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Abstract

Version control systems rely on code differencing
algorithms to track changes and support key devel-
opment tasks such as merging, code search, and
code reviews. Traditional differencing techniques
operate on plain-text representations of source
code, which sometimes fail to convey the original
intent behind code modifications. To address this,
modern algorithms operate on abstract syntax trees
(ASTs), enabling more accurate and structurally
meaningful edit scripts. However, computing dif-
ferences between ASTs poses new challenges, es-
pecially in balancing edit script quality with run-
time performance.

This paper investigates the evolution of AST differ-
encing algorithms by analyzing a sequence of key
refinements built on top of Xy - a foundational al-
gorithm originally designed for XML. We evaluate
three influential enhancements: GumTree’s optimal
recovery strategy, the simplified recovery heuristic
introduced in GumTree Simple, and HyperDiff’s
use of a compressed AST representation. We eval-
uate each refinement independently using a shared
benchmarking framework and a dataset of real-
world Java code changes. Our results show how
each refinement incrementally improves scalability,
runtime stability, and script quality. These findings
offer a deeper understanding of the design trade-
offs in AST differencing and provide guidance for
developing efficient and interpretable structural diff
tools at scale.

1 Introduction

Version control systems (VCS) are foundational to modern
software development. They serve not only as repositories
of code but also as detailed records of the evolution of soft-
ware. By tracking changes over time and supporting opera-
tions such as branching, merging, and reviewing, version con-
trol has become a necessity in virtually all software projects,
from small-scale applications to large-scale industrial sys-
tems.

A central component of version control is the ability to
represent versions of code with so-called edit scripts. Edit
scripts describe how one version of a file can be transformed
into another through a sequence of simple operations. The
most commonly used techniques for computing edit scripts
interpret the source code as plain text lines that can be added
or deleted. In that case, finding the shortest edit script cor-
responds to the Edit Distance (ED) problem [1] which is ef-
ficiently solved with Myer’s algorithm [2]. While this ap-
proach provides good scalability due to its simplicity, it has
limited accuracy when inferring changes in code because
it fails to account for factors like hierarchies and recursive
structures, which are particularly important in the context of
programming languages. One consequence of this is that
small edits (such as variable renames) are confusingly de-
scribed as a deletion and addition of entire lines. Another

problem of this approach is that it is unable to identify moves
of chunks of code which are a very common operation in any
software projects.

To overcome these limitations, we use algorithms that op-
erate on abstract syntax trees (ASTs) instead of plain text.
ASTs capture the semantics of code, allowing us to detect a
richer set of changes, including moves and renames in addi-
tion to insertions and deletions, which significantly improves
the interpretability of the resulting edit scripts.

However, with ASTs, the initial Edit Distance (ED) opti-
mization problem becomes a Tree Edit Distance (TED) prob-
lem, defined as the minimum-cost sequence of node edit op-
erations that transform one tree into another [3]. Unfortu-
nately, general TED is an NP-hard problem [4], and optimal
algorithms for it do not scale to real-world inputs. There-
fore, practical systems must trade off some accuracy in fa-
vor of improved performance. Early work in this area in-
troduced XY-diff [4], a simple and effective heuristic ap-
proach originally designed for detecting changes in XML
documents. Although XY-diff made simplifying assumptions
about tree structures, it introduced a flexible algorithm frame-
work which encouraged simple incremental improvements to
employed heuristics over time.

Building upon XY-diff, more recent algorithms, in partic-
ular GumTree [5], GumTree Simple [6], and HyperDiff [7],
have refined the tradeoff between accuracy and performance.
In this paper, we revisit three incremental improvements to
AST differencing algorithms that we believe were the most
influential to the evolution of structural code differencing.
The main research question we address is formulated as fol-
lows:

RQ: How have key heuristic refinements in AST differ-
encing algorithms improved the balance between perfor-
mance, scalability, and edit script quality?

To explore this, we investigate the following sub research
questions each aimed at understanding one of the three main
refinements:

* RQ1: How does the refinement of Xy’s recovery
strategy in GumTree affect the trade-off between
script quality and performance when applied to com-
plex ASTs?

* RQ2: To what extent does the simple recovery im-
prove upon GumTree in terms of scalability, runtime
stability, and edit script quality for large ASTs?

* RQ3: How does the use of the HyperAST data struc-
ture in HyperDiff impact performance and scalabil-
ity compared to GumTree, particularly in cases with
a varying number of changes between ASTs?

To answer these questions, we investigate in detail the im-
pact of every refinement. We identify the main goal of every
refinement, describe the measures taken to achieve the goal,
and analyse the impact on the efficiency, quality, and overall
usability by thoroughly benchmarking the achieved perfor-
mance.



2 Motivation

The quality of edit scripts is critical for two primary rea-
sons. First, compact and semantically accurate edit scripts
enable version control systems to accurately perform opera-
tions such as Automatic Program Repair [8; 9; 10], Semantic
Code Search [11], or Code Smell Mining [12] on large repos-
itories, helping developers quickly locate relevant code, apply
accurate fixes, and improve overall software quality. Second,
high-quality edit scripts provide developers with clearer in-
sights into code evolution, improving code reviews, helping
in understanding refactorings, and, most importantly, sim-
plifying merging of changes, which enables concurrent col-
laborative development. Inaccurate or unnecessarily verbose
scripts, on the other hand, can obscure the intent of changes,
reducing developer productivity.

At the same time, to match the practicality of conventional
text-based methods, like Myer’s algorithm, AST differening
algorithms need to achieve sufficient scalability in terms of
runtime. For this reason, these algorithms use heuristics that
allow them to improve the runtime at minimal cost in quality.
However, to accurately assess their usability, those heuristics
need to be thouroughly evaluated and compared in a practical
setting, which is a complex task.

Motivated by the need for a comprehensive understanding
of the challenges of the quality vs runtime tradeoff of AST
diff, this research evaluates AST differencing algorithms to
understand how successive refinements to the solution ad-
dressed those challenges. We believe that detailed insight into
motivation and consequences of past refinements are essential
to understand the capabilities and limitations of the general
diff approach and that it will help find direction for the future
enhancements to the solutions.

3 Background

Understanding how to effectively compute differences be-
tween versions of source code requires a solid understanding
of the structures and concepts underlying program representa-
tion. This section introduces the fundamental definitions used
throughout the paper, including abstract syntax trees (ASTSs)
and edit scripts, and outlines a general framework for how
AST differencing algorithms are typically structured. We also
provide an overview of prior work in the area, highlighting
the evolution of practical, performance-oriented approaches
to tree differencing.

3.1 Definitions

An abstract syntax tree (AST) is a labeled, ordered, rooted
tree that represents the hierarchical syntactic structure of
source code according to a formal grammar [5]. Each node
in the tree is associated with a label indicating the name
of the production rule it instantiates (e.g., IfStatement,
Expression, Identifier), and may also hold an optional
value, such as a specific token from the source code (e.g.,
a variable name or literal). The structure of an AST is in-
herently recursive: each node may have zero or more child
nodes, each of which defines a subtree that is itself a valid
AST corresponding to a syntactic construct in the program.

Following the definition of an AST, we define an edit script
as a sequence of atomic actions applied to a source AST in or-
der to transform it into a target AST. These atomic actions
model fundamental structural changes and are designed to
closely mirror how developers reason about code modifica-
tions. The supported actions are as defined in [5]:

 updateValue(t, vy,) replaces the value of node ¢ with a
new value v,,.

* add(t,t,,%,1,v) inserts a new node ¢ into the AST. If
the parent node ¢, and the child index ¢ are specified, ¢
becomes the ith child of ¢,. The node ¢ is assigned the
label [ and value v.

* delete(t) removes the node ¢ from the AST. This opera-
tion is restricted to leaf nodes to preserve tree integrity.

* move(t,ty, 1) relocates the subtree rooted at ¢, making
it the ith child of node t,. All descendants of ¢ are pre-
served, effectively moving the entire subtree. This be-
havior mimics how blocks of code such as loops, con-
ditionals, or functions are often moved as coherent units
during software evolution.

While multiple edit scripts can transform a given source
AST into the same target AST, they can vary significantly in
length and complexity. For this reason, the quality of an edit
script is typically measured by its length, the fewer actions it
contains, the more concise and interpretable the transforma-
tion. Identifying an edit script of minimal length corresponds
precisely to solving the tree edit distance [3] problem.

As it turns out, an edit script does not have to be found di-
rectly from the trees. Instead, some methods, in particular the
methods analysed here, derive the edit script from an initially
computed set of node mappings. A mapping (also referred to
as a match) is a pair of nodes from source and target trees. We
only consider mapping sets for which every node belongs to
at most one pair. An additional constraint on the mapping is
that nodes in every pair need to have the same label (in prac-
tice, this constraint ensures that only identical code rules can
be matched (eg. an IfStatement will never be matched to an
Expression). Having obtained such a set of mappings, we
can then derive an edit script using the Chawathe Algorithm
[13]. In this paper, we only focus on algorithms that infer the
mappings, as Chawathe Algorithm already solves the second
step in quadratic time.

3.2 Algorithm framework

At the core, the algorithms analysed in this paper decom-
pose the problem of finding mappings between two ASTs
into three distinct phases. These phases are foundational to
the overall matching strategy and will be referred to as Sub-
tree, Bottom-up, and Recovery phases throughout the rest of
the paper.

1. Subtree phase (also refered to as Top-down phase):
In this phase, the algorithm searches for large, identi-
cal subtrees between the two input trees, starting from
the roots and proceeding downward. The goal is to
find high-level structural similarities as early as possi-
ble. The result of this phase is a set of initial "anchor”



mappings, which form the foundation for further match-
ing.

2. Bottom-up phase: This phase augments the anchor
mappings by identifying “container” mappings be-
tween nodes whose subtrees already contain many
matching descendants. Nodes are traversed in post-
order, and mappings are determined based on a similar-
ity score (e.g., Dice coefficient) between the sets of their
mapped descendants. This process identifies higher-
level structural correspondences that may not have been
captured in the top-down phase.

3. Recovery phase: Once a mapping is established in
the bottom-up phase, this phase applies a fine-grained
matching algorithm within the descendants of those
nodes. The goal is to identify additional “recovery”
mappings, capturing smaller-scale edits and refinements
missed in the earlier phases.

3.3 Existing algorithms

The problem of computing differences between trees has a
long and diverse history with numerous variants each ad-
dressing different aspects of the problem. Most of the variants
differ by the set of allowed actions. For instance, MH-DIFF
[14] prioritizes meaningfulness of the edit scripts and there-
fore allows a richer set of actions. On the other hand, some
variants like RTED [15] focus on the edit scripts being opti-
mal which in turn enforces a very basic set of actions. Other
approaches focus on differencing unordered trees, where the
order of sibling nodes is not semantically important [16]. Our
work focuses on a particular branch of tree differencing algo-
rithms that have specific constraints on the structure and pri-
oritize performance over optimality, making them more prac-
tical for Abstract Syntax Tree differencing.

To our knowledge, the first influential algorithm in this
line of work was the Xy algorithm, originally introduced as
BULD algorithm by Cobéna et al. [4] and designed for XML
differencing. Despite its simplicity, Xy introduced a powerful
and flexible multi-stage structure which was the main inspi-
ration for the generalized three-stage framework. Xy’s archi-
tectural foundation enabled subsequent algorithms to achieve
incremental improvements through targeted enhancements to
specific phases, while its simplicity and generalizability made
it easily adaptable to diverse programming language syn-
taxes.

Indeed, successive approaches build upon Xy by refining
different parts of the algorithms to improve different aspects
like performance, quality, or memory consumption. In 2014,
Falleri et al., the creators of GumTree algorithm [5] made an
influential refinement to the algorithm and published a widely
available tool for code change detection which was a sig-
nificant milestone. In the case of GumTree, the big change
was made to the recovery phase. First of all, GumTree uses
an optimal algorithm to find recovery mappings. To limit
the performance overhead caused by the algorithm, GumTree
only uses the algorithm if the size of the matched subtrees is
smaller than a predefined threshold MAX_SIZE.

A recent approach, HyperDiff [7], further improves the
GumTree algorithm. It leverages a compressed representation

of the AST, called HyperAST [17], to simplify the process of
identifying identical subtrees.

Parallel to HyperDiff, Falleri et al. introduced an improved
version of GumTree, called GumTree Simple [6]. The authors
identified a critical limitation in the original GumTree algo-
rithm: the use of an optimal algorithm for the recovery phase,
which introduces significant performance overhead and re-
quires the manual tuning of a MAX_SIZE threshold to remain
tractable. To address this, they propose a new heuristic-based
recovery strategy called simple recovery. This revised method
prioritizes practicality, aiming to significantly reduce compu-
tational cost while maintaining comparable result quality.

4 Methodology

To provide reproducible, and statistically sound results, our
methodology standardizes the benchmarking environment,
uses a well-established dataset, and applies rigorous statis-
tical analysis. We eliminate implementation bias by reusing
a common framework and aligning with practices from prior
work, such as HyperDiff [7]. The evaluation relies on datasets
widely adopted in the literature and employs the Criterion.rs
[18] benchmarking suite. The following subsections detail
our benchmarking setup, describe the dataset, and finally out-
line the statistical relevance of our results.

4.1 Environment

To minimize bias in results related to differences in program-
ming languages and testing setups, we followed an approach
similar to HyperDiff. First, we ported an existing Java imple-
mentation of the algorithms from GumTree repository to the
HyperAST repository. Then, we replicated the setup used
by HyperDiff, only replacing the matching algorithm with
a ported implementation. That way, all benchmarked algo-
rithms use the same framework with exactly the same under-
lying data structure.

4.2 Dataset

The evaluation re-used the dataset employed in the GumTree
paper [19; 6]. More specifically, we evaluated each algorithm
on a collection of commits from the following two large open-
source real-world Java projects:

* GitHub Java is a dataset containing 1000 commits from
10 popular projects.

* Defects4J is a dataset of bug fixes used in the program
repair community.

In total, the datasets contain 2045 pairs of files. The
before folders contain the files before modification, and the
after folders contain the files after. Inside the before and
after folders, there is one folder per project that contains
one folder per commit. Note that the commit names are the
same in the before and after folders.

4.3 Evaluation protocol

Because the benchmarks are targeted at multiple algorithms,
and focus on particular phases, they were designed with flex-
ibility in mind. To make the benchmarks easily rerunnable
in different configurations, we decided to split them into



three stages that can be run independently. To avoid running
computation-heavy stages multiple times, output from every
stage is saved to the filesystem so that intermediate results
can be reused.

1. Benchmark: In the first stage, we isolate one phase (or
a set of phases) of a given algorithm and measure the
runtime using Criterion, as described in more detail in
4.4 Statistical relevance section. For every file pair in the
dataset, we collect an estimate for mean runtime together
with its 95% confidence interval.

2. Metadata: This stage is aimed at obtaining additional
data from the algorithm’s execution. To compute , we
run all phases and collect the number of matches and the
length of the edit script after each phase. We later use
these values to compute the number of matched nodes
per phase and the deltas of edit script lengths for each
phase.

3. Summarize: The final stage combines and organizes
all data obtained in previous stages into one JSON file
per algorithm. The data from the JSON file is then
visualized using Matplotlib v3.10.3 and Seaborn
v0. 13.2 Python libraries.

4.4 Statistical relevance

To support the reproducibility and reliability of our perfor-
mance measurements, we employ the Criterion.rs [18] bench-
marking framework, which is specifically designed to pro-
duce statistically sound results. Criterion structures bench-
marking into three distinct phases: warm-up, measurement,
and analysis, each contributing to the reliability of the final
outcome.

During the warm-up phase, the code is executed repeat-
edly to mitigate the impact of transient runtime effects such
as CPU throttling or just-in-time optimizations. This helps
stabilize the system before any measurements are taken. In
the measurement phase, Criterion adaptively determines the
appropriate number of iterations to run, ensuring that enough
data is gathered to support statistically meaningful outputs.
Finally, in the analysis phase, Criterion uses bootstrap resam-
pling to estimate confidence intervals and detect statistically
significant differences. It also performs outlier detection and
removal, further improving the quality of the results.

This methodology allows us to report not only mean ex-
ecution times but also the variance and confidence bounds,
providing a more reliable and informative comparison of run-
times.

5 Evaluation

Before we dive into the analysis of results, we first explain the
benchmarks used to answer our research questions, including
the key methodological decisions made to ensure the clarity
and interpretability of our results. Our evaluation is structured
around the three core research questions, each corresponding
to a specific refinement in AST differencing algorithms. At
the start of each subsection, we briefly reintroduce the corre-
sponding research questions to guide the interpretation of the
experiments.

BottomUp Quality

Script length reduction
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Figure 1: Bottom-up phase edit script improvement by algorithm
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Figure 2: Bottom-up phase runtime by algorithm

5.1 RQI1, RQ2: Bottom-up phase analysis

The first two research questions relate to successive refine-
ments of the bottom-up phase:

RQ1 asks how the refinement of Xy’s recovery strategy in
GumTree affects the trade-off between script quality and per-
formance when applied to complex ASTs.

RQ2 asks to what extent the simple recovery improves
upon GumTree in terms of scalability, runtime stability, and
edit script quality for large ASTs.

Since Both questions are focused on analysing a refine-
ment to the recovery (which is a part of the bottom-up phase),
we will isolate the bottom-up phases of the three algorithms
addressed in these questions (XyBottomUp, GumTreeBot-
tomUp, SimpleBottomUp) and compare them all together.
We made the choice to focus solely on the bottom-up phase
(which includes the recovery), as the subtree phase has a
smaller impact on overall runtime. Moreover, the subtree
phase is identical for both algorithms, making it less relevant
for comparative analysis.

To support the analysis of the runtime-quality tradeoff, we
provide plots of runtime and quality. The quality is mea-
sured as script length reduction, which we define as the dif-
ference between the lengths of edit scripts before and after the
bottom-up phase. In other words, script length reduction tells
how much shorter the scripts became thanks to the matches
found in the bottom-up phase (Figure 1). This way, we can
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Figure 3: GumTree Bottom-up phase runtime w.r.t AST size

isolate the impact of the refinement on that particular phase.
For the runtime, we show an estimate of the mean execution
time in milliseconds w.r.t. the total number of nodes in source
and destination ASTs (Figure 2).

As it turns out, GumTree’s runtime cannot be easily ex-
plained w.r.t. the number of nodes. (Figure 3). This stems
from the fact that runtime is not only dependent on the size of
the trees but also strongly influenced by other structural prop-
erties. To better understand which properties impact runtime
the most, we measure the Pearson correlation coefficient be-
tween runtime and several basic properties across three algo-
rithm variants (Table 1):

e AST total nodes - total number of nodes in both trees

e Unmatched (subtree) - number of unmatched nodes in
the input to the bottom-up phase

e Unmatched (bottom-up) - number of unmatched nodes
remaining after the bottom-up phase

* Matched nodes - number of nodes matched during
bottom-up phase

Metric GumTree | GumTree Xy
500 100
AST total nodes 0.014 0.144 0.710
Unmatched (subtree) 0.257 0.507 0.556
Unmatched (bottom-up) 0.062 0.404 0.526
Matched nodes 0.625 0.769 0.622

Table 1: Pearson correlation between runtime and selected metrics

In case of the GumTreeMatcher, we observe the highest
correlation with the number of matched nodes. This makes
sense as more matched nodes imply that more effort has been
done by the expensive optimal recovery algorithm (Figure 4).
Based on these findings, we provide one more visualization of
the runtime w.r.t. number of matched nodes (given by base-
line GumTreeMatcher with MAX_SIZE=1000) to be the inde-
pendent variable on the x-axis (Figure 5).

As we will see later, the MAX_SIZE parameter of the
GumTreeMatcher also has a significant impact on both per-
formance and result quality. To investigate how this param-
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Figure 5: Bottom-up phase runtime by algorithm (w.r.t. #matches)

eter affects outcomes, we repeat the benchmarks using three
different values of MAX_SIZE: 100, 300, and 1000.

5.2 RQ3: Subtree phase analysis

RQ3 asks how the use of the HyperAST data structure in
HyperDiff impacts performance and scalability compared to
GumTree, particularly in cases with a varying number of
changes between ASTs.

For this research question, we chose to isolate the subtree
phase. The main reason is that the refinement in HyperDiff
has the greatest impact on this particular phase. This is due to
HyperDiff’s use of a compressed representation of the AST,
which drastically simplifies node matching during the subtree
phase.

As in RQ1 and RQ2, we compare the runtimes of Hyper-
Diff and GumTree w.r.t the total number of nodes (Figure 6).
On top of that, we conduct the same correlation analysis as
with GumTree in the previous section (Table 2)

In the case of subtree matchers, the largest correlation can
be observed with nodes unmatched after the subtree phase.
Therefore, we will provide an additional visualization of the
runtime w.r.t. that metric (Figure 7).

In the analysis for RQ3, we will skip the quality compar-
ison as the same underlying procedure is used in both algo-
rithms. HyperDiff utilizes a compressed data structure and in-
troduces several language-specific optimizations, but it does



Metric GumTree HyperDiff
Subtree Subtree
AST total nodes 0.329 0.038
Unmatched (subtree) 0.653 0.582
Unmatched (bottom-up) 0.588 0.520
Matched nodes 0.426 0.388

Table 2: Pearson correlation between runtime and selected metrics
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Figure 6: Subtree phase runtime by algorithm

not change the core algorithm, and therefore produces the
same set of mappings as GumTree.

5.3 Additional considerations

To improve the readability of the visualizations, the data has
been divided into vertical bins. Within each bin, datapoints
corresponding to different algorithms have been grouped and
plotted using different colors. Moreover, a small horizontal
jitter has been applied to the datapoints to reduce overlap.
As a result, the x-coordinates of the datapoints are not per-
fectly exact; we only guarantee that each point falls within
the bounds of its respective bin.

Additionally, a logarithmic scale is used in all of our plots
to emphasize asymptotic trends and to spread datapoints cor-
responding to smaller inputs more evenly along the x-axis.
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Figure 7: Subtree phase runtime by algorithm (w.r.t. #unmatched
nodes)

6 Results and discussion

The primary goal of this paper is not to assess the perfor-
mance of algorithms in isolation, but rather to examine them
together and analyze the impact of successive enhancements
made to the algorithms throughout the years. Our findings are
supported by a series of comparative graphs and plots, which
illustrate the quantitative effects of each enhancement across
a set of benchmarks.

We focus on examining how each revision affected behav-
ior, performance, and trade-offs. For each pair, we justify the
design decisions involved and provide a detailed evaluation
of their consequences, both positive and negative.

6.1 RQI1: GumTree as Xy’s adaptation for code

In terms of edit script quality, GumTree significantly im-
proves upon Xy, especially for smaller ASTs. (Figure 1) This
is mainly due to the difference in how the recovery phase
is handled: Xy employs a naive recovery strategy that only
considers immediate descendants of already matched nodes
when searching for additional matches. While this approach
is effective for small, local edits (eg. renames or variable re-
placements) it fails to capture more sophisticated changes in-
volving structural or logical transformations in the code.

This limitation comes from Xy’s original design, which tar-
geted XML documents that are generally simpler and do not
express program logic. Although the adaptation used in our
experiments supports source code, the core recovery strategy
is, in most cases, insufficient for more complex structures in
code. GumTree addresses this issue by performing a deeper
inspection of subtrees during the recovery phase. This en-
ables it to detect more complex logical modifications, achiev-
ing a significantly higher number of mappings.

It is important to note that the gap in the script length nar-
rows as tree sizes increase. This is because, for efficiency
reasons, GumTree disables the recovery phase on trees larger
than the configured MAX_SIZE. As a result, with increasing
tree size, more recoveries are skipped, leading to diminish-
ing improvements in edit script length. In extreme cases,
with trees of more than 50000 nodes, Xy may even produce
slightly better results.

The gains in quality are substantial, but they come at a con-
siderable cost. GumTree not only traverses all nodes in the
subtrees, but it also runs a O(n?) algorithm every time a re-
covery phase is triggered. This causes a huge overhead for
the overall runtime compared to the naive Xy approach. As
shown in figure 2, even with relatively low MAX_SIZE=100,
GumTree can take up to 100 times longer to execute than Xy.
For large MAX_SIZE=1000, execution time can even increase
by a factor of 10000.

As a consequence, MAX_SIZE should be chosen with great
care. Depending on quality expectations and available re-
sources, different values will be suitable. On the one hand,
this is an advantage as MAX_SIZE allows us to tweak the algo-
rithm for a particular use case. On the other hand, choos-
ing the right value might be an additional burden on the
user, which was addressed in the papers on GumTree [5;
201.



RQ1 Summary: The refinement of Xy’s recovery
strategy in GumTree Greedy leads to notable improve-
ments in the quality of the edit script, particularly for
small and medium ASTs. By performing a more thor-
ough recovery process, GumTree captures more com-
plex structural and logical edits that Xy’s naive local-
only strategy often misses.

However, these quality gains come at a significant per-
formance cost. GumTree’s recovery involves a computa-
tionally expensive algorithm, resulting in runtime over-
heads of up to 10,000x compared to Xy in extreme cases.

Despite the cost, GumTree’s refinement enhances the
practical usability of the algorithm by enabling a sophis-
ticated matching approach to handle more complex, real-
world ASTs.

6.2 RQ2: Scalable recovery for GumTree

In terms of performance, SimpleBottomUp drastically im-
proves the runtime of GumTreeBottomUp by 1-2 orders of
magnitude across all input sizes (Figure 2). This is expected,
as SimpleBottomUp avoids launching an expensive algorithm
on large subtrees. Although GumTree’s asymptotic runtime
growth slows down for trees exceeding 1000 nodes thanks to
the MAX_SIZE threshold, it remains two orders of magnitude
worse on the largest inputs.

Another aspect where Simple proves better than greedy is
the runtime stability. Similar to Xy, Simple’s runtime in-
creases consistently with input size. In contrast, as shown
in figure 5 GumTree’s runtime is highly sensitive to factors
such as tree structure and the number of changes in the input.
While GumTree tends to slow down with more differences in
the ASTs, Simple remains consistent and is therefore more
reliable for diverse and change-heavy inputs.

Because the recovery phase is completely skipped on larger
subtrees, GumTree hits a limit in script length once the tree
size crosses a certain value (Figure 1). While this value de-
pends on the MAX_SIZE setting, trees of size about 2600 and
above reach a ceiling effect in script length for all tested
MAX_SIZE. The Simple heuristic doesn’t have this limitation,
and its edit scripts continue to improve even for larger tree
size. As a result, for trees larger than 5,600 nodes, Simple be-
gins to outperform GumTree in edit script quality. As shown
in figure 5, this quality gap widens with increasing input size.

Overall, while Simple matcher yields slightly lower-
quality results than GumTree on small trees, its performance
does not fall back on larger trees, which is a significant scala-
bility improvement. Simple provides stable and predictable
growth in both runtime and script quality, which allows it
to surpass GumTree not only in efficiency but also in result
quality for large datasets, making it a more practical choice
for real-world repositories containing thousands of commits
and millions of nodes in the trees.

RQ2 Summary: The Simple matcher outperforms the
GumTree matcher in scalability, runtime stability, and
script quality on large and complex ASTs. It is orders

of magnitude faster across all input sizes and maintains
consistent performance, unlike GumTree, which is sen-
sitive to structural differences and slows down on trees
with more edits.

While GumTree’s script quality slows down on large
trees due to its skipped recovery phase, Simple continues
to improve and surpasses GumTree for trees over 5,600
nodes. Overall, Simple’s refinements significantly im-
proved the reliability and efficiency for real-world sce-
narios involving large codebases and thousands of com-
mits.

6.3 RQ3: Impact of HyperAST on GumTree

Looking at figure 6 we observe a significant difference in the
runtime of the subtree matchers. Even on the smallest in-
puts, HyperDiff outperforms GumTree by an order of mag-
nitude. This performance gap consistently increases with
larger datasets, reaching up to two orders of magnitude on
the largest datasets.

However, while HyperDiff shows strong average perfor-
mance, the algorithm behaves similarly to GumTree in the
worst case, as indicated by a number of outliers. As shown in
figure 7, HyperDiff’s runtime approaches that of GumTree as
the number of unmatched nodes increases. The outliers corre-
spond to ASTs with the highest number of unmatched nodes,
likely caused by a large number of changes in the input files.

This effect can be explained by the characteristics of the
HyperAST data structure which HyperDiff conveniently ex-
ploits. HyperAST is a compressed representation of the trees
in which identical subtrees share the same memory reference
to reduce redundancy. This property allows HyperDiff to
recognize identical subtrees without having to traverse them.
Naturally, the runtime benefits depend on the number of sub-
trees that can be matched and therefore skipped. However,
in the worst case, when the number of differences between
the trees is large, HyperDiff must traverse most of the tree,
just like GumTree, which diminishes the performance gain in
such case.

RQ3 Summary: Our results show that HyperDiff sig-
nificantly improves GumTree in most practical scenar-
ios. Specifically, on 80% of the tested inputs, HyperDiff
is at least 5.8x faster, and on 60% of inputs, it achieves a
speedup of 12.6x or more. Most importantly, HyperDiff
achieves these improvements without consequences on
the accuracy, thus substantially improving the runtime-
accuracy tradeoff.

7 Responsible Research

Even though this research does not involve human subjects,
personal data, or sensitive content, it is still important to ad-
dress reproducibility, ethical use of resources, and potential
societal impact.



7.1 Reproducibility and Availability

To ensure reproducibility, all evaluated algorithms were im-
plemented or ported into a shared and publicly available
benchmarking environment. All code and data used in this
study are made publicly available (see Appendix B). All
source code is based on open source repositories, and the
original datasets are also open and accessible. These datasets
are widely adopted and documented, which allows easy vali-
dation and replication in future research.

7.2 Ethical Use of Computational Resources

The main goal of this research was to improve the understand-
ing of AST-based differencing algorithms by examining their
computational requirements and limitations. By providing in-
sights into these factors, the study contributes to future im-
provements in the efficiency of such algorithms. The knowl-
edge obtained in this research has the potential to reduce the
energy footprint of code versioning systems, thereby promot-
ing more sustainable use of computational resources in soft-
ware development workflows.

7.3 Societal Impact

The techniques explored in this paper have the potential to
improve tools used in software development, such as version
control systems, automated code review tools, and bug detec-
tion frameworks. Through more accurate and efficient struc-
tural change detection, these tools may contribute to better
software quality, reliability, and maintainability.

8 Conclusion

This research analyzed the evolution of structural AST dif-
ferencing algorithms by isolating and benchmarking three
key refinements: GumTree’s optimal recovery, GumTree
Simple’s recovery heuristic, and HyperDiff’s use of a com-
pressed AST representation. Through systematic evaluation,
we demonstrated how each refinement advances the trade-off
between runtime and edit script quality. GumTree improved
script accuracy at a significant performance cost, while Sim-
ple achieved better scalability and runtime stability without
compromising quality on large ASTs. HyperDiff further op-
timized subtree matching by leveraging redundancy in real-
world trees, offering substantial performance gains without
impacting accuracy. Together, these findings highlight the
practical impact of targeted heuristic refinements and offer in-
sights into future improvements for scalable and interpretable
code differencing tools.
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A Use of generative Al

Generative Al tools were used solely to support the writing
process of this report. Specifically, a language model was
used to improve the clarity and structure of sentences, and to
improve the organization of sections. No Al assistance was
used during the design or execution of experiments, nor in
the analysis or interpretation of results. All findings and con-
clusions presented in this report are the result of independent
work. The use of Al adhered strictly to course guidelines
and did not replace any critical thinking or analytical work
required for the project.

B Reproducibility Details

The full implementation and all benchmarking and plotting
scripts used in this project are available at: https://github.com/
HyperAST/HyperAST/pull/73

For reproducibility, refer to commit
cdf5cffaeaf32c8b9ee2577d63f4fcc8c3b69cdf, avail-
able at: https://github.com/HyperAST/HyperAST/pull/73/
commits/cdf5cffacaf32c8b9ee2577d63f4fcc8c3b69cdf
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