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Abstract—We consider the extension of the adaptive Golden
RAtio ALgorithm (aGRAAL) for variational inequalities. We
show that by selecting the momentum parameter beyond the
golden ratio the convergence speed can be improved, which
motivates us to study the switching between small and large
momentum parameters to accelerate convergence. We validate
the performance of our proposed algorithms on several classes of
variational inequality problems studied in the machine learning
literature, including Nash equilibrium, feasibility problem, com-
posite minimization, Markov decision processes, and zero-sum
games, and compare them to existing methods.

Index Terms—Variational inequality, adaptive stepsize, momen-
tum parameter, switching algorithm.

I. INTRODUCTION

Variational inequality problem has recently surged into
prominence in the formulation of machine learning and control
problems, such as generative adversarial networks [1], robust
optimization [2], [3], and optimal control [4], due to its
generality. In this paper, we consider the following variational
inequality (VI) problem:

find x∗ ∈ V s.t. ⟨F (x∗), x−x∗⟩+g(x)−g(x∗) ≥ 0, (1)

for all x ∈ V , where V is a finite-dimensional vector space. We
assume that the operator F is monotone and locally Lipschitz,
the solution set of (1) is nonempty, and g(x) is a proper
convex function. Problem (1) can be written more traditionally
as follows:

findx∗ ∈ A subject to ⟨F (x∗), x− x∗⟩ ≥ 0,∀x ∈ A (2)

where g(x) is replaced by the indicator function of the set
A in (1). VI (1) can be considered as a general form of
problems in optimization, system and control, and game
theory. As an example consider the composite minimization
problem minx∈Rn f(x) + g(x), where f is a convex and
smooth function and g is a proper convex (and possibly
nonsmooth) function. It is easy to see that by KKT condition
this problem can be written as (1) with F = ∇f and the
same g(x) in (1) [5]. Another useful problem in optimization
and control theory is min-max problem. As an example
consider the following convex-concave saddle point problem
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miny∈Rn maxz∈Rm g1(y) + f(y, z)− g2(z), where g1(y) and
g2(z) are the proper convex functions and f(y, z) is smooth
convex-concave function in respect to y and z, respectively.
By using first-order optimality condition we can rewrite this
problem as (1) with the following variables

x =

(
y
z

)
, F =

(
∇yf(y, z)
−∇zf(y, z)

)
, g(x) = g1(y) + g2(z).

Last but not least in many application in reinforcement learning
and game theory, we need to solve a fixed-point problem. As
an example Markov decision processes (MDPs) are a powerful
modeling framework in reinforcement learning, where we
should solve Tx = x. It is not difficult to see that the equivalent
form of this fixed-point problem is (1), with F = Id − T and
g(x) = 0 [6].

Several iterative algorithms have been introduced to address
VI problems (1). For comparison purposes, let us review some
recent and closely related existing methods and for simplicity
we consider (2) which is a more widely-studied problem.
Projected Gradient descent (PGD) [7]:

xk+1 = πA(x
k − λF (xk)).

where λ is the stepsize. The convergence rate of this method is
guaranteed for strongly monotone (with a strongly monotone
constant µ) and Lipschitz (with a Lipschitz constant L) operator
with λ ∈

(
0, 2µ/L2

)
.

Extragradient descent [8]:

yk = πA(x
k − λF (xk)),

xk+1 = πA(x
k − λF (yk)).

where λ is the stepsize, and unlike the previous method, the
convergence rate is guaranteed for a Lipschitz operator (with
a Lipschitz constant L) with λ ∈ (0, 1/L). The extragradient
method has been extensively studied and improved in various
ways. For brevity, we refer interested readers to [8], [9] for
further details.
Projected Reflected Gradient descent (PrjRef) [10]:

xk+1 = πA(x
k − λF (2xk − xk−1)).

where λ is the stepsize, and the convergence rate of this method
is guaranteed for a Lipschitz operator (with a Lipschitz constant



L) with λ ∈
(
0, (

√
2− 1)/L

)
. Unlike the extragradient method,

PrjRef just needs one projection per iteration.
Golden RAtion ALgorithm (GRAAL) [11]:

yk = (1− β)xk + βyk−1,

xk+1 = πA(y
k − λF (xk)).

where λ is the step size and β ∈
(
0, (

√
5− 1)/2

]
. The

convergence rate of this method is guaranteed for a Lipschitz
operator (with a Lipschitz constant L) with λ ∈ (0, 1/2βL),
and it requires one projection per iteration. The step size in
this method can be chosen adaptively as follows, leading to
the Adaptive Golden RAtio ALgorithm (aGRAAL).

λk = min

{
(β + β2)λk−1,

∥xk − xk−1∥2
4β2λk−2∥F (xk)− F (xk−1)∥2 , λ̄

}

The convergence rates of all above algorithms are shown to be
linear, with a difference in some constant or the time required
to reach convergence.

Contribution. We propose two methods for solving the
monotone variational inequality problem (1) that do not require
the knowledge of a global Lipschitz constant. Our technical
contribution is to show the ergodic O(k−1) convergence rate
and R-linear rate , as in [11], under an error bound condition.
In our numerical experiments, the proposed algorithm exhibits
faster convergence and consistently outperforms the existing
state of the art. We believe this is a testimony to the potential
of switching the momentum parameter between a small and
a large value, which has a significant impact on convergence
speed [12]. Our results are based on the prior work by the
author in [11], with the difference that we rewrite the aGRAAL
algorithm using a variable momentum, within an adaptive
stepsize framework. This allows us to derive conditions that
support the use of a large momentum parameter, which is
advantageous for convergence speed. Briefly, if F is a Lipschitz
and monotone operator, then our proposed method to solve
(1) switches between the (likely) PGD and aGRAAL based on
certain conditions, along with a stepsize rule as the aGRAAL.
We note that our method rarely requires additional computations
for operator evaluation and projection. However, in the worst
case, we may need to perform these computations twice
compared to aGRAAL.

The paper is organized as follows. In Section II, we introduce
the first algorithm for solving (1) and the theoretical results are
explained. Section III introduces the second adaptive method
for solving (1). Finally, several illustrative examples to show
the efficiency of our approach is presented in Section IV.

Notation. Let V be the finite-dimensional real vector space
with the standard inner product ⟨·, ·⟩ and ℓp-norm ∥ · ∥p
(by ∥ · ∥, we mean the Euclidean standard 2-norm). We
also denote the πA for the metric projection onto set A
(πA(x) = argminy∈A ∥x − y∥), δA the indicaor function of
set A, dist(x,A) the distance from x to set A (dist(x,A) =
∥πA(x) − x∥), and B(x̃, r) a closed ball with center x̃ and

radius r > 0. The operator F is L-Lipschitz, if there is L > 0
such that for all x, y ∈ V following inequality hold.

∥F (x)− F (y)∥ ≤ L∥x− y∥ (3)

Furthermore, F is locally Lipschitz, if it is Lipschitz over any
compact set of its domain. The operator F is monotone if for
all x, y ∈ V

⟨F (x)− F (y), x− y⟩ ≥ 0 (4)

and it is called strongly mnotone with constant µ > 0 if the
following inequality holds x, y ∈ V

⟨F (x)− F (y), x− y⟩ ≥ µ∥x− y∥2 (5)

We say that F satisfies the Minty variational inequality problem
if there exists x̂ ∈ A such that the following inequality holds
for all x ∈ V

⟨F (x), x− x̂⟩+ g(x)− g(x̂) ≥ 0 (Minty VI)

Generally (if F is continuous), the solution set of the Minty VI
(SVI

Minty) is a subset of the solution set of the main VI problem
(1). The prox operator of a function g : V → R is defined as
proxg(x) = argminu g(u) + ∥u− x∥2/2. A function is “prox-
friendly” if the prox operator is available (computationally or
explicitly). The following equations and lemma are useful and
commonly used in the proofs [13].

y = proxgx ⇐⇒ ⟨y − x, z − y⟩ ≥ g(y)− g(z)∀z ∈ V (6a)

∥αx+ (1−α)y∥2 = α∥x∥2 + (1− a)∥y∥2
− α(1− α)∥x− y∥2 ∀x, y ∈ V, ∀α ∈ R (6b)

Lemma I.1 (sequence convergence [11, Lemma 1]). If xk ∈ V
is a bounded sequence, and lim

k→∞
(xk − x) exists, where x is a

cluster point of the sequence xk, then xk converges.

II. PRELIMINARIES AND FIRST ADAPTIVE VI ALGORITHM

We present our first algorithm and its convergence analysis
for VI problem (1) in this section. The general form of our
method is given in Algorithm 1 and 2. The algorithm follows
the PGD and aGRAAL with the difference in the choice of
momentum parameter, which depends on some conditions
that measure the sufficient decreasing of the error bound. We
first proceed with a same theorem as in [11] just with the
difference that we use momentum parameter ϕ as a variable
ϕk. Before stating the theorem, let us define the merit function
Ψ(x, y) := ⟨F (x), y−x⟩+ g(y)− g(x), which is convex with
respect to y. It can be easily seen that (1) is equivalent to
finding x∗ ∈ V such that Ψ(x∗, x) ≥ 0 for all x ∈ V .

Theorem II.1 (Analysis the adaptive golden ratio algorithm
[11, Theorem 2] with variable momentum). Suppose that



F : dom g → V is locally Lipschitz. Then {xk} and {x̄k},
generated by Algorithms 1-2, satisfy the following inequality

ϕk+1

ϕk+1 − 1
∥x̄k+1 − x∥2 + θk

2
∥xk+1 − xk∥2 + 2λkΨ(x, xk)

≤ ϕk+1

ϕk+1 − 1
∥x̄k − x∥2 + θk−1

2
∥xk − xk−1∥2

− λk

λk−1
ϕk∥xk − x̄k∥2 +

( λk

λk−1
ϕk − 1− 1

ϕk+1

)
∥xk+1 − x̄k∥2

−
( λk

λk−1
ϕk − θk

)
∥xk+1 − xk∥2.

Proof. Let x be arbitrary. Now consider Algorithms 1 and 2,
where xk and x̄k are updated as follows

x̄k =
(ϕk − 1)xk + x̄k−1

ϕk
, xk+1 = proxλkg

(x̄k − λkF (xk)).

Then by using (6a) we have

⟨xk+1 − x̄k + λkF (xk), x− xk+1⟩ ≥ λk

(
g(xk+1)− g(x)

)

(7)

⟨xk − x̄k−1 + λk−1F (xk−1), xk+1 − xk⟩ ≥
λk−1

(
g(xk)− g(xk+1)

)
(8)

Multiplying (8) by λk

λk−1
≥ 0 and using that xk − x̄k−1 =

ϕk(x
k − x̄k), we obtain

⟨ λk

λk−1
ϕk(x

k − x̄k) + λkF (xk−1), xk+1 − xk⟩

≥ λk

(
g(xk)− g(xk+1)

)
. (9)

Summation of (7) and (9) gives us

⟨xk+1 − x̄k, x− xk+1⟩+ λkϕk

λk−1
⟨xk − x̄k, xk+1 − xk⟩

+ λk⟨F (xk)− F (xk−1), xk − xk+1⟩
≥ λk⟨F (xk), xk − x⟩+ λk

(
g(xk)− g(x)

)

≥ λk

[
⟨F (x), xk − x⟩+ g(xk)− g(x)

]
= λkΨ(x, xk). (10)

Expressing the first two terms in (10) through norms leads to

∥xk+1 − x∥2 ≤ ∥x̄k − x∥2 − ∥xk+1 − x̄k∥2

+ 2λk⟨F (xk)− F (xk−1), xk − xk+1⟩

+
λk

λk−1
ϕk

(
∥xk+1 − x̄k∥2 − ∥xk+1 − xk∥2 − ∥xk − x̄k∥2

)

− 2λkΨ(x, xk). (11)

Similarly to (6b), we have

∥xk+1 − x∥2 =
ϕk+1

ϕk+1 − 1
∥x̄k+1 − x∥2

− 1

ϕk+1 − 1
∥x̄k − x∥2 + 1

ϕk+1
∥xk+1 − x̄k∥2. (12)

Combining this with (11), we obtain

ϕk+1

ϕk+1 − 1
∥x̄k+1 − x∥2 ≤ ϕk+1

ϕk+1 − 1
∥x̄k − x∥2+

( λk

λk−1
ϕk − 1− 1

ϕk+1

)
∥xk+1 − x̄k∥2 − 2λkΨ(x, xk)

− λk

λk−1
ϕk

(
∥xk+1 − xk∥2 + ∥xk − x̄k∥2

)

+ 2λk⟨F (xk)− F (xk−1), xk − xk+1⟩. (13)

Using the stepsize updating rule, the last term on the right-hand
side of (13) can be upper bounded by

2λk⟨F (xk)− F (xk−1), xk − xk+1⟩ ≤
2λk∥F (xk)− F (xk−1)∥∥xk − xk+1∥ ≤√

θkθk−1∥xk − xk−1∥∥xk − xk+1∥ ≤
θk
2
∥xk+1 − xk∥2 + θk−1

2
∥xk − xk−1∥2. (14)

Applying the obtained estimation to (13), we deduce

ϕk+1

ϕk+1 − 1
∥x̄k+1 − x∥2 + θk

2
∥xk+1 − xk∥2 + 2λkΨ(x, xk) ≤

ϕk+1

ϕk+1 − 1
∥x̄k − x∥2 + θk−1

2
∥xk − xk−1∥2 − λk

λk−1
ϕk∥xk − x̄k∥2

+
( λk

λk−1
ϕk − 1− 1

ϕk+1

)
∥xk+1 − x̄k∥2

−
( λk

λk−1
ϕk − θk

)
∥xk+1 − xk∥2. (15)

By controlling the right-hand-side of (15), we can proof
the boundedness and convergence of the sequence {xk}.
Next, we aim to maintain the negativity of the last three
terms of the right-hand-side of (15) while ensuring that ϕk

attains a sufficiently large value which makes x̄k closer to
the current iterate xk instead of x̄k−1. Subsequently, we
elaborate on two methods devised for achieving this objective.
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Fig. 1: The procedure of
second method.

Method 1 (Algorithm 1).
In this method, we alternate
between the algorithm with
the small ϕ ∈

(
1, 1+

√
5

2

]

and the one without momen-
tum (or equivalently ϕ = ∞)
based on residual evaluation.
Recognizing that the use of
the small ϕ ultimately leads
to the convergence of the
residual to zero due to the
negativity of the three right-
most terms in (15) [11]. We initiate the algorithm without
the momentum term, and by computing the residual (Jk =
∥xk − proxg(x

k − F (xk))∥) in each iteration, we continue
without ϕ if the residual is decreasing. Conversely, if the
residual is not decreasing, we switch ϕ to the small value
until the residual becomes smaller than the minimum residual
achieved so far plus 1

k̄
, where k̄ denotes the iteration index



indicating the number of iterations when switching occurs. It
is noteworthy that the use of a small ϕ may result in non-
monotone changes in the residual, and we refrain from altering
ϕ until the residual becomes smaller than the minimum residual
achieved so far plus the non-summable term. Figure 1 illustrates
how Algorithm 1 operates; the alteration of ϕ is observed when
the residual decreases sufficiently, ensuring convergence due
to the fact that 1+ 1

2 +
1
3 + · · ·+ 1

k̄
+ · · · → ∞ as the number

of iterations approaches infinity. By this method, we obtain
the same inequality as in [11] (Eq. (35) in Theorem 2), which
provides us with convergence to the solution of (1).

Algorithm 1 Adaptive algorithm for VI (Method 1)

Require: Choose x0, x1, λ̄ ≫ 0, λ0 > 0, ϕ = (1, 1+
√
5

2 ],

θ0 = 1, ρ =
1

ϕ
+

1

ϕ2
, flg = 0, k̄ = 1

1: For k = 0, 1, 2, . . . do
2: Find the stepsize:

λk = min

{
ρλk−1,

ϕθk−1

4λk−1

∥xk − xk−1∥2
∥F (xk)− F (xk−1)∥2 , λ̄

}

3: if (J(xk)−J(xk−1) > 0 ∧ flg = 1) ∨ min{Ji}k−1
i=0 <

Jk + 1/k̄ then

4: x̄k =
(ϕ− 1)xk + x̄k−1

ϕ
, flg = 0

5: else
6: x̄k = xk, flg = 1, k̄ = k̄ + 1
7: end if
8: Update the next iteration: xk+1 = proxλkg

(x̄k−λkF (xk))

9: Update: θk+1 =
ϕλk

λk−1

10: Residual computation: Jk+1 = xk − proxg(x
k − F (xk))

III. EFFICIENT SWITCHING ALGORITHM

In this section, we analyze the convergence of our second
method for solving (1). The general form of the second method
is provided in Algorithm 2, which follows the adaptive golden
ratio with a difference in the choice of momentum parameter
compared to [11]. Differently from [11], the momentum
parameter is not fixed, and in fact, in our numerical experience,
it has a large value in many iterations, which supports the
acceleration of the algorithms. Now, by employing (15), we
use a simple analysis to control the right-hand side of (15)
and aim to maintain the negativity of the right-hand side while
ensuring that ϕk attains a sufficiently large value.

Method 2 (Algorithm 2). The algorithm is initiated with
a large value for ϕk, and the summation of (16) is computed
after each iteration (with large value of ϕk+1). If the resulting
summation is negative, the algorithm proceeds with the initial
large value of ϕk. Conversely, if the summation is not negative,
the algorithm is reset (by restarting, we mean that xk+1 is
generated by large ϕ and other parameters with indices k are

not considered as a new iteration and variables, lines 11-13 of
Algorithm 2), and ϕk is chosen from the interval

(
1, 1+

√
5

2

]
.

θk−1

2
∥xk − xk−1∥2 − λk

λk−1
ϕk∥xk − x̄k∥2

+
( λk

λk−1
ϕk − 1− 1

ϕk+1

)
∥xk+1 − x̄k∥2

−
( λk

λk−1
ϕk − θk

)
∥xk+1 − xk∥2 − θk

2
∥xk+1 − xk∥2. (16)

After the restarting, the following equation is examined in each
iteration (with large value of ϕk+1)

−λkϕk

λk−1
∥xk − x̄k∥2 +

(λkϕk

λk−1
− 1− 1

ϕk+1

)
∥xk+1 − x̄k∥2

−
(λkϕk

λk−1
− θk

)
∥xk+1 − xk∥2. (17)

If the computed summation is negative, the algorithm employs
the large ϕ once more for the next iterations; conversely, if the
summation is not negative, the algorithm persists with a small
value of ϕ. In this context, three scenarios are contemplated
for Algorithm 2

(i) Always negative summation: In this scenario, by tele-
scoping (15) the summation of (16) is always negative;
therefore, xk → x∗ if k → ∞ [11].

(ii) Always positive summation: In this scenario the sum-
mation in (17) is positive and according to the Algorithm
2 we always have ϕ ∈ (1, 1+

√
5

2 ] which is the same
algorithm as in [11].

(iii) Switching between small and large ϕ : If ϕk is small
and by modifying ϕk+1 to a larger value, (17) be-
comes negative, it is straightforward to adjust ϕk+1 to a
larger value in the subsequent step. Then, the inequality
ϕk+1

ϕk+1−1 ≤ ϕk

ϕk−1 holds, and (15) in two steps is as follows

(
ϕk

ϕk − 1
− ϕk+1

ϕk+1 − 1
)∥x̄k − x∥2 + ϕk+1

ϕk+1 − 1
∥x̄k − x∥2

+
θk−1

2
∥xk − xk−1∥2 + 2λk−1Ψ(x, xk−1)

≤ ϕk

ϕk − 1
∥x̄k−1 − x∥2 + θk−2

2
∥xk−1 − xk−2∥2

+
(λk−1

λk−2
ϕk−1 − 1− 1

ϕk

)
∥xk − x̄k−1∥2

− λk−1

λk−2
ϕk−1∥xk−1 − x̄k−1∥2

−
(λk−1

λk−2
ϕk−1 − θk−1

)
∥xk − xk−1∥2. (18)

ϕk+1

ϕk+1 − 1
∥x̄k+1 − x∥2 + θk

2
∥xk+1 − xk∥2 + 2λkΨ(x, xk) ≤

ϕk+1

ϕk+1 − 1
∥x̄k − x∥2 + θk−1

2
∥xk − xk−1∥2

− λk

λk−1
ϕk∥xk − x̄k∥2 +

( λk

λk−1
ϕk − 1− 1

ϕk+1

)
∥xk+1 − x̄k∥2

−
( λk

λk−1
ϕk − θk

)
∥xk+1 − xk∥2. (19)



Where in the first line of (18) we add and subtract
ϕk+1

ϕk+1−1∥x̄k−x∥2. However, if ϕk is large and the summa-
tions of (16) is not negative, the algorithm should be reset
with a smaller ϕk. Let us assume we switch to the large ϕ
in the kth iteration and after i+1 iterations, we change ϕ to
a small value. In this case, the condition "sum1

k+1 ≤ 0" in
Algorithm 2 ensures that ∥x̄k −x∥2 ≥ ∥x̄k+i−x∥2 while
ϕk

ϕk−1−
ϕk+1

ϕk+1−1 = −( ϕk+i

ϕk+i−1−
ϕk+i+1

ϕk+i+1−1 ). Therefore, (15)
in two steps can be expressed as follows

(
ϕk+i

ϕk+i − 1
− ϕk+i+1

ϕk+i+1 − 1
)∥x̄k+i − x∥2

+
ϕk+i+1

ϕk+i+1 − 1
∥x̄k+i − x∥2 + θk+i−1

2
∥xk − xk+i−1∥2

+ 2λk+i−1Ψ(x, xk+i−1) ≤ ϕk+i

ϕk+i − 1
∥x̄k+i−1 − x∥2

+
θk+i−2

2
∥xk+i−1 − xk+i−2∥2

− λk+i−1

λk+i−2
ϕk+i−1∥xk+i−1 − x̄k+i−1∥2

+
(λk+i−1

λk+i−2
ϕk+i−1 − 1− 1

ϕk+i

)
∥xk+i − x̄k+i−1∥2

−
(λk+i−1

λk+i−2
ϕk+i−1 − θk+i−1

)
∥xk+i − xk+i−1∥2. (20)

ϕk+i+1

ϕk+i+1 − 1
∥x̄k+i+1 − x∥2 + θk+i

2
∥xk+i+1 − xk+i∥2

+ 2λk+iΨ(x, xk+i) ≤ ϕk+i+1

ϕk+i+1 − 1
∥x̄k+i − x∥2

+
θk+i−1

2
∥xk+i − xk+i−1∥2

− λk+i

λk+i−1
ϕk+i∥xk+i − x̄k+i∥2

+
( λk+i

λk+i−1
ϕk+i − 1− 1

ϕk+i+1

)
∥xk+i+1 − x̄k+i∥2

−
( λk+i

λk+i−1
ϕk+i − θk+i

)
∥xk+i+1 − xk+i∥2. (21)

Where in the first line of (20) we add and subtract
ϕk+i+1

ϕk+i+1−1∥x̄k+i − x∥2. Then by telescoping (15) (in both
cases, whether switching from a small ϕ to a large one (18)
and (19), or switching from a large ϕ to a small one (20)
and (21)), we drive (22). More precisely, the conditions
in line 7 of Algorithm 2 ensure that, by telescoping (15),
we obtain similar terms on the right-hand side and left-
hand side of successive lines of (15) (e.g., the leftmost
terms in (18) and (20) can be removed by telescoping
the inequalities, and we have similar terms on the right-
and left-hand sides of two successive inequalities, like
ϕk+1

ϕk+1−1∥x̄k − x∥2 + θk−1

2 ∥xk − xk−1∥2 on the left-hand
side of (18) and the right-hand side of (19)), which allows
us to point-wise remove the similar terms and obtain the
same inequality as in [11] (equation (35) in Theorem 2),
which provides us with convergence to the solution of

(1). In particular, by telescoping (15) for T iterations, we
have

ϕT

ϕT − 1
∥x̄T − x∥2 + θT−1

2
∥xT − xT−1∥2 + 2

T∑

i=1

λiΨ(x, xi)

≤ ϕ2

ϕ2 − 1
∥x̄1 − x∥2 + θ0

2
∥x1 − x0∥2 +D. (22)

Where D is a non-positive number equal to the summation
of the three negative rightmost terms in (15) for T
iterations. Note that T in (22), unlike aGRAAL [11], is not
exactly the number of projections or operator evaluations
in Algorithm 2. In more detail, if we are in case (i)
and always continue with large ϕ, then the number of
projections and operator evaluations is exactly T . In the
worst-case scenario, we are in (ii), where the current
sequence should regenerate with small ϕ. In this situation,
the number of projections and operator evaluations is 2T .
Finally, if the sequence is generated by switching between
large and small ϕ (iii), then the number of projections
and operator evaluations is between T and 2T . It is also
worth noting that, in practice, the number of projections
and operator evaluations is close to T (please see the
Numerical simulation results).

Similar to [11], we can prove the ergodic convergence rate and
R-linear rate based on (22). The following lemmas indicate the
convergence properties of our algorithms. To keep it short, we
skip the proof and refer interested readers to [11] for further
details.

Lemma III.1 (Ergodic convergence [11]). Let Xk be the
ergodic sequence Xk =

∑k
i=1 λix

i/
∑k

i=1 λi and er(y) =
maxx∈U Ψ(x, y) ∀y ∈ V , where U = dom g ∩ B(x̃, r) and
x̃ ∈ dom g. Then, we obtain the O(k−1) convergence rate
for the ergodic sequence Xk, where M > 0 is some constant
that dominates the right-hand side of (22) for all x ∈ U , in
particular

∑
i=1 λiΨ(x, xi) ≤ M . More precisely we have

er(Xk) = max
x∈U

Ψ(x,Xk) ≤
max
x∈U

(∑k
i=1 Ψ(x, xi)

)

∑k
i=1 λi

≤ M
∑k

i=1 λi

.

Lemma III.2 (R-linear convergence [11, Theorem 3]). Suppose
that the following error bound holds.

dist(x, x∗) ≤ µ∥J(x, λ)∥ ∀x ∈ V, with ∥J(x, λ)∥ ≤ η.

where J(x, λ) = x− proxλg(x− λF (x)) is the residual, and
µ and γ are positive constants. Then {xk}, generated by
Algorithm 1 and 2 with (23) instead of L1 and L2, converges
to a solution of (1) at least R-linearly, where δ ∈ (0, 1).

λk = min

{
ρλk−1,

ϕδθk−1

4λk−1

∥xk − xk−1∥2
∥F (xk)− F (xk−1)∥2 , λ̄

}
. (23)

Algorithms 1 and 2 can also be used to solve the non-
monotone variational inequality problem by assuming the non-
emptiness of SVI

Minty. The following lemma summarizes this
statement.



Lemma III.3 (Beyond monotonicity [11, Theorem 6]). If F is
a locally Lipschitz and continuous operator and g is a convex
function, and SVI

Minty ̸= ∅, then the sequence xk generated by
Algorithms 1 and 2 converges to the solutions of (Minty VI).

Algorithm 2 Adaptive algorithm for VI (Method 2)

Require: Choose x0, x1, λ0 > 0, λ̄ ≫ 0, α = (1, 1+
√
5

2 ],

θ0 = 1, ρ =
1

α
+

1

α2
, ϕ̄ ≫ 1+

√
5

2 , sum1
0 = 0, sum2

0 = 0,
flg = 1.

1: For k = 0, 1, 2, . . . do
2: Find the stepsize:

λk = min

{
ρλk−1,

αθk−1

4λk−1

∥xk − xk−1∥2
∥F (xk)− F (xk−1)∥2 , λ̄

}

3: x̄k =
(ϕk − 1)xk + x̄k−1

ϕk
4: Update the next iteration:

xk+1 = proxλkg
(x̄k − λkF (xk))

5: Update: θk+1 =
αλk

λk−1

6: compute the following summations with ϕk+1 = ϕ̄:
sum1

k+1 = sum1
k + (16)

sum2
k+1 = sum2

k + (17)
7: if (sum1

k+1 ≤ 0 ∧ flg = 1) ∨ (sum2
k+1 ≤ 0 ∧ flg = 0)

then
8: ϕk+1 = ϕ̄, flg = 1
9: else

10: if flg = 1 then
11: xk+1 = xk, x̄k = x̄k−1

12: ϕk+1 = α, θk = θk−1, λk = λk−1

13: sum1
k+1 = 0, sum2

k+1 = 0, flg = 0
14: else
15: ϕk+1 = α
16: sum2

k+1 = sum2
k + ((17) with ϕk+1 = α)

17: sum1
k+1 = 0

18: end if
19: end if

Algorithm 2 consists of three parts. Line 8 handles either
the case of (i) or modifies ϕk+1 to a large value (case (iii)). In
lines 11-13, the algorithm adjusts ϕk+1 to a small value (case
(iii)). Finally, lines 15-17 correspond to case (ii), where the
algorithm continues by updating sum2

k+1 with a small ϕk+1 if
sum2

k+1 is non-negative with a large ϕk and flg = 0.

IV. NUMERICAL SIMULATIONS

We demonstrate the performance of Algorithm 1 and
Algorithm 2 on several classes of problems studied in the
literature: (1) Nash–Cournot equilibrium, (2) feasibility problem
(finding an point in the intersection of balls) (3) sparse
logistic regression (4) skew symmetric operator (6) Markov
decision processes (5) Two-player Zero Sum Game (7) strongly
monotone operator with equality constraint and (8) VI with
non-monotone operator. To evaluate our performance, we

compare our proposed algorithms (Algorithm 1 and Algorithm
2) with the following methods from the literature: (i) Projected
Gradient descent (PrGD), (ii) projected reflected Gradient
descent (PrRefGD), and (iii) adaptive Golden ratio (AdGraal),
a relatively recent method for monotone variational inequality
and the closest in spirit to our proposed method. Worth noting,
to be more fair, we plot the residual (on the y-axis) against
the number of operator evaluation calls (on the x-axis) in all
our figures. In all simulation examples, we also set ϕ = 1.5 in
Algorithm 1 and aGRAAL, and in Algorithm 2, ϕ̄ and α are
106 and 1.5, respectively.
(1) Nash–Cournot equilibrium problem [13]. A variational

inequality that corresponds to the Nash–Cournot equilibrium
is find x∗ = (x∗

1, . . . , x
∗
n) ∈ Rn

+

subject to⟨F (x∗), x− x∗⟩ ≥ 0, ∀x ∈ Rn
+,

where F (x∗) = (F1(x
∗), . . . , Fn(x

∗)) and

Fi(x
∗) = f ′

i(x
∗
i )− p

( n∑

j=1

x∗
j

)
− x∗

i p
′
( n∑

j=1

x∗
j

)

As in [11], we assume that the function p and fi are
written as p(Q) = 50001/γQ−1/γ and fi(xi) = cixi +

βi

βi+1L
1
βi
i x

βi+1

βi
i . We set n = 1000 and generate our data

randomly, similar to [11]. Furthermore, we consider two
scenarios for each entry of β, c, and L, which are drawn
independently from the uniform distributions with the
following parameters
• γ = 1.1, βi ∼ U(0.5, 2), ci ∼ U(1, 100), Li ∼
U(0.5, 5);

• γ = 1.5, βi ∼ U(0.3, 4) and ci, Li as above.
These parameters control the level of smoothness of fi and
p; therefore, they can affect the convergence speed. Figure
2 reports the results where all algorithms are initialized
at the same point chosen randomly. It is clear that our
proposed algorithms exhibits faster convergence speed and
outperforms other algorithms.
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(a) γ = 1.1, βi ∼ U(0.5, 2),
ci ∼ U(1, 100),
Li ∼ U(0.5, 5).
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(b) γ = 1.5, βi ∼ U(0.3, 4),
ci ∼ U(1, 100),
Li ∼ U(0.5, 5).

Fig. 2: Nash-Cournot equilibrium (1).

(2) Feasibility problem (finding an point in the intersection
of balls) [14]. In this problem we have to find a point
in x ∈ ∩m

i=1Ci, where Ci = B(ci, ri), a closed ball with
a center ci ∈ Rn and a radius ri > 0. The projection
onto Ci is simple: PCix = x−ci

∥x−ci∥ri if ∥x − ci∥ > ri
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Fig. 3: Feasibility problem
(intersection of balls) (2).
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Fig. 4: Sparse logistic
regression (3).
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Fig. 5: Skew symmetric
operator (4).
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Fig. 6: Two-player Zero
Sum Game (5).

and x otherwise. Therefore, due to the non-expensiveness
of the projection, one can use successive projections (the
Krasnoselskii-Mann method) to find such a point (KM
method xk+1 = Txk = 1

m

∑m
i=1 PCi

xk) [15], [16]. On the
other hand, by choosing F = Id − T , we can rewrite this
problem as a VI (1). In simulation, we choose all required
parameters the same as [11]. We set n = 1000, m =
2000, the center of each ball ci is chosen randomly from
N (0, 100), and the corresponding radius is ri = −∥ci∥+1.
The results are provided in Figure 3. The starting point of
all methods are chosen as the average of all centers ci.

(3) Sparse logistic regression [17]. The sparse logistic
regression can be written as follows

min
x

f(x) :=

m∑

i=1

log(1+ exp(−bi⟨ai, x⟩)) + γ∥x∥1, (24)

where x ∈ Rn, ai ∈ Rn, and bi ∈ {−1, 1}, γ > 0.
This problem can be found in several machine learning
applications, where one attempts to find a linear classifier
for points ai. The objective function in (24) is f(x) =
s(x) + g(x) with g(x) = γ∥x∥1 and s(x) = h(Dx),
where matrix D ∈ Rm×n as Dij = −biaij and set
h(y) =

∑m
i=1 log(1 + exp(yi)). It is easy to see that

s(x) is smooth with Lipschits constant gradient with
L∇s = 1

4∥D⊤D∥. We used this constant as a stepsize
in PrGD and PrRefGD. In our experiments the test data
ai and bi are generated randomly using the standard
Gaussian distribution, γ = 0.005∥A⊤b∥∞, where A =
[a1|a2| · · · |am] ∈ Rn×m, n = 500, and m = 200. The
results are presented in Figure 4, where our methods
demonstrates superior efficacy compared to other algorithms.
We also plot the result of solving (24) using accelerated
PrGD (FISTA) [18].

(4) Skew symmetric operator [19, Ex. 20.35]. An example
of a monotone operator that cannot satisfy even locally
strong monotonicity is the skew-symmetric operator. This

operator is quite simple where we have m blocks of n× n
skew symmetric matrices (SK), which is defined as follows

S = diag(SK1,SK2, · · · ,SKm), F (x) = Sx. (25)

In our simulation results we set n = 10, m = 20 and SKi =
tril(Ai)−triu(Ai), where Ai are symmetric positive definite
matrices generated randomly (Bi = randn(n, n), Ai =
B⊤

i Bi). Figure 5 compares the convergence rates of
different solving methods for the skew symmetric operator.
As we have seen, our methods exhibit similar behavior to
aGRAAL.

(5) Two-player Zero Sum Game [20]. Generative adversarial
networks (GANs) are a powerful class of neural networks
that are used for unsupervised learning. The training of
GANs can be considered a two-player zero sum game [1],
[21]. For solving a two-player zero sum game, we need to
solve the following bilinear saddle point problem,

min
x∈∆m

max
y∈∆n

Φ(x, y) := x⊤Ay, (26)

where A ∈ Rm×n is a pay-off matrix and ∆d = {v ∈
Rd

+ | ∑d
i=1 vi = 1} denotes the d-dimensional simplex.

The solution of (26) is given by a saddle point (x∗, y∗) ∈
∆m ×∆n satisfying

Φ(x∗, y) ≤ Φ(x∗, y∗) ≤ Φ(x, y∗) ∀(x, y) ∈ ∆m ×∆n.
(27)

which can be written by problem (1) with A = ∆m ×∆n

and

F (x, y) =

(
Ay

−A⊤x

)
=

(
0 A

−A⊤ 0

)(
x
y

)
. (28)

For the experiments, we set d = m = n = 50, and the
entries of A are generated with a uniform distribution on
[0, 1). A comparison of different methods is reported in
Figure 6. As we can see from (28), this example is similar to
the skew-symmetric operator (25); thus, we expect similar
results.

(6) Markov decision processes (MDPs) [22]. An MDP
is a pair of (S,A,P, c, γ), where S and A are the
state space and action space, respectively. The transition
kernel P describes how the system moves between states:
given a state s and an action a, it shows the probability
of transitioning to another state s+. The cost function
c : S × A → R, bounded from below, assigns a cost to
each action-state pair. The discount factor γ ∈ (0, 1) can be
seen as a trade-off parameter between short- and long-term
costs. We take S = {1, 2, . . . , n} and A = {1, 2, . . . ,m}.
MDPs provide a robust modeling framework for stochastic
environments, offering control mechanisms to minimize
cost measures. By accessing to the transition kernel and
the cost function, the problem is usually characterized by
the fixed-point problem v⋆ = T (v⋆), i.e.,

v⋆(s) = [T (v⋆)](s), ∀s ∈ S, (29)

where T : R|S| → R|S| is the Bellman operator given by

[T (v)](s) = min
a∈A

{
c(s, a) + γEs+∼P(·|s,a)

[
v(s+)

]}
(30)
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(a) γ = 0.9.
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(b) γ = 0.99.

Fig. 7: Performance in MDP for different values of γ (6).

That is, the optimal value function v⋆ is the unique
fixed-point of the Bellman operator T . Therefore, we can
reformulate this problem with (1) by F = Id − T and
g(x) = 0. The comparison of the proposed algorithms in
solving 50 instances of the optimal control problems of
randomly generated Garnet MDPs with n = 50 states and
m = 5 actions with two different values of discount factor
γ is reported in Figure 7.

(7) Strongly monotone operator [23]. One of the popular VI
problem with the strong monotone operator is (1) with linear
operator F (x) = Mx+ q, where M generated randomly
as M = AA⊤ + B +D, where each entry of the n × n
matrix A and the skew-symmetric matrix B is uniformly
sampled from the interval (−5, 5), and every diagonal entry
of the n × n diagonal D is uniformly sampled from the
interval (0, 0.3) (ensuring M is positive definite), with
each entry of q uniformly sampled from (−500, 0). The
feasible set is A = {x ∈ Rn

+|x1+x2+ · · ·+xn = n}. For
simulation experiments, we consider n = 100 and choose
L = |M | as the Lipschitz continuity of F , which is used
in the stepsize of PrGD and PrRefGD methods. Figure 8
illustrates the results where all algorithms are initialized at
x0 = (1, 1, . . . , 1).

(8) Non-monotone operator [11]. As a last example, we
test our proposed algorithms on a non-monotone operator
mentioned in [11], where we aim to find a non-zero solution
of F (x) := M(x)x = 0. Here, M : Rn → Rn×n is a
matrix-valued function, which can be considered as a VI (1)
with g = 0. For the experiment, we define M as M(x) :=
t1t

⊤
1 + t2t

⊤
2 , with t1 = A sinx, t2 = B exp(x), where x ∈

Rn, A and B ∈ Rn×n. For the experiment, we choose
n = 500, and the matrices A and B are independently and
randomly generated from the normal distribution N (0, 1).
Similar to [11], we take the initial point x0 = (1, 1, . . . , 1).
The simulation results of solving VI with the non-monotone
operator M are reported in Figure 9, where the proposed
algorithms outperform other methods.
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