 Distribution of outer diameter of each element for points 𝑃5 and 𝑃6 from Fig. 10.

(a) Distribution for 𝑃5. (b) Distribution for 𝑃6.

Fig. 14 Distribution of thickness of each element for points 𝑃5 and 𝑃6 from Fig. 10.

wings obtained from points 𝑃5 and 𝑃6 change very little among themselves, so that the wing at 𝑃6 has only 5 elements
more than the wing at 𝑃5, and the weights are very close (see Fig. 10). In addition, the distributions of diameters and
thicknesses between both wings are very close, which shows that the flutter speed gain on the 𝑃6 wing is due to specific
dimension choices in some elements.

Regarding the aeroelastic solution, Fig. 15 shows the v-g-f diagrams for both points 𝑃5 and 𝑃6. For both points,
the flutter onset happens for mode 4 due to its coupling with mode 3. Also, it can be seen that the small increase
in the number of elements and the small change in the distribution of diameters and thicknesses hardly changed the
initial natural frequencies; however, changes in eigenvectors generated different aeroelastic responses, which resulted in
different flutter velocities.

Therefore, the optimizations presented here show different alternatives for the structural design of a wing. Modular
structures, somehow, make possible new topological studies of structural meshes. However, defining the ideal topology
and material properties and geometric features is still a challenge. This work, in turn, contributes to the proposed mesh
generation using Delaunay and the optimization of structures. However, it is worth mentioning that the optimizations
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Fig. 15 Flutter solutions for points 𝑃5 and 𝑃6.

performed in this work took a long time, that is, a high computational cost; thus, better optimization time is a new
challenge that will motivate future work.

Moreover, modular structures bring a range of possibilities in the structural design of wings. Among its advantages,
it can be highlighted the ease of manufacture. For example, from the definition of some diameters of structures that will
be used, it is possible to optimize the arrangement and the structural assembly in order to obtain the lowest weight and
the best aeroelastic response. In addition, in small aircraft, such as radio-controlled aircraft or UAVs, it is possible to
consider the use of modular structures manufactured in 3D printing. Such a strategy would make it possible to further
increase the range of topological definitions.

IV. Concluding Remarks
This work presented a new approach to the structural design of wings, considering a new philosophy of design and

definition of structures, that is, using modular structures in place of the traditional spars and ribs present in current
models. In the design, structural and aeroelastic constraints were considered. Furthermore, the way these structures are
spatially arranged generates a huge range of possibilities, a challenge that optimization tries to suppress.

As this work deals with the design of a wing, the Doublet-Lattice Method was used in the aerodynamic modeling
and the structural modeling of the wing was performed using two types of finite elements: beam and quadrilateral
elements. Furthermore, the aeroelastic problem was solved using the p-k method, helping to identify the instability and
flutter conditions, which were addressed along the optimizations.

Regarding the wing design approach, a set of interpolation points is defined from an airfoil, called control points,
which will be the connection nodes of the truss elements. Then, Delaunay’s triangulation theory is used to generate a
spatial mesh arrangement with as many elements as possible, without them intersecting. Furthermore, the choice of joint
that connects these elements is essential, as it introduces mass into the system and is responsible for design constraints.

Moreover, for this study, the reference wing geometry from the FLEXOP project is used as a baseline. To improve
the definition of the mesh and the dimensions of the lattice elements, two optimizations were proposed, where the
objective functions were to minimize the weight of the wing and maximize the flutter speed. In the first optimization,
the design variables included the number of control points in each section of the airfoil and the number of sections
distributed along the wingspan. In this case, solid bar elements were considered, which resulted in very heavy designs.
In the second optimization, in turn, the objective was to use tubular elements and optimize them individually, choosing
for each element values of outer diameter and tubular thickness. In addition, the optimizer tried to eliminate elements
that were unnecessary, in order to further reduce the weight of the structure. As the number of elements varies according
to the number of nodes in each section and the section number, this work selected three pairs of parameters to generate
the Paretos. It was noticed that a lower value of nodes and cross sections is able to generate a better cost-benefit in terms
of weight and aeroelastic response to the structure, as long as the diameters and thicknesses are optimally combined.

Finally, this work showed how modular structures can become a great strategy in the design of aeronautical structures,
specifically wings. The new wing models that are currently being presented in the literature, mainly on electric aircraft,
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have increasingly thin aerodynamic profiles, since there is no longer the need to house fuel tanks. In this sense, modular
structures would be interesting to lighten the structural weight of the wing and at the same time meet the structural and
aeroelastic requirements. Furthermore, modular structures bring ease of fabrication as it is possible to choose some
specific tube diameters and just cut the required tube sizes. Furthermore, in smaller aircraft, such as radio-controlled
and UAVs, 3D printing can become an interesting alternative in the manufacture of such structures.
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