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Abstract
Neural radiance fields (NeRF) based solutions for
novel view synthesis can achieve state of the art re-
sults. Recent work proposes models that take less
time to render, need less training data or take up
less space. However, few papers explore the use of
NeRFs in classic rendering scenarios such as ras-
terization, which could contribute to wider adop-
tion. Our paper tackles the issue of shadow gener-
ation and proposes a deep residual MLP network
with fast evaluation times, that generates view-
dependent shadow maps. The network distills the
knowledge of an existing NeRF model and achieves
the speedup through the use of neural light fields,
by only doing one network forward per ray.

1 Introduction
Many professional industries have used non-contact pas-

sive 3D scanning and photogrammetry technologies exten-
sively. From designing medical prosthetics [5] and modelling
existing buildings in architecture [9] to VFX in the movie in-
dustry [14] and cultural heritage preservation [17], it high-
lights the usefulness of creating 3D models from real world
objects. However, the principal methods that are used strug-
gle with issues such as: insufficient information leads to de-
formed meshes, sensor error can drastically alter the output
and, most notably, they deal poorly with view-dependent ef-
fects, such as reflections, refractions and occlusions [18].

NeRF models [11] take a drastically different approach to
this by using neural networks to estimate volumetric scene
functions. They can generate photo-realistic results that rep-
resent the scene with a high degree of accuracy even from
novel poses. Additionally, view-dependent effects are re-
produced at state-of-the-art quality [11]. However, because
of their novel architecture, integration into classic rendering
techniques has been slow. Techniques such as inverse render-
ing or scene relighting have given developers some freedom,
but not nearly enough for wide adoption [25]. By fully cou-
pling NeRFs and rasterization, developers would be able to
achieve advanced photorealism without the use of more com-
putationally expensive rendering methods, such as ray trac-
ing.

This paper offers a possible solution to one of the prob-
lems proposed by this transition: lighting scenes with NeRFs,
more specifically shadows. The question we aim to answer is
”Given a NeRF, can we learn a more compact neural rep-
resentation that can directly produce the depth map for any
desired view angle without the need for expensive 3D inte-
gration of the classical volumetric NeRF? Can we use it to
render shadows for a NeRF object in a simple CG scenario?”

We propose1 a deep neural light field network that learns
the depth map of the object using an existing NeRF to gen-
erate training data. This approach proves to be significantly
faster than rendering the NeRF (∼100x speedup) and qual-
ity evaluation shows that the results are comparable to both
ground truth (∼28 PSNR) and the base model (∼32 PSNR).

1https://mihneatoader.github.io/Depth-Light-Field-Training

2 Related work
Neural methods for Novel View Synthesis The field of

Novel View Synthesis has enjoyed much recent development.
This can be largely accredited to the publication of NeRF:
Representing Scenes as Neural Radiance Fields for View Syn-
thesis by Mildenhall et. al [11], which used a simple neu-
ral network and radiance fields as the scene representation
function. Subsequent works tackled the issue of rendering
time by using concepts such as efficient ray sampling [13;
10; 8], scene division [16; 24] or auxiliary meshes or voxel
grids [6].

Instead of predicting the radiance for every point sam-
pled along a ray and integrating the results, neural light
field (NeLF) models directly predict the integrated radiance
along a ray. Sitzmann et al. [19] introduced a full 360 de-
gree NeLF model through the use of Plücker coordinates and
meta-learning. This method turned out to be ∼15000x faster
than NeRF for simple scenes. Finally, Wang et al. [21] pro-
pose using the outputs of an already-trained NeRF model to
learn the light field function. This achieves 28-31x speedup
compared to the teacher NeRF and 1.4-2.4 dB average PSNR
improvement. Instead of Plücker coordinates, they employ an
approach similar to the original NeRF, by concatenating sam-
pled points along a ray and then feeding it into the network.
Additonally, the results shown in the paper are consistent with
complex scenes.

As fast as these methods have become, their purpose is to
render a fully colored image. Since creating a silhouette or
a depth map is a relaxation of the initial problem, it is evi-
dent that speedups can be achieved by creating a new model
specific to this.

Knowledge distillation is a technique through which a
model can transfer its knowledge to another. Buciulă et al.
[2] describe this method and find no significant loss in per-
formance when using data generated by the initial model to
train a new one. Since then, this method was explored further
and proved to be invaluable for many deep learning applica-
tions [7]. In particular, knowledge transfer between different
architectures [4] and compression [15] interest us in the con-
text of our problem. In order to transfer knowledge between
an existing NeRF model and our new model, we will simply
regress the output data from the NeRF model.

Shadow rendering As opposed to ray-traced shadows,
which are inherently physically consistent, in rasterization,
shadows are only clever approximations. Rasterized shadows
are usually computed by rendering a depth buffer from the
point of view of the light source and generating shadow maps
from the output. This technique was introduced in 1978 [22]
and is still commonly used to this day [20].

Simple depth buffers are, however, not able to simulate soft
shadows. For this purpose, multiple occlusion textures ren-
dered at different depths from the light position can be used
[3]. Intuitively, NeRFs seem to be suitable for rendering these
occlusion textures by sampling points along the generated
rays at each depth slice. However, this would not result in
any significant speedup, since we would still need to evaluate
the network multiple times per ray. For this reason, this paper
will focus on hard shadows generated using depth maps.

https://mihneatoader.github.io/Depth-Light-Field-Training


Figure 1: Sketch of the final network design

3 Depth Light Field Training (DeLFT)
In essence, the goal of our research is to explore the vi-

ability of extracting a subset of the information encoded in
a neural scene model and training a new, faster model. In
this context, we need to consider multiple influential factors:
scene representation, training data, network design, and ray
representation. Figure 1 shows a visualization of the final
proposed network design.

For this purpose, Wang et al.’s approach [21] was invalu-
able in the development of a solution, since the issue they
tackle is somewhat orthogonal to ours. Furthermore, they
have made their source code available, which provided a
strong baseline, without which the timeline of the project
would have been infeasible.

Scene representation
As discussed previously, NeRF models without speedup

structures suffer from slow render times because of multi-
ple network forwards per ray. As such, light fields seem like
a suitable candidate for our case, since they only require a
single forward per ray. However, learning a light field rep-
resentation from a sparse input set is a much more complex
problem than it seems at first. Attal et al. [1] expands on this
issue, stating that while NeRFs have the luxury of observing
most points in the 3D scene multiple times, learning a 4D ray
space from 2D images requires much more special consider-
ation. In their paper, they employ a ray-space embedding to
solve the issue of insufficient data. In our case, we have ac-
cess to an already trained radiance field model which we can
leverage to omit the issue of insufficient data.

Training data
Using a converged NeRF model of the scene, we can gen-

erate training data. In fact, no specific NeRF implementation
is necessary, as long as the chosen model also outputs depth
data. To do this, we sample rays within a user-defined scene-
bounding sphere and save the outputted depth data, as well
as the rays themselves. More specifically, let Rθ be the ra-
diance field function and xo, yo, zo, xd, yd, zd the origin and
direction of the sampled ray. Then,

Rθ((xo, yo, zo), (xd, yd, zd)) = λ̂ (1)

where λ̂ is the depth at which the ray terminates. Let Lθ be
the desired light field function, which we can then estimate
by training it using the Mean Squared Error function:

L = MSE(Lθ((xo, yo, zo), (xd, yd, zd)), λ̂) (2)

Figure 2: Illustration of ray reprojection onto the scene sphere

Network design
In order to fully leverage the amount of information made

available by the existing NeRF model, a change in the net-
work architecture is needed. Wang et al. [21] propose a deep
residual network in their work, 256 nodes wide and 88 layers
deep. Since our model will only estimate the depth at which
the rays terminate instead of the RGB values, we employ a
smaller network (128 nodes wide, 44 layers deep), which will
lead to similar results. More information regarding this will
be made available in the ablation study.

Ray representation
The proposed approach involves concatenating the spatial

coordinates of K sampled points along a ray to construct an
input vector (3K-d), which is then fed into a positional em-
bedder and finally, the DeLFT network. The incorporation of
this ray representation method within the DeLFT framework
addresses the need for an effective representation scheme
in capturing the complex information associated with light
fields. By leveraging the spatial coordinates of multiple sam-
pled points along a ray, the proposed approach offers a simple
yet powerful solution for accurately encoding the underlying
ray properties [21].

Ray space reprojection
Our proposed solution of sampling rays inside of the

bounding sphere of the scene means that the neural network
will not be able to correctly estimate the light field function
outside of the specified area. In many cases of classical ren-
dering, the light source is positioned far away from the posi-
tion of the objects, which clearly indicates an issue.

Thankfully, most rendering scenarios do not position lights
inside of objects. Having made this assumption, we discover
that the position of the origin along the line that defines the
ray does not change the outcome of the estimated depth. Ad-
ditionally, all the learned rays inside of the bounding sphere
define the entire ray space. This gives us two options to
solve our problem: Plücker coordinates or reprojecting the



rays on the bounding sphere. In the case of Plücker coordi-
nates, Wang et al. [21] report that representing rays as such
decreases the quality of the outputs. Therefore, we will sim-
ply reproject outside rays using ray-sphere intersections.

Figure 2 illustrates the ray reprojection process for a view
outside of the bounding sphere. The red rays signify the ini-
tial projected rays from the viewport. Subsequently, the inter-
section points with the bounding sphere are calculated (blue
points) and replace the ray origins. The offset between the
initial origin and each intersection point are kept in memory
and added to the output of the network to arrive at the real
depth.

4 Experimental Setup and Results
4.1 Training setup

All models were trained on a GTX 1070, with 8GB of
VRAM. Because of the lack of computing resources, all im-
ages are down-sampled by 2× (400x400) during training and
testing.

Datasets In consideration of the project timeline and the
primary objectives of our study, we have opted to focus
our analysis on a single dataset, namely the original NeRF
dataset. This decision is guided by both practical constraints
(training time, available computing resources) and the re-
search scope of the paper. While evaluating the efficacy and
performance of our neural radiance field model on multi-
ple datasets could offer broader insights, it is not central to
the specific research questions we aim to answer. Addition-
ally, the NeRF dataset contains both synthetic and real-world
datasets, which together offer sufficient information in re-
gards to the utility of the model.

Implementation details As mentioned previously, our so-
lution would work regardless of the NeRF implementation
used, as long as it also outputs depth information. Since
both implementations of it and pretrained models are publicly
available online (nerf-pytorch [23]), we decided to use the
standard NeRF model introduced by Mildenhall et al. [11].
Integration of new models with significant speedups, such as
Instant-NGP [12], would result in much faster data acquisi-
tion. This was, however, outside the scope of our project.

In the upcoming sections we will discuss the performance
of the trained models, how different network configura-
tions compare to each other, the evaluation metrics used and
whether the results are accurate enough for use in classical
rendering.

4.2 Ablation study
In order to obtain the best performance at the lowest com-

putational cost, we need to analyze the quality of our model
given parameters that concern both the network and the train-
ing setup. This section analyzes the convergence of the Peak
Signal to Noise Ratio (PSNR) over time, during the training
of the models.

Starting with the size of our deep network, we tested multi-
ple different width and depth configurations. Figure 3a shows
the training progress at every 1000 iterations on an interval of
100.000 iterations. As would be expected, larger networks
perform better (higher PSNR cap). However, the architecture

(a) Network size

(b) Network type (test only)

(c) Training set size

(d) Sampled points per ray

(e) Maximum frequency for positional encoding

Figure 3: PSNR during training. All models are trained for
100k iterations on the lego synthetic scene.



Figure 4: Rendered DeLFT novel poses for different synthetic (left) and LLFF scenes (right)

shows diminishing returns around the 128 width, 44 depth
model; the next model is twice as large, but the difference
in PSNR cap is minimal (29.17 vs 29.13 PSNR). For this
reason we chose the 128 width, 44 depth model as the stan-
dard model for all our future experiments. Regarding training
time, the chosen architecture takes approximately 11 hours to
reach 100.000 iterations on the described setup.

Wang et al. [21] found significant performance improve-
ments using residuals in their network (∼20 vs ∼16 test
PSNR). Since the purpose of our network differs from theirs,
we wanted to validate this finding in our model as well. Ad-
ditionally, we also included a simple MLP with no skip con-
nections in our experiments. Figure 3b shows that while both
residual MLPs outperform the one with no skip connections,
including residuals shows a decrease in the quality of the
model.

The size of the training set is important considering both
model performance and data generation time. The more train-
ing rays, the better the quality of the outputs, however, ev-
ery 400x400 batch of rays takes ∼20 seconds to compute
from the original NeRF model. With the next experiment,
we would like to find a good compromise between the two
metrics. Figure 3c shows similar test performance between
the 2000 and 1000 sized training sets, as well as between the
500 and 100 sized training sets. Based on this observation,
we will train all subsequent models on training sets of size
1000.

The final considerations for our model involved the amount
of points samples per ray and the maximum frequency of our
positional embedder. Figures 3d and 3e show that these pa-
rameters do not significantly impact the performance of the
model if chosen between the specified intervals, since the net-
work performances converge similarly for both training and
testing. It is important to note that the ”x max frequency”
mentioned in the figure refers to the log2 of the maximum
frequency for positional encoding. Given these results, we
will use 16 sampled points per ray and a maximum encoding
frequency of 12 in our final networks.

4.3 Model quality
Using the final configuration discussed in the previous sec-

tions, we then trained multiple models on the NeRF dataset,
using both synthetic and local light field fusion (LLFF)
scenes. The final evaluation results of these models are pre-
sented in Table 1. All network forwards take approximately

Scene PSNR MSE SSIM

Sy
nt

he
tic Lego 28.3468 0.0015 0.9821

Microphone 26.5106 0.0022 0.8832
Chair 24.9331 0.0032 0.8855

L
L

FF
* Fern 29.8775 0.0010 0.9925

Horns 27.0494 0.0020 0.9635

Table 1: Evaluation metrics for multiple converged scenes,
trained for 100k iterations. (*) LLFF scenes do not have
ground truth depth data available, so train PSNR is displayed.

(a) NeRF (b) DeLFT

Figure 5: Comparison between NeRF and DeLFT noise

0.2 seconds. The results for the synthetic scenes are gathered
from novel poses with respect to the ground truth. The LLFF
scenes do not have available ground truth depth data, so no
comparison could be made. Instead, we display the evalua-
tion metrics as compared to the training data. Figure 4 shows
the output of the network on novel poses in the synthetic and
LLFF scenes.

Figure 6 serves as a qualitative comparison between
ground truth, NeRF generated and DeLFT generated depth
maps. A few observations are note-worthy: compared to the
original NeRF model, the DeLFT renders show less gran-
ularity for small features, such as the holes in the tracks.
However, silhouette edges are approximated better than in
the NeRF render. Additionally, NeRF depth outputs have a
tendency to be noisy, as can be seen in Figure 5. By observ-
ing the ray termination depth from different viewpoints, the
DeLFT model is able to suppress the noise and generate clean



(a) Ground truth full image (b) Ground truth (c) NeRF (d) DeLFT

Figure 6: Visual comparison between ground truth, original NeRF and DeLFT depth maps

Figure 7: Render of shadow demo

depth maps.

4.4 Shadow demo
To prove the utility of our solution, we developed a sim-

ple shadow mapping demo that makes use of the generated
depth maps. This demo serves as a tangible showcase of the
utility and versatility of our solution in real-world scenarios
and highlights the potential applications in computer graph-
ics, gaming, or virtual reality. Figure 7 shows a rendered
still-frame from this demo. The shadows are computed using
depth maps generated by the model using the light position as
the rays’ origin. Visually, the results are adequate and offer
sufficient information.

5 Responsible Research
In any field, regardless of apparent innocuousness, respon-

sible research practices should be carefully considered. By
embracing these practices, researchers in the field can foster
trust and enhance the quality and impact of their work. The
realm of neural scene representations is no different; in fact,
transparent reporting and reproductibility has contributed to
the ever faster development of NeRF technology. In this

sense, our contribution should strive to reach the same stan-
dards put forth by the community. This section will touch
upon the collection and usage of data, reproductibility of our
findings and the review mechanism our paper went through.

In alignment with responsible research practices, we uti-
lize existing data rather than collecting it ourselves. By uti-
lizing well-established datasets that have undergone rigorous
scrutiny and approval processes, we minimize the potential
privacy concerns that arise from data collection. Addition-
ally, using these datasets gives way for our findings to be ver-
ified by independent researchers, promoting transparency and
fostering a collaborative scientific community.

As many papers before have done, we also make our source
code publicly available, in order to aid reproductibility. In
fact, much of our code is based on public solutions, which
highlights why responsible research practices are important.

Finally, we strive to report transparently on our findings,
with no personal biases or vested interests. For this to hap-
pen, our paper went through both a peer review, as well as a
review from our supervisors and responsible professor before
finalisation.

6 Conclusions and Future Work
We introduced a deep residual network with fast evaluation

times (∼0.22 seconds) that learns a subset of the data encoded
within a NeRF model, that is, ray termination depth. By us-
ing output data from a converged NeRF model to train this
new network, we address the issues of unavailable depth data
within non-contact passive 3D scanning and insufficient train-
ing data for neural light field scene representations. The light
position is not restricted to an area around the rendered object
due to our use of ray reprojection, making this representation
more effective for common rendering scenarios. Therefore,
the outputs of the network prove to be useful when rendering
convincing rasterized shadows on non-NeRF targets. Casting
shadows on the NeRF object itself requires scene relighting,
so self-shadows are only possible if the object is converted to
a mesh.

On an outdated system configuration, it takes around 6
hours to generate the training data and 11 hours for the net-
work to converge. Further speedup might be achieved in both
training and evaluation times by investigating recent speedup



structures discussed in papers the likes of Instant-NGP[12].
Additionally, generating training data and training the net-
work simultaneously could be possible with modern systems,
which would greatly reduce overhead.
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