
Evaluating Stable Tree Differencing with Gumtree and HyperDiff

Elias Hoste

Supervisors: Carolin Brandt, Quentin le Dilavrec

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Elias Hoste
Final project course: CSE3000 Research Project
Thesis committee: Jesper Cockx, Carolin Brandt, Quentin le Dilavrec

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Structural code differencing algorithms are used in
software engineering tasks such as version control,
code review, and change classification. While the
Gumtree algorithm is a popular choice due to its
performance and accuracy, it is inherently unsta-
ble: the output of a diff may change depending
on the direction in which it is computed. A sta-
ble variant of Gumtree has been proposed to en-
force directional symmetry in mappings. In this pa-
per, we empirically evaluate the performance over-
head of Gumtree Stable compared to the original
Greedy variant. We also assess the impact of lazy
evaluation, enabled by the HyperDiff framework,
as a general optimization technique applicable to
both variants. Our experiments on real-world code
changes show that while stability introduces slight
overhead in most cases, some cases see relatively
large performance gains, averaging out to a runtime
improvement when run on larger datasets. Addi-
tionally, lazy evaluation significantly reduces run-
time for both Stable and Greedy variants. These
findings clarify the trade-offs involved in adopting
stable differencing and demonstrate how HyperDiff
can be used to optimize structural diff computations
independently of algorithmic stability.

1 Introduction
Code differencing is a valuable way to gain insight into the
evolution of a codebase over time. Having correct, efficient,
and robust algorithms to compute diffs is thus equally valu-
able. The most widely adopted algorithms, like Myers’ [9],
use text-based code differencing, which compares code on a
character level. However, text-based approaches are limited
in their ability to capture syntactic or structural changes, often
resulting in noisy or misleading diffs.

To address these issues, structural diff algorithms have
been proposed, which instead compare Abstract Syntax Trees
(ASTs) of the code. Notable examples include Gumtree [4],
ChangeDistiller [6] and MTDIFF [3]. These algorithms of-
fer a much clearer way of representing changes between files
for both developers and researchers, as they can avoid struc-
tural noise and more accurately reflect the developer’s actual
changes in the file.

One desirable property of diff algorithms is stability:
whether a diff of a file is the same when the two input ver-
sions are reversed. Most existing algorithms are not stable,
which can cause inconsistencies, for example in git blame at-
tribution or merge operations. Stability provides reversibility,
determinism, and reduces noise, which are features particu-
larly valuable in tools like Git. Despite its practical relevance,
stability has received little explicit attention in the literature.
Most prior work on structural differencing focuses on accu-
racy or classification of edits, rather than on the consistency
of mappings across input orderings. Notably, while Gumtree
does have a stable variant (Gumtree Stable), it has not been
widely referenced in the literature, and its usage in practical

applications has been limited, most likely due to its slight per-
formance overhead. As such, the performance implications
of enforcing stability remain poorly understood. Improving
the performance of stable algorithms could make them more
viable to use and help fill this gap.

Recent advances in performance optimization have lever-
aged redundancy across versions. HyperAST [7] is a novel
way of representing ASTs that deduplicates repeated code
across files and versions, using the fact that most code re-
mains unchanged between versions. It underlies the Hyper-
Diff framework [8], which provides a collection of diff al-
gorithms optimized to use HyperASTs to compute diffs over
many versions at once, allowing for efficient large-scale code
analysis.

In this paper, we consider HyperDiffs effects on Gumtree,
a family of structural diff algorithms. Two relevant Gumtree
variants are GumTree Greedy (an efficient but unstable base-
line), and GumTree Stable (a stable adaptation of Gumtree
Greedy). While HyperDiff includes an implementation of
GumTree Greedy, it currently lacks support for the stable
variant. As such, the main contributions of this paper are as
follows:

• An implementation of Gumtree Stable integrated into
the HyperDiff framework, filling the gap in the Hy-
perDiff implementation which currently only supports
Gumtree Greedy.

• An analysis of the trade-offs between performance and
stability when choosing to use Gumtree Stable, with
a detailed performance comparison against Gumtree
Greedy.

These contributions directly address the knowledge gap re-
garding stability in structural code differencing algorithms,
which has been underexplored in existing research. To this
end, we ask the following research questions:

• How do optimizations made possible by HyperDiff affect
the performance of Gumtree Stable and Greedy?

• What are the trade-offs between stability and perfor-
mance when using Gumtree Stable?

The remainder of the paper is structured as follows. Sec-
tion 2 provides the necessary context and technical founda-
tions. Section 3 presents our contribution. Section 4 reports
on the results of our research. Section 5 reflects on ethical
implications, and section 6 concludes and summarizes the pa-
per.

2 Background
To better understand stability in Gumtree, this section first in-
troduces abstract syntax trees (ASTs), then describes how the
Greedy and Stable variants of Gumtree differ algorithmically.
It concludes with an explanation of how HyperDiff enables
performance optimizations.

2.1 Abstract Syntax Trees
An abstract syntax tree (AST) is a labeled, ordered, and
rooted tree parsed from source code. Each node has a
label, which represents structural parts of the code like



StringLiteral or ReturnStatement, and an optional
value that corresponds to the tokens in the code. For exam-
ple, a node with label StringLiteral may have a value of
"foo". ReturnStatement could have a value of return,
but as this does not encode any new information, it is dis-
carded. Which data is stored in the label or the value of a
node can differ per implementation of AST parsing. For ex-
ample, return "foo" could also be parsed as a single node
with label Statement and value return "foo". Generally,
more granular representations like the former are preferred [4,
Sec. 2].

2.2 Gumtree Greedy and Stable
A structural diff algorithm can be modeled as a function
diff(T1, T2)→M, producing a set of mappingsM between
two input ASTs T1 and T2. These mappings can be trans-
formed into an edit script using Chawathe’s algorithm [1].

Both Gumtree Greedy and Stable consist of two phases:
top-down and bottom-up. In the top-down matching phase,
exact subtree matches are found between T1 and T2. The
bottom-up phase proceeds by visiting nodes in T1 in post-
order and mapping them to the best candidate in T2, defined
by the similarity function dice(t1, t2) [4, Sec. 3.1]. This func-
tion computes the ratio of common descendants to total de-
scendants, and is symmetric: dice(x, y) = dice(y, x).

To formalize the main difference, let bestCand(n) return
the node with highest similarity to n in the other tree, pro-
vided it exceeds a similarity threshold (usually 0.5). Greedy
maps each node n to bestCand(n) if it exists. Stable adds
a constraint: a mapping is only made if n = bestCand(m),
where m = bestCand(n), making the matching criteria sym-
metric.

After each bottom-up match, both variants invoke a recov-
ery phase, which runs a cubic-time algorithm on the matched
subtrees to match nodes that were missed. To limit perfor-
mance cost, this phase is restricted to small subtrees (bounded
by a max size). Because Stable performs more conditional
checks and may invoke recovery less often, its runtime im-
pact can vary and is not strictly higher than Greedy.

Algorithm 1 outlines the bottom-up phase of Gumtree Sta-
ble in pseudo-code. Note that the Greedy algorithm is mostly
the same, except for the bestCand(t2,minDice) = t1
check. Gumtree Stable does feature an implementation-level
optimization not used in Gumtree Greedy, but we do not fo-
cus on that in this paper.

An example of two input ASTs that cause instability in
Gumtree Greedy can be found in fig. 1. In the top-down
phase, leaf nodes which exist in both trees are mapped to
each other. In the bottom-up phase, Gumtree Greedy maps
x to z when mapping from t1 to t2, but maps y to x (leaving
z unmapped) when mapping from t2 to t1. In contrast to this,
Gumtree Stable maps x to z in both ways.

2.3 Lazification with HyperDiff
The main performance improvement evaluated in this pa-
per comes from lazifying the original Gumtree variants us-
ing HyperDiff [8]. Lazification refers to the technique of
deferring expensive tree decompression operations until they

Algorithm 1: Gumtree Stable bottom-up phase with
recovery

Data: Two trees T1 and T2, a set of mappingsM
(resulting from the top-down phase), a
similarity threshold minDice and a maximum
tree size maxSize

Result: The set of mappingsM
for t1 ∈ T1 | t1 is not mapped, in post-order do

t2 ← bestCand(t1,minDice);
if t2 ̸= null ∧ bestCand(t2,minDice) = t1 then
M←M ∪ (t1, t2);
if max(size(t1), size(t2)) < maxSize then

for (ta, tb) ∈ zs(t1, t2) do
if ta, tb not mapped ∧
label(ta) = label(tb) then
M←M ∪ (ta, tb);

are strictly necessary, thus avoiding unnecessary computation
and memory usage.

HyperDiff internally represents input ASTs as a com-
pressed DAG structure called a HyperAST, where shared sub-
trees are stored only once. This enables deduplication, but it
comes at the cost of losing some global structural information
such as parent links or child orderings. To recover this in-
formation when needed, HyperDiff incrementally constructs
a decompressed tree: a linearized view of the tree in post-
order, backed by data structures like arrays of parent pointers
and leftmost descendants.

The key innovation is that this decompressed tree can be
constructed lazily, meaning that tree nodes and their structural
relationships are only computed when required by the diff
algorithm. For example, if two subtrees are matched early in
the algorithm based on metadata or referential equality, then
their descendants never need to be decompressed at all.

3 Contribution
This section highlights the main contributions of the research:
first discussing the definition of stability, then how Gumtree
Stable was implemented in HyperDiff, and finally how stabil-
ity was verified using tests.

3.1 Formalizing Stability
Section 2 modeled a code differencing algorithm as
diff(T1, T2) → M, where T1 and T2 are syntax trees of the
code, and M represents mappings between nodes of these
two trees. Using these definitions, we can subsequently for-
malize the definition of stability as follows: diff(T1, T2) =
diff(T2, T1) for every input pair T1, T2.

3.2 Implementing Gumtree Stable
To implement Gumtree Stable and Lazy Stable in HyperDiff,
we referenced the existing Greedy and Lazy Greedy imple-
mentations in HyperDiff, and the implementation of Gumtree
Stable in Java1. While Gumtree Greedy uses Zs [11] as its re-

1https://github.com/GumTreeDiff/gumtree/tree/0076da2



t2
y

1

z

2

t1

3

x

1

2
(a) Two simplified ASTs t1 and t2, representing two different ver-
sions of a file.

x y z bestCand

x 1 1/2 2/3 z
y 1/2 1 0 x
z 2/3 0 1 x

(b) Pairwise dice scores and bestCand selection between nodes in
t1 and t2.

Figure 1: Example of inputs that cause instability in Gumtree
Greedy. (a) shows two input ASTs with shared substructure. (b)
gives the similarity values and best candidate matches used to deter-
mine mappings during the diff.

covery algorithm, which is optimal but generally quite slow,
the Java implementation of Gumtree Stable features an alter-
native faster recovery phase using histograms, which is based
on heuristics instead of optimality. Since we aim to only mea-
sure the effect of enforcing stability and not the effect of re-
covery algorithms, we use the Zs algorithm for our implemen-
tation of Gumtree Stable. Pseudo-code of our implementation
can be found in algorithm 1, and our final implementation can
be seen in our public HyperDiff repository2.

3.3 Testing Stability
To verify the stability of our implementation of Gumtree Sta-
ble, we specifically designed test cases which result in insta-
bility in Gumtree Greedy, while ensuring that Gumtree Stable
remains stable. One of these test cases can be found in fig. 1.
We also tested examples which would not result in instabil-
ity in Gumtree Greedy. For each example, we ran the speci-
fied algorithm (Greedy or Stable) in both ways (diff(T1, T2)
and diff(T2, T1)) and compared the mappings on equality. All
tests and test cases used can be found in the same repository
as our implementation.

4 Evaluation
This section describes our benchmarks by first discussing the
dataset, and then the statistics used to evaluate our bench-
marks. We present our results as an answer to our research
questions, and finally discuss potential threats to the validity
of this paper.

4.1 Dataset
In order to benchmark the different Gumtree variants, we
used the Defects4J dataset from the Gumtree datasets reposi-
tory3. This dataset consists of 1046 file pairs containing bugs

2https://github.com/Pomegranate123/HyperAST/tree/33ded64
3https://github.com/GumTreeDiff/datasets/tree/33024da

and their respective fixes, sourced from 17 different open-
source Java projects. Files used range from 14 to 6591 lines
of code. The Gumtree datasets are structured to be simple
to process and contain both Java and Python datasets, but as
HyperDiff currently does not support Python AST parsing,
we only used Java.

4.2 Benchmark Setup

The benchmarks were run on an Intel Core i5-6200 CPU with
16GB of RAM using rustc 1.85.1 (2025-03-15). Each variant
(Greedy, Stable, Lazy Greedy, Lazy Stable) was executed 12
times on each file pair in the dataset, varying from 1 to 300.
We discard the first two runs as warm-up and calculate the
median runtime per file pair from the remaining 10 runs. This
entire procedure was repeated for various values of maxSize
(1, 10, 100, 200, 300) to further assess if Gumtree Stable is
able to avoid doing recovery by making more efficient map-
pings.

To compare the paired runtimes between algorithm vari-
ants, we used the rank-biserial correlation [2] (RBC), which
quantifies effect size on a scale from –1 (variant A consis-
tently faster) to +1 (variant B consistently faster). For statisti-
cal significance, we use the Wilcoxon signed-rank test [10]: a
non-parametric alternative to the paired t-test which does not
assume normally distributed data. To further quantify perfor-
mance differences, we report the median and mean runtime
deltas (B - A) across all file pairs, and the relative speedup
based on the mean log-ratio of runtimes, defined as the mean
of log(B/A). The log-ratio is symmetric and reflects the ge-
ometric mean performance change, which is preferred over
arithmetic means in benchmarking[5].

4.3 Results

We now present the results of running our benchmarks and
answer both our research questions. All results were deemed
statistically significant with p ≪ 10−16 using the Wilcoxon
signed-rank test.

RQ1: How do optimizations made possible by HyperDiff
affect the performance of Gumtree Stable and Greedy?
As can be seen in fig. 2, applying HyperDiff-based lazy opti-
mizations results in a roughly 20% − 45% speedup for both
Greedy and Stable variants, depending on the maxSize used.
The mean and median deltas also indicate clear runtime im-
provements both on average and for most files. The rank-
biserial correlations near 1.0 indicate that these improvements
are consistent across almost all files, which is also visible in
fig. 3. The performance difference between different values
of maxSize can be explained by the recovery phase being ex-
ecuted less often when run with a lower maxSize, resulting in
fewer nodes to decompress. The non-lazy variant, in contrast,
does not benefit from this as it always decompresses both
trees. These results suggest that incorporating HyperDiff’s
optimization techniques improve performance without obvi-
ous drawbacks, making it highly beneficial for both Greedy
and Stable variants.



15

10

5

0
M

ea
n 

 (m
s)

Greedy vs Lazy Greedy

15

10

5

0

Stable vs Lazy Stable

15

10

5

0

Greedy vs Stable

15

10

5

0

Lazy Greedy vs Lazy Stable

10.0

7.5

5.0

2.5

0.0

M
ed

ia
n 

 (m
s)

10.0

7.5

5.0

2.5

0.0

10.0

7.5

5.0

2.5

0.0

10.0

7.5

5.0

2.5

0.0

40

20

0

Re
la

tiv
e 

sp
ee

du
p 

(%
)

40

20

0

40

20

0

40

20

0

0 100 200 300
Max size

1.0

0.5

0.0

0.5

1.0

Ra
nk

-b
ise

ria
l c

or
re

la
tio

n

0 100 200 300
Max size

1.0

0.5

0.0

0.5

1.0

0 100 200 300
Max size

1.0

0.5

0.0

0.5

1.0

0 100 200 300
Max size

1.0

0.5

0.0

0.5

1.0

Figure 2: Pairwise comparison of Gumtree variants with various maxSize values, showing mean and median runtime deltas over all file pairs,
and the relative speedup percentages based on the mean log-ratio (where positive values indicate the first variant is faster), as well as the
rank-biserial correlation (where positive values indicate the second variant is faster)

RQ2: What are the trade-offs between stability and
performance when using Gumtree Stable?

In the comparison of both Greedy vs Stable and Lazy Greedy
vs Lazy Stable, the performance statistics change signifi-
cantly depending on the maxSize parameter. When maxSize
is set to 1, Greedy consistently outperforms Stable by a
small margin, as suggested by a positive mean delta, rela-
tive speedup, and an RBC near -1. However, as maxSize in-
creases, causing the slow recovery algorithm to be run more
frequently, the mean delta and mean log-ratio shift in favor
of Stable: when averaged, Stable now outperforms Greedy.
Interestingly, the median delta stays consistently positive,
and while the RBC trends towards 0, it still generally favors
Greedy. This reveals an important nuance: while Greedy is
typically faster on most diffs, Stable achieves larger gains on
a smaller subset of files by reducing the recovery overhead.
This can also be seen in the right two columns of fig. 3: while
most runtime deltas are in favor of Greedy, deltas in favor of
Stable are up to 10 times larger for higher values of maxSize.

From a practical standpoint, that makes Stable an attractive
option for computing diffs over entire codebases, where total
runtime is more sensitive to outliers. In contrast, Greedy is
still more efficient for the majority of file pairs when perfor-
mance per file is the primary concern.

In addition to the performance trade-offs, Stable offers
other benefits not quantified in this benchmark: it ensures re-
versibility, determinism and reduces noise in diffs. For exam-
ple, Gumtree Stable allows skipping the computation of both
diff directions in symmetric applications, effectively halving
the runtime and storage cost. This is especially useful in sce-
narios such as version control analysis, where changes are not
strictly directional. These benefits make Stable a more reli-
able choice in workflows where consistency is critical.

4.4 Threats to validity

We discuss potential threats to the validity of our experimen-
tal results, grouped into internal and external threats.



103
102
101
100

10 1
0

10 1
100
101
102

M
ax

 si
ze

 =
 1

Greedy vs Lazy Greedy Stable vs Lazy Stable Greedy vs Stable Lazy Greedy vs Lazy Stable

103
102
101
100

10 1
0

10 1
100
101
102

M
ax

 si
ze

 =
 1

0

103
102
101
100

10 1
0

10 1
100
101
102

M
ax

 si
ze

 =
 1

00

103
102
101
100

10 1
0

10 1
100
101
102

M
ax

 si
ze

 =
 2

00

102 103 104

Total lines of code per file pair

103
102
101
100

10 1
0

10 1
100
101
102

M
ax

 si
ze

 =
 3

00

102 103 104

Total lines of code per file pair
102 103 104

Total lines of code per file pair
102 103 104

Total lines of code per file pair

Figure 3: Runtime difference between Gumtree variants (variant B - variant A) compared to the total lines of code (LoC) in each file pair, for
various maxSize values. The x-axis represents the total LoC, plotted on a log scale, while the y-axis shows the symmetric log of the runtime
delta between the variants. Positive values indicate the first variant is faster, while negative values show the second is faster.

Internal Validity
These threats concern the correctness and reliability of our
experimental procedure and measurements.

• Measurement Noise: Although each algorithm variant
was executed 12 times per file pair, and the first two runs
were discarded as warm-up, runtime measurements may
still be affected by system-level noise like background
processes. We mitigate this by taking the median of the
remaining 10 runs, which reduces the impact of outliers.

• Implementation Bias: All algorithm variants were im-
plemented within the same Rust codebase to ensure con-
sistency. However, subtle implementation differences or
unintentional optimizations may benefit certain variants.

We aimed to isolate variant-specific behavior and share
as much code as possible to reduce this risk.

• Choice of Statistisc: We report a range of performance
statistics, including mean and median runtime deltas,
mean log-ratios, and rank-biserial correlation. Each of
these highlights different aspects of performance, and
overreliance on any single metric could bias interpreta-
tion.

External Validity
These threats concern the generalizability of our findings to
other contexts and usage scenarios.

• Dataset Representativeness: The benchmark dataset



comprises file pairs from 17 real-world Java codebases,
covering file sizes ranging from 14 to 6591 lines of code.
However, it does not capture the full diversity of soft-
ware changes encountered in practice (such as merge
conflicts, large-scale refactorings, or other programming
languages). Further studies are needed to confirm the
generality of our results.

• Hardware and Compilation Environment: Bench-
marks were run on an Intel Core i5-6200 CPU with
16GB RAM, using rustc version 1.85.1 (2025-03-15).
Performance characteristics may differ on other hard-
ware platforms (e.g., ARM, high-core-count systems) or
under different compiler configurations.

• Narrow Performance Focus: Our evaluation focuses
solely on runtime performance. Other relevant dimen-
sions, such as the quality of the resulting edit script, ease
of human interpretation, or integration with version con-
trol tools, are not addressed in this study, but may impact
practical adoption.

5 Responsible Research
All experiments are conducted on publicly available code
repositories. No personal or sensitive data is used at any point
during our research. To ensure reproducibility, all Gumtree
variants are implemented in a shared infrastructure, Hyper-
Diff. The benchmarking dataset4, framework, and tests are
all publicly available5.

We are aware that algorithmic benchmarking can be sen-
sitive to dataset composition bias. Our dataset includes 1046
file pairs of bug fixes from 17 different Java projects, with file
sizes ranging from 14 to 6591 lines of code. However, bias
could be further reduced by adding other languages and edit
types to the dataset. Results are reported as-is, including any
cases where stable variants do not show clear advantages.

The aim of this research is to quantify the practical cost
of enforcing stability in Gumtree. While not contributing
new algorithmic techniques, this evaluation informs future
tool builders and researchers about the trade-offs involved in
choosing whether to use stable diff algorithms. More pre-
dictable diff behavior can benefit downstream applications
such as blame tools, refactoring detectors, and code review
interfaces. The potential impact is an improvement in the re-
liability of these tools without sacrificing performance. No
foreseeable harm is expected from this research, and care is
taken to ensure that performance measurements are contextu-
alized and not used to promote misleading conclusions.

6 Conclusions and Future Work
In this paper, we evaluated our own implementation of
Gumtree Stable in the HyperDiff framework, applied lazy op-
timizations, and compared it to existing implementations of
Gumtree Greedy and its lazy counterpart using benchmarks.
To conclude our work, we briefly answer our research ques-
tions and discuss possible future work.

4https://github.com/GumTreeDiff/datasets/tree/33024da
5https://github.com/Pomegranate123/HyperAST/tree/33ded64

6.1 Research Questions
In section 1, we introduced our two research questions:

How do optimizations made possible by HyperDiff affect
the performance of Gumtree Stable and Greedy? The re-
sults show that applying Hyperdiff-based lazy optimizations
leads to significant and consistent (with a rank-biserial corre-
lation near 1) runtime performance improvements across both
Greedy and Stable variants. Both variants show an equal rel-
ative speedup of roughly 20%− 45% compared to their non-
lazy variants, implying HyperDiff optimizations are a viable
way to scale these algorithms.

What are the trade-offs between stability and perfor-
mance when using Gumtree Stable? The results show
that Gumtree Greedy generally has a lower median run-
time, but Stable achieves better average performance when
the maxSize parameter rises above 100. While Greedy is
faster on most files, Stable avoids costly recovery passes in
some cases and can outperform Greedy when applied on a
codebase-scale. Stable is preferred for larger scale code dif-
ferencing or in cases where symmetry and consistency are
valued, while Greedy may be better when performance per
file is more important.

6.2 Future work
Some suggestions for future work are discussed in the follow-
ing paragraphs.

Evaluate trade-off between maxSize and performance:
While we observed interesting performance shifts related to
the maxSize parameter, a more focused study could model
and predict its effect on the performance of Greedy and Sta-
ble.

Broaden benchmark dataset: To increase generalizabil-
ity, future benchmarks could include additional programming
languages, like Python or Rust, and more diverse edit types,
such as merge commits or refactorings, to reduce bias in our
results.

Evaluate diff quality: Our work focuses solely on perfor-
mance analysis of different Gumtree variants. An impor-
tant next step is to evaluate whether match quality differs
significantly between both Greedy/Stable and lazy/non-lazy,
especially with varying values of maxSize. Measuring the
diff quality could further clarify the trade-offs between these
Gumtree variants.

Assess usability of stable diffs: While stable diffs are hy-
pothesized to be more accurate and usable to developers be-
cause of its stricter matching criteria, this remains to be ver-
ified. Empirical validation via user studies could investigate
how stable diffs affect developer experience or code review
efficiency.

A Disclaimer on use of LLMs
Large Language Models (LLMs), specifically ChatGPT, were
used as a productivity aid throughout this research. The
model was employed to help summarize findings and improve
the structure and fluency of the written text. No parts of the



paper were written entirely by the model, and all scientific
claims, analyses, and conclusions were authored and verified.

LLMs were also used to help generate python scripts that
provide statistical analysis or plots based on benchmark re-
sults. All scripts and their outputs were carefully reviewed
for validity and adjusted as needed.

No verbatim output from the model is included in the fi-
nal paper. The author acknowledges the use of ChatGPT in
the development of this work as described above. All final
content is the responsibility of the author.

Below is a sample of representative prompts used to inter-
act with the LLM during the writing and research process:

• “How can I compare algorithm runtimes using paired
data? Which statistics are best suited?”

• “How can I change my introduction to more clearly ad-
dress the knowledge gap in existing research?”

• “How do I force a two-column table to appear exactly
where I place it in LaTeX?”

• “Generate a Python script that reads benchmark CSV
files and plots median/mean runtime deltas by combined
file size.”

• “What are some things I should mention in a ’threats to
validity’ section for a paper benchmarking code differ-
encing algorithms?”

Additional prompts were used iteratively to refine writing,
generate explanations, and format LaTeX content. All final
decisions and edits were made by the author.

References
[1] Sudarshan S. Chawathe, Anand Rajaraman, Hector

Garcia-Molina, and Jennifer Widom. Change detection
in hierarchically structured information. SIGMOD Rec.,
25(2):493–504, June 1996.

[2] Edward E. Cureton. Rank-biserial correlation. Psy-
chometrika, 21(3):287–290, 1956.

[3] Georg Dotzler and Michael Philippsen. Move-
optimized source code tree differencing. In 2016 31st
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 660–671, 2016.

[4] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc,
Matias Martinez, and Martin Monperrus. Fine-grained
and accurate source code differencing. In Proceedings
of the 29th ACM/IEEE International Conference on Au-
tomated Software Engineering, ASE ’14, page 313–324,
New York, NY, USA, 2014. Association for Computing
Machinery.

[5] Philip J. Fleming and John J. Wallace. How not to lie
with statistics: the correct way to summarize benchmark
results. Commun. ACM, 29(3):218–221, March 1986.

[6] Beat Fluri, Michael Wursch, Martin PInzger, and Harald
Gall. Change distilling:tree differencing for fine-grained
source code change extraction. IEEE Transactions on
Software Engineering, 33(11):725–743, 2007.

[7] Quentin Le Dilavrec, Djamel Eddine Khelladi, Arnaud
Blouin, and Jean-Marc Jézéquel. Hyperast: Enabling
efficient analysis of software histories at scale. In Pro-
ceedings of the 37th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE ’22,
New York, NY, USA, 2023. Association for Computing
Machinery.

[8] Quentin Le Dilavrec, Djamel Eddine Khelladi, Arnaud
Blouin, and Jean-Marc Jézéquel. Hyperdiff: Computing
source code diffs at scale. In Proceedings of the 31st
ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering, ESEC/FSE 2023, page 288–299, New York,
NY, USA, 2023. Association for Computing Machinery.

[9] Eugene W Myers. An o(nd) difference algorithm and its
variations. Algorithmica, 1(1):251–266, 1986.

[10] Frank Wilcoxon. Individual comparisons by ranking
methods. Biometrics Bulletin, 1(6):80–83, 1945.

[11] Kaizhong Zhang and Dennis Shasha. Simple fast al-
gorithms for the editing distance between trees and
related problems. SIAM Journal on Computing,
18(6):1245–1262, dec. 1989.


	Introduction
	Background
	Abstract Syntax Trees
	Gumtree Greedy and Stable
	Lazification with HyperDiff

	Contribution
	Formalizing Stability
	Implementing Gumtree Stable
	Testing Stability

	Evaluation
	Dataset
	Benchmark Setup
	Results
	RQ1: How do optimizations made possible by HyperDiff affect the performance of Gumtree Stable and Greedy?
	RQ2: What are the trade-offs between stability and performance when using Gumtree Stable?

	Threats to validity
	Internal Validity
	External Validity


	Responsible Research
	Conclusions and Future Work
	Research Questions
	Future work

	Disclaimer on use of LLMs

